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1 Introduction

Let G be an additive subgroup of C and A € C. The Lie algebra g(G, A) we study in this
paper has a basis {L,, I, | a € G} subjecting to the following Lie brackets

[La> Lb] - (b - a’)La-i-b; [Lm Ib] = (b - )‘a)[a-i-b; [[m Ib] =0. (11)

We will simply denote g = g(G, \) if no confusion. Since for any nonzero € € C, there is
a Lie algebra isomorphism between g(G, \) and g(eG, \) defined by

1 1
Lo € Loy, Io— € Iy,

we always assume in this paper that Z C G and % ¢ G for any integer k > 1.
The algebra g is formed through semi-product of the higher rank Virasoro algebra
v = spanc{L, | @ € G} and one of its module of tensor fields V(\) = spanc{v, | a € G}
defined by
Lovy = (b — Aa)vgye.

Notice that the algebra g(G,0) is the centerless higher rank Heisenberg-Virasoro algebra
[8], and g(G, \) is an infinitesimal deformation of g(G,0). Therefore, we call g(G, \) a
centerless deformed higher rank Heisenberg-Virasoro algebra. It also has close connections
with the Heisenberg-Virasoro algebra and deformed Heisenberg-Virasoro algebras. Tak-
ing G = Z, we get the centerless deformed Heisenberg-Virasoro algebra g(Z, \), which
was given in [7] through the second cohomology group of the centerless Heisenberg-
Virasoro algebra g(Z, \) with coefficients in the adjoint representation. Hence the de-
formed Heisenberg-Virasoro algebras and higher rank Heisenberg-Virasoro algebras are
generalizations of the Heisenberg-Virasoro algebra, which was first introduced in [I]. Rep-
resentations of these three algebras were studied in [5], [6, O] and references therein.
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Due to the connection with these algebras, it seems reasonable and important to
study the algebra g. Our main purpose of this paper is to determine the universal central
extensions, derivations and isomorphism classes of all g(G,\). Such computation is a
priority in the structure theory of Lie algebra, and has been done for many Lie algebras,
such as generalized Witt algebras [3], generalized Schrodinger-Virasoro algebras [13], [12],
higher rank Heisenberg-Virasoro algebras [], deformed Heisenberg-Virasoro algebras [7],
solenoidal Lie algebras over a quantum torus [14], and so on.

The following is the outline of this paper. In section 2, we compute the universal central
extension g of g, which we call deformed higher rank Heisenberg- Virasoro algebra. Section
3 is devoted to derivations of g and the lifts of these derivations to derivations of g. In
the last section isomorphism classes and automorphism groups of all the algebras g(G, \)
are determined, and finally the explicit form of the unique lift of any outer automorphism
of g to g is given.

Throughout this paper, the symbols Z,C, C* refer to the set of integers, complex
numbers and nonzero complex numbers respectively. We denote by G* the set of characters
of G, and by Hom(G, C) the set of all additive group homomorphisms.

2 Universal central extensions

In this section we compute the universal central extensions of g for A # —1, G being free
and of rank n > 1. We fix a Z-basis ¢ = 1,65,--- , ¢, of G.
Let ¢ : g x g — C be a 2-cocycle, hence

p(l,y],2) + @(ly, 2], 2) + (2, 2], y) = 0;

(2.1)
QO([L’, y) - —QO(y,ZE), for any r,y,z € g.

Define a linear function f on g by

f(La) = 2o(Lo, La)i (1) = =pllLo, ) for a £ 0,
f(Lo) = oL, L) S(I) = soge(Loa, ),

and a 2-coboundary ¢ by ¢s(z,y) = f([z,y]). Replacing ¢ by ¢ — ¢y, we may assume
w(Lo, Ly) = @(Lo, 1) = (L1, L1) = o(L_1,1;) =0 for any a # 0.

Lemma 2.1. ¢(L,, Ly) = £ (a® — a)Cpda4p0 for some Cy, € C.

Proof. One reference for this computation is [I1]. O

Lemma 2.2. ¢(I,, ;) = aCa1500x0 for some Cy € C.

