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Abstract

In this paper, we study a class of infinitesimal deformations of the centerless
higher rank Heisenberg-Virasoro algebras. Explicitly, the universal central exten-
sions, derivations and isomorphism classes of these algebras are determined.
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1 Introduction

Let G be an additive subgroup of C and λ ∈ C. The Lie algebra g(G, λ) we study in this
paper has a basis {La, Ia | a ∈ G} subjecting to the following Lie brackets

[La, Lb] = (b− a)La+b; [La, Ib] = (b− λa)Ia+b; [Ia, Ib] = 0. (1.1)

We will simply denote g = g(G, λ) if no confusion. Since for any nonzero ǫ ∈ C, there is
a Lie algebra isomorphism between g(G, λ) and g(ǫG, λ) defined by

La 7→ ǫ−1Lǫa; Ia 7→ ǫ−1Iǫa,

we always assume in this paper that Z ⊆ G and 1
k
/∈ G for any integer k > 1.

The algebra g is formed through semi-product of the higher rank Virasoro algebra
v = spanC{La | a ∈ G} and one of its module of tensor fields V (λ) = spanC{va | a ∈ G}
defined by

Lavb = (b− λa)va+b.

Notice that the algebra g(G, 0) is the centerless higher rank Heisenberg-Virasoro algebra
[8], and g(G, λ) is an infinitesimal deformation of g(G, 0). Therefore, we call g(G, λ) a
centerless deformed higher rank Heisenberg-Virasoro algebra. It also has close connections
with the Heisenberg-Virasoro algebra and deformed Heisenberg-Virasoro algebras. Tak-
ing G = Z, we get the centerless deformed Heisenberg-Virasoro algebra g(Z, λ), which
was given in [7] through the second cohomology group of the centerless Heisenberg-
Virasoro algebra g(Z, λ) with coefficients in the adjoint representation. Hence the de-
formed Heisenberg-Virasoro algebras and higher rank Heisenberg-Virasoro algebras are
generalizations of the Heisenberg-Virasoro algebra, which was first introduced in [1]. Rep-
resentations of these three algebras were studied in [5, 6, 9] and references therein.

1 The author is supported by the National Natural Science Foundation of China (No. 11801375)
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Due to the connection with these algebras, it seems reasonable and important to
study the algebra g. Our main purpose of this paper is to determine the universal central
extensions, derivations and isomorphism classes of all g(G, λ). Such computation is a
priority in the structure theory of Lie algebra, and has been done for many Lie algebras,
such as generalized Witt algebras [3], generalized Schrodinger-Virasoro algebras [13, 12],
higher rank Heisenberg-Virasoro algebras [8], deformed Heisenberg-Virasoro algebras [7],
solenoidal Lie algebras over a quantum torus [14], and so on.

The following is the outline of this paper. In section 2, we compute the universal central
extension g of g, which we call deformed higher rank Heisenberg-Virasoro algebra. Section
3 is devoted to derivations of g and the lifts of these derivations to derivations of g. In
the last section isomorphism classes and automorphism groups of all the algebras g(G, λ)
are determined, and finally the explicit form of the unique lift of any outer automorphism
of g to g is given.

Throughout this paper, the symbols Z,C,C× refer to the set of integers, complex
numbers and nonzero complex numbers respectively. We denote byG∗ the set of characters
of G, and by Hom(G,C) the set of all additive group homomorphisms.

2 Universal central extensions

In this section we compute the universal central extensions of g for λ 6= −1, G being free
and of rank n ≥ 1. We fix a Z-basis ǫ1 = 1, ǫ2, · · · , ǫn of G.

Let ϕ : g× g −→ C be a 2-cocycle, hence

ϕ([x, y], z) + ϕ([y, z], x) + ϕ([z, x], y) = 0;

ϕ(x, y) = −ϕ(y, x), for any x, y, z ∈ g.
(2.1)

Define a linear function f on g by

f(La) =
1

a
ϕ(L0, La); f(Ia) =

1

a
ϕ(L0, Ia) for a 6= 0;

f(L0) =
1

2
ϕ(L−1, L1); f(I0) =

1

λ+ 1
ϕ(L−1, I1),

and a 2-coboundary ϕf by ϕf(x, y) = f([x, y]). Replacing ϕ by ϕ− ϕf , we may assume

ϕ(L0, La) = ϕ(L0, Ia) = ϕ(L−1, L1) = ϕ(L−1, I1) = 0 for any a 6= 0.

Lemma 2.1. ϕ(La, Lb) =
1
12
(a3 − a)CLδa+b,0 for some CL ∈ C.

Proof. One reference for this computation is [11]. �

Lemma 2.2. ϕ(Ia, Ib) = aCIδa+b,0δλ,0 for some CI ∈ C.

Proof. Consider the triple (x, y, z) = (La, Ib, Ic) in (2.1) and we have

(b− λa)ϕ(Ia+b, Ic) + (c− λa)ϕ(Ib, Ia+c) = 0. (2.2)
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Set a = 0 in (2.2) and we get

ϕ(Ib, Ic) = 0 if b+ c 6= 0.

