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ON SINGULAR EQUATIONS OVER TORSION-FREE

GROUPS

MARTIN EDJVET AND JAMES HOWIE

Abstract. We prove a Freiheitssatz for one-relator products of
torsion-free groups, where the relator has syllable length at most 8.
This result has applications to equations over torsion-free groups:
in particular a singular equation of syllable length at most 18 over
a torsion-free group has a solution in some overgroup.

1. Introduction

An equation over a groupA in an indeterminate t is just an expression
w(t) = 1, where w = w(t) is a word in the free product A ∗ 〈t〉. This
equation has a solution in A (resp. in an overgroup G of A) if there
is an element h ∈ A (resp. h ∈ G) such that substituting h for t in
w and evaluating in A (resp. G) gives the identity. It is well-known
that a solution for w(t) = 1 exists in some overgroup if and only if the
natural map from A to G := (A ∗ 〈t〉)/N(w) is injective (where N(w)
denotes the normal closure of w in A ∗ 〈t〉) – in which case G may be
taken to be the overgroup in question, and the coset t.N(w) to be the
element h in the definition.

Thus there is a natural connection between the study of equations
over groups and that of one-relator products. A one-relator product of
groups Aλ (λ ∈ Λ) is the quotient G of the free product ∗λ∈ΛAλ by the
normal closure of a single element w. A one-relator product G of groups
Aλ is said to satisfy the Freiheitssatz if each Aλ embeds in G via the
natural map. This idea generalises the classical Freiheitssatz of Magnus
[16]. In the case where {Aλ, λ ∈ Λ} = {A, 〈t〉}, the Freiheitssatz says
that the equation w(t) = 1 has a solution in G, and moreover the
solution element h = t.N(w) has infinite order in G.

Equations over groups and one-relator products have been studied
extensively by various authors over a long period. (See, for example,
[5], [6] and [9].)
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In the present article we consider equations over torsion-free groups.
The most striking result here is that of Klyachko [14], that any equa-
tion with exponent sum ±1 in the indeterminate has a solution in an
overgroup. If we write

w = a1t
m(1) · · · akt

m(k) ∈ A ∗ 〈t〉

as a cyclically reduced word with ai ∈ A and m(i) ∈ Z for each i,

then by definition the exponent sum is
∑k

i=1m(i). An equation with
exponent sum 0 is called singular; one with non-zero exponent sum is
called non-singular. In general it seems to be easier to prove results for
non-singular equations than for singular ones. For example if k = 4 and
m(i) = 1 (1 ≤ i ≤ 4) then there is always a solution [15]; if m(j) = 1
(1 ≤ j ≤ 3) and m(4) = −1 then there is always a solution [8]; if
m(1) = m(2) = 1 and m(3) = m(4) = −1 then there is a solution
provided one assumes that a21 6= 1, a23 6= 1 and a1a2 6= 1 [7]; or if
m(1) = m(3) = 1 and m(2) = m(4) = −1 the problem remains very
much open.

Our interest in the present article is more focussed on singular equa-
tions, in the spirit of [4] (see also [1], [12], [13] and [17]). Our principal
result is the following.

Theorem 1. Let A,B be torsion-free groups, and let

w = a1b1...akbk ∈ A ∗B

where ai ∈ A and bi ∈ B for each i = 1, ..., k and where the ai and the
bi are non-trivial. If k ≤ 4 then each of A,B embeds in

G := (A ∗B)/N(w)

via the natural map.

This result has some obvious consequences for the study of equations
over torsion-free groups. The first of these is an extension of [4, Theo-
rem 2(iv)] from k ≤ 3 to k ≤ 4, and is obtained by putting B = 〈t〉 ∼= Z

in Theorem 1.

Corollary 2. Let G = (A ∗ 〈t〉)/N(w), where A is torsion-free and let

w = a1t
m(1) · · · akt

m(k) ∈ A ∗ 〈t〉

where the ai are non-trivial elements of A,each m(i) 6= 0 and k ≤ 4.
Then the natural maps A → G and 〈t〉 → G are injective.

The next result specifically addresses the solubility of certain singular
equations, that is equations w(t) = 1 in which the exponent sum of the
variable t in the word w is equal to 0.

Corollary 3. Let

w = a1t
m(1) · · · akt

m(k) ∈ A ∗ 〈t〉



ON SINGULAR EQUATIONS OVER TORSION-FREE GROUPS 3

be a word where the ai are non-trivial elements of A and each m(i) 6= 0

such that
∑k

i=1m(i) = 0 and such that the sequence of partial sums(∑j
i=1m(i)

)k

j=1
attains its maximum value at most four times and its

minimum value at most four times. Then the natural map

A → G := (A ∗ 〈t〉)/N(w)

is injective.

Recall that the syllable length of a cyclically reduced word w =
a1t

m(1) · · · akt
m(k) ∈ A ∗ 〈t〉 where the ai are non-trivial elements of

A and each m(i) 6= 0 is defined to be 2k.

Corollary 4. Any singular equation of syllable-length at most 18 over
a torsion-free group has a solution in an overgroup.

This generalises [4, Corollary 4], which proves the same result for
equations of syllable length at most 14.

The remainder of the paper is structured as follows. In Section 2 we
prove Corollaries 2, 3 and 4, assuming Theorem 1. We then split the
proof of Theorem 1 into two cases: the case where one of the factor
groups A,B is cyclic is dealt with in Section 3.

In our proofs we rely heavily on the theory of pictures over one-
relator products and over relative presentations. For details of the basic
theory and terms used for one-relator products the reader is referred to
[11]; and for relative presentations see [2] or [3, Section 3]. In particular
aspherical will mean aspherical in the sense of [2] and diagrammatically
reducible in the sense of [3].

2. Proof of Corollaries

Proof of Corollary 2. As mentioned in the Introduction, the proof
follows immediately from Theorem 1 by setting B := 〈t〉. �

Proof of Corollary 3. For n ∈ Z, let An := tnAt−n ⊂ A ∗ 〈t〉. The
normal closure of A in A ∗ 〈t〉 is the free product of the An for all
n ∈ Z. Since w has exponent sum 0 in t, it belongs to this normal
closure, and hence can be uniquely written as a word w0 ∈ ∗n∈ZAn.

Let us denote by µ,M the minimum and maximum respectively of

the sequence of partial sums
(∑j

i=1m(i)
)k

j=1
. Then it is routine to

check that w0 is a cyclically reduced word in ∗Mn=µAn that contains let-

ters from each of Aµ and AM . Write B− := ∗M−1
n=µ An, B+ := ∗Mn=µ+1An

and

H :=
∗Mn=µAn

N(w0)
.

Then H = (B− ∗ AM)/N(w0) = (B+ ∗ Aµ)/N(w0). By hypothesis
w0 has a cyclically reduced conjugate in B− ∗AM of syllable-length at
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most 8, so each of B−, AM embeds in H via the natural map. Similarly
each of B+, Aµ embeds in H via the natural map.

Finally, note that G can be written as an HNN extension of H with
stable letter t and associated subgroups B−, B+. The result follows. �

Proof of Corollary 4. Using the same notation as in the proof of Corol-
lary 3, if w has syllable length 2k ≤ 18 in A ∗ 〈t〉, then w0 has syllable
length at most k ≤ 9 in B− ∗ AM and in B+ ∗ Aµ. Hence w0 involves
at most 4 letters from Aµ and at most 4 from AM ; equivalently, the
sequence of partial sums in Corollary 3 reaches its maximum and its
minimum at most 4 times each. The result follows from Corollary 3.
�

3. The Cyclic Factor Case

The proof of Theorem 1 will be given in this and the next section.
As usual, we may reduce to the case when A is generated by the ai and
B by the bi (1 ≤ i ≤ 4), so we assume this throughout without further
comment. Moreover if k ≤ 3 then the result follows from [4, Corollary
3], so assume from now on that k = 4.

The element ai is said to be isolated if no ak belongs to the cyclic
subgroup generated by ai for k 6= i; and similarly for bj . If there is an
isolated pair ai, bj for some 1 ≤ i, j ≤ 4 then Theorem 1 follows from [4,
Theorem 1], and this fact will be used throughout what follows often
without explicit comment.

In this section we prove the special case of Theorem 1 in which one of
the factor groups A, B is cyclic. If both are cyclic Theorem 1 follows
by the classical Freiheitssatz [16] so it can be assumed without any
loss that A is not cyclic and B = 〈t〉 is infinite cyclic generated by t.
Therefore each bj has the form tm(j) for some m(j) ∈ Z\{0}. The result
has been proved in [13] except in the case where all the m(j) have the
same sign, so suppose without loss of generality that m(j) > 0 for each
j. The injectivity of A → G is then a result from [15], so it suffices to
show that B → G is injective, that is, t has infinite order in G.

If the relative 1-relator presentation

P : G ∼= 〈A, t | a1t
m(1)a2t

m(2)a3t
m(3)a4t

m(4)〉

is aspherical then t is known to have infinite order in G [2], so we may
assume that P is not aspherical. By [4, Theorem 2] the result holds
(that is, t has infinite order in G) unless

(3.1) a1a2a3a4 = 1

in A so we assume that this equation holds. We separate the proof into
three cases.