Proof. Consider the triple (x,y, 2) = (Lq, Iy, I.) in (2. and we have

(b - )‘a)(p([a-i-ba [c) + (C - )\CL)QO(Ib, [a-i-c) =0. (22)



Set a =0 in (Z2)) and we get
oIy, 1) = 0if b+ c 2 0,
Take ¢ = —a — b in ([2.2)),
(b= Ao T-as) = (A+ D (T ). (23)
Set a =1 — b in (23)), we obtain
— (A=A =D)Ly, 1) = (A +1)b = N)p(f1, 1), (2.4)

which implies the lemma for A = 0 by setting C; = ¢(I, 1_4).
Now we only need to prove that o(I,, I_,) =0 for any a € G if X #0,—-1. If \™' € Z,
then set a = £ € G in ([Z3) and one gets

1
b(x +2)p(Ly, 1) = 0,

which shows that ¢(I,, I_) = 0 if A # —1. Suppose A = —1 and by ([Z4)) we see

oIy, Ip) = (L1, 11) if b# —1.
Choose b # +1 and let a = —1 — b in (23), we get

b—1 b—1 b—1
T@(I—hh) = T@(Ibaf—b) = TSD(Ih[—l);

which forces that ¢(I;, 1 1) = 0 by skew-symmetry. So ¢(I,, ;) = 0.
Suppose that A™! ¢ Z, then \b+ XA+ 1 # 0 for any b € G. So ([2.4)) gives

(A+1a—A

[ ] g) = 212274
Pla Loa) = =03

p(l, 1-1).
Put it into (23] and set b = 0, then we get
AA+ 12X+ 1Da(a—1)p(ly,1-1) =0 for any a € G,

which forces ¢(I1,1_1) = 0, and hence ¢(1,,1_,) = 0. We complete the proof. O

Lemma 2.3. ©(La, I)) = 6arp0 <o§°}(a2 +a)dno + 5(a® —a)CHon, + 3 aiog;a&_z),
=2

where C’SI) €eC,0<i<nanda= 73 aje;.
j=1

Proof. Consider the triple (z,y, 2) = (La, Ly, I.) in (21]), we have

(b - CL)QO(LCL-H?? ]C> - (C - Ab)@([/aa [b+c) + (C - Aa)@(Lba ]a+c) =0. (25>



Take a = 0,
(b + (L, 1) — (¢ = Ab)p(Lo, Ipte) = 0,

which implies
o(Ly, I.) =0 if b+c#0. (2.6)

Moreover, let b+c = 0 and ¢ — \b # 0 (such b, ¢ exist since X\ # —1), we get ¢(Lo, Ip) = 0.
Set ¢ = —a — b in (2.5) and we obtain

(b—a)p(Lasp, I—a—p) + (@+bAN+1))p(La, 1) — (a(A+ 1) +b)p(Ly, ) = 0. (2.7)
Let a +b =0 in (27) and we get
P(Loas D) = —p(Las 1) if A #0. (2.8)
Let b =1 in (21), we have
(1—a)p(Lay1, I—a—1) + (@+ A+ 1)@(La, [-) — (a(N+ 1) + 1)p(Ly, 1) =0.  (2.9)
Moreover, setting b = —1 and replacing a by a + 1 in (Z71), it gives
(@ = Nt o) — (a+ 2)p(La, T q) = 0. (2.10)

Now we continue the proof in the following four cases.
Case I: A = 0. Combining (Z.9)) and ([Z.I0), we get

1
QD(LM I—a> = §(a2 + a)¢(L17 ]—1>’

Set Cg][) = 2¢(Ly1,1_;), and we get the lemma by ().

We emphasize that in the remaining three cases we have p(L_,, I,) = —p(L,, I_,) for
any a € G. Especially, o(Ly,1_1) = —@(L_1,1;) = 0.

Case II: \ # 0,41, —2. Notice that (2.9]) and (2.I0) form a system of homogeneous
liner equations in variables ¢(L,, I_,) and @(Lai1, [—4—1) with a coefficient matrix whose

determinant is \
Il—a a+A+1]
G-\ —q—2 =A=1)(A+2)#0.

So ¢(Lg, I-4) = 0 and hence by Z8) ¢(Lq, I) = 0 for any a,b € G.
Case III: A = 1. Set Cf} = 2¢(Ly, I_5). A same calculation as in Lemma 2] shows

1
(Lo, Iy) = E(ag — a)C)usb0-
Case IV: A = —2. In this case, the equations ([2.9) and ([2I0) turn to

(a—=1)p(La, o) = (@ —1)p(Lay1, [-a-1),
(a + 2)§0(La> I—a) = (a + 2)§0(La+1> I—a—l)a
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which implies that ¢(Lei1, [-a—1) = ©(La, [_,) for any a € G. So
O(Lik, 1) =0, @(Layr, [—a—r) = @(La,1-,) for any k € Z,a € G\ Z.

