ON SINGULAR EQUATIONS OVER TORSION-FREE GROUPS

MARTIN EDJVET AND JAMES HOWIE

Abstract

We prove a Freiheitssatz for one-relator products of torsion-free groups, where the relator has syllable length at most 8 . This result has applications to equations over torsion-free groups: in particular a singular equation of syllable length at most 18 over a torsion-free group has a solution in some overgroup.

1. Introduction

An equation over a group A in an indeterminate t is just an expression $w(t)=1$, where $w=w(t)$ is a word in the free product $A *\langle t\rangle$. This equation has a solution in A (resp. in an overgroup G of A) if there is an element $h \in A$ (resp. $h \in G$) such that substituting h for t in w and evaluating in A (resp. G) gives the identity. It is well-known that a solution for $w(t)=1$ exists in some overgroup if and only if the natural map from A to $G:=(A *\langle t\rangle) / N(w)$ is injective (where $N(w)$ denotes the normal closure of w in $A *\langle t\rangle$) - in which case G may be taken to be the overgroup in question, and the coset $t \cdot N(w)$ to be the element h in the definition.

Thus there is a natural connection between the study of equations over groups and that of one-relator products. A one-relator product of groups $A_{\lambda}(\lambda \in \Lambda)$ is the quotient G of the free product $*_{\lambda \in \Lambda} A_{\lambda}$ by the normal closure of a single element w. A one-relator product G of groups A_{λ} is said to satisfy the Freiheitssatz if each A_{λ} embeds in G via the natural map. This idea generalises the classical Freiheitssatz of Magnus [16]. In the case where $\left\{A_{\lambda}, \lambda \in \Lambda\right\}=\{A,\langle t\rangle\}$, the Freiheitssatz says that the equation $w(t)=1$ has a solution in G, and moreover the solution element $h=t . N(w)$ has infinite order in G.

Equations over groups and one-relator products have been studied extensively by various authors over a long period. (See, for example, [5], 6] and (9].)

[^0]In the present article we consider equations over torsion-free groups. The most striking result here is that of Klyachko [14], that any equation with exponent sum ± 1 in the indeterminate has a solution in an overgroup. If we write

$$
w=a_{1} t^{m(1)} \cdots a_{k} t^{m(k)} \in A *\langle t\rangle
$$

as a cyclically reduced word with $a_{i} \in A$ and $m(i) \in \mathbb{Z}$ for each i, then by definition the exponent sum is $\sum_{i=1}^{k} m(i)$. An equation with exponent sum 0 is called singular; one with non-zero exponent sum is called non-singular. In general it seems to be easier to prove results for non-singular equations than for singular ones. For example if $k=4$ and $m(i)=1(1 \leq i \leq 4)$ then there is always a solution [15]; if $m(j)=1$ $(1 \leq j \leq 3)$ and $m(4)=-1$ then there is always a solution [8]; if $m(1)=m(2)=1$ and $m(3)=m(4)=-1$ then there is a solution provided one assumes that $a_{1}^{2} \neq 1, a_{3}^{2} \neq 1$ and $a_{1} a_{2} \neq 1$ [7]; or if $m(1)=m(3)=1$ and $m(2)=m(4)=-1$ the problem remains very much open.

Our interest in the present article is more focussed on singular equations, in the spirit of [4] (see also [1], [12], [13] and [17]). Our principal result is the following.

Theorem 1. Let A, B be torsion-free groups, and let

$$
w=a_{1} b_{1} \ldots a_{k} b_{k} \in A * B
$$

where $a_{i} \in A$ and $b_{i} \in B$ for each $i=1, \ldots, k$ and where the a_{i} and the b_{i} are non-trivial. If $k \leq 4$ then each of A, B embeds in

$$
G:=(A * B) / N(w)
$$

via the natural map.
This result has some obvious consequences for the study of equations over torsion-free groups. The first of these is an extension of [4, Theorem 2(iv)] from $k \leq 3$ to $k \leq 4$, and is obtained by putting $B=\langle t\rangle \cong \mathbb{Z}$ in Theorem 1.

Corollary 2. Let $G=(A *\langle t\rangle) / N(w)$, where A is torsion-free and let

$$
w=a_{1} t^{m(1)} \cdots a_{k} t^{m(k)} \in A *\langle t\rangle
$$

where the a_{i} are non-trivial elements of A, each $m(i) \neq 0$ and $k \leq 4$. Then the natural maps $A \rightarrow G$ and $\langle t\rangle \rightarrow G$ are injective.

The next result specifically addresses the solubility of certain singular equations, that is equations $w(t)=1$ in which the exponent sum of the variable t in the word w is equal to 0 .

Corollary 3. Let

$$
w=a_{1} t^{m(1)} \cdots a_{k} t^{m(k)} \in A *\langle t\rangle
$$

be a word where the a_{i} are non-trivial elements of A and each $m(i) \neq 0$ such that $\sum_{i=1}^{k} m(i)=0$ and such that the sequence of partial sums $\left(\sum_{i=1}^{j} m(i)\right)_{j=1}^{k}$ attains its maximum value at most four times and its minimum value at most four times. Then the natural map

$$
A \rightarrow G:=(A *\langle t\rangle) / N(w)
$$

is injective.
Recall that the syllable length of a cyclically reduced word $w=$ $a_{1} t^{m(1)} \cdots a_{k} t^{m(k)} \in A *\langle t\rangle$ where the a_{i} are non-trivial elements of A and each $m(i) \neq 0$ is defined to be $2 k$.
Corollary 4. Any singular equation of syllable-length at most 18 over a torsion-free group has a solution in an overgroup.

This generalises [4, Corollary 4], which proves the same result for equations of syllable length at most 14 .

The remainder of the paper is structured as follows. In Section 2 we prove Corollaries 2, 3 and 4, assuming Theorem 1, We then split the proof of Theorem 1 into two cases: the case where one of the factor groups A, B is cyclic is dealt with in Section 3.

In our proofs we rely heavily on the theory of pictures over onerelator products and over relative presentations. For details of the basic theory and terms used for one-relator products the reader is referred to [11]; and for relative presentations see [2] or [3, Section 3]. In particular aspherical will mean aspherical in the sense of [2] and diagrammatically reducible in the sense of [3].

2. Proof of Corollaries

Proof of Corollary 园 As mentioned in the Introduction, the proof follows immediately from Theorem 1 by setting $B:=\langle t\rangle$.

Proof of Corollary 3 . For $n \in \mathbb{Z}$, let $A_{n}:=t^{n} A t^{-n} \subset A *\langle t\rangle$. The normal closure of A in $A *\langle t\rangle$ is the free product of the A_{n} for all $n \in \mathbb{Z}$. Since w has exponent sum 0 in t, it belongs to this normal closure, and hence can be uniquely written as a word $w_{0} \in *_{n \in \mathbb{Z}} A_{n}$.

Let us denote by μ, M the minimum and maximum respectively of the sequence of partial sums $\left(\sum_{i=1}^{j} m(i)\right)_{j=1}^{k}$. Then it is routine to check that w_{0} is a cyclically reduced word in $*_{n=\mu}^{M} A_{n}$ that contains letters from each of A_{μ} and A_{M}. Write $B_{-}:=*_{n=\mu}^{M-1} A_{n}, B_{+}:=*_{n=\mu+1}^{M} A_{n}$ and

$$
H:=\frac{*_{n=\mu}^{M} A_{n}}{N\left(w_{0}\right)} .
$$

Then $H=\left(B_{-} * A_{M}\right) / N\left(w_{0}\right)=\left(B_{+} * A_{\mu}\right) / N\left(w_{0}\right)$. By hypothesis w_{0} has a cyclically reduced conjugate in $B_{-} * A_{M}$ of syllable-length at
most 8 , so each of B_{-}, A_{M} embeds in H via the natural map. Similarly each of B_{+}, A_{μ} embeds in H via the natural map.

Finally, note that G can be written as an HNN extension of H with stable letter t and associated subgroups B_{-}, B_{+}. The result follows.

Proof of Corollary 4 . Using the same notation as in the proof of Corollary 3, if w has syllable length $2 k \leq 18$ in $A *\langle t\rangle$, then w_{0} has syllable length at most $k \leq 9$ in $B_{-} * A_{M}$ and in $B_{+} * A_{\mu}$. Hence w_{0} involves at most 4 letters from A_{μ} and at most 4 from A_{M}; equivalently, the sequence of partial sums in Corollary 3 reaches its maximum and its minimum at most 4 times each. The result follows from Corollary 3,

3. The Cyclic Factor Case

The proof of Theorem 1 will be given in this and the next section. As usual, we may reduce to the case when A is generated by the a_{i} and B by the $b_{i}(1 \leq i \leq 4)$, so we assume this throughout without further comment. Moreover if $k \leq 3$ then the result follows from [4, Corollary 3], so assume from now on that $k=4$.

The element a_{i} is said to be isolated if no a_{k} belongs to the cyclic subgroup generated by a_{i} for $k \neq i$; and similarly for b_{j}. If there is an isolated pair a_{i}, b_{j} for some $1 \leq i, j \leq 4$ then Theorem 1 follows from [4, Theorem 1], and this fact will be used throughout what follows often without explicit comment.

In this section we prove the special case of Theorem 1 in which one of the factor groups A, B is cyclic. If both are cyclic Theorem 1 follows by the classical Freiheitssatz [16] so it can be assumed without any loss that A is not cyclic and $B=\langle t\rangle$ is infinite cyclic generated by t. Therefore each b_{j} has the form $t^{m(j)}$ for some $m(j) \in \mathbb{Z} \backslash\{0\}$. The result has been proved in [13] except in the case where all the $m(j)$ have the same sign, so suppose without loss of generality that $m(j)>0$ for each j. The injectivity of $A \rightarrow G$ is then a result from [15], so it suffices to show that $B \rightarrow G$ is injective, that is, t has infinite order in G.

If the relative 1-relator presentation

$$
\mathcal{P}: G \cong\left\langle A, t \mid a_{1} t^{m(1)} a_{2} t^{m(2)} a_{3} t^{m(3)} a_{4} t^{m(4)}\right\rangle
$$

is aspherical then t is known to have infinite order in G [2], so we may assume that \mathcal{P} is not aspherical. By [4, Theorem 2] the result holds (that is, t has infinite order in G) unless

$$
\begin{equation*}
a_{1} a_{2} a_{3} a_{4}=1 \tag{3.1}
\end{equation*}
$$

in A so we assume that this equation holds. We separate the proof into three cases.

Case 1: $a_{1} \neq a_{2} \neq a_{3} \neq a_{4} \neq a_{1}$ in A. The star graph Γ of \mathcal{P} consists of two vertices $t^{ \pm 1}$, and $m(1)+m(2)+m(3)+m(4)$ edges from t^{-1} to

Figure 3.1. the region Δ
t. For a full discussion on star graphs and weight tests the reader is referred to [2, Section 2], or [3, Section 3.2]. Four edges are labelled $a_{1}, a_{2}, a_{3}, a_{4}$ and the remainder are labelled by $1 \in A$. Define a weight function by assigning weight 1 to the edges labelled $1 \in A$, and weight $\frac{1}{2}$ to the other four edges. If the four elements $a_{j} \in A$ are pairwise distinct then the weight function, and therefore \mathcal{P} [2, Theorem 2.1], is aspherical contrary to hypothesis. Hence two of the a_{j} are equal, and by symmetry we may assume that $a_{1}=a_{3}$. Given this, cyclic permutation yields the symmetry $(m(1), m(2), m(3), m(4)) \leftrightarrow(m(3), m(4), m(1), m(2))$; in particular, we can work modulo $a_{2} \leftrightarrow a_{4}$. Furthermore, using cyclic permutation, inversion and $x \leftrightarrow x^{-1}$ we can in addition use the second symmetry $(m(1), m(2), m(3), m(4)) \leftrightarrow(m(2), m(1), m(4), m(3))$.

Now define a new weight function by assigning weight 1 to every edge of Γ except for the two edges labelled a_{2} and a_{4}, which have weight 0 . Since \mathcal{P} is not aspherical there must be an admissable closed path in Γ of weight less than 2 . Up to cyclic reordering and inversion, the label of such a path is one of: (i) $\left(a_{2}^{-1} a_{4}\right)^{m}$; (ii) $x^{-1} a_{4}\left(a_{2}^{-1} a_{4}\right)^{m}$; (iii) $a_{2}^{-1} x\left(a_{2}^{-1} a_{4}\right)^{m}$; (iv) $1^{-1} a_{4}\left(a_{2}^{-1} a_{4}\right)^{m}$; or (v) $a_{2}^{-1} 1\left(a_{2}^{-1} a_{4}\right)^{m}$ for some $m \geq 1$ (where x denotes a_{1} or a_{3}). Working modulo $a_{2} \leftrightarrow a_{4}$ it is sufficient to consider only cases (i), (ii) and (iv).