Case 1: a1 6= a2 6= a3 6= a4 6= a1 in A. The star graph Γ of P consists
of two vertices t±1, and m(1) +m(2) +m(3) +m(4) edges from t−1 to



ON SINGULAR EQUATIONS OVER TORSION-FREE GROUPS 5

1a

a 24a

a 3

1u

2u

3u

4
u

1a

a 3

a 24a

m 3 m 2

m 1
m 4

1 1

1

1

11

1

1

∆ ∆

(i) (ii)

Figure 3.1. the region ∆

t. For a full discussion on star graphs and weight tests the reader is
referred to [2, Section 2], or [3, Section 3.2]. Four edges are labelled
a1, a2, a3, a4 and the remainder are labelled by 1 ∈ A. Define a weight
function by assigning weight 1 to the edges labelled 1 ∈ A, and weight 1

2
to the other four edges. If the four elements aj ∈ A are pairwise distinct
then the weight function, and therefore P [2, Theorem 2.1], is aspherical
contrary to hypothesis. Hence two of the aj are equal, and by symmetry
we may assume that a1 = a3. Given this, cyclic permutation yields
the symmetry (m(1), m(2), m(3), m(4)) ↔ (m(3), m(4), m(1), m(2)); in
particular, we can work modulo a2 ↔ a4. Furthermore, using cyclic
permutation, inversion and x ↔ x−1 we can in addition use the second
symmetry (m(1), m(2), m(3), m(4)) ↔ (m(2), m(1), m(4), m(3)).

Now define a new weight function by assigning weight 1 to every
edge of Γ except for the two edges labelled a2 and a4, which have
weight 0. Since P is not aspherical there must be an admissable closed
path in Γ of weight less than 2. Up to cyclic reordering and inversion,
the label of such a path is one of: (i) (a−1

2 a4)
m; (ii) x−1a4(a

−1
2 a4)

m; (iii)
a−1
2 x(a−1

2 a4)
m; (iv) 1−1a4(a

−1
2 a4)

m; or (v) a−1
2 1(a−1

2 a4)
m for some m ≥ 1

(where x denotes a1 or a3). Working modulo a2 ↔ a4 it is sufficient to
consider only cases (i), (ii) and (iv).

In case (i), since A is torsion-free, we have a2 = a4. Using equation
(3.1) we obtain 1 = a1a2a3a4 = (a1a2)

2 in A and so a1a2 = 1 in A,
contradicting A non-cyclic.

Consider now case (ii). If m(1) = m(3) and m(2) = m(4) then G =
〈H, t|tm(2)a3t

m(3)s−1 = 1〉, where H = 〈A, s|sa2sa4 = 1〉 is obtained
from the torsion-free group A by adjunction of a square root, and hence
is also torsion-free. The result follows from [4, Theorem 2 (iv)]. It can
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be assumed then that either m(1) 6= m(3) or m(2) 6= m(4). Suppose
that S is a non-empty reduced spherical picture over P. Contract the
boundary of S to a point which is then deleted and let D be the dual of
S with labelling inherited from S. In particular, since the natural map
from A to G is injective, each vertex label of D yields a word trivial
in A. Then D is a non-empty reduced spherical diagram over P whose
regions are given (up to cylic permutation and inversion) by ∆ of Figure
3.1(i) and so the label of each region is read in a clockwise direction
whereas each vertex label is read anti-clockwise. For convenience we
depict ∆ as shown in Figure 3.1(ii). Assign angles to the corners of
each region ∆ of D as follows: each corner of a vertex in ∆ of degree d
is given an angle 2π/d. This way the vertices each have zero curvature;
and if ∆ has k vertices vi of degree di > 2 (1 ≤ i ≤ k), that is,
deg(∆) = k, then the curvature c(∆) of ∆ is given by

(3.2) c(∆) = (2− k)π + 2π
k∑

i=1

1

di

which we sometimes denote by c(d1, . . . , dk). It follows that the sum
of the curvatures of the regions of D is 4π (see [3, Section 3.3]) and it
is this we seek to contradict. Now the degree of each vertex v in D is
even since the label l(v) corresponds to a reduced closed path in the
star graph Γ and so if c(∆) > 0 then d(∆) < 4; and indeed the fact
that m(1) = m(3) and m(2) = m(4) is together disallowed prevents
d(∆) = 2 and so forces d(∆) = 3. Assume that D is maximal with
respect to number of vertices of degree 2. Then the following labels
(up to cyclic permutation and inversion) for a vertex of degree 4 are
disallowed: a1a

−1
3 11−1; a11

−11a−1
3 ; a1a

−1
3 a1a

−1
3 ; and 11−111−1 where it

is understood that different edges are used for 11−1 or 1−11. This is
because in each case there is a bridge move that would create two ver-
tices of degree 2 but destroy at most one, contradicting maximality.
Given this, the fact that A =< a1, a4 > is torsion-free and non-cylic,
each vertex label is a word trivial in A and that the relation for case
(ii) implies a21 = (a1a4)

2m+1, an inspection of the closed paths of length
4 in Γ shows that if d(v) = 4 then (up to cyclic permutation and inver-
sion) l(v) ∈ {a1a

−1
4 a2a

−1
4 , a3a

−1
4 a2a

−1
4 , a1a

−1
2 a4a

−1
2 , a3a

−1
2 a4a

−1
2 }. Now

a1a
−1
4 a2a

−1
4 = 1 implies a21 = (a1a4)

3 = (a2a1)
−3; and a1a

−1
2 a4a

−1
2 = 1

implies a21 = (a1a2)
3 = (a4a1)

−3 so these labels cannot both occur.
Applying the symmetry a2 ↔ a4 it is enough to consider only l(v) ∈
{a1a

−1
4 a2a

−1
4 , a3a

−1
4 a2a

−1
4 }. Note also that, as shown in case (i), a2 6= a4

and so if d(v) = 2 then l(v) ∈ {a1a
−1
3 , 11−1}. If m1 6= m3 and m2 6= m4

it is easily shown that if d(∆) = 3 then ∆ has no vertices of degree 4
and so c(∆) ≤ 0 (we omit the details). Applying the second symme-
try mentioned earlier it is sufficient therefore to consider the two cases
m1 = m3, m2 < m4 and m1 = m3, m2 > m4.
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In what follows, in order to deal with regions of positive curvature we
use curvature distribution. Briefly, we locate all positive regions ∆ and

add c(∆) > 0 to c(∆̂) where ∆̂ is some suitably chosen neighbouring

region. Having done this for each ∆, let c∗(∆̂) denote c(∆̂) plus all

possible additions of c(∆). If c∗(∆̂) ≤ 0 for each region ∆̂ then the
total 4π cannot be attained which is the contradiction we require.

First assume that m(1) = m(3) and m(2) < m(4). If d(u1) = 2
in Figure 3.1(i) then m(2) < m(4) forces a (u4,u1)-split, that is, a
vertex of degree > 2 between u4 and u1; and so c(∆) > 0 implies ∆
is given by Figure 3.2(i) in which m(2) < m(4) and no (u2,u3)-split

forces d(u2) ≥ 6 and m(2) < m(4) forces the (u4,u1)-split in ∆̂ at
some vertex u with d(u) ≥ 6. Distribute c(∆) ≤ c(4, 6, 6) = π/6 to

c(∆̂) ≤ c(4, 4, 6, 6) = −π/3 as indicated. If d(u1) ≥ 6 and c(∆) > 0
then ∆ is given by Figure 3.2(ii) and again distribute c(∆) ≤ π/6 to

c(∆̂) ≤ −π/3 as shown. If d(u1) = 4 and d(u4) ≥ 6 then c(∆) > 0
implies ∆ is given by Figure 3.2(iii) in which m(2) < m(4) forces a split

in ∆̂ at u with d(u) ≥ 6. Distribute c(∆) ≤ π/6 to c(∆̂) ≤ −π/3 as
shown. Finally if d(u1) = d(u4) = 4 then ∆ is given by Figure 3.2(iv) in
which d(u4) = 4 forces d(v) ≥ 6. Distribute 1

2
c(∆) ≤ 1

2
c(4, 4, 6) = π/6

to each of c(∆̂i) ≤ −π/3 where i = 1, 2 as shown. This completes the
distribution rules from regions of D of positive curvature. But now

observe from the figures that if ∆̂ receives any positive curvature then

c(∆̂) ≤ −π/3 and ∆̂ receives at most π/6 from each of at most two

neighbouring regions. It follows that c∗(∆̂) ≤ 0 as required.
Now assume that m(1) = m(3) and m(2) > m(4). Let d(u1) =

d(u3) = 2 in Figure 3.1(i). Then m(2) > m(4) forces a (u2,u3)-split and
so if c(∆) > 0 then ∆ is given by Figure 3.2(v) in which m(2) > m(4)
forces d(u4) ≥ 6. If d(u) ≥ 6 in Figure 3.2(v) then distribute c(∆) ≤

π/6 to c(∆̂i) ≤ −π/3 as shown. On the other hand if d(u) = 4 then ∆

and ∆̂ are given by Figure 3.2(vi) in which the labelling forces d(v) ≥ 6

and again distribute c(∆) ≤ π/6 to c(∆̂i) ≤ −π/3. If d(u1) > 2 and
d(u3) = 2 in Figure 3.1(i) then d(∆) > 3. Finally let let d(u1) = 2
and d(u3) > 2. If any vertex other than u2, u3, u4 has degree > 2
then c(∆) < 0, so assume otherwise. Then, as above, d(u1) = 2 forces
d(u4) ≥ 6. If d(u2) = 4 then m(2) > m(4) forces a (u2,u3)-split
so let d(u2) ≥ 6. Thus if c(∆) > 0 we must have d(u3) = 4. But
then no (u2,u3)-split forces m(3) ≥ m(2) and no (u3,u4)-split forces
m(4) ≥ m(3), a contradiction. This completes the distribution rules

and as in the previous subcase we have c∗(∆̂) ≤ 0 as required.