Take c = −a− b in (2.2),

(b− λa)ϕ(Ia+b, I−a−b) = ((λ+ 1)a+ b)ϕ(Ib, I−b). (2.3)

Set a = 1− b in (2.3), we obtain

− (λb− λ− 1)ϕ(Ib, I−b) = ((λ+ 1)b− λ)ϕ(I1, I−1), (2.4)

which implies the lemma for λ = 0 by setting CI = ϕ(I1, I−1).
Now we only need to prove that ϕ(Ia, I−a) = 0 for any a ∈ G if λ 6= 0,−1. If λ−1 ∈ Z,

then set a = b
λ
∈ G in (2.3) and one gets

b(
1

λ
+ 2)ϕ(Ib, I−b) = 0,

which shows that ϕ(Ib, I−b) = 0 if λ 6= −1
2
. Suppose λ = −1

2
and by (2.4) we see

ϕ(Ib, I−b) = ϕ(I1, I−1) if b 6= −1.

Choose b 6= ±1 and let a = −1− b in (2.3), we get

b− 1

2
ϕ(I−1, I1) =

b− 1

2
ϕ(Ib, I−b) =

b− 1

2
ϕ(I1, I−1),

which forces that ϕ(I1, I−1) = 0 by skew-symmetry. So ϕ(Ib, I−b) = 0.
Suppose that λ−1 /∈ Z, then λb+ λ+ 1 6= 0 for any b ∈ G. So (2.4) gives

ϕ(Ia, I−a) = −
(λ+ 1)a− λ

λa− λ− 1
ϕ(I1, I−1).

Put it into (2.3) and set b = 0, then we get

λ(λ+ 1)(2λ+ 1)a(a− 1)ϕ(I1, I−1) = 0 for any a ∈ G,

which forces ϕ(I1, I−1) = 0, and hence ϕ(Ia, I−a) = 0. We complete the proof. �

Lemma 2.3. ϕ(La, Ib) = δa+b,0

(

C
(0)
LI (a

2 + a)δλ,0 +
1
12
(a3 − a)C

(1)
LI δλ,1 +

n
∑

i=2

aiC
(i)
LIδλ,−2

)

,

where C
(i)
LI ∈ C, 0 ≤ i ≤ n and a =

n
∑

j=1

ajǫj.

Proof. Consider the triple (x, y, z) = (La, Lb, Ic) in (2.1), we have

(b− a)ϕ(La+b, Ic)− (c− λb)ϕ(La, Ib+c) + (c− λa)ϕ(Lb, Ia+c) = 0. (2.5)
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Take a = 0,
(b+ c)ϕ(Lb, Ic)− (c− λb)ϕ(L0, Ib+c) = 0,

which implies

ϕ(Lb, Ic) = 0 if b+ c 6= 0. (2.6)

Moreover, let b+ c = 0 and c−λb 6= 0 (such b, c exist since λ 6= −1), we get ϕ(L0, I0) = 0.
Set c = −a− b in (2.5) and we obtain

(b− a)ϕ(La+b, I−a−b) + (a+ b(λ + 1))ϕ(La, I−a)− (a(λ+ 1) + b)ϕ(Lb, I−b) = 0. (2.7)

Let a+ b = 0 in (2.7) and we get

ϕ(L−a, Ia) = −ϕ(La, I−a) if λ 6= 0. (2.8)

Let b = 1 in (2.7), we have

(1− a)ϕ(La+1, I−a−1) + (a + λ+ 1)ϕ(La, I−a)− (a(λ+ 1) + 1)ϕ(L1, I−1) = 0. (2.9)

Moreover, setting b = −1 and replacing a by a+ 1 in (2.7), it gives

(a− λ)ϕ(La+1, I−a−1)− (a+ 2)ϕ(La, I−a) = 0. (2.10)

Now we continue the proof in the following four cases.
Case I: λ = 0. Combining (2.9) and (2.10), we get

ϕ(La, I−a) =
1

2
(a2 + a)ϕ(L1, I−1).

Set C
(0)
LI = 1

2
ϕ(L1, I−1), and we get the lemma by (2.6).

We emphasize that in the remaining three cases we have ϕ(L−a, Ia) = −ϕ(La, I−a) for
any a ∈ G. Especially, ϕ(L1, I−1) = −ϕ(L−1, I1) = 0.

Case II: λ 6= 0,±1,−2. Notice that (2.9) and (2.10) form a system of homogeneous
liner equations in variables ϕ(La, I−a) and ϕ(La+1, I−a−1) with a coefficient matrix whose
determinant is

∣

∣

∣

∣

1− a a+ λ+ 1
a− λ −a− 2

∣

∣

∣

∣

= (λ− 1)(λ+ 2) 6= 0.

So ϕ(La, I−a) = 0 and hence by (2.6) ϕ(La, Ib) = 0 for any a, b ∈ G.

Case III: λ = 1. Set C
(1)
LI = 2ϕ(L2, I−2). A same calculation as in Lemma 2.1 shows

ϕ(La, Ib) =
1

12
(a3 − a)C

(1)
LI δa+b,0.

Case IV: λ = −2. In this case, the equations (2.9) and (2.10) turn to

(a− 1)ϕ(La, I−a) = (a− 1)ϕ(La+1, I−a−1),

(a+ 2)ϕ(La, I−a) = (a+ 2)ϕ(La+1, I−a−1),
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which implies that ϕ(La+1, I−a−1) = ϕ(La, I−a) for any a ∈ G. So

ϕ(Lk, I−k) = 0, ϕ(La+k, I−a−k) = ϕ(La, I−a) for any k ∈ Z, a ∈ G \ Z.