In case (i), since A is torsion-free, we have $a_{2}=a_{4}$. Using equation (3.1) we obtain $1=a_{1} a_{2} a_{3} a_{4}=\left(a_{1} a_{2}\right)^{2}$ in A and so $a_{1} a_{2}=1$ in A, contradicting A non-cyclic.

Consider now case (ii). If $m(1)=m(3)$ and $m(2)=m(4)$ then $G=$ $\left\langle H, t \mid t^{m(2)} a_{3} t^{m(3)} s^{-1}=1\right\rangle$, where $H=\left\langle A, s \mid s a_{2} s a_{4}=1\right\rangle$ is obtained from the torsion-free group A by adjunction of a square root, and hence is also torsion-free. The result follows from [4, Theorem 2 (iv)]. It can
be assumed then that either $m(1) \neq m(3)$ or $m(2) \neq m(4)$. Suppose that \mathcal{S} is a non-empty reduced spherical picture over \mathcal{P}. Contract the boundary of \mathcal{S} to a point which is then deleted and let \mathcal{D} be the dual of \mathcal{S} with labelling inherited from \mathcal{S}. In particular, since the natural map from A to G is injective, each vertex label of \mathcal{D} yields a word trivial in A. Then \mathcal{D} is a non-empty reduced spherical diagram over \mathcal{P} whose regions are given (up to cylic permutation and inversion) by Δ of Figure 3.1(i) and so the label of each region is read in a clockwise direction whereas each vertex label is read anti-clockwise. For convenience we depict Δ as shown in Figure 3.1(ii). Assign angles to the corners of each region Δ of \mathcal{D} as follows: each corner of a vertex in Δ of degree d is given an angle $2 \pi / d$. This way the vertices each have zero curvature; and if Δ has k vertices v_{i} of degree $d_{i}>2(1 \leq i \leq k)$, that is, $\operatorname{deg}(\Delta)=k$, then the curvature $c(\Delta)$ of Δ is given by

$$
\begin{equation*}
c(\Delta)=(2-k) \pi+2 \pi \sum_{i=1}^{k} \frac{1}{d_{i}} \tag{3.2}
\end{equation*}
$$

which we sometimes denote by $c\left(d_{1}, \ldots, d_{k}\right)$. It follows that the sum of the curvatures of the regions of \mathcal{D} is 4π (see [3, Section 3.3]) and it is this we seek to contradict. Now the degree of each vertex v in \mathcal{D} is even since the label $l(v)$ corresponds to a reduced closed path in the star graph Γ and so if $c(\Delta)>0$ then $d(\Delta)<4$; and indeed the fact that $m(1)=m(3)$ and $m(2)=m(4)$ is together disallowed prevents $d(\Delta)=2$ and so forces $d(\Delta)=3$. Assume that \mathcal{D} is maximal with respect to number of vertices of degree 2. Then the following labels (up to cyclic permutation and inversion) for a vertex of degree 4 are disallowed: $a_{1} a_{3}^{-1} 11^{-1} ; a_{1} 1^{-1} 1 a_{3}^{-1} ; a_{1} a_{3}^{-1} a_{1} a_{3}^{-1}$; and $11^{-1} 11^{-1}$ where it is understood that different edges are used for 11^{-1} or $1^{-1} 1$. This is because in each case there is a bridge move that would create two vertices of degree 2 but destroy at most one, contradicting maximality. Given this, the fact that $A=<a_{1}, a_{4}>$ is torsion-free and non-cylic, each vertex label is a word trivial in A and that the relation for case (ii) implies $a_{1}^{2}=\left(a_{1} a_{4}\right)^{2 m+1}$, an inspection of the closed paths of length 4 in Γ shows that if $d(v)=4$ then (up to cyclic permutation and inversion) $l(v) \in\left\{a_{1} a_{4}^{-1} a_{2} a_{4}^{-1}, a_{3} a_{4}^{-1} a_{2} a_{4}^{-1}, a_{1} a_{2}^{-1} a_{4} a_{2}^{-1}, a_{3} a_{2}^{-1} a_{4} a_{2}^{-1}\right\}$. Now $a_{1} a_{4}^{-1} a_{2} a_{4}^{-1}=1$ implies $a_{1}^{2}=\left(a_{1} a_{4}\right)^{3}=\left(a_{2} a_{1}\right)^{-3}$; and $a_{1} a_{2}^{-1} a_{4} a_{2}^{-1}=1$ implies $a_{1}^{2}=\left(a_{1} a_{2}\right)^{3}=\left(a_{4} a_{1}\right)^{-3}$ so these labels cannot both occur. Applying the symmetry $a_{2} \leftrightarrow a_{4}$ it is enough to consider only $l(v) \in$ $\left\{a_{1} a_{4}^{-1} a_{2} a_{4}^{-1}, a_{3} a_{4}^{-1} a_{2} a_{4}^{-1}\right\}$. Note also that, as shown in case (i), $a_{2} \neq a_{4}$ and so if $d(v)=2$ then $l(v) \in\left\{a_{1} a_{3}^{-1}, 11^{-1}\right\}$. If $m_{1} \neq m_{3}$ and $m_{2} \neq m_{4}$ it is easily shown that if $d(\Delta)=3$ then Δ has no vertices of degree 4 and so $c(\Delta) \leq 0$ (we omit the details). Applying the second symmetry mentioned earlier it is sufficient therefore to consider the two cases $m_{1}=m_{3}, m_{2}<m_{4}$ and $m_{1}=m_{3}, m_{2}>m_{4}$.

In what follows, in order to deal with regions of positive curvature we use curvature distribution. Briefly, we locate all positive regions Δ and add $c(\Delta)>0$ to $c(\widehat{\Delta})$ where $\widehat{\Delta}$ is some suitably chosen neighbouring region. Having done this for each Δ, let $c^{*}(\widehat{\Delta})$ denote $c(\widehat{\Delta})$ plus all possible additions of $c(\Delta)$. If $c^{*}(\widehat{\Delta}) \leq 0$ for each region $\widehat{\Delta}$ then the total 4π cannot be attained which is the contradiction we require.

First assume that $m(1)=m(3)$ and $m(2)<m(4)$. If $d\left(u_{1}\right)=2$ in Figure 3.1(i) then $m(2)<m(4)$ forces a $\left(u_{4}, u_{1}\right)$-split, that is, a vertex of degree >2 between u_{4} and u_{1}; and so $c(\Delta)>0$ implies Δ is given by Figure 3.2(i) in which $m(2)<m(4)$ and no $\left(u_{2}, u_{3}\right)$-split forces $d\left(u_{2}\right) \geq 6$ and $m(2)<m(4)$ forces the $\left(u_{4}, u_{1}\right)$-split in $\widehat{\Delta}$ at some vertex u with $d(u) \geq 6$. Distribute $c(\Delta) \leq c(4,6,6)=\pi / 6$ to $c(\widehat{\Delta}) \leq c(4,4,6,6)=-\pi / 3$ as indicated. If $d\left(u_{1}\right) \geq 6$ and $c(\Delta)>0$ then Δ is given by Figure 3.2(ii) and again distribute $c(\Delta) \leq \pi / 6$ to $c(\widehat{\Delta}) \leq-\pi / 3$ as shown. If $d\left(u_{1}\right)=4$ and $d\left(u_{4}\right) \geq 6$ then $c(\Delta)>0$ implies Δ is given by Figure 3.2(iii) in which $m(2)<m(4)$ forces a split in $\widehat{\Delta}$ at u with $d(u) \geq 6$. Distribute $c(\Delta) \leq \pi / 6$ to $c(\widehat{\Delta}) \leq-\pi / 3$ as shown. Finally if $d\left(u_{1}\right)=d\left(u_{4}\right)=4$ then Δ is given by Figure 3.2(iv) in which $d\left(u_{4}\right)=4$ forces $d(v) \geq 6$. Distribute $\frac{1}{2} c(\Delta) \leq \frac{1}{2} c(4,4,6)=\pi / 6$ to each of $c\left(\widehat{\Delta}_{i}\right) \leq-\pi / 3$ where $i=1,2$ as shown. This completes the distribution rules from regions of \mathcal{D} of positive curvature. But now observe from the figures that if $\widehat{\Delta}$ receives any positive curvature then $c(\widehat{\Delta}) \leq-\pi / 3$ and $\widehat{\Delta}$ receives at most $\pi / 6$ from each of at most two neighbouring regions. It follows that $c^{*}(\widehat{\Delta}) \leq 0$ as required.
Now assume that $m(1)=m(3)$ and $m(2)>m(4)$. Let $d\left(u_{1}\right)=$ $d\left(u_{3}\right)=2$ in Figure 3.1(i). Then $m(2)>m(4)$ forces a $\left(u_{2}, u_{3}\right)$-split and so if $c(\Delta)>0$ then Δ is given by Figure 3.2(v) in which $m(2)>m(4)$ forces $d\left(u_{4}\right) \geq 6$. If $d(u) \geq 6$ in Figure 3.2(v) then distribute $c(\Delta) \leq$ $\pi / 6$ to $c\left(\widehat{\Delta}_{i}\right) \leq-\pi / 3$ as shown. On the other hand if $d(u)=4$ then Δ and $\widehat{\Delta}$ are given by Figure $3.2(\mathrm{vi})$ in which the labelling forces $d(v) \geq 6$ and again distribute $c(\Delta) \leq \pi / 6$ to $c\left(\widehat{\Delta}_{i}\right) \leq-\pi / 3$. If $d\left(u_{1}\right)>2$ and $d\left(u_{3}\right)=2$ in Figure 3.1(i) then $d(\Delta)>3$. Finally let let $d\left(u_{1}\right)=2$ and $d\left(u_{3}\right)>2$. If any vertex other than u_{2}, u_{3}, u_{4} has degree >2 then $c(\Delta)<0$, so assume otherwise. Then, as above, $d\left(u_{1}\right)=2$ forces $d\left(u_{4}\right) \geq 6$. If $d\left(u_{2}\right)=4$ then $m(2)>m(4)$ forces a (u_{2}, u_{3})-split so let $d\left(u_{2}\right) \geq 6$. Thus if $c(\Delta)>0$ we must have $d\left(u_{3}\right)=4$. But then no (u_{2}, u_{3})-split forces $m(3) \geq m(2)$ and no (u_{3}, u_{4})-split forces $m(4) \geq m(3)$, a contradiction. This completes the distribution rules and as in the previous subcase we have $c^{*}(\widehat{\Delta}) \leq 0$ as required.

In case (iv), the subgroup of A generated by a_{2} and a_{4} is cyclic, generated by $a_{2}^{-1} a_{4}$. Using equation (3.1) we obtain $a_{2}^{-1} a_{4}=\left(a_{3} a_{4}\right)^{2}$, so the subgroup of A generated by $a_{3} a_{4}$ contains a_{2} and a_{4}, hence also a_{3} and a_{1} forcing A to be cyclic, a contradiction.

Figure 3.2. positive Δ and distribution of curvature
Case 2: $a_{1}=a_{2}$ in A and $b_{1}=b_{2}$ in B, that is, $m(1)=m(2)$. If $a_{3}=a_{4}$ then $a_{1}^{2} a_{3}^{2}=1$ by (3.1). Thus A is a torsion-free homomorphic image of the Klein bottle group, hence is locally indicable and the result then follows [10]. So assume from now on that $a_{3} \neq a_{4}$.

Assign weight 1 to each edge of the star graph Γ of \mathcal{P} except for the edges labelled a_{3} and a_{4}, which are given weight 0 . Since \mathcal{P} is not aspherical there must be an admissable closed path in Γ of weight less than 2. Up to cyclic permutation and inversion the label of such a path is one of: (i) $\left(a_{3}^{-1} a_{4}\right)^{m}$; (ii) $x^{-1} a_{4}\left(a_{3}^{-1} a_{4}\right)^{m}$; (iii) $a_{3}^{-1} x\left(a_{3}^{-1} a_{4}\right)^{m}$; (iv) $1^{-1} a_{4}\left(a_{3}^{-1} a_{4}\right)^{m}$; or (v) $a_{3}^{-1} 1\left(a_{3}^{-1} a_{4}\right)^{m}$ for some $m \geq 1$ where x denotes a_{1} or a_{2}. But in case (i), since A is torsion-free, we obtain $a_{3}=a_{4}$, a contradiction. The curvature arguments required for the remaining four cases are similar to those of Case 1 and so we will omit some of the detail.