In case (iv), the subgroup of A generated by a2 and a4 is cyclic,
generated by a−1

2 a4. Using equation (3.1) we obtain a−1
2 a4 = (a3a4)

2,
so the subgroup of A generated by a3a4 contains a2 and a4, hence also
a3 and a1 forcing A to be cyclic, a contradiction.
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Figure 3.2. positive ∆ and distribution of curvature

Case 2: a1 = a2 in A and b1 = b2 in B, that is, m(1) = m(2). If
a3 = a4 then a21a

2
3 = 1 by (3.1). Thus A is a torsion-free homomorphic

image of the Klein bottle group, hence is locally indicable and the result
then follows [10]. So assume from now on that a3 6= a4.
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Assign weight 1 to each edge of the star graph Γ of P except for
the edges labelled a3 and a4, which are given weight 0. Since P is
not aspherical there must be an admissable closed path in Γ of weight
less than 2. Up to cyclic permutation and inversion the label of such a
path is one of: (i) (a−1

3 a4)
m; (ii) x−1a4(a

−1
3 a4)

m; (iii) a−1
3 x(a−1

3 a4)
m; (iv)

1−1a4(a
−1
3 a4)

m; or (v) a−1
3 1(a−1

3 a4)
m for some m ≥ 1 where x denotes

a1 or a2. But in case (i), since A is torsion-free, we obtain a3 = a4,
a contradiction. The curvature arguments required for the remaining
four cases are similar to those of Case 1 and so we will omit some of
the detail.

As before, let D be a non-empty reduced spherical diagram over P
whose regions are given by Figure 3.1(i)-(ii); and the same assigna-
tion of curvature to the corners of each region ∆ is used. We once
more make the assumption that D is maximal with respect to num-
ber of vertices of degree 2; and, subject to this, we make the addi-
tional assumption that the number of vertices of degree 4 with la-
bel 11−111−1 is minimal. With these assumptions an argument us-
ing bridge moves shows that in fact we may disallow the vertex la-
bels a1a

−1
2 a1a

−1
2 and 11−111−1. In order to check the possible labels

for a vertex of degree 4 we make use of the following observations
which appeal, in particular, to (3.1): if a1a

−1
3 a4 = 1 then A = 〈a3〉 is

cyclic; if a1a
−1
4 a−1

3 = 1 then (a3a4)
3 = 1 and it follows that a1 = 1; if

a1a3a
−1
4 = 1 then A = 〈a4〉 is cyclic; if a1a

−1
3 a1a

−1
4 = 1 then A = 〈a1, a3〉

where a3a1a
−1
3 = a−3

1 and so A is a torsion-free homomorphic image of
the Baumslag-Solitar group BS(1,−3), hence is locally indicable and
the result follows [10]; or if a1a

−1
3 a−1

4 = 1 then A = 〈a1, a3〉 where
a3a1a

−1
3 = a−2

1 and so A is homomorphic image of the Baumslag-Solitar
group BS(1,−2) and similarly the result follows. Given these observa-
tions together with A torsion-free and non-cyclic it is readily verified
that if d(v) = 4 then (up to cyclic permutation and inversion) l(v) ∈
{a1a

−1
2 11−1, xa−1

3 a4a
−1
3 , xa−1

4 a3a
−1
4 , xa−1

4 a31
−1, x1−1a4a

−1
3 , a11

−11a−1
2 ,

a3a
−1
4 a31

−1, a3a
−1
4 1a−1

4 } where x = a1 or a2.

Consider case (ii) and so a−1
1 a4(a

−1
3 a4)

m = 1. If a1a
−1
3 a4a

−1
3 = 1

then (a−1
3 a4)

m+2 = 1 and so a3 = a4; if a1a
−1
4 a3 = 1 then A = 〈a1〉

is cyclic; if a1a4a
−1
3 = 1 then A = 〈a−1

3 a4〉 is cyclic; or if a23a
−1
4 = 1

or a3a
−2
4 = 1 then A is cyclic. Therefore if d(v) = 4 then l(v) ∈

{a1a
−1
2 11−1, a1a

−1
4 a3a

−1
4 (m = 1), a2a

−1
4 a3a

−1
4 (m = 1), a11

−11a−1
2 }. Sup-

pose that m > 1. Then any vertex involving a3 or a4 has degree at least
6 and it is a routine check that c(∆) ≤ 0 for each region ∆. Let m = 1.
If m(1) = m(2) = m(3) = m(4) then since B = 〈t〉 = 〈b1, b2, b3, b4〉 it
follows that m(i) = 1(1 ≤ i ≤ 4). But then a−1

1 a4a
−1
3 a4 = 1 implies

that the subgroup of A generated by loops in Γ is cyclic (indeed gener-
ated by a1a

−1
4 ) and the result follows; so assume otherwise. Checking

then shows that if c(∆) > 0 then either m(1) = m(4) > m(3) and ∆
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is given by Figure 3.3(i)-(iii); or m(1) = m(4) < m(3) and ∆ is given
by Figure 3.3(iv); or m(3) = m(4) > m(1) and ∆ is given by Figure

3.3(v). Distribute c(∆) ≤ π/6 to c(∆̂) ≤ −π/6 as shown in Figure

3.3. If ∆̂ receives positive curvature across exactly one edge we can
conclude that c∗(∆̂) ≤ 0. This is certainly true for the last two cases
and if m(1) = m(4) > m(3) again we can see it holds since in Figure
3.3(i)-(iii) the curvature is distributed across the same (1, a3)-edge.

Consider case (iii) and so a−1
3 a1(a

−1
3 a4)

m = 1 and A = 〈a3, a4〉.
If a1a

−1
4 a3a

−1
4 = 1 then a3 = a4; if a1a

−1
4 a3 = 1 or a1a4a

−1
3 = 1

then A = 〈a−1
3 a4〉 is cyclic; or if a23a

−1
4 = 1 or a3a

−2
4 = 1 then A is

cyclic. Therefore if d(v) = 4 then l(v) ∈ {a1a
−1
2 11−1, a1a

−1
3 a4a

−1
3 (m =

1), a2a
−1
3 a4a

−1
3 (m = 1), a11

−11a−1
2 }. If m > 1 then again c(∆) ≤ 0 for

each region ∆ so let m = 1. If m(1) = m(2) = m(3) = m(4) then as in
case (ii) the subgroup of A generated by loops in Γ is cyclic (generated
by a1a

−1
3 ), so asume otherwise. The case m(1) = m(4) is symmetric to

case (ii). If m(1) < m(4) there is only one ∆ for which c(∆) > 0 and ∆

is given by Figure 3.4(i) in which c(∆) ≤ π/6 is added to c(∆̂) ≤ −π/6

as shown, so c∗(∆̂) ≤ 0. This leaves m(1) > m(4). Checking now
shows that if c(∆) > 0 then ∆ is given by Figure 3.4(ii)-(vi). In Figure

3.4(ii) and (iii) c(∆) ≤ π/6 is added to c(∆̂) ≤ −π/6 as shown; and in

Figure 3.4(v) and (vi) c(∆) ≤ π/3 is added to c(∆̂) ≤ −π/3 as shown.

In Figure 3.4(iv) however, c(∆) ≤ π/6 is distributed to c(∆̂2) ≤ −π/3

via c(∆̂1) ≤ 0. The key point once again is that in Figure 3.4 curvature
is distributed across the same (1, a2)-edge each time and it follows that

c∗(∆̂) ≤ 0.

Consider case(iv). Then a4(a
−1
3 a4)

m = 1 and so, in particular,
〈a3, a4〉 = 〈a−1

3 a4〉 is cyclic. It quickly follows that if d(v) = 4 then
l(v) ∈ {a1a

−1
2 11−1, a3a

−1
4 1a−1

4 (m = 1), a11
−11a−1

2 }. If m > 1 then, as
before, there are no regions having positive curvature, so let m = 1.
Note also that if m(1) = m(2) = m(3) = m(4) = 1 there are no ver-
tices of degree 4 which implies c(∆) ≤ 0, so we can assume otherwise.
Checking then shows that if c(∆) > 0 then ∆ is given by Figure 3.5(i)

or (ii) and in each case c(∆) ≤ π/6 is added to c(∆̂) ≤ −π/6 as shown

across the same (1, a2)-edge and it follows that c∗(∆̂) ≤ 0.