Then (2.5) gives

ϕ(La+b, I−a−b) = ϕ(La, I−a) + ϕ(Lb, I−b) if a 6= b.

For a ∈ G \ Z, we still have

ϕ(L2a, I−2a) = ϕ(La+1, I−a−1) + ϕ(La−1, I−a+1) = 2ϕ(La, I−a).

So we have proved ϕ(La+b, I−a−b) = ϕ(La, I−a) + ϕ(Lb, I−b) for any a, b ∈ G. Therefore

ϕ(La, I−a) =
n
∑

i=2

aiϕ(Lǫi , I−ǫi) if a =
n
∑

i=1

aiǫi. Put C
(i)
LI = ϕ(Lǫi, I−ǫi) for 2 ≤ i ≤ n, and we

see that ϕ(La, Ib) =
n
∑

i=2

aiC
(i)
LIδa+b,0. This finishes the proof. �

Now from Lemma 2.1, 2.2 and 2.3 we get the main theorem of this section.

Theorem 2.4. Denote by g the universal central extension of g(G, λ) for λ 6= −1 and G
be a free subgroup of C of rank n. Then g satisfies the following Lie brackets

[La, Lb] = (b− a)La+b +
1

12
(a3 − a)CLδa+b,0; [Ia, Ib] = aCIδa+b,0δλ,0;

[La, Ib] = (b− λa)Ia+b + δa+b,0

(

C
(0)
LI (a

2 + a)δλ,0 +
1

12
(a3 − a)C

(1)
LI δλ,1 +

n
∑

i=2

aiC
(i)
LIδλ,−2

)

,

where CL, CI , C
(i)
LI , 0 ≤ i ≤ n are central elements and a =

n
∑

i=1

aiǫi.

Remark: (1) If λ 6= −1,−2, Theorem 2.4 stands for arbitrary additive subgroup G of C.
Especially, when λ = 0, we get the generalized Heisenberg-Virasoro algebras, which was
originally given in [8]. When G = Z, we get the deformed Heisenberg-Virasoro algebra,
which was studied in [7].
(2) The Lie algebra g = g(G,−1) is not perfect (I0 /∈ [g, g]) and there is no universal
central extension of g. But one can still consider the universal central extension of the
derived subalgebra g′ = [g, g] = spanC{La, Ib | a ∈ G, b ∈ G \ {0}}. One can prove that
the universal central extension of g′ is governed by four nontrivial 2-cocycles

CL(La, Lb) =
1

12
(a3 − a)δa+b,0; CI(Ia, Ib) =

1

a
δa+b,0;

CLI(La, Ib) = aδa+b,0; C ′
LI(La, Ib) = δa+b,0.

3 Derivations of g and g

In this section we compute derivations of g for arbitrary G and λ, and consider the lifts
of these derivations of g to derivations of g.
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The algebra g has a natural G-grading g =
⊕

a∈G

ga, where ga = spanC{La, Ia}. From a

well known result about derivations of graded Lie algebras in [4] we know that the algebra
Derg of derivations of g is also graded by G, i.e, Derg =

⊕

a∈G

(Derg)a, where

(Derg)a = spanC{σ ∈ Derg | σ(gb) ⊆ ga+b, ∀ b ∈ G},

and all outer derivations of g lie in (Derg)0. Now we construct some derivations of g which
are all of degree 0. Define linear maps ϕ, ψ : g −→ g by

ϕ(La) = aIa, ϕ(Ia) = 0; ψ(La) = 0, ψ(Ia) = Ia.

For λ = 0, we define a linear map σ(0) : g −→ g by

σ(0)(La) = Iaδλ,0, σ(0)(Ia) = 0.

For λ = −1, we define a linear map σ(−1) : g −→ g by

σ(−1)(La) = a2Iaδλ,−1, σ(−1)(Ia) = 0.

For λ = −2, we define a linear map σ(−2) : g −→ g by

σ(−2)(La) = a3Iaδλ,−2, σ(−2)(Ia) = 0.

Let A ∈ Hom(G,C). We define a linear map ξA : g −→ g by

ξA(La) = A(a)La, ξA(Ia) = A(a)Ia,

and for λ = 1, a linear map ηA,1 : g −→ g by

ηA,1(La) = A(a)Iaδλ,1, ηA,1(Ia) = 0.

It is easy to check that the linear maps ϕ, ψ, σ(0), σ(−1), σ(−2), ξA, ηA,1 are all derivations
of degree 0. The main result of this section is the following

Theorem 3.1. For a 6= 0, (Derg)a = spanC{adLa, adIa}, and

(Derg)0 = spanC{ϕ, ψ, σ(0), σ(−1), σ(−2), ξA, ηA,1 | A ∈ Hom(G,C)}.

Proof. Let σ ∈ (Derg)0 and suppose

σ(La) = µL(a)La + τL(a)Ia, σ(Ia) = µI(a)La + τI(a)Ia,

for some functions µL, τL, µI , τI on G. Apply σ to [La, Lb], [La, Ib] and [Ia, Ib], we get the
following equations

µI(a)(b− λa) = µI(b)(a− λb), (3.1)

µI(a+ b)(b− λa) = µI(b)(b− a), (3.2)

(b− λa)τI(a+ b) = (b− λa)µL(a) + (b− λa)τI(b), (3.3)
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(b− a)τL(a + b) = (b− λa)τL(b)− (a− λb)τL(a), (3.4)

(b− a)µL(a+ b) = (b− a)(µL(a) + µL(b)). (3.5)

Claim 1: µL ∈ Hom(G,C). From (3.5) we see that µL(a+b) = µL(a)+µL(b) if a 6= b.
Moreover, let a = 0, b 6= 0 in (3.5) we get µL(0) = 0. Hence µL(−a) = −µL(a) for any
a ∈ G. Then choose b 6= 0,±a and we have

µL(2a) = µL(a+ b) + µL(a− b) = 2µL(a) + µL(−b) + µL(b) = 2µL(a).