As before, let \mathcal{D} be a non-empty reduced spherical diagram over \mathcal{P} whose regions are given by Figure 3.1(i)-(ii); and the same assignation of curvature to the corners of each region Δ is used. We once more make the assumption that \mathcal{D} is maximal with respect to number of vertices of degree 2 ; and, subject to this, we make the additional assumption that the number of vertices of degree 4 with label $11^{-1} 11^{-1}$ is minimal. With these assumptions an argument using bridge moves shows that in fact we may disallow the vertex labels $a_{1} a_{2}^{-1} a_{1} a_{2}^{-1}$ and $11^{-1} 11^{-1}$. In order to check the possible labels for a vertex of degree 4 we make use of the following observations which appeal, in particular, to (3.1): if $a_{1} a_{3}^{-1} a_{4}=1$ then $A=\left\langle a_{3}\right\rangle$ is cyclic; if $a_{1} a_{4}^{-1} a_{3}^{-1}=1$ then $\left(a_{3} a_{4}\right)^{3}=1$ and it follows that $a_{1}=1$; if $a_{1} a_{3} a_{4}^{-1}=1$ then $A=\left\langle a_{4}\right\rangle$ is cyclic; if $a_{1} a_{3}^{-1} a_{1} a_{4}^{-1}=1$ then $A=\left\langle a_{1}, a_{3}\right\rangle$ where $a_{3} a_{1} a_{3}^{-1}=a_{1}^{-3}$ and so A is a torsion-free homomorphic image of the Baumslag-Solitar group $B S(1,-3)$, hence is locally indicable and the result follows [10]; or if $a_{1} a_{3}^{-1} a_{4}^{-1}=1$ then $A=\left\langle a_{1}, a_{3}\right\rangle$ where $a_{3} a_{1} a_{3}^{-1}=a_{1}^{-2}$ and so A is homomorphic image of the Baumslag-Solitar group $B S(1,-2)$ and similarly the result follows. Given these observations together with A torsion-free and non-cyclic it is readily verified that if $d(v)=4$ then (up to cyclic permutation and inversion) $l(v) \in$ $\left\{a_{1} a_{2}^{-1} 11^{-1}, x a_{3}^{-1} a_{4} a_{3}^{-1}, x a_{4}^{-1} a_{3} a_{4}^{-1}, x a_{4}^{-1} a_{3} 1^{-1}, x 1^{-1} a_{4} a_{3}^{-1}, a_{1} 1^{-1} 1 a_{2}^{-1}\right.$, $\left.a_{3} a_{4}^{-1} a_{3} 1^{-1}, a_{3} a_{4}^{-1} 1 a_{4}^{-1}\right\}$ where $x=a_{1}$ or a_{2}.

Consider case (ii) and so $a_{1}^{-1} a_{4}\left(a_{3}^{-1} a_{4}\right)^{m}=1$. If $a_{1} a_{3}^{-1} a_{4} a_{3}^{-1}=1$ then $\left(a_{3}^{-1} a_{4}\right)^{m+2}=1$ and so $a_{3}=a_{4}$; if $a_{1} a_{4}^{-1} a_{3}=1$ then $A=\left\langle a_{1}\right\rangle$ is cyclic; if $a_{1} a_{4} a_{3}^{-1}=1$ then $A=\left\langle a_{3}^{-1} a_{4}\right\rangle$ is cyclic; or if $a_{3}^{2} a_{4}^{-1}=1$ or $a_{3} a_{4}^{-2}=1$ then A is cyclic. Therefore if $d(v)=4$ then $l(v) \in$ $\left\{a_{1} a_{2}^{-1} 11^{-1}, a_{1} a_{4}^{-1} a_{3} a_{4}^{-1}(m=1), a_{2} a_{4}^{-1} a_{3} a_{4}^{-1}(m=1), a_{1} 1^{-1} 1 a_{2}^{-1}\right\}$. Suppose that $m>1$. Then any vertex involving a_{3} or a_{4} has degree at least 6 and it is a routine check that $c(\Delta) \leq 0$ for each region Δ. Let $m=1$. If $m(1)=m(2)=m(3)=m(4)$ then since $B=\langle t\rangle=\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle$ it follows that $m(i)=1(1 \leq i \leq 4)$. But then $a_{1}^{-1} a_{4} a_{3}^{-1} a_{4}=1$ implies that the subgroup of A generated by loops in Γ is cyclic (indeed generated by $a_{1} a_{4}^{-1}$) and the result follows; so assume otherwise. Checking then shows that if $c(\Delta)>0$ then either $m(1)=m(4)>m(3)$ and Δ
is given by Figure 3.3(i)-(iii); or $m(1)=m(4)<m(3)$ and Δ is given by Figure 3.3(iv); or $m(3)=m(4)>m(1)$ and Δ is given by Figure 3.3(v). Distribute $c(\Delta) \leq \pi / 6$ to $c(\widehat{\Delta}) \leq-\pi / 6$ as shown in Figure 3.3. If $\widehat{\Delta}$ receives positive curvature across exactly one edge we can conclude that $c^{*}(\widehat{\Delta}) \leq 0$. This is certainly true for the last two cases and if $m(1)=m(4)>m(3)$ again we can see it holds since in Figure 3.3 (i)-(iii) the curvature is distributed across the same ($1, a_{3}$)-edge.

Consider case (iii) and so $a_{3}^{-1} a_{1}\left(a_{3}^{-1} a_{4}\right)^{m}=1$ and $A=\left\langle a_{3}, a_{4}\right\rangle$. If $a_{1} a_{4}^{-1} a_{3} a_{4}^{-1}=1$ then $a_{3}=a_{4}$; if $a_{1} a_{4}^{-1} a_{3}=1$ or $a_{1} a_{4} a_{3}^{-1}=1$ then $A=\left\langle a_{3}^{-1} a_{4}\right\rangle$ is cyclic; or if $a_{3}^{2} a_{4}^{-1}=1$ or $a_{3} a_{4}^{-2}=1$ then A is cyclic. Therefore if $d(v)=4$ then $l(v) \in\left\{a_{1} a_{2}^{-1} 11^{-1}, a_{1} a_{3}^{-1} a_{4} a_{3}^{-1}(m=\right.$ 1), $\left.a_{2} a_{3}^{-1} a_{4} a_{3}^{-1}(m=1), a_{1} 1^{-1} 1 a_{2}^{-1}\right\}$. If $m>1$ then again $c(\Delta) \leq 0$ for each region Δ so let $m=1$. If $m(1)=m(2)=m(3)=m(4)$ then as in case (ii) the subgroup of A generated by loops in Γ is cyclic (generated by $a_{1} a_{3}^{-1}$), so asume otherwise. The case $m(1)=m(4)$ is symmetric to case (ii). If $m(1)<m(4)$ there is only one Δ for which $c(\Delta)>0$ and Δ is given by Figure 3.4(i) in which $c(\Delta) \leq \pi / 6$ is added to $c(\widehat{\Delta}) \leq-\pi / 6$ as shown, so $c^{*}(\widehat{\Delta}) \leq 0$. This leaves $m(1)>m(4)$. Checking now shows that if $c(\Delta)>0$ then Δ is given by Figure 3.4(ii)-(vi). In Figure $3.4($ ii) and (iii) $c(\Delta) \leq \pi / 6$ is added to $c(\widehat{\Delta}) \leq-\pi / 6$ as shown; and in Figure $3.4(\mathrm{v})$ and (vi) $c(\Delta) \leq \pi / 3$ is added to $c(\widehat{\Delta}) \leq-\pi / 3$ as shown. In Figure 3.4(iv) however, $c(\Delta) \leq \pi / 6$ is distributed to $c\left(\widehat{\Delta}_{2}\right) \leq-\pi / 3$ via $c\left(\widehat{\Delta}_{1}\right) \leq 0$. The key point once again is that in Figure 3.4 curvature is distributed across the same ($1, a_{2}$)-edge each time and it follows that $c^{*}(\widehat{\Delta}) \leq 0$.

Consider case(iv). Then $a_{4}\left(a_{3}^{-1} a_{4}\right)^{m}=1$ and so, in particular, $\left\langle a_{3}, a_{4}\right\rangle=\left\langle a_{3}^{-1} a_{4}\right\rangle$ is cyclic. It quickly follows that if $d(v)=4$ then $l(v) \in\left\{a_{1} a_{2}^{-1} 11^{-1}, a_{3} a_{4}^{-1} 1 a_{4}^{-1}(m=1), a_{1} 1^{-1} 1 a_{2}^{-1}\right\}$. If $m>1$ then, as before, there are no regions having positive curvature, so let $m=1$. Note also that if $m(1)=m(2)=m(3)=m(4)=1$ there are no vertices of degree 4 which implies $c(\Delta) \leq 0$, so we can assume otherwise. Checking then shows that if $c(\Delta)>0$ then Δ is given by Figure 3.5(i) or (ii) and in each case $c(\Delta) \leq \pi / 6$ is added to $c(\widehat{\Delta}) \leq-\pi / 6$ as shown across the same $\left(1, a_{2}\right)$-edge and it follows that $c^{*}(\widehat{\Delta}) \leq 0$.

Finally consider case (v). Then $a_{3}^{-1}\left(a_{3}^{-1} a_{4}\right)^{m}=1$ and $\left\langle a_{3}, a_{4}\right\rangle=$ $\left\langle a_{3}^{-1} a_{4}\right\rangle$ is cyclic. Therefore if $d(v)=4$ then $l(v) \in\left\{a_{1} a_{2}^{-1} 11^{-1}\right.$,
$\left.a_{3} a_{4}^{-1} a_{3} 1^{-1}(m=1), a_{1} 1^{-1} 1 a_{2}^{-1}\right\}$. As in case (iv) it can be assumed that $m=1$ and that $m(1)=m(2)=m(3)=m(4)=1$ does not hold. But checking now shows that $c(\Delta) \leq 0$ for each region Δ and we are done.
Case 3: $a_{1}=a_{2}$ in A and $b_{4} \neq b_{1} \neq b_{2}$ in B. We need a few preliminary results.

Lemma 5. If none of the a_{j} is isolated then t has infinite order.

Figure 3.3. positive Δ and distribution of curvature

Proof. If a_{3} is not isolated, then either $a_{1}=a_{2}$ is a power of a_{3}, or a_{4} is a power of a_{3}. In the first case A is cyclic by (3.1), contrary to hypothesis. Hence $a_{4}=a_{3}^{m}$ for some m. Similarly $a_{3}=a_{4}^{n}$ for some n. Hence $a_{3}^{m n-1}=1$ which forces $m= \pm 1$. But if $m=-1$ then (3.1) gives $a_{1}^{2}=1$, a contradiction. Hence $m=1$ and (3.1) gives $a_{1}^{2} a_{3}^{2}=1$. As in Case 2 above, A is then locally indicable and the result follows.

(i)

(iii)

(v)

(ii)

(iv)

(vi)

Figure 3.4. positive Δ and distribution of curvature

Figure 3.5. positive Δ and distribution of curvature
Lemma 6. If t does not have infinite order, then one of the following holds: (i) the subgroup of A generated by a_{3}, a_{4} is cyclic; or (ii) $a_{3}^{-1} a_{1}$ is a power of $a_{3}^{-1} a_{4}$.

Proof. As in the proof of Case 1 we construct a putative weight function on the star graph Γ of \mathcal{P}. Assign weight 0 to the two edges labelled a_{3} and a_{4}, and weight 1 to every other edge. Since \mathcal{P} is not aspherical, there is an admissable path of weight less than 2 and the possible labels are of the form (i) $\left(a_{3}^{-1} a_{4}\right)^{m}$; (ii) $x^{-1} a_{4}\left(a_{3}^{-1} a_{4}\right)^{m}$; (iii) $a_{3}^{-1} x\left(a_{3}^{-1} a_{4}\right)^{m}$; (iv) $1^{-1} a_{4}\left(a_{3}^{-1} a_{4}\right)^{m}$; and (v) $a_{3}^{-1} 1\left(a_{3}^{-1} a_{4}\right)^{m}$ for some $m \in \mathbb{Z}$, where x denotes a_{1} or a_{2}.