Finally consider case (v). Then a−1
3 (a−1

3 a4)
m = 1 and 〈a3, a4〉 =

〈a−1
3 a4〉 is cyclic. Therefore if d(v) = 4 then l(v) ∈ {a1a

−1
2 11−1,

a3a
−1
4 a31

−1(m = 1), a11
−11a−1

2 }. As in case (iv) it can be assumed that
m = 1 and that m(1) = m(2) = m(3) = m(4) = 1 does not hold. But
checking now shows that c(∆) ≤ 0 for each region ∆ and we are done.

Case 3: a1 = a2 in A and b4 6= b1 6= b2 in B. We need a few preliminary
results.

Lemma 5. If none of the aj is isolated then t has infinite order.
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Figure 3.3. positive ∆ and distribution of curvature

Proof. If a3 is not isolated, then either a1 = a2 is a power of a3, or
a4 is a power of a3. In the first case A is cyclic by (3.1), contrary to
hypothesis. Hence a4 = am3 for some m. Similarly a3 = an4 for some n.
Hence amn−1

3 = 1 which forces m = ±1. But if m = −1 then (3.1) gives
a21 = 1, a contradiction. Hence m = 1 and (3.1) gives a21a

2
3 = 1. As in

Case 2 above, A is then locally indicable and the result follows. �
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Figure 3.5. positive ∆ and distribution of curvature

Lemma 6. If t does not have infinite order, then one of the following
holds: (i) the subgroup of A generated by a3, a4 is cyclic; or (ii) a−1

3 a1
is a power of a−1

3 a4.

Proof. As in the proof of Case 1 we construct a putative weight function
on the star graph Γ of P. Assign weight 0 to the two edges labelled a3
and a4, and weight 1 to every other edge. Since P is not aspherical,
there is an admissable path of weight less than 2 and the possible labels
are of the form (i) (a−1

3 a4)
m; (ii) x−1a4(a

−1
3 a4)

m; (iii) a−1
3 x(a−1

3 a4)
m; (iv)

1−1a4(a
−1
3 a4)

m; and (v) a−1
3 1(a−1

3 a4)
m for some m ∈ Z, where x denotes

a1 or a2.
In case (i), since A is torsion-free, a3 = a4. Then a21a

2
3 = 1 by (3.1)

and as before A is a homomorphic image of the Klein bottle group so
is locally indicable hence the result. The other four cases each give one
of the two conclusions in the statement of the lemma. �

The next lemma is well-known, but we include a proof for complete-
ness.

Lemma 7. Let F be a field, G a torsion-free group, and α ∈ FG
an element of the form ag + bh, where g, h are distinct elements of G
and a, b are non-zero elements of F . Then α is neither a unit nor a
zero-divisor in FG.

Proof. Suppose not. Then there exists β ∈ FG with support S of size
n < ∞, such that αβ ∈ F . The Boolean sum (gS xor hS) has an
even number of elements, but is contained in the support of αβ, which
is either {1} or ∅. Hence gS = hS. For each s ∈ S, it follows that
hg−1s ∈ S. Iterating, (hg−1)ns ∈ S for all n ∈ Z+. But S is finite,
so the sequence {(hg−1)ns} has repetitions, and (hg−1)k = 1 for some
k > 0. Since G is torsion-free and g 6= h, this is a contradiction. �
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Corollary 8. If there exists a permutation σ ∈ S4 such that

m(σ(1)) = m(σ(2)) > m(σ(3)) = m(σ(4)),

then t has infinite order.

Proof. Since the bi generate 〈t〉, we can deduce that m(σ(1)) and
m(σ(3)) are coprime. Let p be a prime factor of m(σ(1)). Now by
[4, Theorem 2], if t has finite order then the element

α := m(1) +m(2)a1 +m(3)a1a2 +m(4)a1a2a3

is a unit in QB. Thus there exists β ∈ ZB with setwise-coprime
coefficients such that αβ ∈ Z. Reducing modulo p, α is either a unit
or a zero-divisor in ZpB (depending on whether or not p|αβ). But
precisely two of the coefficients of α are coprime to p, so this contradicts
Lemma 7. �

Now let us return to the proof of the theorem in Case 3 (in which it
is more convenient to work with pictures over one-relator products).

Since P is not aspherical, there is a non-empty reduced spherical
picture S over the one-relator product 〈A ∗ B | a1b1a2b2a3b3a4b4〉 [11].
The vertices of S have label a1b1a2b2a3b3a4b4 (up to cyclic permutation
and inversion) and the regions of S are either A-regions or B-regions
whose label equals 1 in A or B except possibly for the distinguished
region ∆0 if it is a B-region. This time assign angles to the corners of
S as follows: each corner of an n-gon is assgned an angle (n − 2)π/n.
This way the curvature of each region is 0 and, since the total curvature
is 4π, there exists at least one vertex, v say, having positive curvature,
that is, the sum of the incident angles is less than 2π. (See [11, Section
3].)

Assume until otherwise stated that none of the regions incident at
v is ∆0. Since there are eight edges incident at v some of the inci-
dent regions must be 2-gons. Indeed if there are at most two 2-gons
then clearly v does not have positive curvature, so assume otherwise.
Observe that no 2-gons at v can share an edge for otherwise one of
these is an A-region and by Lemma 5 and A non-cyclic must have label
(a1a

−1
2 )±1. Hence one of the labels of the adjacent 2-gonal B-region

is b±1
1 , while the other label is either b∓1

2 or b∓1
4 which contradicts

b4 6= b1 6= b2. We may also assume that no four of the corners at
v belong to 2-gons. For otherwise, since no two of the 2-gons share an
edge, all four 2-gons belong to the same free factor A or B. But a3
and a4 cannot be labels of 2-gonal regions, so our four 2-gons are all
B-regions. But b4 6= b1 6= b2 then forces the bj to be equal in pairs, and
the result follows by Corollary 8.

It follows that v must have exactly three 2-gonal corners, four 3-
gonal corners and the eighth corner belonging to a 3-, 4- or 5-gon. (For
example, if there are two 4-gonal corners then v has curvature at most
2π − [3(π/3) + 2(π/4)] = 0.)
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Figure 3.6. neighbourhood of vertex v

Now the corner at v labelled b1 cannot be 2-gonal. For otherwise, by
hypothesis, it yields b1 = b3. Since the bj cannot be equal in pairs, we
then have b2 6= b4. But also b4 6= b1 6= b2, so the corners at v labelled
b2, b4 are not 2-gonal. Moreover, the corners labelled a1, a2 are then not
2-gonal since they are adjacent to the corner labelled b1, while those
labelled a3 and a4 are not 2-gonal since neither a3 nor a4 is involved in
a relation of length 2 among the aj . But all of this contradicts the fact
that v has three incident 2-gonal corners. Observe also that at most
one of the corners labelled b4, a1 can be 2-gonal, and the same holds for
the corners labelled a2, b2. Hence the three 2-gonal corners at v consist
of: b3; one of b4, a1; and one of a2, b2.

At least one A-region incident at v is 3-gonal, so there is a relator of
length 3 among the aj . Suppose first of all that such a relator involves
a1 or a2. Letting x denote a1 = a2, we have one of (i) x3, (ii) x2x−1,
(iii) x2a±1

3 , (iv) x2a±1
4 , (v) xa±2

3 , (vi) xa±2
4 , (vii) x±1a3a4, (viii) x

±1a4a3,
(ix) xa3a

−1
4 , (x) xa−1

3 a4, (xi) x−1a−1
3 a4, or (xii) x−1a3a

−1
4 . Any one of

the relators (i)-(vii), together with the relator x2a3a4 from (3.1) and
the fact that A is torsion-free, implies that A is cyclic, contrary to
hypothesis. Relator (viii) can be rewritten as a3 = a−1

4 x±1 so 1 =
x2a3a4 = x2a−1

4 x±1a4 and A is the homomorphic image of the soluble
Baumslag–Solitar group BS(1,±2), so locally indicable. Relator (ix)
gives 1 = x2a3a4 = x2a3xa3, so A is cyclic and a similar contradiction
is obtained from (x). Relator (xi) can be rewritten as x = a−1

3 a4. By
Lemma 6 either the subgroup of A generated by a3, a4 is cyclic, or a

−1
3 x

is a power of a−1
3 a4 = x and in either case A is then cyclic. A similar

argument applies to (xii), noting that the second possibility in Lemma
6 can be conjugated to: xa−1

3 is a power of a4a
−1
3 (= x). Thus no 3-gonal

relation among the aj involves a1 or a2.
Now consider the 2-gon with label b3 at v. We cannot have b1 = b3

by the argument given above, so the other label of this 2-gon is either
b−1
2 or b−1

4 . It follows that one of the neighbouring regions has a−1
1 or

a−1
2 corner label, so cannot be 3-gonal. Thus every other corner of v
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is 2-gonal or 3-gonal. In particular, the a1- and a2-corners are 2-gonal
and the b1-, b2- and b4-corners are 3-gonal. Now the other label of the
2-gon at the a1-corner of v is a−1

2 , and vice versa. Hence the other two
corners of the 3-gon at the b1-corner are labelled b−1

2 and b−1
4 . Hence

we have a relation m(1) = m(2) + m(4) in B. The two cases for the
vertex v are shown in Figure 3.6(i), (ii).