So we have proved µL(a+ b) = µL(a) + µL(b) for any a, b ∈ G. Claim 1 stands.
Claim 2: µI = 0. Let b = 0 in (3.2) we get

λµI(a) = µI(0) for any a 6= 0. (3.6)

If λ = 0, then µI(0) = 0. Take b = −a in (3.2) and we have µI(a) = 0 for any a ∈ G.
Suppose λ 6= 0, then µI(a) =

1
λ
µI(0) for a 6= 0. Then (3.1) turns to

µI(0)(b− a)(λ+ 1) = 0,

which implies µI(0) = 0 and hence µI = 0 if λ 6= −1. If λ = −1, then take a = −b 6= 0 in
(3.2) and we have µI(b) = 0 for any b 6= 0. So µI(0) = 0 by (3.6). This proves Claim 2.

Claim 3: τI(a) = µL(a) + τI(0). If λ = 0, then (3.3) shows that

τI(a+ b) = µL(a) + τI(b) for b 6= 0.

Choose a = −b 6= 0 then we have

τI(0) = µL(−b) + τI(b) = −µL(b) + τI(b),

that is, τI(b) = µL(b) + τI(0). This proves the claim for λ = 0 since µL(0) = 0. Suppose
λ 6= 0. Let b = 0, a 6= 0 in (3.3), and Claim 3 follows.

Claim 4: τL(a) = l0δλ,0+ l1a+ l2a
2δλ,−1+ l3a

3δλ,−2+B(a)δλ,1 for some l0, l1, l2, l3 ∈ C

and B ∈ Hom(G,C). Take a = 0 in (3.4) and we get

λτL(0) = 0. (3.7)

Replacing b by −b and a by a+ b in (3.4) we have

(a + b(λ+ 1))τL(a + b)− (a+ 2b)τL(a) = −(λa + b(λ+ 1))τL(−b). (3.8)

Combining (3.4) and (3.8), and letting b = 1, we obtain

(λ− 1)(λ+ 2)τL(a) = (λa− 1)(a+ λ+ 1)τL(1) + (a− 1)(λa+ λ+ 1)τL(−1). (3.9)

If λ = 0, then we get

τL(a) = l1a + l0 with l1 =
1

2
(τL(1)− τL(−1)), l0 =

1

2
(τL(1) + τL(−1)).
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If λ 6= 0 then τL(0) = 0 by (3.7). Let a+ b = 0 in (3.4) and we get

τL(−a) = −τL(a) if λ 6= 0,−1.

So by (3.9) we see τL(a) = aτL(1) if λ 6= 0,±1,−2.
If λ = −1, then from (3.9) it follows

τL(a) = l2a
2 + l1a with l2 =

1

2
(τL(1) + τL(−1)), l1 =

1

2
(τL(1)− τL(−1)).

If λ = 1, then (3.4) and (3.8) imply that

τL(a + b) = τL(a) + τL(b) for any a, b ∈ G,

that is, τL ∈ Hom(G,C). We may write τL(a) = B(a) + l1a for some l1 ∈ C and B ∈
Hom(G,C).

Now suppose λ = −2. Let b = 1 in (3.4),

(1− a)τL(a+ 1) + (a+ 2)τL(a) = (2a+ 1)τL(1).

Furthermore, replace a by a+ 1 and we have

−aτL(a+ 2) + (a+ 3)τL(a+ 1) = (2a+ 3)τL(1).

Let b = 2 in (3.4),

(a− 2)τL(a + 2)− (a+ 4)τL(a) = −2(a+ 1)τL(2).

Then the above three equations imply that

τL(a) = l3a
3 + l1a with l3 =

1

6
(τL(2)− 2τL(1)), l1 =

1

6
(8τL(1)− τL(2)).

Combing the above cases we see that Claim 4 is valid.
In conclusion, we have

σ(La) = A(a)La +
(

l0δλ,0 + l1a+ l2a
2δλ,−1 + l3a

3δλ,−2 + B(a)δλ,1
)

Ia;

σ(Ia) = (A(a) + l) Ia,

for some l, l0, l1, l2, l3 ∈ C and A,B ∈ Hom(G,C). This proves Theorem 3.1. �

Remark: (1) Denote by id : G −→ C be the identity map. The corresponding derivation
ξid is exactly the inner derivation adL0. The inner derivation adI0 = 0 if λ = 0, and
adI0 =

1
λ
ϕ if λ 6= 0.

(2) In [8], derivations for higher rank Heisenberg-Virasoro algebras were computed. How-
ever, there is one derivation missed, the one we denoted by σ(0). The reason why they
missed this derivation is that they assumed τL(0) = 0 out of nowhere (or in the terminol-
ogy of [8] β0 = 0, see Line 3 Page 9 in [8]).