In case (i), since A is torsion-free, $a_{3}=a_{4}$. Then $a_{1}^{2} a_{3}^{2}=1$ by (3.1) and as before A is a homomorphic image of the Klein bottle group so is locally indicable hence the result. The other four cases each give one of the two conclusions in the statement of the lemma.

The next lemma is well-known, but we include a proof for completeness.

Lemma 7. Let F be a field, G a torsion-free group, and $\alpha \in F G$ an element of the form $a g+b h$, where g, h are distinct elements of G and a, b are non-zero elements of F. Then α is neither a unit nor a zero-divisor in $F G$.

Proof. Suppose not. Then there exists $\beta \in F G$ with support S of size $n<\infty$, such that $\alpha \beta \in F$. The Boolean sum ($g S$ xor $h S$) has an even number of elements, but is contained in the support of $\alpha \beta$, which is either $\{1\}$ or \emptyset. Hence $g S=h S$. For each $s \in S$, it follows that $h g^{-1} s \in S$. Iterating, $\left(h g^{-1}\right)^{n} s \in S$ for all $n \in \mathbb{Z}_{+}$. But S is finite, so the sequence $\left\{\left(h g^{-1}\right)^{n} s\right\}$ has repetitions, and $\left(h g^{-1}\right)^{k}=1$ for some $k>0$. Since G is torsion-free and $g \neq h$, this is a contradiction.

Corollary 8. If there exists a permutation $\sigma \in S_{4}$ such that

$$
m(\sigma(1))=m(\sigma(2))>m(\sigma(3))=m(\sigma(4))
$$

then t has infinite order.
Proof. Since the b_{i} generate $\langle t\rangle$, we can deduce that $m(\sigma(1))$ and $m(\sigma(3))$ are coprime. Let p be a prime factor of $m(\sigma(1))$. Now by 4. Theorem 2], if t has finite order then the element

$$
\alpha:=m(1)+m(2) a_{1}+m(3) a_{1} a_{2}+m(4) a_{1} a_{2} a_{3}
$$

is a unit in $\mathbb{Q} B$. Thus there exists $\beta \in \mathbb{Z} B$ with setwise-coprime coefficients such that $\alpha \beta \in \mathbb{Z}$. Reducing modulo p, α is either a unit or a zero-divisor in $Z_{p} B$ (depending on whether or not $p \mid \alpha \beta$). But precisely two of the coefficients of α are coprime to p, so this contradicts Lemma 7.

Now let us return to the proof of the theorem in Case 3 (in which it is more convenient to work with pictures over one-relator products).

Since \mathcal{P} is not aspherical, there is a non-empty reduced spherical picture S over the one-relator product $\left\langle A * B \mid a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}\right\rangle$ [11]. The vertices of S have label $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}$ (up to cyclic permutation and inversion) and the regions of S are either A-regions or B-regions whose label equals 1 in A or B except possibly for the distinguished region Δ_{0} if it is a B-region. This time assign angles to the corners of S as follows: each corner of an n-gon is assgned an angle $(n-2) \pi / n$. This way the curvature of each region is 0 and, since the total curvature is 4π, there exists at least one vertex, v say, having positive curvature, that is, the sum of the incident angles is less than 2π. (See [11, Section 3].)

Assume until otherwise stated that none of the regions incident at v is Δ_{0}. Since there are eight edges incident at v some of the incident regions must be 2 -gons. Indeed if there are at most two 2 -gons then clearly v does not have positive curvature, so assume otherwise. Observe that no 2 -gons at v can share an edge for otherwise one of these is an A-region and by Lemma 5 and A non-cyclic must have label $\left(a_{1} a_{2}^{-1}\right)^{ \pm 1}$. Hence one of the labels of the adjacent 2 -gonal B-region is $b_{1}^{ \pm 1}$, while the other label is either $b_{2}^{\mp 1}$ or $b_{4}^{\mp 1}$ which contradicts $b_{4} \neq b_{1} \neq b_{2}$. We may also assume that no four of the corners at v belong to 2 -gons. For otherwise, since no two of the 2 -gons share an edge, all four 2 -gons belong to the same free factor A or B. But a_{3} and a_{4} cannot be labels of 2 -gonal regions, so our four 2 -gons are all B-regions. But $b_{4} \neq b_{1} \neq b_{2}$ then forces the b_{j} to be equal in pairs, and the result follows by Corollary 8 .

It follows that v must have exactly three 2 -gonal corners, four 3 gonal corners and the eighth corner belonging to a 3 -, 4 - or 5 -gon. (For example, if there are two 4 -gonal corners then v has curvature at most $2 \pi-[3(\pi / 3)+2(\pi / 4)]=0$.)

Figure 3.6. neighbourhood of vertex v

Now the corner at v labelled b_{1} cannot be 2-gonal. For otherwise, by hypothesis, it yields $b_{1}=b_{3}$. Since the b_{j} cannot be equal in pairs, we then have $b_{2} \neq b_{4}$. But also $b_{4} \neq b_{1} \neq b_{2}$, so the corners at v labelled b_{2}, b_{4} are not 2-gonal. Moreover, the corners labelled a_{1}, a_{2} are then not 2 -gonal since they are adjacent to the corner labelled b_{1}, while those labelled a_{3} and a_{4} are not 2-gonal since neither a_{3} nor a_{4} is involved in a relation of length 2 among the a_{j}. But all of this contradicts the fact that v has three incident 2-gonal corners. Observe also that at most one of the corners labelled b_{4}, a_{1} can be 2 -gonal, and the same holds for the corners labelled a_{2}, b_{2}. Hence the three 2 -gonal corners at v consist of: b_{3}; one of b_{4}, a_{1}; and one of a_{2}, b_{2}.

At least one A-region incident at v is 3 -gonal, so there is a relator of length 3 among the a_{j}. Suppose first of all that such a relator involves a_{1} or a_{2}. Letting x denote $a_{1}=a_{2}$, we have one of (i) x^{3}, (ii) $x^{2} x^{-1}$, (iii) $x^{2} a_{3}^{ \pm 1}$, (iv) $x^{2} a_{4}^{ \pm 1}$, (v) $x a_{3}^{ \pm 2}$, (vi) $x a_{4}^{ \pm 2}$, (vii) $x^{ \pm 1} a_{3} a_{4}$, (viii) $x^{ \pm 1} a_{4} a_{3}$, (ix) $x a_{3} a_{4}^{-1},(\mathrm{x}) x a_{3}^{-1} a_{4}$, (xi) $x^{-1} a_{3}^{-1} a_{4}$, or (xii) $x^{-1} a_{3} a_{4}^{-1}$. Any one of the relators (i)-(vii), together with the relator $x^{2} a_{3} a_{4}$ from (3.1) and the fact that A is torsion-free, implies that A is cyclic, contrary to hypothesis. Relator (viii) can be rewritten as $a_{3}=a_{4}^{-1} x^{ \pm 1}$ so $1=$ $x^{2} a_{3} a_{4}=x^{2} a_{4}^{-1} x^{ \pm 1} a_{4}$ and A is the homomorphic image of the soluble Baumslag-Solitar group $\mathrm{BS}(1, \pm 2)$, so locally indicable. Relator (ix) gives $1=x^{2} a_{3} a_{4}=x^{2} a_{3} x a_{3}$, so A is cyclic and a similar contradiction is obtained from (x). Relator (xi) can be rewritten as $x=a_{3}^{-1} a_{4}$. By Lemma 6 either the subgroup of A generated by a_{3}, a_{4} is cyclic, or $a_{3}^{-1} x$ is a power of $a_{3}^{-1} a_{4}=x$ and in either case A is then cyclic. A similar argument applies to (xii), noting that the second possibility in Lemma 6 can be conjugated to: $x a_{3}^{-1}$ is a power of $a_{4} a_{3}^{-1}(=x)$. Thus no 3 -gonal relation among the a_{j} involves a_{1} or a_{2}.

Now consider the 2-gon with label b_{3} at v. We cannot have $b_{1}=b_{3}$ by the argument given above, so the other label of this 2 -gon is either b_{2}^{-1} or b_{4}^{-1}. It follows that one of the neighbouring regions has a_{1}^{-1} or a_{2}^{-1} corner label, so cannot be 3 -gonal. Thus every other corner of v
is 2-gonal or 3 -gonal. In particular, the a_{1} - and a_{2}-corners are 2 -gonal and the $b_{1^{-}}, b_{2^{-}}$and b_{4}-corners are 3 -gonal. Now the other label of the 2 -gon at the a_{1}-corner of v is a_{2}^{-1}, and vice versa. Hence the other two corners of the 3 -gon at the b_{1}-corner are labelled b_{2}^{-1} and b_{4}^{-1}. Hence we have a relation $m(1)=m(2)+m(4)$ in B. The two cases for the vertex v are shown in Figure 3.6(i), (ii).

Now recall from Lemma 5 that one of the a_{j} is isolated in A and so we may assume that none of the b_{j} is isolated in B. If the $m(j)$ consist of two equal pairs, then the result follows from Corollary 8 . There are only two other possibilities: either three of the $m(j)$ are equal, and the fourth divides them (and hence is equal to 1 since the $m(j)$ are setwise coprime), or two of the $m(j)$ are equal, and each of the other two divide them (and are coprime to one another). In the first case the only possibility is that $m(2)=m(3)=m(4)>1$ and $m(1)=1$, in which case $m(1)=m(2)+m(4)$ is clearly false. In the second case $m(3)$ is equal to either $m(2)$ or $m(4)$, and $m(1)$ divides $m(3)$. But then $m(2)+m(4)>m(3)>m(1)$, so the equation $m(1)=m(2)+m(4)$ again fails.

In conclusion, v does not have positive curvature.
To complete the proof suppose that Δ_{0} is incident at v and that Δ_{0} is a B-region of degree k_{0}. It follows from the above that there are at most three 2 -gons distinct from Δ_{0} incident at v and so v has curvature at most $2 \pi-\left[4(\pi / 3)+\left(k_{0}-2\right) \pi / k_{0}\right]$ which implies that the total curvature of S is at most $\left(2-k_{0} / 3\right) \pi<4 \pi$, a contradiction and Theorem 1 follows for this case.

4. The Case of No Cyclic Factors

In this section we prove Theorem 1 under the assumption that neither A nor B is cyclic. The statement of the theorem will hold if the relative presentation

$$
\mathcal{P}_{X}:\left\langle A * B, X \mid a_{1} X b_{1} X^{-1} a_{2} X b_{2} X^{-1} a_{3} X b_{3} X^{-1} a_{4} X b_{4} X^{-1}\right\rangle
$$

is aspherical [13]. The star graph Γ_{X} of \mathcal{P}_{X} consists of two disjoint bouquets of circles, with 4 circles in each. One of these corresponds to A and has edge labels $a_{1}, a_{2}, a_{3}, a_{4}$; and the other to B and has edge labels $b_{1}, b_{2}, b_{3}, b_{4}$.

Suppose by way of contradiction that \mathcal{S} is a reduced spherical picture over \mathcal{P}_{X}. As in Case 1(ii) of Section 3 contract the boundary of \mathcal{S} to a point which is then deleted and let \mathcal{D} denote the dual, whose labelling is inherited from \mathcal{S}. The regions of \mathcal{D} are $\Delta^{ \pm 1}$ where Δ is given by Figure 4.1(i). The vertices of \mathcal{D} are either A-vertices or B-vertices whose label equals 1 in A or B except possibly for the label of the distinguished (A or B) vertex v_{0} of degree k_{0}.

The region Δ is called inner if v_{0} is not a vertex of Δ, otherwise Δ is a boundary region. The degree of Δ, denoted $d(\Delta)$, is defined to be

Figure 4.1. region Δ, distribution of curvature and star graphs
the number of vertices of Δ of degree >2 except possibly v_{0} if Δ is a boundary region. Give each corner of \mathcal{D} at a vertex of degree d the angle $2 \pi / d$ as before. Therefore the curvature of a region Δ of \mathcal{D} is again given by (3.2) and the total curvature of the regions is 4π. If $c(\Delta) \leq 0$ and $d(\Delta) \geq 4$ for each inner region Δ of \mathcal{D} then the total curvature is at most $\sum c\left(\Delta^{\prime}\right)$ where the sum is taken over all the boundary regions Δ^{\prime} of \mathcal{D}. But then $c\left(\Delta^{\prime}\right) \leq c\left(k_{0}, 3,3,3\right)=\frac{2 \pi}{k_{0}}<\frac{4 \pi}{k_{0}}$, so the total curvature is less than 4π from which we conclude that \mathcal{P}_{X} is aspherical. We use curvature distribution as described in Section 3. Again let $c^{*}(\widehat{\Delta})$ denote $c(\widehat{\Delta})$ plus all possible additions of $c(\Delta)$ according to the distribution rules. If $c^{*}(\widehat{\Delta}) \leq 0$ for each inner $\widehat{\Delta}$ and $c^{*}(\widehat{\Delta})<4 \pi / k_{0}$ for each boundary region $\widehat{\Delta}$ then the total 4π cannot be attained and \mathcal{P}_{X} is aspherical.