Then (2.0) gives
O(Latp, I—a—p) = ©(La, I_q) + o(Ly, Iy) if a # b.

For a € G\ Z, we still have

©(Laa; I-24) = ©(Las1, 1—a—1) + @(La—1, I—a41) = 20(La, I_q).

So we have proved ¢(Lgip, o) = @(La, 1_4) + @(Ly, [) for any a,b € G. Therefore
(Lo, I-0) = > aip(Le,, [-,) if a =) a;e;. Put Cg} = p(Le;, I-,) for 2 <i <n, and we
i=2 i=1

see that o(Lg, Ip) = > angl)éaer’O. This finishes the proof. O
i=2
Now from Lemma 2.1 and we get the main theorem of this section.

Theorem 2.4. Denote by g the universal central extension of g(G,\) for A # —1 and G
be a free subgroup of C of rank n. Then g satisfies the following Lie brackets

1
(Lq, Ly) = (b —a) Lot + E(a?’ —a)Cr0atb0;  [Las Ip] = aCrg15,00x0;

1 - ;
[La, ) = (b — Aa)Loss + Sasno (cf}(a? +a)dxo + E(a?’ —a)CL o+ Y aiC£}5A7_2> ,
=2

where Cp, C7, Cf}, 0 <i <n are central elements and a = >, a;é;.

=1
Remark: (1) If A # —1, —2, Theorem 2.4] stands for arbitrary additive subgroup G of C.
Especially, when A = 0, we get the generalized Heisenberg-Virasoro algebras, which was
originally given in [8]. When G = Z, we get the deformed Heisenberg-Virasoro algebra,
which was studied in [7].
(2) The Lie algebra g = g(G,—1) is not perfect (Iy ¢ [g,g]) and there is no universal
central extension of g. But one can still consider the universal central extension of the
derived subalgebra g’ = [g, 9] = spanc{L.. I, | a € G,b € G\ {0}}. One can prove that
the universal central extension of g’ is governed by four nontrivial 2-cocycles

1

1
Cr(La, Ly) = E(a?’ — a)darb0;  Cr(la, Iy) = ~atb0;

Cri(La, Iy) = adat0;  Cri(La, It) = 00

n

3 Derivations of g and g

In this section we compute derivations of g for arbitrary G and A, and consider the lifts
of these derivations of g to derivations of g.



The algebra g has a natural G-grading g = € g,, where g, = spang{L,, [,}. From a
aclG
well known result about derivations of graded Lie algebras in [4] we know that the algebra

Derg of derivations of g is also graded by G, i.e, Derg = @ (Derg),, where

aeG

(Derg), = spanc{c € Derg | o(gy) € gars, V b € G},

and all outer derivations of g lie in (Derg),. Now we construct some derivations of g which
are all of degree 0. Define linear maps ¢,v : g — g by

0(Lq) = aly, (1) = 0; U(La) =0, ¥(Lo) = L.
For A = 0, we define a linear map o) : g — g by
o0y(La) = 1a0x0, 0(0)(1a) = 0.
For A = —1, we define a linear map o(_) : g — g by
o-1)(La) = @®1,65 -1, o(-1)(1s) = 0.
For A = —2, we define a linear map o(_s) : g — g by
0(—2)(La) = 0,3[(1(5)\7_2, o(—2)(ls) = 0.
Let A € Hom(G, C). We define a linear map 4 : g — g by
Ea(Le) = A(@) Lo, €a(L) = A(a)],
and for A =1, a linear map n41: 9 — g by
Nai(La) = Ala)ladr1, na1(l,) =0.

It is easy to check that the linear maps ¢, 1, o), 0(—1), 0(—2),§4, 14,1 are all derivations
of degree 0. The main result of this section is the following

Theorem 3.1. For a # 0, (Derg), = spanc{adL,, adl,}, and
(Derg)o = spanc{e, v, o0y, 0(—1y, 0(—2),a:naa | A € Hom(G,C)}.
Proof. Let 0 € (Derg), and suppose
0(Ly) = pr(a) Ly + 1(a)ly, o(ly) = pr(a) Ly + 11(a)l,,

for some functions py, 77, pr, 77 on G. Apply o to [Lq, L), [La, Iy] and [I,, 1], we get the
following equations

pr(a)(b— Aa) = pr(b)(a — Ab), (3.1)
pr(a+b)(b = Aa) = pr(b)(b — a), (3.2)
(b—Xa)rr(a+0b) = (b— Aa)ur(a) + (b — Aa)11(b), (3.3)
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(b—a)t(a+b) = (b—Xa)r(b) — (a — A\b)7r(a), :
(b —a)prla+b) = (b—a)(ur(a) + pr(d)). (3.5)
Claim 1: p; € Hom(G,C). From (B.3]) we see that up(a+b) = pr(a)+pg(b) if a # 0.