In the following we consider lifts of the derivations of g we obtained above to derivations
of g with λ 6= −1 and G being free of rank n ≥ 1. We shall recall a result about derivations
of the universal central extension of a perfect Lie algebra from [2].
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Proposition 3.2 ([2]). Suppose the Lie algebra G is perfect and denote by G the universal
central extension of G. Then every derivation of G lifts to a derivation of G. Moreover,
if G is centerless, then this lift is unique and DerG ∼= DerG.

Denote c = spanC{CL, CIδλ,0, C
(0)
LI δλ,0, C

(1)
LI δλ,1, C

(i)
LIδλ,−2 | 2 ≤ i ≤ n}. From Proposi-

tion 3.2 we know that if λ 6= 0,−1, every derivation of g lifts uniquely to a derivation of
g. For any σ ∈ Derg, define a linear map σ : g −→ g by

σ(La) = σ(La); σ(Ia) = σ(Ia); σ(c) = 0 for any a ∈ G. (3.10)

Clearly, σ is a derivation of g and it lifts σ. Therefore we get

Theorem 3.3. If λ 6= 0,−1, then

Derg = spanC{ϕ, ψ, σ(−2), ξA, ηA,1, adLa, adIa | A ∈ Hom(G,C), a ∈ G},

where ϕ, ψ, σ(−2), ξA, ηA,1 are as in Theorem 3.1 and ϕ, ψ, σ(−2), ξA, ηA,1 defined in (3.10).

Now we consider the λ = 0 case. We emphasize again that g is the higher rank
Heisenberg-Virasoro algebra in this case. There are four kinds of derivations ϕ, ψ, σ(0), ξA,
which are of degree 0.

Theorem 3.4. Let λ = 0 and A ∈ Hom(G,C) (here we denote CLI = C
(0)
LI ).

(1) The derivation ϕ lifts uniquely to a derivation ϕ of g defined by

La 7→ aIa + δa,0CLI , Ia 7→ CIδa,0, CL 7→ −24CLI , CLI 7→ CI , CI 7→ 0.

(2) The derivation σ(0) lifts uniquely to a derivation σ(0) of g defined by

La 7→ Ia − δa,0CLI , Ia 7→ −CIδa,0, CL 7→ 0, CLI 7→ 0, CI 7→ 0.

(3) The derivation ξA lifts to a family of derivations {ξA,l,k | l, k ∈ C} of g defined by

La 7→ A(a)La + (l + ka)Ia + δa,0(k − l)CLI ,

Ia 7→ A(a)Ia − δa,0CI(l + k),

CL 7→ −24kCLI , CLI 7→ −kCI , CI 7→ 0.

(4) The derivation ψ lifts to a family of derivations {ψl,k | l, k ∈ C} of g defined by

La 7→ (l + ka)Ia + δa,0(k − l)CLI ,

Ia 7→ Ia + δa,0CI(k − l),

CL 7→ −24kCLI , CLI 7→ CLI + kCI , CI 7→ 2CI .

Proof. We only prove (3), the other three are similar and we omit it.
Let φ be a lift of ξA. Notice that φ is homogeneous of degree 0. We may write

φ(La) = A(a)La + fL(a)Ia + δa,0C1; φ(Ia) = fI(a)La +A(a)Ia + δa,0C2,

9



for some C1, C2 ∈ c and functions fL, fI : G −→ C. Expanding the equation φ([La, Lb]) =
[φ(La), Lb]+[La, φ(Lb)] and comparing coefficients we get (b−a)fL(a+b) = bfL(b)−afL(a),
which implies

fL(a) = l + ka for some l, k ∈ C,

and moreover we get

1

12
(a3 − a)φ(CL)− 2aC1 =

(

fL(−a)(a
2 + a)− fL(a)(a

2 − a)
)

CLI = 2a(l − ka2)CLI .

Let a = 1, we see C1 = (k − l)CLI . Hence φ(CL) = −24kCLI .
Expanding φ([La, Ib]) = [φ(La), Ib] + [La, φ(Ib)] we get bfI(a+ b) = fI(b)(b− a), which

implies fI(a) = 0 for any a ∈ G, and we get

(a2 + a)φ(CLI)− aC2 = a(l − k)CI .

Let a = −1 and we see that C2 = −(l + k)CI , φ(CLI) = −kCI .
At last expand φ([Ia, Ib]) and we have φ(CI) = 0. This proves (3). �

4 Isomorphism classes and automorphisms

In this section we determine the isomorphism classes and automorphism groups of the Lie
algebras g(G, λ) for arbitrary G and λ, and then consider the lifts of these automorphisms
to automorphisms of g for λ 6= −1 and free G.

Theorem 4.1. The Lie algebras g(G, λ) and g(G′, λ′) are isomorphic if and only if λ′ = λ
and G′ = ξG for some nonzero ξ ∈ C. Moreover, any Lie algebra isomorphism π :
g(G, λ) −→ g(ξG, λ), aside from an inner automorphism of g(ξG, λ), has the form

π(La) = ξ−1χ(a)L′
ξa + χ(a)I ′ξa

(

l0δλ,0 + l1a+ l2a
2δλ,−1 + l3a

3δλ,−2 + f(a)δλ,1
)

;

π(Ia) = lχ(a)I ′ξa,
(4.1)

where l ∈ C×, l0, l1, l2, l3 ∈ C, χ ∈ G∗ is a character of G, and f ∈ Hom(G,C).