Put

$$
\begin{gathered}
S_{A}=\left\{a_{1} a_{2}^{ \pm 1}, a_{1} a_{3}^{ \pm 1}, a_{1} a_{4}^{ \pm 1}, a_{2} a_{3}^{ \pm 1}, a_{2} a_{4}^{ \pm 1}, a_{3} a_{4}^{ \pm 1}\right\} \quad \text { and } \\
S_{B}=\left\{b_{1} b_{2}^{ \pm 1}, b_{1} b_{3}^{ \pm 1}, b_{1} b_{4}^{ \pm 1}, b_{2} b_{3}^{ \pm 1}, b_{2} b_{4}^{ \pm 1}, b_{3} b_{4}^{ \pm 1}\right\} .
\end{gathered}
$$

It can be assumed without any loss that $n_{B} \leq n_{A}$ where n_{A}, n_{B} denotes the number of admissable paths in Γ_{X} contained in S_{A}, S_{B} respectively. If $n_{A}>3$ then A is cyclic (a contradiction); or if $n_{A}=n_{B}=0$ or $n_{A}=$ $1, n_{B}=0$ then $d(\Delta) \geq 6$, and so $c(\Delta) \leq 0$, for each inner region of \mathcal{D} therefore \mathcal{P}_{X} is aspherical by the above comments, so assume otherwise. Given this, up to symmetry (obtained from cyclic permutation and
inversion of the relator), the cases to be considered are the following.

$$
\begin{array}{ll}
n_{A}=1: & a_{1}=a_{2} ; a_{1}=a_{2}^{-1} ; a_{1}=a_{3} ; a_{1}=a_{3}^{-1} . \\
n_{A}=2: & a_{1}=a_{2}, a_{3}=a_{4} ; a_{1}=a_{2}, a_{3}=a_{4}^{-1} ; a_{1}=a_{2}^{-1}, a_{3}=a_{4}^{-1} ; \\
& a_{1}=a_{3}, a_{2}=a_{4} ; a_{1}=a_{3}, a_{2}=a_{4}^{-1} ; a_{1}=a_{3}^{-1}, a_{2}=a_{4}^{-1} . \\
n_{A}=3: & a_{1}=a_{2}=a_{3} ; a_{1}=a_{2}^{-1}=a_{3} ; a_{1}=a_{2}=a_{3}^{-1} .
\end{array}
$$

The following assumption will be made throughout.
(A) The number of A vertices $v \neq v_{0}$ of \mathcal{D} of degree 2 is maximal.

First consider $n_{A}=n_{B}=1$. Up to symmetry the subcases to be considered are: $a_{1}=a_{2}^{ \pm 1}, b_{1}=b_{2}^{ \pm 1} ; a_{1}=a_{2}^{ \pm 1}, b_{1}=b_{3}^{ \pm 1} ; a_{1}=a_{2}^{ \pm 1}$, $b_{2}=b_{3}^{ \pm 1} ; a_{1}=a_{2}^{ \pm 1}, b_{2}=b_{4}^{ \pm 1}$; and $a_{1}=a_{3}^{ \pm 1}, b_{1}=b_{3}^{ \pm 1}$. Checking vertex labels shows that $d(\Delta) \geq 6$ when $a_{1}=a_{2}, b_{1}=b_{2}^{-1} ; a_{1}=a_{2}, b_{2}=b_{4}^{ \pm 1}$; $a_{1}=a_{2}^{-1}, b_{1}=b_{2}^{ \pm 1} ; a_{1}=a_{2}^{-1}, b_{2}=b_{4} ; a_{1}=a_{3}, b_{1}=b_{3}^{-1} ;$ or $a_{1}=a_{3}^{-1}$, $b_{1}=b_{3}^{ \pm 1}$ and so we are left with eleven subcases.

Throughout the following Δ will be an inner region unless stated otherwise.

Let $a_{1}=a_{2}$ and $b_{1}=b_{2}$. If $c(\Delta)>0$ then Δ is given by Figure 4.1(ii), (iii). Add $c(\Delta) \leq c(3,3,3,3,5)=\pi / 15$ to $c(\widehat{\Delta})$ as indicated. Observe that $\widehat{\Delta}$ receives $\pi / 15$ across the $\left(a_{2}^{-1}, b_{1}^{-1}\right)$-edge each time, that $d(\widehat{\Delta}) \geq 6$ and that $\widehat{\Delta}$ contains a vertex of degree ≥ 5. It follows that $c^{*}(\widehat{\Delta}) \leq c(3,3,3,3,3,5)+\pi / 15=-\pi / 5$ if $\widehat{\Delta}$ is inner. If $\widetilde{\Delta}$ is a boundary region then either $c(\widetilde{\Delta}) \leq c\left(k_{0}, 3,3,3,3\right)=2 \pi / k_{0}-\pi / 3$ or $c^{*}(\widetilde{\Delta}) \leq c\left(k_{0}, 3,3,3,3,3\right)+\pi / 15=2 \pi / k_{0}-3 \pi / 5$, so $c(\widetilde{\Delta}), c^{*}(\widetilde{\Delta})<$ $4 \pi / k_{0}$ and the result follows.

Let $a_{1}=a_{2}^{-1}$ and $b_{2}=b_{4}^{-1}$. Then the relative presentation \mathcal{P}_{X} is equivalent to the relative presentation

$$
\mathcal{P}_{X, 1}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{2}^{-1} X a_{1} X^{-1}, Y b_{1} Y^{-1} a_{3} X^{-1} b_{3} X a_{4}\right\rangle
$$

whose star graph Γ_{1} is given by Figure 4.1(iv) in which the labels $e_{1}=e_{2}=1$. (We will use e, e_{1} or e_{2} to denote 1 in A or B.) Assign the weight $\frac{1}{2}$ to all the edges of Γ_{1}. Then we obtain an aspherical weight function unless at least one of $b_{2}^{2} b_{3}^{ \pm 1}=1, b_{3}^{2} b_{2}^{ \pm 1}=1, a_{4} a_{3} a_{1}^{ \pm 1}=1$ holds. If $a_{4} a_{3} a_{1}^{ \pm 1}=1, b_{2}^{2} b_{3}^{ \pm 1} \neq 1, b_{3}^{2} b_{2}^{ \pm 1} \neq 1$ then assign weight 0 to (the edge labelled - for ease of presentation we will often identify an edge with its label) $e_{2}, 1$ to a_{1} and $\frac{1}{2}$ to all other edges; if $a_{4} a_{3} a_{1}^{ \pm 1} \neq 1$, $b_{2}^{2} b_{3}^{ \pm 1}=1, b_{3}^{2} b_{2}^{ \pm 1} \neq 1$ then assign 0 to $b_{1}, 1$ to b_{3} and $\frac{1}{2}$ to all other edges; if $a_{4} a_{3} a_{1}^{ \pm 1} \neq 1, b_{2}^{2} b_{3}^{ \pm 1} \neq 1, b_{3}^{2} b_{2}^{ \pm 1}=1$ then assign 0 to $e_{1}, 1$ to b_{2} and $\frac{1}{2}$ to all other edges; if $a_{4} a_{3} a_{1}^{ \pm 1}=1, b_{2}^{2} b_{3}^{ \pm 1}=1$ then assign 0 to b_{1} and $e_{2}, 1$ to b_{3} and a_{1}, and $\frac{1}{2}$ to all other edges; or if $a_{4} a_{3} a_{1}^{ \pm 1}=1$, $b_{3}^{2} b_{2}^{ \pm 1}=1$ then assign 0 to e_{1} and $e_{2}, 1$ to b_{2} and a_{1} and $\frac{1}{2}$ to all other edges. The fact that A and B are non-cyclic ensures that each of these weight functions is aspherical and the result follows. (For the reader's

(ix)

(xi)

Figure 4.2. regions Δ such that $d(\Delta)<6$
benefit we note here that if ϕ is one of the weight functions defined above then in each case one confirms that $\left(1-\phi\left(e_{2}\right)\right)+\left(1-\phi\left(b_{2}\right)\right)+\left(1-\phi\left(a_{1}\right)\right)+\left(1-\phi\left(e_{1}\right)\right) \geq 2$ and that $\left(1-\phi\left(b_{1}\right)\right)+\left(1-\phi\left(a_{3}\right)\right)+\left(1-\phi\left(b_{3}\right)\right)+\left(1-\phi\left(a_{4}\right)\right) \geq 2$. Calculations such as these are made implicitly throughout what follows.)

Let $a_{1}=a_{3}$ and $b_{1}=b_{3}$. Then the presentation \mathcal{P}_{X} is equivalent to the relative presentation

$$
\mathcal{P}_{X, 2}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1} X, Y a_{2} X^{-1} b_{2} Y a_{4} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{2} is given by Figure 4.1(v). Assigning weight $\frac{1}{2}$ to all edges of Γ_{2} defines an aspherical weight function unless either $a_{1}^{ \pm 1}\left(a_{2}^{-1} a_{4}\right)^{ \pm 1}=1$, in which case a_{4} is isolated; or $b_{1}^{ \pm 1}\left(b_{2} b_{4}^{-1}\right)^{ \pm 1}=1$, in which case b_{4} is isolated. If $a_{1}^{ \pm 1}\left(a_{2}^{-1} a_{4}\right)^{ \pm 1}=1$ then assign weight 0 to $e_{1}, 1$ to a_{1} and $\frac{1}{2}$ to all other edges; or if $b_{1}^{ \pm 1}\left(b_{2} b_{4}^{-1}\right)=1$ then assign 0 to $e_{2}, 1$ to b_{1} and $\frac{1}{2}$ to all other edges. The fact that A and B are non-cyclic ensures that both weight functions are aspherical.

The regions Δ such that $d(\Delta)<6$ for the remaining 8 subcases are given by Figure $4.2(\mathrm{i})-(\mathrm{xii})$. In Figure 4.2(i), if $d\left(v_{1}\right)=d\left(v_{2}\right)=$ $d\left(u_{3}\right)=3$ then $l\left(v_{2}\right)=b_{1}^{-1} b_{2} b_{4}$ and $l\left(u_{3}\right)=a_{3} a_{1}^{-1} a_{4}$ forcing the isolated pair a_{4} and b_{4}; or if $d\left(v_{1}\right)=d\left(u_{4}\right)=d\left(v_{4}\right)=3$ then $l\left(u_{4}\right)=a_{2}^{-1} a_{4} a_{3}$