Moreover, let a = 0,b # 0 in B3) we get p(0) = 0. Hence pup(—a) = —pp(a) for any
a € G. Then choose b # 0, +a and we have

pr(2a) = pr(a+b) 4+ pr(a —b) = 2ur(a) + pr(=b) + pr(b) = 2u.(a).

So we have proved pip(a+b) = pp(a) + pr(b) for any a,b € G. Claim 1 stands.
Claim 2: y; =0. Let b= 0 in (3.2]) we get

Apr(a) = pr(0) for any a # 0. (3.6)

If A =0, then p;(0) = 0. Take b = —a in ([B.2)) and we have pr(a) = 0 for any a € G.
Suppose A # 0, then py(a) = $17(0) for a # 0. Then BI) turns to

pr(0)(b—a)(A+1) =0,
which implies p;(0) = 0 and hence py = 0if A # —1. If A = —1, then take a = —b # 0 in
B2) and we have p;(b) = 0 for any b # 0. So p;(0) = 0 by ([B.6). This proves Claim 2.
Claim 3: 7;(a) = pr(a) + 77(0). If A =0, then ([B.3]) shows that
Tr(a+b) = pr(a) + 7;(b) for b # 0.
Choose a = —b # 0 then we have
71(0) = pr(=0) + 71 (b) = —pr(b) + 71(b),

that is, 77(b) = pur(b) + 77(0). This proves the claim for A = 0 since pz(0) = 0. Suppose
A#0. Let b=0,a # 0 in (B3], and Claim 3 follows.
Claim 4: TL(CI,) = lo(S)H() + lla + l2a25)\7_1 + l3a35,\,_2 + B(CI,)(;)\J for some lo, ll, lg, lg eC
and B € Hom(G,C). Take a = 0 in ([B4]) and we get
A1 (0) = 0. (3.7)
Replacing b by —b and a by a + b in ([34]) we have
(a+bA+1))mr(a+b) — (a+2b)mr(a) = —(Aa + b(A + 1))7.(—D). (3.8)
Combining (34 and (B.8)), and letting b = 1, we obtain
A=) A+2)1p(a) =(Na—1)(a+ A+ 1D)7(1)+ (a—1)(Aa+ A+ 1)7(=1).  (3.9)

If A =0, then we get
. 1 1
1r(a) = la+ 1y with |, = 5(7‘,;(1) —7(—1)),ly = 5(7‘,;(1) + 71.(—1)).
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If A # 0 then 7,(0) = 0 by B1). Let a+ b =0 in (34) and we get
1(—a) = —7(a) if X # 0, —1.
So by ([B9) we see 7(a) = ar(1) if A #0,+1,—2.
If A= —1, then from (B9 it follows

0(a) = loa® + lia with Iy %(TLQ) b (=) = %(TL(U i (=1)).

If A =1, then (8.4]) and (B.8]) imply that
Tr(a +b) = 17(a) + 71(b) for any a,b € G,

that is, 7, € Hom(G,C). We may write 7,(a) = B(a) + lya for some [; € C and B €
Hom(G, C).
Now suppose A = —2. Let b =1 in (3.4)),

(1—a)r(a+1)+ (a+2)7r(a) = (2a + 1)7L(1).
Furthermore, replace a by a 4+ 1 and we have
—arp(a+2)+ (a+3)m(a+ 1) = (2a + 3)11(1).

Let b =2 in (B4,
(a—2)1(a+2) — (a+4)71(a) = =2(a+ 1)7L(2).