Now recall from Lemma 5 that one of the aj is isolated in A and so
we may assume that none of the bj is isolated in B. If the m(j) consist
of two equal pairs, then the result follows from Corollary 8. There are
only two other possibilities: either three of the m(j) are equal, and
the fourth divides them (and hence is equal to 1 since the m(j) are
setwise coprime), or two of the m(j) are equal, and each of the other
two divide them (and are coprime to one another). In the first case
the only possibility is that m(2) = m(3) = m(4) > 1 and m(1) = 1,
in which case m(1) = m(2) +m(4) is clearly false. In the second case
m(3) is equal to either m(2) or m(4), and m(1) divides m(3). But then
m(2) + m(4) > m(3) > m(1), so the equation m(1) = m(2) + m(4)
again fails.

In conclusion, v does not have positive curvature.
To complete the proof suppose that ∆0 is incident at v and that

∆0 is a B-region of degree k0. It follows from the above that there
are at most three 2-gons distinct from ∆0 incident at v and so v has
curvature at most 2π − [4(π/3) + (k0 − 2)π/k0] which implies that the
total curvature of S is at most (2 − k0/3)π < 4π, a contradiction and
Theorem 1 follows for this case.

4. The Case of No Cyclic Factors

In this section we prove Theorem 1 under the assumption that neither
A nor B is cyclic. The statement of the theorem will hold if the relative
presentation

PX : 〈A ∗B,X | a1Xb1X
−1a2Xb2X

−1a3Xb3X
−1a4Xb4X

−1〉

is aspherical [13]. The star graph ΓX of PX consists of two disjoint
bouquets of circles, with 4 circles in each. One of these corresponds to
A and has edge labels a1, a2, a3, a4; and the other to B and has edge
labels b1, b2, b3, b4.

Suppose by way of contradiction that S is a reduced spherical picture
over PX . As in Case 1(ii) of Section 3 contract the boundary of S to a
point which is then deleted and let D denote the dual, whose labelling is
inherited from S. The regions of D are ∆±1 where ∆ is given by Figure
4.1(i). The vertices of D are either A-vertices or B-vertices whose label
equals 1 in A or B except possibly for the label of the distinguished (A
or B) vertex v0 of degree k0.

The region ∆ is called inner if v0 is not a vertex of ∆, otherwise ∆
is a boundary region. The degree of ∆, denoted d(∆), is defined to be
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Figure 4.1. region ∆, distribution of curvature and
star graphs

the number of vertices of ∆ of degree > 2 except possibly v0 if ∆ is
a boundary region. Give each corner of D at a vertex of degree d the
angle 2π/d as before. Therefore the curvature of a region ∆ of D is
again given by (3.2) and the total curvature of the regions is 4π.
If c(∆) ≤ 0 and d(∆) ≥ 4 for each inner region ∆ of D then the
total curvature is at most

∑
c(∆′) where the sum is taken over all the

boundary regions ∆′ of D. But then c(∆′) ≤ c(k0, 3, 3, 3) =
2π
k0

< 4π
k0
,

so the total curvature is less than 4π from which we conclude that PX

is aspherical. We use curvature distribution as described in Section

3. Again let c∗(∆̂) denote c(∆̂) plus all possible additions of c(∆)

according to the distribution rules. If c∗(∆̂) ≤ 0 for each inner ∆̂ and

c∗(∆̂) < 4π/k0 for each boundary region ∆̂ then the total 4π cannot
be attained and PX is aspherical.

Put

SA = {a1a
±1
2 , a1a

±1
3 , a1a

±1
4 , a2a

±1
3 , a2a

±1
4 , a3a

±1
4 } and

SB = {b1b
±1
2 , b1b

±1
3 , b1b

±1
4 , b2b

±1
3 , b2b

±1
4 , b3b

±1
4 }.

It can be assumed without any loss that nB ≤ nA where nA, nB denotes
the number of admissable paths in ΓX contained in SA, SB respectively.
If nA > 3 then A is cyclic (a contradiction); or if nA = nB = 0 or nA =
1, nB = 0 then d(∆) ≥ 6, and so c(∆) ≤ 0, for each inner region of D
therefore PX is aspherical by the above comments, so assume otherwise.
Given this, up to symmetry (obtained from cyclic permutation and
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inversion of the relator), the cases to be considered are the following.

nA = 1: a1 = a2; a1 = a−1
2 ; a1 = a3; a1 = a−1

3 .
nA = 2: a1 = a2, a3 = a4; a1 = a2, a3 = a−1

4 ; a1 = a−1
2 , a3 = a−1

4 ;
a1 = a3, a2 = a4; a1 = a3, a2 = a−1

4 ; a1 = a−1
3 , a2 = a−1

4 .
nA = 3: a1 = a2 = a3; a1 = a−1

2 = a3; a1 = a2 = a−1
3 .

The following assumption will be made throughout.

(A) The number of A vertices v 6= v0 of D of degree 2 is maximal.

First consider nA = nB = 1. Up to symmetry the subcases to be
considered are: a1 = a±1

2 , b1 = b±1
2 ; a1 = a±1

2 , b1 = b±1
3 ; a1 = a±1

2 ,
b2 = b±1

3 ; a1 = a±1
2 , b2 = b±1

4 ; and a1 = a±1
3 , b1 = b±1

3 . Checking vertex
labels shows that d(∆) ≥ 6 when a1 = a2, b1 = b−1

2 ; a1 = a2, b2 = b±1
4 ;

a1 = a−1
2 , b1 = b±1

2 ; a1 = a−1
2 , b2 = b4; a1 = a3, b1 = b−1

3 ; or a1 = a−1
3 ,

b1 = b±1
3 and so we are left with eleven subcases.

Throughout the following ∆ will be an inner region unless stated
otherwise.

Let a1 = a2 and b1 = b2. If c(∆) > 0 then ∆ is given by Figure

4.1(ii), (iii). Add c(∆) ≤ c(3, 3, 3, 3, 5) = π/15 to c(∆̂) as indicated.

Observe that ∆̂ receives π/15 across the (a−1
2 , b−1

1 )-edge each time,

that d(∆̂) ≥ 6 and that ∆̂ contains a vertex of degree ≥ 5. It follows

that c∗(∆̂) ≤ c(3, 3, 3, 3, 3, 5) + π/15 = −π/5 if ∆̂ is inner. If ∆̃ is

a boundary region then either c(∆̃) ≤ c(k0, 3, 3, 3, 3) = 2π/k0 − π/3

or c∗(∆̃) ≤ c(k0, 3, 3, 3, 3, 3) + π/15 = 2π/k0 − 3π/5, so c(∆̃), c∗(∆̃) <
4π/k0 and the result follows.

Let a1 = a−1
2 and b2 = b−1

4 . Then the relative presentation PX is
equivalent to the relative presentation

PX,1 : 〈A ∗B,X, Y | Y −1X−1b−1
2 Xa1X

−1, Y b1Y
−1a3X

−1b3Xa4〉

whose star graph Γ1 is given by Figure 4.1(iv) in which the labels
e1 = e2 = 1. (We will use e, e1 or e2 to denote 1 in A or B.) Assign the
weight 1

2
to all the edges of Γ1. Then we obtain an aspherical weight

function unless at least one of b22b
±1
3 = 1, b23b

±1
2 = 1, a4a3a

±1
1 = 1 holds.

If a4a3a
±1
1 = 1, b22b

±1
3 6= 1, b23b

±1
2 6= 1 then assign weight 0 to (the

edge labelled – for ease of presentation we will often identify an edge
with its label) e2, 1 to a1 and 1

2
to all other edges; if a4a3a

±1
1 6= 1,

b22b
±1
3 = 1, b23b

±1
2 6= 1 then assign 0 to b1, 1 to b3 and 1

2
to all other

edges; if a4a3a
±1
1 6= 1, b22b

±1
3 6= 1, b23b

±1
2 = 1 then assign 0 to e1, 1 to

b2 and 1
2
to all other edges; if a4a3a

±1
1 = 1, b22b

±1
3 = 1 then assign 0 to

b1 and e2, 1 to b3 and a1, and
1
2
to all other edges; or if a4a3a

±1
1 = 1,

b23b
±1
2 = 1 then assign 0 to e1 and e2, 1 to b2 and a1 and 1

2
to all other

edges. The fact that A and B are non-cyclic ensures that each of these
weight functions is aspherical and the result follows. (For the reader’s
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Figure 4.2. regions ∆ such that d(∆) < 6

benefit we note here that if φ is one of the weight functions defined
above then in each case one confirms that
(1 − φ(e2)) + (1 − φ(b2)) + (1 − φ(a1)) + (1 − φ(e1)) ≥ 2 and that
(1− φ(b1)) + (1− φ(a3)) + (1− φ(b3)) + (1− φ(a4)) ≥ 2. Calculations
such as these are made implicitly throughout what follows.)