Proof. Denote g = g(G, λ), g′ = g(G′, λ′), and we will use an extra dash to denote
elements in g′ in the following. If λ′ = λ, G′ = ξG for some nonzero ξ ∈ C, it is easy to
check that the linear map defined by

La 7→ ξ−1L′
ξa; Ia 7→ ξ−1I ′ξa

is a Lie algebra isomorphism from g to g′.
On the other hand, suppose g ∼= g′ and let π : g −→ g′ be a Lie algebra isomorphism.
Claim 1: There exists some ξ ∈ C× and an inner automorphism θ of g′ such that

G′ = ξG and θπ(ga) = g′ξa for any a ∈ G.
Notice that the set of locally finite elements in g is spanC{L0, Ia | a ∈ G}. Since π

maps a locally finite element in g to a locally finite element in g′, we may assume that

π(L0) = ξ−1L′
0 +

∑

b∈G′(L0)

γbI
′
b,
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for some ξ ∈ C×, finite subset G′(L0) of G
′ and γb ∈ C. Define

η =
∏

06=b∈G′(L0)

exp

{

−
ξγb
b
adI ′b

}

,

which is an inner automorphism of g′. Clearly, ηπ(L0) = ξ−1L′
0 + γ0I

′
0. So replacing π by

η−1π we may assume
π(L0) = ξ−1L′

0 + γ0I
′
0.

Since spanC{Ia | a ∈ G} is the unique maximal abelian ideal of g, it forces

π(Ia) =
∑

b∈G′(Ia)

νa(b)I
′
b

for some finite subset G′(Ia) of G
′ and some function νa : G

′ −→ C.
For any a 6= 0, from

π[L0, Ia] = a
∑

b∈G′(Ia)

νa(b)I
′
b = [π(L0), π(Ia)] = ξ−1

∑

b∈G′(Ia)

bνa(b)I
′
b

we see that G′(Ia) = {ξa} ⊂ G′ for any a 6= 0. This implies G′ = ξG and

π(Ia) = νa(ξa)I
′
ξa for a 6= 0.

Since π[La, Ib] = (b − λa)π(Ia+b) = (b − λa)νa+b(ξ(a + b))I ′ξ(a+b) = [π(La), νb(ξb)I
′
ξb] for

a, b 6= 0, a+ b 6= 0, it follows that π(La), a 6= 0, must have the form

π(La) = ρ(a)L′
ξa +

∑

c∈G′(La)

µ(c)I ′c

for some finite subset G′(La) of G
′, functions ρ : G −→ C× and µ : G′ −→ C. Then

(b− λa)νa+b(ξ(a+ b))I ′ξ(a+b) = [ρ(a)L′
ξa, νb(ξb)I

′
ξb] = ξρ(a)νb(ξb)(b− λ′a)I ′ξ(a+b). (4.2)

Moreover, from

π[La, I0] = −λaπ(Ia) = −λaνa(ξa)I
′
ξa = [ρ(a)L′

ξa,
∑

b∈G′(I0)

ν0(b)I
′
b]

we see that G′(I0) = {0} ⊂ G′, and hence π(I0) = ν0(0)I
′
0. Define

ν(ξb) = νb(ξb) for any b ∈ G.

We get a function ν : G′ −→ C× such that

π(Ia) = ν(ξa)I ′ξa ∈ g
′
ξa for any a ∈ G.

Then (4.2) turns to

(b− λa)ν(ξ(a+ b)) = ξρ(a)ν(ξb)(b− λ′a). (4.3)
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Consider π[L0, La] for a 6= 0, we get

∑

b∈G′(La)

µ(b)(a− ξ−1b)I ′b − γ0λ
′ξaρ(a)I ′ξa = 0,

which implies G′(La) = {ξa} and λ′γ0 = 0. Write µ(0) = γ0 and ρ(0) = ξ−1. Then we
have

π(La) = ρ(a)L′
ξa + µ(ξa)I ′ξa ∈ g

′
ξa for any a ∈ G.

This proves Claim 1.
In the following we determine the functions ρ, µ, ν.

Claim 2: χ = ξρ is a character of G, λ′ = λ and ν(ξa) = ν(0)χ(a) for any a ∈ G. Since

π[La, Lb] = (b− a)π(La+b) = (b− a)ρ(a + b)L′
ξ(a+b) + (b− a)µ(ξ(a+ b))I ′ξ(a+b)

= [ρ(a)L′
ξa + µ(ξa)I ′ξa, ρ(b)L

′
ξb + µ(ξb)I ′ξb]

= ξ(b− a)ρ(a)ρ(b)L′
ξ(a+b) + ρ(a)µ(ξb)ξ(b− λ′a)I ′ξ(a+b) − ρ(b)µ(ξa)ξ(a− λ′b)I ′ξ(a+b),

we get

(b− a) (ρ(a + b)− ξρ(a)ρ(b)) = 0, (4.4)

(b− a)µ(ξ(a+ b)) = ξρ(a)µ(ξb)(b− λ′a)− ξρ(b)µ(ξa)(a− λ′b). (4.5)

From (4.4) we get that if a 6= b then

ρ(a+ b) = ξρ(a)ρ(b). (4.6)

Let b = 0 in (4.6), we have ρ(0) = ξ−1. Choose b 6= 0,±a. Using (4.6) we get

ρ(2a) = ξρ(a+ b)ρ(a− b) = ξ3ρ(a)2ρ(b)ρ(−b) = ξ2ρ(a)2ρ(0) = ξρ(a)2 for any a ∈ G.