Then the above three equations imply that
1 1
TL(Q) = lga3 + lla with l3 = 6<TL(2) — QTL(l)), ll = 6(8TL(1) — TL(Q))

Combing the above cases we see that Claim 4 is valid.
In conclusion, we have

O'(La) = A(CL)La + (l05A,0 + lla + l2a25)\7_1 + lga35>\7_2 -+ B(a)é,\,l) [a;
o(la) = (Ala) +1) L,

for some 1,1y, l1, 15,13 € C and A, B € Hom(G, C). This proves Theorem B.11 O
Remark: (1) Denote by id : G — C be the identity map. The corresponding derivation
&iq is exactly the inner derivation adLy. The inner derivation adly, = 0 if A = 0, and
adly = %go it A #£ 0.
(2) In [8], derivations for higher rank Heisenberg-Virasoro algebras were computed. How-
ever, there is one derivation missed, the one we denoted by o). The reason why they
missed this derivation is that they assumed 7,(0) = 0 out of nowhere (or in the terminol-
ogy of [8] Bp = 0, see Line 3 Page 9 in [§]).

In the following we consider lifts of the derivations of g we obtained above to derivations
of g with A # —1 and G being free of rank n > 1. We shall recall a result about derivations
of the universal central extension of a perfect Lie algebra from [2].
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Proposition 3.2 ([2]). Suppose the Lie algebra G is perfect and denote by C_the universal
central extension of G. Then every deriation of G lifts to a derivation of G. Moreover,
if G is centerless, then this lift is unique and DerG = DerG.

Denote ¢ = span-{C/, C’Ié,\,o,CéOI)é,\,o, C’gl)éM, Cg}é,\,_g | 2 <i < n}. From Proposi-
tion we know that if A # 0, —1, every derivation of g lifts uniquely to a derivation of
g. For any o € Derg, define a linear map @ : g — ¢ by

0(Ly) = 0(Ly); 7(1,) = 0(l,); o(c) =0 forany a€G. (3.10)
Clearly, 7 is a derivation of g and it lifts 0. Therefore we get

Theorem 3.3. If A # 0, —1, then
Derﬁ = Spﬂmc{@% U(—2)>€_Aa 777,17 adLaa ad[a | Ae Hom(G, C)a ac G}>

where .1, 0(—),Ea, M1 are as in Theorem[3 1 and B, 1,52y, {4, a1 defined in (310).

Now we consider the A = 0 case. We emphasize again that g is the higher rank
Heisenberg-Virasoro algebra in this case. There are four kinds of derivations ¢, ¥, 0(0), {4,
which are of degree 0.

Theorem 3.4. Let A =0 and A € Hom(G,C) (here we denote Cp; = C’g][)).
(1) The derivation ¢ lifts uniquely to a derivation @ of § defined by

L,— al, 4 640CL1, 1o+ Crdao, Cp— —24Crr, Crr— Cr, Cr— 0.
(2) The derivation o) lifts uniquely to a derivation o) of § defined by
L, = I, —040CLr, Io— —Crdgo, Cp— 0, Crr— 0, Cr—0.
(8) The derivation &4 lifts to a family of derivations {Ea.x | I,k € C} of § defined by

La — A(CL)La + (l + k:a)]a + 5[170(]{7 — l)CL[,
Ia — A(a)]a — (Sa,()C[(l + k‘),
CL — —24]{ZCL[, CL[ — —]{ZC[, C[ — 0.

(4) The derivation 1 lifts to a family of derivations {{y, | I,k € C} of g defined by

La = (l + k’&)]a + 5a,0(k’ — Z)CL],
Lo I, + 8000 (k — 1),
CL — —24]€CL[, CL[ — CL] + k‘C], C] — 20]

Proof. We only prove (3), the other three are similar and we omit it.
Let ¢ be a lift of £4. Notice that ¢ is homogeneous of degree 0. We may write

¢(La) = Ala)La + fr(a)la + bapCii (L) = fi(a)La + A(a) Lo + 0a,0Cs,



for some C4, Cy € ¢ and functions f;, f; : G — C. Expanding the equation ¢([L,, Ly]) =
[6(La), L) +[La, ¢(Ly)] and comparing coefficients we get (b—a) f1(a+b) = bf(b)—afr(a),
which implies
fr(a) =1+ ka for some [,k € C,
and moreover we get
1
E(ag —a)p(Cr) — 2aCy = (fr(—a)(a® +a) — fr(a)(a® — a)) Crr = 2a(l — ka®)Cyr.