Let a1 = a3 and b1 = b3. Then the presentation PX is equivalent to
the relative presentation

PX,2 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1X, Y a2X

−1b2Y a4X
−1b4〉

whose star graph Γ2 is given by Figure 4.1(v). Assigning weight 1
2

to all edges of Γ2 defines an aspherical weight function unless either
a±1
1 (a−1

2 a4)
±1 = 1, in which case a4 is isolated; or b±1

1 (b2b
−1
4 )±1 = 1, in

which case b4 is isolated. If a±1
1 (a−1

2 a4)
±1 = 1 then assign weight 0 to

e1, 1 to a1 and 1
2
to all other edges; or if b±1

1 (b2b
−1
4 ) = 1 then assign

0 to e2, 1 to b1 and 1
2
to all other edges. The fact that A and B are

non-cyclic ensures that both weight functions are aspherical.
The regions ∆ such that d(∆) < 6 for the remaining 8 subcases

are given by Figure 4.2(i)-(xii). In Figure 4.2(i), if d(v1) = d(v2) =
d(u3) = 3 then l(v2) = b−1

1 b2b4 and l(u3) = a3a
−1
1 a4 forcing the isolated

pair a4 and b4; or if d(v1) = d(u4) = d(v4) = 3 then l(u4) = a−1
2 a4a3
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Figure 4.3. regions with four degree 3 vertices and star graphs

and l(v4) = b4b
−1
1 b2 again forcing a4, b4 isolated, so it can be assumed

that d(v1) > 3. In Figure 4.2(ii), if d(v1) = d(v2) = d(u3) = 3 then
l(v2) = b−1

1 b2b4 and l(u3) = a3a2a4 forcing a4, b4 isolated; or if d(v1) =
d(u4) = d(v4) = 3 then l(u4) = a1a4a3 and l(v4) = b4b

−1
1 b2 forcing a4, b4

isolated, so let d(v1) > 3. In Figure 4.2(iii), if d(v1) = d(v2) = d(u3) = 3
then l(v2) = b−1

1 b2b4 and l(u3) = a3a
−1
2 a4 forcing a4, b4 isolated; or if

d(v1) = d(u4) = d(v4) = 3 then l(v4) = b4b
−1
1 b3 and l(u4) = a−1

3 a4a4
forcing a3, b4 isolated, so let d(v1) > 3. In Figure 4.2(iv), if d(u3) =
d(v1) = d(u2) = 3 then l(u2) = a2a

−1
3 a4 and l(v1) = b−1

2 b1b4 forcing
a4, b4 isolated; or if d(u3) = d(u4) = d(v4) = 3 then l(u4) = a−1

3 a4a1
and l(v4) = b4b

−1
1 b4 forcing a4, b1 isolated, so let d(u3) > 3. In Figure

4.2(v), if d(v1) = d(v2) = d(u3) = 3 then l(v2) = b−1
1 b2b4 and l(u3) =

a3a3a4 forcing a4, b4 isolated; or if d(v1) = d(u4) = d(v4) = 3 then
either l(v4) = b4b

−1
1 b2 and l(u4) = a2a4a3 or l(v4) = b4b

−1
1 b−1

3 and
l(u4) = a2a4a

−1
3 forcing a4, b4 isolated each time, so let d(v1) > 3.

In Figure 4.2(vi), d(u3) > 3. In Figure 4.2(vii)-(ix), d(u1) > 3. In
Figure 4.2(x), if d(u3) = d(v1) = d(u2) = 3 then l(u2) = a2a

−1
3 a4 and

l(v1) = b1b1b4 forcing a4, b4 isolated; or if d(u3) = d(u4) = d(v4) = 3
then either l(u4) = a−1

3 a4a2 and l(v4) = b4b2b1 or l(u4) = a−1
3 a4a

−1
1 and

l(v4) = b4b2b
−1
1 forcing a4, b4 isolated each time, so let d(u3) > 3. In

Figure 4.2(xi), d(v1) > 3; and in (xii), d(u3) > 3. In each of the above
Figures 4.2(i)-(xii), the assumption that the remaining four vertices of
degree > 2 each has degree 3 forces either A or B to be cyclic or an
isolated pair except for the five regions shown in Figure 4.3 for each of
which there is an aspherical weight function on ΓX as follows.
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Figure 4.4. positive regions and curvature distribution

If ∆ is ∆1 of Figure 4.3(i) or is ∆ of (iii) then b4 is isolated so in
each case assign weight 1 in ΓX to each of a1, a2, b1, b2 and b3, assign
0 to b4 and assign 1

2
to each of a3 and a4;

if ∆ is ∆ of (ii) then b2 is isolated so assign weight 1 to a1, a2, b1, b3
and b4, assign 0 to b2 and assign 1

2
to each of a3 and a4; or if ∆ is ∆1

of (iv) or ∆2 of (v) then a4 is isolated so assign the weight 1 to a1, a2,
a3, b2 and b3, assign 0 to a4 and assign 1

2
to each of b1 and b4.

In conclusion we can assume that c(∆) ≤ 0 for each inner region ∆.
But from Figure 4.2 we conclude also that d(∆) ≥ 5 for any region and
so PX is aspherical.

We consider now the six cases for nA = 2.

First let a1 = a2 and a3 = a4. Then PX is equivalent to

PX,3 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y

2b−1
1 b2Xa3X

−1b3Xa3X
−1b4〉

whose star graph Γ3 is given by Figure 4.3(vi). Assume that at least
one of b1 = b2, b2 = b3, b3 = b4 or b4 = b1 holds and so by symmetry
we can take b1 = b2. Assigning in Γ3 weight 1 to both the a3 edges and
to e1, the weight 1

2
to b−1

1 b2, b1, e2 and b4, and the weight 0 to a1 and
b3 yields an aspherical weight function (θ, say) unless b1 = b2 ∈ 〈b3〉
or b4 ∈ 〈b3〉. Suppose that b1 = b2 ∈ 〈b3〉. Then assign weight 1 to
both the a3 edges and e1, weight

1
2
to b−1

1 b2, b1, e2 and b3, and weight
0 to a1 and b4. Any admissable path of weight less than 2 forces A or
B cyclic or b1b

±1
3 = 1 which implies nB ≥ 3, a contradiction, so the

weight function is aspherical. Now suppose that b4 ∈ 〈b3〉. Assigning
weight 1 to both a3 edges and e2, weight

1
2
to b−1

1 b2, e1, b4 and b3, and
weight 0 to b1 and a1 yields an aspherical weight function except when
b4 = b21, so assume this holds. Then, in particular, b1 6= b±1

4 , b1 6= b±1
3 ,

b2 6= b±1
3 , b2 6= b±1

4 , b3 6= b±1
4 and b2b

−1
3 /∈ {b±1

i : 1 ≤ i ≤ 4}. Moreover,
a1 = a2 and a3 = a4 implies d(ui) 6= 3 (1 ≤ i ≤ 4). Any attempt at
labelling now shows that d(∆) ≥ 4 and c(∆) ≤ 0 for any inner region
∆ and the result follows.

Now assume that b1 6= b2, b2 6= b3, b3 6= b4 and b4 6= b1. The same
weight function θ as defined above again forces either b2 ∈ 〈b3〉 or
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Figure 4.5. star graphs and curvature distribution

b4 ∈ 〈b3〉. Let b2 ∈ 〈b3〉 and note that this is symmetric to the case
b4 ∈ 〈b3〉.

Checking shows that d(∆) ≥ 4 for each region of D and so if c(∆) ≤ 0
for each inner ∆ the result follows. In fact if c(∆) > 0 then ∆ is
given by Figure 4.4(i) or (ii). Let ∆ be as in Figure 4.4(i). Then
b4b

−1
1 b−1

3 = b1b
−1
4 b−1

2 = 1 and so b2 = b−1
3 . Given this, assigning weight

1 in Γ3 to both the a3 edges, b−1
1 b2, b1 and b4, and weight 0 to the

remaining edges yields an aspherical weight function. Let ∆ be as in
Figure 4.4(ii). Then c(∆) > 0 forces at least one of b4b

−1
1 b−1

3 = 1,
b1b

−1
4 b−1

2 = 1, b2b
−1
3 b−1

1 = 1 or b3b
−1
2 b−1

4 = 1. If b4b
−1
1 b−1

3 = b1b
−1
4 b−1

2 = 1
we are back in the previous case and any other pair forces B cyclic.
Since b4b

−1
1 b−1

3 = 1, b1b
−1
4 b−1

2 = 1 is symmetric with b3b
−1
2 b−1

1 = 1,
b3b

−1
2 b−1

4 = 1 (respectively), we consider only the first two subcases.
Consider first b4b

−1
1 b−1

3 = 1. Then add c(∆) ≤ c(3, 4, 4, 4) = π/6 to

c(∆̂) as shown in Figure 4.4(iii) where it is assumed that ∆̂ is inner

and that d(u3) = d(u4) = 2 in ∆̂. If d(v3) = 3 in ∆̂ then B is cyclic

so c(∆̂) ≤ c(3, 3, 4, 4, 4) = −π/6. On the other hand if at least one of
d(u3), d(u4) does not equal 2 then (as noted above) it must be at least 4

and then again c(∆̂) ≤ c(3, 3, 4, 4, 4). Thus if ∆̂ is inner then c∗(∆̂) ≤ 0,

otherwise c∗(∆̂) ≤ c(k0, 3, 3, 4, 4) < 4π/k0. A similar argument applies

to ∆̂ of Figure 4.4(iv) for the subcase b1b
−1
4 b−1

2 = 1.