This proves that (4.6) stands for any a, b ∈ G. So χ = ξρ is a character of G.
Let b = 0 in (4.3) we get

λν(ξa) = λ′ξν(0)ρ(a) for any a 6= 0, (4.7)

which implies that
λ′ = 0 if and only if λ = 0.

If λ 6= 0, then (4.7) says ν(ξa) = λ′ξ

λ
ν(0)ρ(a) for any a 6= 0. Putting it into (4.3) and

using (4.6) we see λ′ = λ. Hence ν(ξa) = ξν(0)ρ(a) = ν(0)χ(a) if λ 6= 0.
If λ = λ′ = 0, let a = −b 6= 0 in (4.3) and we have

ν(0) = ξρ(−b)ν(ξb).

Then ν(0)χ(b) = ξ2ρ(b)ρ(−b)ν(ξb) = ξρ(0)ν(ξb) = ν(ξb). This proves Claim 2.

At last we determine the function µ. Set ϕ(a) = µ(ξa)
χ(a)

. Divide χ(a + b) to (4.5) and
we obtain

(b− a)ϕ(a+ b) + (a− λb)ϕ(a) = (b− λa)ϕ(b),
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which is the same equation as (3.4). So from the computation in Section 3 we have

ϕ(a) = l0δλ,0 + l1a+ l2a
2δλ,−1 + l3a

3δλ,−2 + f(a)δλ,1,

where l0, l1, l2, l3 ∈ C and f ∈ Hom(G,C). Therefore

µ(ξa) = χ(a)
(

l0δλ,0 + l1a+ l2a
2δλ,−1 + l3a

3δλ,−2 + f(a)δλ,1
)

.

This proves the theorem. �

Now using Theorem 4.1 we may determine the automorphism group of g. Denote E =
{ǫ ∈ C× | ǫG = G}, which is a subgroup of C×. Let ξ ∈ E , χ ∈ G∗, f ∈ Hom(G,C), l ∈
C

×, l0, l1, l2, l3 ∈ C, denote by θλ(ξ, χ, f, l, l0, l1, l2, l3) the linear map given by

La 7→ ξ−1χ(a)Lξa + χ(a)Iξa
(

l0δλ,0 + l1a + l2a
2δλ,−1 + l3a

3δλ,−2 + f(a)δλ,1
)

;

Ia 7→ lχ(a)Iξa.

Here we shall point out that if λ = 1 we may assume l1 = 0 since the map a 7→ f(a) + l1a
still lies in Hom(G,C). Then by Theorem 4.1 we have

Theorem 4.2. The outer automorphism group of g is

Outg = {θλ(ξ, χ, f, l, l0, l1, l2, l3) | ξ ∈ E , χ ∈ G∗, f ∈ Hom(G,C), l ∈ C
×, l0, l1, l2, l3 ∈ C},

and Autg = Outg⋉ Inng, where Inng is the inner automorphism group of g, generated by
{exp adIa | a ∈ G}.

Notice that

θλ(ξ
′, χ′, f ′, l′, l′0, l

′
1, l

′
2, l

′
3) · θλ(ξ, χ, f, l, l0, l1, l2, l3)

= θλ
(

ξ′ξ, (χ′ · ξ)χ, f ′ + l′f, l′l, ξ−1l′0 + l′l0, l
′
1 + l′l1, ξl

′
2 + l′l2, ξ

2l′3 + l′l3
)

and

θλ(ξ,χ, f, l, l0, l1, l2, l3)
−1 =

θλ
(

ξ−1, χ−1 · ξ−1,−l−1f, l−1,−l−1ξl0,−l
−1l1,−l

−1ξ−1l2,−l
−1ξ−2l3

)

.

Clearly, the map G∗ −→ Outg defined by χ 7→ θλ(1, χ, 0, 1, 0, 0, 0, 0) is a group monomor-
phism and denote by N its image. Set S = {θλ(1,1, 0, l, 0, 0, 0, 0) | l ∈ C×}, and

K = {θλ(1,1, f, 1, l0, l1, l2, l3) | l0, l1, l2, l3 ∈ C, f ∈ Hom(G,C)}.

Here 1 denotes the identity in G∗. Clearly, N, S,K are normal subgroups of Outg, and

N ∼= G∗, S ∼= C
×, and K ∼=











Hom(G,C) ∼= Cn if λ = 1;

C2 if λ = 0,−1,−2;

C otherwise.

Moreover, let T = {θλ(ξ,1, 0, 1, 0, 0, 0, 0) | ξ ∈ E}, which is a subgroup of Outg and
isomorphic to E . Then we have a projection Outg −→ T , whose kernel is the normal
subgroup NSK. So we get
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Theorem 4.3. Outg = T ⋉ (NSK) ∼= E ⋉
(

G∗C×K
)

.

Using a result from [10] one may extend automorphisms of g to automorphisms of g.

Proposition 4.4 ([10]). Let G be a perfect Lie algebra and G the universal central exten-
sion of G. Then every automorphism θ of g admits a unique extension to an automorphism
θ of G, and the map θ 7→ θ is a group monomorphism. Moreover, if G is centerless, then
the map θ 7→ θ is an isomorphism.

Explicitly we have the form of extended automorphisms.