Let a =1, we see C; = (k —1)Cp;. Hence ¢(Cr) = —24kC1;.
Expanding ¢([La, Ip]) = [¢(La), L) + [La, ¢(1p)] we get bfr(a+b) = f1(b)(b—a), which
implies f;(a) = 0 for any a € G, and we get

(0,2 + a)gb(C’U) — aC’2 = a(l — k:)CI

Let a = —1 and we see that Cy = — (1 + k)Cr, ¢(CL;) = —kCY.
At last expand ¢([/,, I]) and we have ¢(Cr) = 0. This proves (3). O

4 Isomorphism classes and automorphisms

In this section we determine the isomorphism classes and automorphism groups of the Lie
algebras g(G, \) for arbitrary G and A, and then consider the lifts of these automorphisms
to automorphisms of g for A # —1 and free G.

Theorem 4.1. The Lie algebras g(G, \) and g(G', X') are isomorphic if and only if N = A
and G' = £G for some nonzero & € C. Moreover, any Lie algebra isomorphism 7 :
9(G,\) — g(¢G, N), aside from an inner automorphism of g(§G, \), has the form

m(La) = §_IX(CL)L/§Q + X(a)féa (105/\,0 +lia+ l2a25,\,—1 + l3a3<5,\,_2 + f(a)5,\,1) ;
m(la) = Ix(a) Iz,
where | € C* 1y, ly,1s,l3 € C, x € G* is a character of G, and f € Hom(G,C).

(4.1)

Proof. Denote g = g(G,\), ¢ = g(G',\), and we will use an extra dash to denote
elements in g’ in the following. If ' = A\, G’ = £G for some nonzero £ € C, it is easy to
check that the linear map defined by

Lo & Ly Lo €I,

is a Lie algebra isomorphism from g to g’.

On the other hand, suppose g = ¢’ and let 7 : g — ¢’ be a Lie algebra isomorphism.

Claim 1: There exists some £ € C* and an inner automorphism 6 of g’ such that
G' = £G and Om(ga) = gg, for any a € G.

Notice that the set of locally finite elements in g is spanc{Lo, I, | @ € G}. Since 7
maps a locally finite element in g to a locally finite element in g’, we may assume that

m(Lo) =L+ > wl,
beG’ (Lo)
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for some ¢ € C*, finite subset G'(Lg) of G’ and ~, € C. Define
n = H exp{—%ad[é},
0£bEG" (Lo)

which is an inner automorphism of g'. Clearly, nm(Ly) = £ 'L{, + vol}. So replacing 7 by
n~ 7 we may assume
r(Lo) = €L 4 0l

Since spanc{/, | a € G} is the unique maximal abelian ideal of g, it forces

T(l)= Y v

beG! (1)

for some finite subset G'(I,) of G’ and some function v, : G’ — C.
For any a # 0, from

oLl =a Y w® = (Lo w(l) =€ S O]

beG (1) beG! (1)
we see that G'(I,) = {{a} C G’ for any a # 0. This implies G' = £G and
m(1a) = va(§a)I{, for a # 0.

Since m[Lq, Iy] = (b — Aa)7(Loys) = (b — Aa)vars(§(a + )L,y = [7(La), (D) 1G] for
a,b#0,a+ b # 0, it follows that 7(L,),a # 0, must have the form

w(La) = pla) Ly + Y (o)1

c€G'(La)
for some finite subset G'(L,) of G', functions p: G — C* and p : G' — C. Then
(b— Xa)Vayp(&(a + b))[é(aer) = [P(Q)L/gaa Vb(fb)féb] = &p(a)vy(£b) (b — Xa)fé(aer)- (4.2)

Moreover, from

7L, 1o) = —Aam(L) = —Nave(€a) Iy = [p(a) Loy 3 (D)}
beG’ (Io)

we see that G'(1y) = {0} C G’, and hence 7(Iy) = 14(0)I}. Define
v(&b) = vy (ED) for any b € G.
We get a function v : G — C* such that
m(l.) = v(€a)li, € g, foranyacG.
Then (ZZ) turns to
(b= Aa)v(§(a+ b)) = Ep(a)v(Eb)(b — Na). (4.3)
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Consider 7[Ly, L,] for a # 0, we get

> ulb)(a—€ D) — 0N €ap(a)l, =0,

beG' (La)

which implies G'(L,) = {£a} and N+ = 0. Write u(0) = 7o and p(0) = £~1. Then we
have
7(Lo) = pla)Lg, + p(éa)If, € g, forany a € G.