Let a1 = a2 and a3 = a−1
4 . Then PX is equivalent to

PX,4 : 〈A ∗B,X, Y |Y −1Xa1X
−1b1, Y

2b−1
1 b2Xa3X

−1b3Xa−1
3 X−1b4〉

whose star graph Γ4 is again given by Figure 4.3(vi). Assigning in Γ4

weight 1 to both the a3 edges and e1, weight
1
2
to b−1

1 b2, b1, e2 and b4,
and weight 0 to a1 and b3 yields an aspherical weight function unless
b2 ∈ 〈b3〉 or b4 ∈ 〈b3〉. If b1 = b2b4 and b2 ∈ 〈b3〉 then assigning weight
1 to both the a3 edges, b

−1
1 b2, b1 and b4, and weight 0 to the remaining

edges yields an aspherical weight function; or if b1 = b2b4 and b4 ∈ 〈b3〉
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then an aspherical weight function is obtained by assigning weight 1
to both the a3 edges, b−1

1 b2, e2 and b4, and weight 0 to the remaining
edges. It can be assumed therefore that b1 6= b2b4.

Let b2 = b−1
4 . Then PX is equivalent to

PX,5 : 〈A ∗B,X, Y | Y −1Xa−1
3 X−1b−1

2 X, Y a1X
−1b1Xa1Y

−1b3〉

whose star graph Γ5 is given by Figure 4.5(i). If b1 /∈ 〈b2〉 then an
aspherical weight function is obtained by assigning in Γ5 weight 1 to
edges e2 and b2, weight

1
2
to both the a1 edges, e1 and a3, and weight

0 to b1 and b3; or if b1 ∈ 〈b2〉 then assigning weight 1 to b1, weight 0
to b3 and weight 1

2
to the remaining edges yields an aspherical weight

function on noting that b1 = b±1
2 would imply nB ≥ 3. It can be

assumed then that b2 6= b−1
4 .

We are left to consider when b1 6= b2b4, b2 6= b−1
4 and either b4 ∈ 〈b3〉

or b2 ∈ 〈b3〉. If b1 = b2 and b1 = b4 then nB ≥ 3; or if b1 6= b2 and
b1 6= b4 then checking the possible labels shows that d(∆) ≥ 4 and
c(∆) ≤ 0 for each inner region ∆ and the result follows. (We remark
that assumption (A) is used here.) Since b1 = b2, b1 6= b4 is symmetric
to b1 6= b2, b1 = b4 we consider only the latter case and then PX is
equivalent to

PX,6 : 〈A ∗B,X, Y | Y −1b1Xa1X
−1, Y 2b2Xa3X

−1b3Xa−1
3 X−1〉

whose star graph Γ6 is given by Figure 4.5(ii). If b4 ∈ 〈b3〉 then as-
signing in Γ6 weight 1 to both a3 edges and e1, weight 1

2
to e2, b1,

e3 and b3, and weight 0 to a1 yields an aspherical weight function
on noting that b1 = b±1

3 implies nB ≥ 3; so let b2 ∈ 〈b3〉. Assign-
ing weight 1 to both a3 edges and e2, weight 1

2
to e1, b2, e3 and

b3, and weight 0 to b1 yields an aspherical weight function unless
b2 = b21, so assume this holds. Then b2 6= b±1

3 for otherwise B is
cyclic; b2 6= b±1

1 and b2 6= b±1
4 for otherwise nB ≥ 3; and l(v) = b2b4w

forces d(v) ≥ 4. All of this implies d(∆) ≥ 4 and c(∆) ≤ 0 unless ∆ is
given by Figure 4.5(iii) in which d(v1) ≥ 5. Add c(∆) ≤ c(3, 4, 4, 5) =

π/15 to c(∆̂) as shown. If d(u2) ≥ 4 in ∆̂ then, assuming ∆̂ inner,

c∗(∆̂) ≤ c(3, 4, 4, 4, 4)+ π/15 = −4π/15; or if d(u2) = 2 as shown then

c∗(∆̂) ≤ c(3, 3, 4, 4, 4) + π/15 = −π/10. On the other hand if ∆̂ is

a boundary region then c∗(∆̂) ≤ c(k0, 3, 3, 4, 4) + π/15 < 4π
k0

and the
result follows.

Let a1 = a−1
2 and a3 = a−1

4 . Then PX is equivalent to

PX,7 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y b1Y

−1b2Xa3X
−1b3Xa−1

3 X−1b4〉

whose star graph Γ7 is given by Figure 4.5(iv) in which the labels
b1,1 = b1,2 = b1. Assigning in Γ7 weight 1 to b3 and both the a3 edges,
weight 1

2
to e, b1,1, b2 and b4, and weight 0 to a1 and b1,2 yields an
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aspherical weight function unless b2b4 = 1, so assume this holds. Then
PX is equivalent to

PX,8 : 〈A ∗B,X, Y | Y −1Xa−1
1 X−1b2Xa3X

−1, b1Y b3Y
−1〉

whose star graph Γ8 is given by Figure 4.6(i). Assigning in Γ8 weight
1 to e1, e2 and a3 and weight 0 to all other edges yields an aspherical
weight function.

Let a1 = a3 and a2 = a4. Then PX is equivalent to

PX,9 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y Xa2X

−1b2Y b−1
1 b3Xa2X

−1b4〉

whose star graph Γ9 is given by Figure 4.6(ii). Assigning in Γ9 weight
1 to both the a2 edges, weight 0 to a1 and weight 1

2
to the remaining

edges yields an aspherical weight function unless b1 = b3 or b2 = b4.
If b1 = b3 and b2 = b4 then PX is aspherical because 〈A ∗ B,X |
Xa1X

−1b1Xa2X
−1b2〉 is aspherical [2, Theorem 2.3]. The case b2 = b4

is symmetric to b1 = b3 so it is enough to consider b1 = b3, in which
case PX is equivalent to

PX,10 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1Xa2X

−1, Y b2Y b4〉

whose star graph Γ10 is given by Figure 4.6(iii). Assigning in Γ10 weight
1 to e1, e2 and a1 and weight 0 to the remaining edges yields an as-
pherical weight function.

Let a1 = a3 and a2 = a−1
4 . Then PX is equivalent to

PX,11 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y Xa2X

−1b2Y b−1
1 b3Xa−1

2 X−1b4〉

whose star graph Γ11 is also given by Figure 4.6(ii). Assigning in Γ11

weight 1 to both the a2 edges, weight 0 to the b1 edge and weight 1
2
to
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the remaining edges yields an aspherical weight function unless b1 = b3
or b2 = b4. Now b2 = b4 is symmetric to b1 = b3 so is enough to consider
b1 = b3 in which case PX is equivalent to

PX,12 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1X, Y a2X

−1b2Y a−1
2 X−1b4〉

whose star graph Γ12 is given by Figure 4.6(iv). Assigning in Γ12 weight
1
2
to each edge yields an aspherical weight function unless b1b

±1
2 = 1,

b1b
±1
4 = 1, b2b

−1
4 = 1 or b±1

1 b2b
−1
4 = 1. But b1b

±1
2 = 1 or b1b

±1
4 = 1

implies nB ≥ 3, so let b2b
−1
4 = 1 in which case PX is equivalent to

PX,13 : 〈A ∗B,X, Y | Y −1X−1b2Xa1X
−1b1X, Y a2Y a−1

2 〉

whose star graph Γ13 is given in Figure 4.6(v). Assigning in Γ13 weight 1
to e1, e2 and b1 and weight 0 to the remaining edges yields an aspherical
weight function. This leaves b±1

1 b2b
−1
4 = 1 in which case assign in Γ12

weight 1 to b1, weight 0 to e2 and weight 1
2
to the remaining edges.

A routine check shows that any admissable path of weight less than 2
involving the edges b1, b2, b4 or e2 forces B cyclic and it follows that
this yields an aspherical weight function.

Let a1 = a−1
3 and a2 = a−1

4 . Then PX is equivalent to

PX,14 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y Xa2X

−1b2b1Y
−1b3Xa2X

−1b4〉

whose star graph Γ14 is given by Figure 4.6(vi). Assigning in Γ14 weight
1 to both the a2 edges, weight 0 to a1 and weight 1

2
to the remaining

edges yields an aspherical weight function unless b1b2 = 1 or b3b4 = 1.
Now b3b4 = 1 is symmetric to b1b2 = 1 so it is enough to consider
b1b2 = 1 in which case PX is equivalent to

PX,15 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1X, Y a2Y

−1b3Xa−1
2 X−1b4〉

whose star graph Γ15 is given by Figure 4.6(vii) in which a2,1 = a2,2 =
a2. Assigning in Γ15 weight 1 to a2,2 and e1, weight 0 to a1 and a2,1, and
weight 1

2
to the remaining edges yields an aspherical weight function

unless b1b
±1
3 = 1, b1b

±1
4 = 1, b3b4 = 1 or b±1

1 b4b3 = 1. But b1b
±1
3 = 1 or

b1b
±1
4 = 1 implies nB ≥ 3, so let b3b4 = 1 in which case PX is equivalent

to

PX,16 : 〈A ∗B,X, Y | Y −1X−1b−1
3 Xa1X

−1b1X, Y a2Y
−1a−1

2 〉

whose star graph Γ16 is given by Figure 4.6(viii). Assigning in Γ16

weight 1 to e1, e2 and b3 and weight 0 to the remaining edges yields
an aspherical weight function. This leaves b±1

1 b4b3 = 1 in which case
assigning in Γ15 weight 1 to the edges e1, a2,2 and b1, weight

1
2
to b3 and

b4, and weight 0 to e2, a2,1 and a1 yields an aspherical weight function.