Figure 4.3. regions with four degree 3 vertices and star graphs
and $l\left(v_{4}\right)=b_{4} b_{1}^{-1} b_{2}$ again forcing a_{4}, b_{4} isolated, so it can be assumed that $d\left(v_{1}\right)>3$. In Figure 4.2 (ii), if $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(u_{3}\right)=3$ then $l\left(v_{2}\right)=b_{1}^{-1} b_{2} b_{4}$ and $l\left(u_{3}\right)=a_{3} a_{2} a_{4}$ forcing a_{4}, b_{4} isolated; or if $d\left(v_{1}\right)=$ $d\left(u_{4}\right)=d\left(v_{4}\right)=3$ then $l\left(u_{4}\right)=a_{1} a_{4} a_{3}$ and $l\left(v_{4}\right)=b_{4} b_{1}^{-1} b_{2}$ forcing a_{4}, b_{4} isolated, so let $d\left(v_{1}\right)>3$. In Figure 4.2(iii), if $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(u_{3}\right)=3$ then $l\left(v_{2}\right)=b_{1}^{-1} b_{2} b_{4}$ and $l\left(u_{3}\right)=a_{3} a_{2}^{-1} a_{4}$ forcing a_{4}, b_{4} isolated; or if $d\left(v_{1}\right)=d\left(u_{4}\right)=d\left(v_{4}\right)=3$ then $l\left(v_{4}\right)=b_{4} b_{1}^{-1} b_{3}$ and $l\left(u_{4}\right)=a_{3}^{-1} a_{4} a_{4}$ forcing a_{3}, b_{4} isolated, so let $d\left(v_{1}\right)>3$. In Figure 4.2(iv), if $d\left(u_{3}\right)=$ $d\left(v_{1}\right)=d\left(u_{2}\right)=3$ then $l\left(u_{2}\right)=a_{2} a_{3}^{-1} a_{4}$ and $l\left(v_{1}\right)=b_{2}^{-1} b_{1} b_{4}$ forcing a_{4}, b_{4} isolated; or if $d\left(u_{3}\right)=d\left(u_{4}\right)=d\left(v_{4}\right)=3$ then $l\left(u_{4}\right)=a_{3}^{-1} a_{4} a_{1}$ and $l\left(v_{4}\right)=b_{4} b_{1}^{-1} b_{4}$ forcing a_{4}, b_{1} isolated, so let $d\left(u_{3}\right)>3$. In Figure $4.2(\mathrm{v})$, if $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(u_{3}\right)=3$ then $l\left(v_{2}\right)=b_{1}^{-1} b_{2} b_{4}$ and $l\left(u_{3}\right)=$ $a_{3} a_{3} a_{4}$ forcing a_{4}, b_{4} isolated; or if $d\left(v_{1}\right)=d\left(u_{4}\right)=d\left(v_{4}\right)=3$ then either $l\left(v_{4}\right)=b_{4} b_{1}^{-1} b_{2}$ and $l\left(u_{4}\right)=a_{2} a_{4} a_{3}$ or $l\left(v_{4}\right)=b_{4} b_{1}^{-1} b_{3}^{-1}$ and $l\left(u_{4}\right)=a_{2} a_{4} a_{3}^{-1}$ forcing a_{4}, b_{4} isolated each time, so let $d\left(v_{1}\right)>3$. In Figure $4.2(\mathrm{vi}), d\left(u_{3}\right)>3$. In Figure 4.2 (vii)-(ix), $d\left(u_{1}\right)>3$. In Figure $4.2(\mathrm{x})$, if $d\left(u_{3}\right)=d\left(v_{1}\right)=d\left(u_{2}\right)=3$ then $l\left(u_{2}\right)=a_{2} a_{3}^{-1} a_{4}$ and $l\left(v_{1}\right)=b_{1} b_{1} b_{4}$ forcing a_{4}, b_{4} isolated; or if $d\left(u_{3}\right)=d\left(u_{4}\right)=d\left(v_{4}\right)=3$ then either $l\left(u_{4}\right)=a_{3}^{-1} a_{4} a_{2}$ and $l\left(v_{4}\right)=b_{4} b_{2} b_{1}$ or $l\left(u_{4}\right)=a_{3}^{-1} a_{4} a_{1}^{-1}$ and $l\left(v_{4}\right)=b_{4} b_{2} b_{1}^{-1}$ forcing a_{4}, b_{4} isolated each time, so let $d\left(u_{3}\right)>3$. In Figure $4.2(\mathrm{xi}), d\left(v_{1}\right)>3$; and in (xii), $d\left(u_{3}\right)>3$. In each of the above Figures 4.2(i)-(xii), the assumption that the remaining four vertices of degree >2 each has degree 3 forces either A or B to be cyclic or an isolated pair except for the five regions shown in Figure 4.3 for each of which there is an aspherical weight function on Γ_{X} as follows.

Figure 4.4. positive regions and curvature distribution
If Δ is Δ_{1} of Figure $4.3(\mathrm{i})$ or is Δ of (iii) then b_{4} is isolated so in each case assign weight 1 in Γ_{X} to each of $a_{1}, a_{2}, b_{1}, b_{2}$ and b_{3}, assign 0 to b_{4} and assign $\frac{1}{2}$ to each of a_{3} and a_{4};
if Δ is Δ of (ii) then b_{2} is isolated so assign weight 1 to $a_{1}, a_{2}, b_{1}, b_{3}$ and b_{4}, assign 0 to b_{2} and assign $\frac{1}{2}$ to each of a_{3} and a_{4}; or if Δ is Δ_{1} of (iv) or Δ_{2} of (v) then a_{4} is isolated so assign the weight 1 to a_{1}, a_{2}, a_{3}, b_{2} and b_{3}, assign 0 to a_{4} and assign $\frac{1}{2}$ to each of b_{1} and b_{4}.

In conclusion we can assume that $c(\Delta) \leq 0$ for each inner region Δ. But from Figure 4.2 we conclude also that $d(\Delta) \geq 5$ for any region and so \mathcal{P}_{X} is aspherical.

We consider now the six cases for $n_{A}=2$.
First let $a_{1}=a_{2}$ and $a_{3}=a_{4}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 3}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y^{2} b_{1}^{-1} b_{2} X a_{3} X^{-1} b_{3} X a_{3} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{3} is given by Figure 4.3(vi). Assume that at least one of $b_{1}=b_{2}, b_{2}=b_{3}, b_{3}=b_{4}$ or $b_{4}=b_{1}$ holds and so by symmetry we can take $b_{1}=b_{2}$. Assigning in Γ_{3} weight 1 to both the a_{3} edges and to e_{1}, the weight $\frac{1}{2}$ to $b_{1}^{-1} b_{2}, b_{1}, e_{2}$ and b_{4}, and the weight 0 to a_{1} and b_{3} yields an aspherical weight function (θ, say) unless $b_{1}=b_{2} \in\left\langle b_{3}\right\rangle$ or $b_{4} \in\left\langle b_{3}\right\rangle$. Suppose that $b_{1}=b_{2} \in\left\langle b_{3}\right\rangle$. Then assign weight 1 to both the a_{3} edges and e_{1}, weight $\frac{1}{2}$ to $b_{1}^{-1} b_{2}, b_{1}, e_{2}$ and b_{3}, and weight 0 to a_{1} and b_{4}. Any admissable path of weight less than 2 forces A or B cyclic or $b_{1} b_{3}^{ \pm 1}=1$ which implies $n_{B} \geq 3$, a contradiction, so the weight function is aspherical. Now suppose that $b_{4} \in\left\langle b_{3}\right\rangle$. Assigning weight 1 to both a_{3} edges and e_{2}, weight $\frac{1}{2}$ to $b_{1}^{-1} b_{2}, e_{1}, b_{4}$ and b_{3}, and weight 0 to b_{1} and a_{1} yields an aspherical weight function except when $b_{4}=b_{1}^{2}$, so assume this holds. Then, in particular, $b_{1} \neq b_{4}^{ \pm 1}, b_{1} \neq b_{3}^{ \pm 1}$, $b_{2} \neq b_{3}^{ \pm 1}, b_{2} \neq b_{4}^{ \pm 1}, b_{3} \neq b_{4}^{ \pm 1}$ and $b_{2} b_{3}^{-1} \notin\left\{b_{i}^{ \pm 1}: 1 \leq i \leq 4\right\}$. Moreover, $a_{1}=a_{2}$ and $a_{3}=a_{4}$ implies $d\left(u_{i}\right) \neq 3(1 \leq i \leq 4)$. Any attempt at labelling now shows that $d(\Delta) \geq 4$ and $c(\Delta) \leq 0$ for any inner region Δ and the result follows.

Now assume that $b_{1} \neq b_{2}, b_{2} \neq b_{3}, b_{3} \neq b_{4}$ and $b_{4} \neq b_{1}$. The same weight function θ as defined above again forces either $b_{2} \in\left\langle b_{3}\right\rangle$ or

Figure 4.5. star graphs and curvature distribution
$b_{4} \in\left\langle b_{3}\right\rangle$. Let $b_{2} \in\left\langle b_{3}\right\rangle$ and note that this is symmetric to the case $b_{4} \in\left\langle b_{3}\right\rangle$.

Checking shows that $d(\Delta) \geq 4$ for each region of \mathcal{D} and so if $c(\Delta) \leq 0$ for each inner Δ the result follows. In fact if $c(\Delta)>0$ then Δ is given by Figure 4.4(i) or (ii). Let Δ be as in Figure 4.4(i). Then $b_{4} b_{1}^{-1} b_{3}^{-1}=b_{1} b_{4}^{-1} b_{2}^{-1}=1$ and so $b_{2}=b_{3}^{-1}$. Given this, assigning weight 1 in Γ_{3} to both the a_{3} edges, $b_{1}^{-1} b_{2}, b_{1}$ and b_{4}, and weight 0 to the remaining edges yields an aspherical weight function. Let Δ be as in Figure 4.4(ii). Then $c(\Delta)>0$ forces at least one of $b_{4} b_{1}^{-1} b_{3}^{-1}=1$, $b_{1} b_{4}^{-1} b_{2}^{-1}=1, b_{2} b_{3}^{-1} b_{1}^{-1}=1$ or $b_{3} b_{2}^{-1} b_{4}^{-1}=1$. If $b_{4} b_{1}^{-1} b_{3}^{-1}=b_{1} b_{4}^{-1} b_{2}^{-1}=1$ we are back in the previous case and any other pair forces B cyclic. Since $b_{4} b_{1}^{-1} b_{3}^{-1}=1, b_{1} b_{4}^{-1} b_{2}^{-1}=1$ is symmetric with $b_{3} b_{2}^{-1} b_{1}^{-1}=1$, $b_{3} b_{2}^{-1} b_{4}^{-1}=1$ (respectively), we consider only the first two subcases. Consider first $b_{4} b_{1}^{-1} b_{3}^{-1}=1$. Then add $c(\Delta) \leq c(3,4,4,4)=\pi / 6$ to $c(\widehat{\Delta})$ as shown in Figure 4.4(iii) where it is assumed that $\widehat{\Delta}$ is inner and that $d\left(u_{3}\right)=d\left(u_{4}\right)=2$ in $\widehat{\Delta}$. If $d\left(v_{3}\right)=3$ in $\widehat{\Delta}$ then B is cyclic so $c(\widehat{\Delta}) \leq c(3,3,4,4,4)=-\pi / 6$. On the other hand if at least one of $d\left(u_{3}\right), d\left(u_{4}\right)$ does not equal 2 then (as noted above) it must be at least 4 and then again $c(\widehat{\Delta}) \leq c(3,3,4,4,4)$. Thus if $\widehat{\Delta}$ is inner then $c^{*}(\widehat{\Delta}) \leq 0$, otherwise $c^{*}(\widehat{\Delta}) \leq c\left(k_{0}, 3,3,4,4\right)<4 \pi / k_{0}$. A similar argument applies to $\widehat{\Delta}$ of Figure 4.4(iv) for the subcase $b_{1} b_{4}^{-1} b_{2}^{-1}=1$.

Let $a_{1}=a_{2}$ and $a_{3}=a_{4}^{-1}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 4}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y^{2} b_{1}^{-1} b_{2} X a_{3} X^{-1} b_{3} X a_{3}^{-1} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{4} is again given by Figure 4.3(vi). Assigning in Γ_{4} weight 1 to both the a_{3} edges and e_{1}, weight $\frac{1}{2}$ to $b_{1}^{-1} b_{2}, b_{1}, e_{2}$ and b_{4}, and weight 0 to a_{1} and b_{3} yields an aspherical weight function unless $b_{2} \in\left\langle b_{3}\right\rangle$ or $b_{4} \in\left\langle b_{3}\right\rangle$. If $b_{1}=b_{2} b_{4}$ and $b_{2} \in\left\langle b_{3}\right\rangle$ then assigning weight 1 to both the a_{3} edges, $b_{1}^{-1} b_{2}, b_{1}$ and b_{4}, and weight 0 to the remaining edges yields an aspherical weight function; or if $b_{1}=b_{2} b_{4}$ and $b_{4} \in\left\langle b_{3}\right\rangle$
then an aspherical weight function is obtained by assigning weight 1 to both the a_{3} edges, $b_{1}^{-1} b_{2}, e_{2}$ and b_{4}, and weight 0 to the remaining edges. It can be assumed therefore that $b_{1} \neq b_{2} b_{4}$.

Let $b_{2}=b_{4}^{-1}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 5}:\left\langle A * B, X, Y \mid Y^{-1} X a_{3}^{-1} X^{-1} b_{2}^{-1} X, Y a_{1} X^{-1} b_{1} X a_{1} Y^{-1} b_{3}\right\rangle
$$

whose star graph Γ_{5} is given by Figure $4.5(\mathrm{i})$. If $b_{1} \notin\left\langle b_{2}\right\rangle$ then an aspherical weight function is obtained by assigning in Γ_{5} weight 1 to edges e_{2} and b_{2}, weight $\frac{1}{2}$ to both the a_{1} edges, e_{1} and a_{3}, and weight 0 to b_{1} and b_{3}; or if $b_{1} \in\left\langle b_{2}\right\rangle$ then assigning weight 1 to b_{1}, weight 0 to b_{3} and weight $\frac{1}{2}$ to the remaining edges yields an aspherical weight function on noting that $b_{1}=b_{2}^{ \pm 1}$ would imply $n_{B} \geq 3$. It can be assumed then that $b_{2} \neq b_{4}^{-1}$.