This proves Claim 1.
In the following we determine the functions p, p, v.
Claim 2: y = ¢p is a character of G, N = X\ and v(£a) = v(0)x(a) for any a € G. Since

T[La, L] = (b — a)7(Lays) = (b — a)p(a +b) Ly + (b — a)p(€(a+ ) I o1
= [p(a) L, + p(€a)Ig,, p(b) Ly, + 11(€b) 1)
= {(b—a)p(a)p(b) Ly + p(a@)p(ED)E(D — Na) i, iy — p(O)p(€a)é(a — N'D) (s

we get

(b —a) (p(a+b) — Epla)p(b)) =0, (4.4)
(b—a)u(E(a+)) =Ep(a)u(€b)(b— Na) = Ep(b)u(éa)(a — N'D). (4.5)

From (£4)) we get that if a # b then
pla+b) = Ep(a)p(b). (4.6)

Let b= 0 in ([&G), we have p(0) = £, Choose b # 0, +a. Using (&8 we get

p(2a) = Epla+b)p(a —b) = Ep(a)’p(b)p(—b) = €p(a)®p(0) = Ep(a)* for any a € G.
This proves that (6] stands for any a,b € G. So x = {p is a character of G.
Let b =0 in (@3] we get
Av(€a) = Név(0)p(a) for any a # 0, (4.7)
which implies that
N =0 if and only if A = 0.

If A # 0, then (L) says v(a) = ATlfy(O)p(a) for any a # 0. Putting it into (£3]) and
using (.6) we see A = A. Hence v(&a) = {v(0)p(a) = v(0)x(a) if X # 0.
fA=XN=0,let a=—-b#0in (L3)) and we have

v(0) = £p(=0)v (D).

Then v(0)x(b) = &2p(b)p(=b)v(£b) = Ep(0)v(Eb) = v(€b). This proves Claim 2.
At last we determine the function u. Set ¢(a) = ‘;((55)) Divide x(a +b) to (@5 and
we obtain

(b—a)p(a+0) + (a— Ab)p(a) = (b= Aa)p(b),
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which is the same equation as ([34). So from the computation in Section 3 we have
o(a) = lobro + ha + 15a*5x 1 + 13655 o + fa)dx1,
where Iy, l,15,13 € C and f € Hom(G, C). Therefore
1(éa) = x(a) (lodxo + lia + 12’0y —1 + 13a°55 o + f(a)dr1) -

This proves the theorem. O]

Now using Theorem [4.1] we may determine the automorphism group of g. Denote £ =
{e € C* | eG = G}, which is a subgroup of C*. Let £ € £, x € G*, f € Hom(G,C),l €
C*,ly, 11, 15,13 € C, denote by 0,(&, x, f,1,1lo, 1,12, 13) the linear map given by

Lo = §'x(a) Lea + x(a)Ieq (lobr0 + lia + 1”0y —1 + l3a85 o + f(a)dr1) ;
I, — lX(a,)Iga.

Here we shall point out that if A = 1 we may assume [; = 0 since the map a — f(a) +l1a
still lies in Hom(G, C). Then by Theorem B we have

Theorem 4.2. The outer automorphism group of g is
OUtg = {9)\(5, X fa l> lOa lla l2> l3) | 5 € 87 X € G*> f € HO?TL(G, C)a l € CXa lOa lla l2a l3 S C}a

and Autg = Outg x Inng, where Inng is the inner automorphism group of g, generated by
{exp adl, | a € G}.

Notice that
9)\(€/a X/a f/> l,a l/Oa llla l/2a l:‘%) : 9)\(57 X f> la l0> lla l2, l3)
=0\ (&6 (XX fHUFILE L+ Vo, 1 + 1 6l + Uy, 15+ U'l)
and
9A(£7X7 fv lu lOv llv l27 l3>_1 =
H)\ (5_17 X_l ! é-—l’ _l_1f7 l_l7 _l_lé-lOv _l_lllu _1_15_1127 _l—1£—213> .

Clearly, the map G* — Outg defined by x +— 0,(1, x,0,1,0,0,0,0) is a group monomor-
phism and denote by N its image. Set S = {6,(1,1,0,7,0,0,0,0) | € C*}, and

K ={0\(1,1, f,1,lo,l1,12,13) | lo, lh, l2, I3 € C, f € Hom(G, C)}.
Here 1 denotes the identity in G*. Clearly, N, S, K are normal subgroups of Outg, and

Hom(G,C)=C" if A=1;
N=G", S=C, and K = C? if A=0,-1,-2;

I

C otherwise.