We turn now to the case nA = 3.

Let a1 = a2 = a3, in which case a4 is then isolated. Then PX is
equivalent to

PX,17 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y

2b−1
1 b2Y b−1

1 b3Xa4X
−1b4〉
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Figure 4.7. star graphs and curvature distribution

whose star graph Γ17 is given by Figure 4.7(i). Assigning in Γ17 weight
1 to b4, weight 0 to e2 and weight 1

2
to the remaining six edges gives an

aspherical weight function unless either b1 = b2 or b1 = b3 or b2 = b3.
If b1 = b2 then assigning weight 1 to a1, b

−1
1 b2 and e1, weight

1
2
to

b−1
1 b3 and b4 and weight 0 to a4, b1 and e2 gives an aspherical weight
function except when b3 = b±1

4 since all other paths in the bi of weight
less than 2 forces b3 or b4 isolated; if b1 = b3 then assigning weight 1
to a4 and e2, weight 0 to a1 and b1 and weight 1

2
to the remaining four

edges similarly yields an aspherical weight function unless b2 = b4; or
if b2 = b3 then assigning weight 1 to b−1

1 b3, weight 0 to b1 and weight 1
2

to the remaining six edges yields an aspherical weight function unless
b1 = b4.

Let b1 = b2 and b3 = b±1
4 . Then d(ui) 6= 3 (1 ≤ i ≤ 4), d(u4) ≥ 4

and d(vi) 6= 3 (1 ≤ i ≤ 4). Moreover d(u1) = 2 forces l(v4) = b4b
−1
1 w

or b4b
−1
2 w and so d(v4) ≥ 4; d(u2) = 2 forces either d(v1) = b1b

−1
4 w

and d(v1) ≥ 4 or l(v2) = b−1
3 b2w and d(v2) ≥ 4; and d(u3) = 2 forces

l(v3) = b−1
1 b3w or b−1

2 b3w and d(v3) ≥ 4. It follows that d(∆) ≥ 4 and
c(∆) ≤ 0 for each interior region ∆ hence the result.

Let b1 = b3 and b2 = b4. Then PX is equivalent to

PX,18 : 〈A ∗B,X, Y | Y −1X−1b2Xa1X
−1b1X1, Y a1Y a4〉

whose star graph Γ18 is given by Figure 4.7(ii). Assigning in Γ18 weight
1 to e1, e2 and b1 and weight 0 to the remaining four edges gives an
aspherical weight function.

This leaves b1 = b4 and b2 = b3. Using d(ui) = 3 and d(vi) 6= 3
(1 ≤ i ≤ 4) together with assumption (A) in particular, we find that
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if c(∆) > 0 then ∆ is given by Figure 4.7(iii). Note that there are
two possible regions ∆ according to l(u2) = a2a

−1
1 or a2a

−1
3 as shown.

Note also that assumption (A) forces d(v4) ≥ 4 in ∆̂1 and d(v3) ≥ 4

in ∆̂2. Assume until otherwise stated that ∆̂1 and ∆̂2 are interior
regions in Figure 4.7(iii). If either d(u3) ≥ 4 or d(v3) ≥ 4 in ∆̂1

then c(∆̂1) ≤ c(4, 4, 4, 4, 4) = −π
2
so add c(∆) ≤ c(4, 4, 4) = π

2
to

∆̂1 across the (a−1
2 , b−1

2 )-edge as indicated; or if either d(u1) ≥ 4 or

d(v4) ≥ 4 in ∆̂2 then add c(∆) to c(∆̂2) ≤ −π
2
across the (a−1

2 , b−1
2 )-

edge of ∆̂2 as indicated. Assume otherwise so that ∆̂1 and ∆̂2 are
given by Figure 4.7(iv). Then d(v1) ≥ 6 and d(v2) ≥ 6 in ∆ so add
1
2
c(∆) ≤ 1

2
c(4, 6, 6) = π

12
to each of c(∆̂i) ≤ c(4, 4, 4, 6) = −π

6
as shown.

We then have c∗(∆̂) ≤ 0 if ∆̂ is interior or if ∆̂ is a boundary region

either c∗(∆̂) = c(∆̂) = c(k0, 4, 4) or c∗(∆̂) ≤ c(k0, 4, 4, 4, 4) +
π
2
or

c∗(∆̂) ≤ c(k0, 4, 4, 4) +
π
12
, in which case c∗(∆̂) < 4π

k0
and the result

follows.

Let a1 = a−1
2 = a3 in which case a4 is isolated. Then PX is equivalent

to

PX,19 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y b1Y

−1b2Y b−1
1 b3Xa4X

−1b4〉

whose star graph Γ19 is given by Figure 4.8(i) in which b1,1 = b1,2 = b1.
Assigning in Γ19 weight 1 to a4, weight 0 to a1 and weight 1

2
to the

remaining edges yields an aspherical weight function unless b4b
±1
2 = 1 or

b3b
±1
1 = 1. Since these cases are symmetric we consider only b3b

±1
1 = 1.

Assigning weight 1 to a4 and b1,2, weight 0 to a1 and e1 and weight
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1
2
to the remaining edges yields an aspherical weight function unless

b4b
±1
2 = 1.

Let b1 = b−1
3 and b4b

±1
2 = 1. Then PX is equivalent to

PX,20 : 〈A ∗B,X, Y | Y −1X−1b1Xa−1
1 X1, Y b2Y

−1a4X
−1b±1

2 Xa1〉

whose star graph Γ20 is given by Figure 4.8(ii) in which a1,1 = a1,2 = a1.
Assigning in Γ20 weight 1 to e1, a1,2 and both the b2 edges, and weight
0 to the remaining edges yields an aspherical weight function.

Let b1 = b3 and b4b2 = 1. Then PX is equivalent to

PX,21 : 〈A ∗B,X, Y | Y −1b2Xa1X
−1b1X, b−2

2 Y a−1
1 X−1Y a4X

−1〉

whose star graph Γ21 is given by Figure 4.8(iii) in which a1,1 = a1,2 = a1.
Assigning in Γ21 weight 1 to e1, a1,2, e2 and b22 and weight 0 to the
remaining edges yields an aspherical weight function.

This leaves b1 = b3 and b2 = b4. Then PX is equivalent to

PX,22 : 〈A ∗B,X, Y | Y −1X−1b2Xa1X
−1b1X, a4Y a−1

1 Y 〉

whose star graph Γ22 is given by Figure 4.8(iv). Assigning in Γ22 weight
1 to e1, e2 and b1 and weight 0 to the remaining edges yields an as-
pherical weight function.

Finally let a1 = a2 = a−1
3 in which case a4 is isolated. Then PX is

equivalent to

PX,23 : 〈A ∗B,X, Y | Y −1Xa1X
−1b1, Y

2b−1
1 b2b1Y

−1b3Xa4X
−1b4〉

whose star graph Γ23 is given by Figure 4.8(v). Assigning in Γ23 weight
1 to e1 and a4, weight 0 to a1 and b−1

1 b2b1 and weight 1
2
to the remaining

four edges yields an aspherical weight function unless b3b4 = 1, in
which case assigning weight 1 to b3 and b4, weight 0 to b−1

1 b2b1 and e2
and weight 1

2
to the remaining four edges yields an aspherical weight

function unless b1(b
−1
1 b2b1)

m = 1 for some m. But |m| > 1 forces b1 to
be isolated so it remains to consider b1b

±1
2 = 1. If b3b4 = b1b2 = 1 then

PX is equivalent to

PX,24 : 〈A ∗B,X, Y | Y −1X−1b−1
3 Xa1X

−1b1X, Y a1Y
−1a4〉

whose star graph Γ24 is given by Figure 4.8(vi). Assigning in Γ24 weight
1 to e1, e2 and b1 and weight 0 to the remaining edges yields an as-
pherical weight function. Or if b3b4 = b1b

−1
2 = 1 then PX is equivalent

to

PX,25 : 〈A ∗B,X, Y | Y −1Xa−1
1 X−1b3X, Y a4Y

−1b1Xa1X
−1b1〉

whose star graph Γ25 is given by Figure 4.8(vii) in which b1,1 = b1,2 = b1.
Assigning a Γ25 weight 1 to each a1 edge and b1,1, weight

1
2
to e2 and

b3 and weight 0 to a4, e1 and b1,2 yields an aspherical weight function.

This completes the proof of Theorem 1.
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