We are left to consider when $b_{1} \neq b_{2} b_{4}, b_{2} \neq b_{4}^{-1}$ and either $b_{4} \in\left\langle b_{3}\right\rangle$ or $b_{2} \in\left\langle b_{3}\right\rangle$. If $b_{1}=b_{2}$ and $b_{1}=b_{4}$ then $n_{B} \geq 3$; or if $b_{1} \neq b_{2}$ and $b_{1} \neq b_{4}$ then checking the possible labels shows that $d(\Delta) \geq 4$ and $c(\Delta) \leq 0$ for each inner region Δ and the result follows. (We remark that assumption (A) is used here.) Since $b_{1}=b_{2}, b_{1} \neq b_{4}$ is symmetric to $b_{1} \neq b_{2}, b_{1}=b_{4}$ we consider only the latter case and then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 6}:\left\langle A * B, X, Y \mid Y^{-1} b_{1} X a_{1} X^{-1}, Y^{2} b_{2} X a_{3} X^{-1} b_{3} X a_{3}^{-1} X^{-1}\right\rangle
$$

whose star graph Γ_{6} is given by Figure $4.5(i i)$. If $b_{4} \in\left\langle b_{3}\right\rangle$ then assigning in Γ_{6} weight 1 to both a_{3} edges and e_{1}, weight $\frac{1}{2}$ to e_{2}, b_{1}, e_{3} and b_{3}, and weight 0 to a_{1} yields an aspherical weight function on noting that $b_{1}=b_{3}^{ \pm 1}$ implies $n_{B} \geq 3$; so let $b_{2} \in\left\langle b_{3}\right\rangle$. Assigning weight 1 to both a_{3} edges and e_{2}, weight $\frac{1}{2}$ to e_{1}, b_{2}, e_{3} and b_{3}, and weight 0 to b_{1} yields an aspherical weight function unless $b_{2}=b_{1}^{2}$, so assume this holds. Then $b_{2} \neq b_{3}^{ \pm 1}$ for otherwise B is cyclic; $b_{2} \neq b_{1}^{ \pm 1}$ and $b_{2} \neq b_{4}^{ \pm 1}$ for otherwise $n_{B} \geq 3$; and $l(v)=b_{2} b_{4} w$ forces $d(v) \geq 4$. All of this implies $d(\Delta) \geq 4$ and $c(\Delta) \leq 0$ unless Δ is given by Figure $4.5(\mathrm{iii})$ in which $d\left(v_{1}\right) \geq 5$. Add $c(\Delta) \leq c(3,4,4,5)=$ $\pi / 15$ to $c(\widehat{\Delta})$ as shown. If $d\left(u_{2}\right) \geq 4$ in $\widehat{\Delta}$ then, assuming $\widehat{\Delta}$ inner, $c^{*}(\widehat{\Delta}) \leq c(3,4,4,4,4)+\pi / 15=-4 \pi / 15$; or if $d\left(u_{2}\right)=2$ as shown then $c^{*}(\widehat{\Delta}) \leq c(3,3,4,4,4)+\pi / 15=-\pi / 10$. On the other hand if $\widehat{\Delta}$ is a boundary region then $c^{*}(\widehat{\Delta}) \leq c\left(k_{0}, 3,3,4,4\right)+\pi / 15<\frac{4 \pi}{k_{0}}$ and the result follows.

Let $a_{1}=a_{2}^{-1}$ and $a_{3}=a_{4}^{-1}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 7}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y b_{1} Y^{-1} b_{2} X a_{3} X^{-1} b_{3} X a_{3}^{-1} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{7} is given by Figure $4.5(\mathrm{iv})$ in which the labels $b_{1,1}=b_{1,2}=b_{1}$. Assigning in Γ_{7} weight 1 to b_{3} and both the a_{3} edges, weight $\frac{1}{2}$ to $e, b_{1,1}, b_{2}$ and b_{4}, and weight 0 to a_{1} and $b_{1,2}$ yields an

Figure 4.6. star graphs
aspherical weight function unless $b_{2} b_{4}=1$, so assume this holds. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 8}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1}^{-1} X^{-1} b_{2} X a_{3} X^{-1}, b_{1} Y b_{3} Y^{-1}\right\rangle
$$

whose star graph Γ_{8} is given by Figure 4.6(i). Assigning in Γ_{8} weight 1 to e_{1}, e_{2} and a_{3} and weight 0 to all other edges yields an aspherical weight function.

Let $a_{1}=a_{3}$ and $a_{2}=a_{4}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 9}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y X a_{2} X^{-1} b_{2} Y b_{1}^{-1} b_{3} X a_{2} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{9} is given by Figure 4.6(ii). Assigning in Γ_{9} weight 1 to both the a_{2} edges, weight 0 to a_{1} and weight $\frac{1}{2}$ to the remaining edges yields an aspherical weight function unless $b_{1}=b_{3}$ or $b_{2}=b_{4}$. If $b_{1}=b_{3}$ and $b_{2}=b_{4}$ then \mathcal{P}_{X} is aspherical because $\langle A * B, X|$ $\left.X a_{1} X^{-1} b_{1} X a_{2} X^{-1} b_{2}\right\rangle$ is aspherical [2, Theorem 2.3]. The case $b_{2}=b_{4}$ is symmetric to $b_{1}=b_{3}$ so it is enough to consider $b_{1}=b_{3}$, in which case \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 10}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1} X a_{2} X^{-1}, Y b_{2} Y b_{4}\right\rangle
$$

whose star graph Γ_{10} is given by Figure 4.6(iii). Assigning in Γ_{10} weight 1 to e_{1}, e_{2} and a_{1} and weight 0 to the remaining edges yields an aspherical weight function.

Let $a_{1}=a_{3}$ and $a_{2}=a_{4}^{-1}$. Then \mathcal{P}_{X} is equivalent to
$\mathcal{P}_{X, 11}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y X a_{2} X^{-1} b_{2} Y b_{1}^{-1} b_{3} X a_{2}^{-1} X^{-1} b_{4}\right\rangle$
whose star graph Γ_{11} is also given by Figure 4.6(ii). Assigning in Γ_{11} weight 1 to both the a_{2} edges, weight 0 to the b_{1} edge and weight $\frac{1}{2}$ to
the remaining edges yields an aspherical weight function unless $b_{1}=b_{3}$ or $b_{2}=b_{4}$. Now $b_{2}=b_{4}$ is symmetric to $b_{1}=b_{3}$ so is enough to consider $b_{1}=b_{3}$ in which case \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 12}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1} X, Y a_{2} X^{-1} b_{2} Y a_{2}^{-1} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{12} is given by Figure 4.6(iv). Assigning in Γ_{12} weight $\frac{1}{2}$ to each edge yields an aspherical weight function unless $b_{1} b_{2}^{ \pm 1}=1$, $b_{1} b_{4}^{ \pm 1}=1, b_{2} b_{4}^{-1}=1$ or $b_{1}^{ \pm 1} b_{2} b_{4}^{-1}=1$. But $b_{1} b_{2}^{ \pm 1}=1$ or $b_{1} b_{4}^{ \pm 1}=1$ implies $n_{B} \geq 3$, so let $b_{2} b_{4}^{-1}=1$ in which case \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 13}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{2} X a_{1} X^{-1} b_{1} X, Y a_{2} Y a_{2}^{-1}\right\rangle
$$

whose star graph Γ_{13} is given in Figure 4.6(v). Assigning in Γ_{13} weight 1 to e_{1}, e_{2} and b_{1} and weight 0 to the remaining edges yields an aspherical weight function. This leaves $b_{1}^{ \pm 1} b_{2} b_{4}^{-1}=1$ in which case assign in Γ_{12} weight 1 to b_{1}, weight 0 to e_{2} and weight $\frac{1}{2}$ to the remaining edges. A routine check shows that any admissable path of weight less than 2 involving the edges b_{1}, b_{2}, b_{4} or e_{2} forces B cyclic and it follows that this yields an aspherical weight function.

Let $a_{1}=a_{3}^{-1}$ and $a_{2}=a_{4}^{-1}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 14}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y X a_{2} X^{-1} b_{2} b_{1} Y^{-1} b_{3} X a_{2} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{14} is given by Figure 4.6(vi). Assigning in Γ_{14} weight 1 to both the a_{2} edges, weight 0 to a_{1} and weight $\frac{1}{2}$ to the remaining edges yields an aspherical weight function unless $b_{1} b_{2}=1$ or $b_{3} b_{4}=1$. Now $b_{3} b_{4}=1$ is symmetric to $b_{1} b_{2}=1$ so it is enough to consider $b_{1} b_{2}=1$ in which case \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 15}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1} X, Y a_{2} Y^{-1} b_{3} X a_{2}^{-1} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{15} is given by Figure $4.6\left(\right.$ vii) in which $a_{2,1}=a_{2,2}=$ a_{2}. Assigning in Γ_{15} weight 1 to $a_{2,2}$ and e_{1}, weight 0 to a_{1} and $a_{2,1}$, and weight $\frac{1}{2}$ to the remaining edges yields an aspherical weight function unless $b_{1} b_{3}^{ \pm 1}=1, b_{1} b_{4}^{ \pm 1}=1, b_{3} b_{4}=1$ or $b_{1}^{ \pm 1} b_{4} b_{3}=1$. But $b_{1} b_{3}^{ \pm 1}=1$ or $b_{1} b_{4}^{ \pm 1}=1$ implies $n_{B} \geq 3$, so let $b_{3} b_{4}=1$ in which case \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 16}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{3}^{-1} X a_{1} X^{-1} b_{1} X, Y a_{2} Y^{-1} a_{2}^{-1}\right\rangle
$$

whose star graph Γ_{16} is given by Figure 4.6(viii). Assigning in Γ_{16} weight 1 to e_{1}, e_{2} and b_{3} and weight 0 to the remaining edges yields an aspherical weight function. This leaves $b_{1}^{ \pm 1} b_{4} b_{3}=1$ in which case assigning in Γ_{15} weight 1 to the edges $e_{1}, a_{2,2}$ and b_{1}, weight $\frac{1}{2}$ to b_{3} and b_{4}, and weight 0 to $e_{2}, a_{2,1}$ and a_{1} yields an aspherical weight function.

We turn now to the case $n_{A}=3$.
Let $a_{1}=a_{2}=a_{3}$, in which case a_{4} is then isolated. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 17}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y^{2} b_{1}^{-1} b_{2} Y b_{1}^{-1} b_{3} X a_{4} X^{-1} b_{4}\right\rangle
$$

Figure 4.7. star graphs and curvature distribution
whose star graph Γ_{17} is given by Figure 4.7(i). Assigning in Γ_{17} weight 1 to b_{4}, weight 0 to e_{2} and weight $\frac{1}{2}$ to the remaining six edges gives an aspherical weight function unless either $b_{1}=b_{2}$ or $b_{1}=b_{3}$ or $b_{2}=b_{3}$. If $b_{1}=b_{2}$ then assigning weight 1 to $a_{1}, b_{1}^{-1} b_{2}$ and e_{1}, weight $\frac{1}{2}$ to $b_{1}^{-1} b_{3}$ and b_{4} and weight 0 to a_{4}, b_{1} and e_{2} gives an aspherical weight function except when $b_{3}=b_{4}^{ \pm 1}$ since all other paths in the b_{i} of weight less than 2 forces b_{3} or b_{4} isolated; if $b_{1}=b_{3}$ then assigning weight 1 to a_{4} and e_{2}, weight 0 to a_{1} and b_{1} and weight $\frac{1}{2}$ to the remaining four edges similarly yields an aspherical weight function unless $b_{2}=b_{4}$; or if $b_{2}=b_{3}$ then assigning weight 1 to $b_{1}^{-1} b_{3}$, weight 0 to b_{1} and weight $\frac{1}{2}$ to the remaining six edges yields an aspherical weight function unless $b_{1}=b_{4}$.