Moreover, let T = {6,(¢,1,0,1,0,0,0,0) | £ € &}, which is a subgroup of Outg and
isomorphic to £. Then we have a projection Outg — T', whose kernel is the normal
subgroup NSK. So we get
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Theorem 4.3. Oulg =T x (NSK) = & x (G*C*K).
Using a result from [I0] one may extend automorphisms of g to automorphisms of g.

Proposition 4.4 ([10]). Let G be a perfect Lie algebra and G the universal central exten-
sion of G. Then every automorphism 0 of g admits a unique extension to an automorphism
0 of G, and the map 6 — 0 is a group monomorphism. Moreover, if G is centerless, then
the map 0 — 0 is an isomorphism.

Explicitly we have the form of extended automorphisms.

Theorem 4.5. Suppose A # —1. Let § € £, x € G*, f € Hom(G,C),l € C*,ly, 11,13 € C,
then the unique automorphism 0 = 0,\(&, x, [, 1, 1o, (1,0,13) of § obtained by extension from
0 =0\, x, f,1,lo,11,0,l3) is such that

g(La) = E_lx(a)Lga + X(a)lga (lo(;)\p + lia + l3a35A7_2 -+ f(a)ém) (48)
-1 _ 1
+ da0 (£ o 5C'L + (1€ — lo)Cg)I)(SA,o + Ef(lf — ZS)CI&,O) ;

£1-¢
24

0(1,) = Ix(a)ea + €000 ( Cona+ (1= + 1~ k)Cy) m) (4.9)

+1(Eer) 000 D (E61)iCE10x 3
=2

G(Cp) = €0y — 121,¢ (209} + zlof) Sxo; (4.10)
a(cl) =g (cf) + llcf) B =g

B(Cry) = 1(ge) Z {a1(6e); — €i(€e);} CF) i > 2 (4.11)

0(Cy) = I%¢0y. (4.12)

Here for a € G we use a; to denote the coefficients of a with respect to the basis €1, . .., €,.

Proof. Recall ¢ = spanC{C’L,015,\70,0201)5,\,0,021])5,\,1,05'}5&_2 | 2 < i < n}. For later
convenience, we denote

T(a) = l()(S)\70 + lla + l3a35A7_2 + f(a)dm,

1 " ;
ve(a) = Cf} (a* + a)dro + —(a° — a)CLon1 + > a0y € c.

12 ( ,
1=2
Clearly, 6(L,) and 6(I,) have the form

0(La) =& 'x(a)Lea + x(a)T(a)Ieq + K (a);
0(1,) =Ix(a)Iea + K(a),

14



for some maps K, K;: G — ¢. Expanding

0([La, Ly]) = [~ x(a) Lea + x(a)7(a) Iea, € X(b) Ly + X ()7 (D) I¢s)
we see that K (a) =0 if a # 0, and

ga* — ¢!

—2K.,(0) + %(cﬂ —1)0(Cp) = 5

22 S Op+2(lg — h€a®)CV) 600 + (12 — 12a2)ECTH 0,
which implies

£1-¢

K.(0) = Y

CL+(1§ ) L15>\0+ 5( _l(z])CI(SA,O

and

0(C) = €0y, — 121,€ (202‘}) + zlcl) Sro.

This proves (£8) and (ZI0). B
Expanding 6([La, Iy]) = [0(La), 0(1)] we get that K (a) =0 for a # 0 and

— (1+ N)aK;(0) + (a* + a)0(C}} )0 + %
12

B(CE)ora + Y aiB(CL)ox

=2

— ¢! (((@)2 +&a) CF)ono + CLion+€Y ang}é,\_g) + I7(a)¢aC)y0.

1=2

(4.13)

If A=0, let a =—1 in (£I3), then we get
Ki(0)6r0 = 16 (1= €O + (1 = 6)Cr ) dno and B(CL)) =16 (CFF +1Cr)
IfA=1,let a =1 in [@II3), then we get

(¢ —1)
24

If A= —2,let 0 # a € Ze; in ([AI3), then we get

K (0)0y, = — céyy and 9(C)) =12y,

K1(0)0y > = (&)™ Y (6e1)iCY 105 a1
=2

5(6’& = 1(&ey) IZ e1(8ei); — €i(§er); )Cg])-

7j=2

This proves (£9) and ([EII). Similarly, [@I2) follows from 0([I,, I;]) = [0(1,),0(1,)]. O
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