Theorem 4.5. Suppose λ 6= −1. Let ξ ∈ E , χ ∈ G∗, f ∈ Hom(G,C), l ∈ C
×, l0, l1, l3 ∈ C,

then the unique automorphism θ = θλ(ξ, χ, f, l, l0, l1, 0, l3) of g obtained by extension from
θ = θλ(ξ, χ, f, l, l0, l1, 0, l3) is such that

θ(La) = ξ−1χ(a)Lξa + χ(a)Iξa
(

l0δλ,0 + l1a+ l3a
3δλ,−2 + f(a)δλ,1

)

(4.8)

+ δa,0

(

ξ−1 − ξ

24
CL + (l1ξ − l0)C

(0)
LI δλ,0 +

1

2
ξ(l21 − l20)CIδλ,0

)

;

θ(Ia) = lχ(a)Iξa + lξδa,0

(

ξ−1 − ξ

24
C

(1)
LI δλ,1 +

(

(1− ξ−1)C
(0)
LI + (l1 − l0)CI

)

δλ,0

)

(4.9)

+ l(ξǫ1)
−1δa,0

n
∑

i=2

(ξǫ1)iC
(i)
LIδλ,−2;

θ(CL) = ξCL − 12l1ξ
(

2C
(0)
LI + l1CI

)

δλ,0; (4.10)

θ(C
(0)
LI ) = lξ

(

C
(0)
LI + l1CI

)

; θ(C
(1)
LI ) = lξ2C

(1)
LI ;

θ(C
(i)
LI ) = l(ξǫ1)

−1

n
∑

j=2

{ǫ1(ξǫi)j − ǫi(ξǫ1)j}C
(j)
LI , i ≥ 2; (4.11)

θ(CI) = l2ξCI . (4.12)

Here for a ∈ G we use ai to denote the coefficients of a with respect to the basis ǫ1, . . . , ǫn.

Proof. Recall c = spanC{CL, CIδλ,0, C
(0)
LI δλ,0, C

(1)
LI δλ,1, C

(i)
LIδλ,−2 | 2 ≤ i ≤ n}. For later

convenience, we denote

τ(a) = l0δλ,0 + l1a+ l3a
3δλ,−2 + f(a)δλ,1,

νC(a) = C
(0)
LI (a

2 + a)δλ,0 +
1

12
(a3 − a)C

(1)
LI δλ,1 +

n
∑

i=2

aiC
(i)
LIδλ,−2 ∈ c.

Clearly, θ(La) and θ(Ia) have the form

θ(La) =ξ
−1χ(a)Lξa + χ(a)τ(a)Iξa +KL(a);

θ(Ia) =lχ(a)Iξa +KI(a),
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for some maps KL, KI : G −→ c. Expanding

θ([La, Lb]) = [ξ−1χ(a)Lξa + χ(a)τ(a)Iξa, ξ
−1χ(b)Lξb + χ(b)τ(b)Iξb]

we see that KL(a) = 0 if a 6= 0, and

−2KL(0) +
1

12
(a2 − 1)θ(CL) =

ξa2 − ξ−1

12
CL + 2(l0 − l1ξa

2)C
(0)
LI δλ,0 + (l20 − l21a

2)ξCIδλ,0,

which implies

KL(0) =
ξ−1 − ξ

24
CL + (l1ξ − l0)C

(0)
LI δλ,0 +

1

2
ξ(l21 − l20)CIδλ,0

and
θ(CL) = ξCL − 12l1ξ

(

2C
(0)
LI + l1CI

)

δλ,0.

This proves (4.8) and (4.10).
Expanding θ([La, Ib]) = [θ(La), θ(Ib)] we get that KI(a) = 0 for a 6= 0 and

− (1 + λ)aKI(0) + (a2 + a)θ(C
(0)
LI )δλ,0 +

a3 − a

12
θ(C

(1)
LI )δλ,1 +

n
∑

i=2

aiθ(C
(i)
LI )δλ,−2

= lξ−1

(

(

(ξa)2 + ξa
)

C
(0)
LI δλ,0 +

(ξa)3 − ξa

12
C

(1)
LI δλ,1 + ξ

n
∑

i=2

aiC
(i)
LIδλ,−2

)

+ lτ(a)ξaCIδλ,0.

(4.13)

If λ = 0, let a = −1 in (4.13), then we get

KI(0)δλ,0 = lξ
(

(1− ξ−1)C
(0)
LI + (l1 − l0)CI

)

δλ,0 and θ(C
(0)
LI ) = lξ

(

C
(0)
LI + l1CI

)

.

If λ = 1, let a = 1 in (4.13), then we get

KI(0)δλ,1 = −
l(ξ2 − 1)

24
C

(1)
LI δλ,1 and θ(C

(1)
LI ) = lξ2C

(1)
LI .

If λ = −2, let 0 6= a ∈ Zǫ1 in (4.13), then we get

KI(0)δλ,−2 = l(ξǫ1)
−1

n
∑

i=2

(ξǫ1)iC
(i)
LIδλ,−2;

θ(C
(i)
LI ) = l(ξǫ1)

−1

n
∑

j=2

(ǫ1(ξǫi)j − ǫi(ξǫ1)j)C
(j)
LI .

This proves (4.9) and (4.11). Similarly, (4.12) follows from θ([Ia, Ib]) = [θ(Ia), θ(Ib)]. �
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