Let $b_{1}=b_{2}$ and $b_{3}=b_{4}^{ \pm 1}$. Then $d\left(u_{i}\right) \neq 3(1 \leq i \leq 4), d\left(u_{4}\right) \geq 4$ and $d\left(v_{i}\right) \neq 3(1 \leq i \leq 4)$. Moreover $d\left(u_{1}\right)=2$ forces $l\left(v_{4}\right)=b_{4} b_{1}^{-1} w$ or $b_{4} b_{2}^{-1} w$ and so $d\left(v_{4}\right) \geq 4 ; d\left(u_{2}\right)=2$ forces either $d\left(v_{1}\right)=b_{1} b_{4}^{-1} w$ and $d\left(v_{1}\right) \geq 4$ or $l\left(v_{2}\right)=b_{3}^{-1} b_{2} w$ and $d\left(v_{2}\right) \geq 4$; and $d\left(u_{3}\right)=2$ forces $l\left(v_{3}\right)=b_{1}^{-1} b_{3} w$ or $b_{2}^{-1} b_{3} w$ and $d\left(v_{3}\right) \geq 4$. It follows that $d(\Delta) \geq 4$ and $c(\Delta) \leq 0$ for each interior region Δ hence the result.

Let $b_{1}=b_{3}$ and $b_{2}=b_{4}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 18}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{2} X a_{1} X^{-1} b_{1} X_{1}, Y a_{1} Y a_{4}\right\rangle
$$

whose star graph Γ_{18} is given by Figure 4.7(ii). Assigning in Γ_{18} weight 1 to e_{1}, e_{2} and b_{1} and weight 0 to the remaining four edges gives an aspherical weight function.

This leaves $b_{1}=b_{4}$ and $b_{2}=b_{3}$. Using $d\left(u_{i}\right)=3$ and $d\left(v_{i}\right) \neq 3$ $(1 \leq i \leq 4)$ together with assumption (A) in particular, we find that

Figure 4.8. star graphs
if $c(\Delta)>0$ then Δ is given by Figure $4.7(\mathrm{iii})$. Note that there are two possible regions Δ according to $l\left(u_{2}\right)=a_{2} a_{1}^{-1}$ or $a_{2} a_{3}^{-1}$ as shown. Note also that assumption (A) forces $d\left(v_{4}\right) \geq 4$ in $\widehat{\Delta}_{1}$ and $d\left(v_{3}\right) \geq 4$ in $\widehat{\Delta}_{2}$. Assume until otherwise stated that $\widehat{\Delta}_{1}$ and $\widehat{\Delta}_{2}$ are interior regions in Figure $4.7(\mathrm{iii})$. If either $d\left(u_{3}\right) \geq 4$ or $d\left(v_{3}\right) \geq 4$ in $\widehat{\Delta}_{1}$ then $c\left(\widehat{\Delta}_{1}\right) \leq c(4,4,4,4,4)=-\frac{\pi}{2}$ so add $c(\Delta) \leq c(4,4,4)=\frac{\pi}{2}$ to $\widehat{\Delta}_{1}$ across the $\left(a_{2}^{-1}, b_{2}^{-1}\right)$-edge as indicated; or if either $d\left(u_{1}\right) \geq 4$ or $d\left(v_{4}\right) \geq 4$ in $\widehat{\Delta}_{2}$ then add $c(\Delta)$ to $c\left(\widehat{\Delta}_{2}\right) \leq-\frac{\pi}{2}$ across the $\left(a_{2}^{-1}, b_{2}^{-1}\right)$ edge of $\widehat{\Delta}_{2}$ as indicated. Assume otherwise so that $\widehat{\Delta}_{1}$ and $\widehat{\Delta}_{2}$ are given by Figure 4.7 (iv). Then $d\left(v_{1}\right) \geq 6$ and $d\left(v_{2}\right) \geq 6$ in Δ so add $\frac{1}{2} c(\Delta) \leq \frac{1}{2} c(4,6,6)=\frac{\pi}{12}$ to each of $c\left(\widehat{\Delta}_{i}\right) \leq c(4,4,4,6)=-\frac{\pi}{6}$ as shown. We then have $c^{*}(\widehat{\Delta}) \leq 0$ if $\widehat{\Delta}$ is interior or if $\widehat{\Delta}$ is a boundary region either $c^{*}(\widehat{\Delta})=c(\widehat{\Delta})=c\left(k_{0}, 4,4\right)$ or $c^{*}(\widehat{\Delta}) \leq c\left(k_{0}, 4,4,4,4\right)+\frac{\pi}{2}$ or $c^{*}(\widehat{\Delta}) \leq c\left(k_{0}, 4,4,4\right)+\frac{\pi}{12}$, in which case $c^{*}(\widehat{\Delta})<\frac{4 \pi}{k_{0}}$ and the result follows.

Let $a_{1}=a_{2}^{-1}=a_{3}$ in which case a_{4} is isolated. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 19}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y b_{1} Y^{-1} b_{2} Y b_{1}^{-1} b_{3} X a_{4} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{19} is given by Figure 4.8(i) in which $b_{1,1}=b_{1,2}=b_{1}$. Assigning in Γ_{19} weight 1 to a_{4}, weight 0 to a_{1} and weight $\frac{1}{2}$ to the remaining edges yields an aspherical weight function unless $b_{4} b_{2}^{ \pm 1}=1$ or $b_{3} b_{1}^{ \pm 1}=1$. Since these cases are symmetric we consider only $b_{3} b_{1}^{ \pm 1}=1$. Assigning weight 1 to a_{4} and $b_{1,2}$, weight 0 to a_{1} and e_{1} and weight
$\frac{1}{2}$ to the remaining edges yields an aspherical weight function unless $b_{4} b_{2}^{ \pm 1}=1$.

Let $b_{1}=b_{3}^{-1}$ and $b_{4} b_{2}^{ \pm 1}=1$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 20}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{1} X a_{1}^{-1} X^{1}, Y b_{2} Y^{-1} a_{4} X^{-1} b_{2}^{ \pm 1} X a_{1}\right\rangle
$$

whose star graph Γ_{20} is given by Figure 4.8(ii) in which $a_{1,1}=a_{1,2}=a_{1}$. Assigning in Γ_{20} weight 1 to $e_{1}, a_{1,2}$ and both the b_{2} edges, and weight 0 to the remaining edges yields an aspherical weight function.

Let $b_{1}=b_{3}$ and $b_{4} b_{2}=1$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 21}:\left\langle A * B, X, Y \mid Y^{-1} b_{2} X a_{1} X^{-1} b_{1} X, b_{2}^{-2} Y a_{1}^{-1} X^{-1} Y a_{4} X^{-1}\right\rangle
$$

whose star graph Γ_{21} is given by Figure 4.8(iii) in which $a_{1,1}=a_{1,2}=a_{1}$. Assigning in Γ_{21} weight 1 to $e_{1}, a_{1,2}, e_{2}$ and b_{2}^{2} and weight 0 to the remaining edges yields an aspherical weight function.

This leaves $b_{1}=b_{3}$ and $b_{2}=b_{4}$. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 22}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{2} X a_{1} X^{-1} b_{1} X, a_{4} Y a_{1}^{-1} Y\right\rangle
$$

whose star graph Γ_{22} is given by Figure 4.8(iv). Assigning in Γ_{22} weight 1 to e_{1}, e_{2} and b_{1} and weight 0 to the remaining edges yields an aspherical weight function.

Finally let $a_{1}=a_{2}=a_{3}^{-1}$ in which case a_{4} is isolated. Then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 23}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1} X^{-1} b_{1}, Y^{2} b_{1}^{-1} b_{2} b_{1} Y^{-1} b_{3} X a_{4} X^{-1} b_{4}\right\rangle
$$

whose star graph Γ_{23} is given by Figure 4.8(v). Assigning in Γ_{23} weight 1 to e_{1} and a_{4}, weight 0 to a_{1} and $b_{1}^{-1} b_{2} b_{1}$ and weight $\frac{1}{2}$ to the remaining four edges yields an aspherical weight function unless $b_{3} b_{4}=1$, in which case assigning weight 1 to b_{3} and b_{4}, weight 0 to $b_{1}^{-1} b_{2} b_{1}$ and e_{2} and weight $\frac{1}{2}$ to the remaining four edges yields an aspherical weight function unless $b_{1}\left(b_{1}^{-1} b_{2} b_{1}\right)^{m}=1$ for some m. But $|m|>1$ forces b_{1} to be isolated so it remains to consider $b_{1} b_{2}^{ \pm 1}=1$. If $b_{3} b_{4}=b_{1} b_{2}=1$ then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 24}:\left\langle A * B, X, Y \mid Y^{-1} X^{-1} b_{3}^{-1} X a_{1} X^{-1} b_{1} X, Y a_{1} Y^{-1} a_{4}\right\rangle
$$

whose star graph Γ_{24} is given by Figure 4.8(vi). Assigning in Γ_{24} weight 1 to e_{1}, e_{2} and b_{1} and weight 0 to the remaining edges yields an aspherical weight function. Or if $b_{3} b_{4}=b_{1} b_{2}^{-1}=1$ then \mathcal{P}_{X} is equivalent to

$$
\mathcal{P}_{X, 25}:\left\langle A * B, X, Y \mid Y^{-1} X a_{1}^{-1} X^{-1} b_{3} X, Y a_{4} Y^{-1} b_{1} X a_{1} X^{-1} b_{1}\right\rangle
$$

whose star graph Γ_{25} is given by Figure $4.8($ vii $)$ in which $b_{1,1}=b_{1,2}=b_{1}$. Assigning a Γ_{25} weight 1 to each a_{1} edge and $b_{1,1}$, weight $\frac{1}{2}$ to e_{2} and b_{3} and weight 0 to a_{4}, e_{1} and $b_{1,2}$ yields an aspherical weight function.

This completes the proof of Theorem 1.

References

[1] Mairaj Bibi and Martin Edjvet, Solving equations of length seven over torsionfree groups, J Group Theory 21 (2018) 147-164.
[2] W A Bogley and S J Pride, Aspherical relative presentations, Proc Edinburgh Math Soc 35 (1992) 1-39.
[3] William A Bogley, Martin Edjvet and Gerald Williams, Aspherical relative presentations all over again, in: Groups St Andrews 2017 in Birmingham, LMS Lecture Note Series 455, Cambridge University Press (2019) 169-199.
[4] S D Brodskii and James Howie, One-relator products of torsion-free groups, Glasgow Math J 35 (1993) 99-104.
[5] I Chinyere and J Howie, On one-relator products induced by generalised triangle groups II, Communications Algebra 46 (2018) 1464-1475.
[6] A J Duncan and James Howie, Spelling theorems and Cohen-Lyndon theorems for one-relator products, J Pure Applied Algebra 92 (1994) 123-136.
[7] M Edjvet, A singular equation of length four over groups, Algebra Colloquium 7 (2000) 247-274.
[8] M Edjvet and James Howie, The solution of length four equations over groups, Trans American Math Soc 326 (1991) 345-369.
[9] Benjamin Fine and Gerhard Rosenberger, Algebraic Generalizations of Discrete Groups: A Path to Combinatorial Group Theory Through One-Relator Products, Chapman and Hall (1999).
[10] James Howie, On locally indicable groups, Math Z 180 (1982) 445-461.
[11] James Howie, The quotient of a free product of groups by a single high-powered relator. I: Pictures. Fifth and higher powers., Proc London Math Soc 59 (1989) 507-540.
[12] S V Ivanov and A A Klyachko, Solving equations of length at most six over torsion-free groups, J Group Theory 3 (2000) 329-337.
[13] Seong Kun Kim, Some equations over torsion-free groups, Internationial J Algebra Comp 16 (2006) 369-376.
[14] A A Klyachko, A funny property of sphere and equations over groups, Communications Algebra 21 (1993) 2555-2575.
[15] F Levin, Solutions of equations over groups, Bull American Math Soc 68 (1962) 603-604.
[16] W Magnus, Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz), J Reine Angnew Math 163 (1930) 141-165.
[17] M I Prishchepov, On small length equations over torsion-free groups, International J Algebra Comp 4 (1994) 575-589.

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK

E-mail address: martin.edjvet@nottingham.ac.uk
Maxwell Institute and School of Mathematical and Computer Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK

E-mail address: J.Howie@hw.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary 20F70, 20F05. Secondary 20E06, 20 F 06.

 Key words and phrases. Equations over groups, One-relator products.
 The second author was supported in part by Leverhulme Trust Emeritus Fellowship EM-2018-023 $\backslash 9$.

