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EXPANSIONS OF ABELIAN SQUAREFREE GROUPS

STEFANO FIORAVANTI

Abstract. We investigate finitary functions from Zn to Zn for a
squarefree number n. We show that the lattice of all clones on the
squarefree set Zp1···pm

which contain the addition of Zp1···pm
is fi-

nite. We provide an upper bound for the cardinality of this lattice
through an injective function to the direct product of the lattices
of all (Zpi

,Fi)-linearly closed clonoids, L(Zpi
,Fi), to the pi + 1

power, where Fi =
∏

j∈{1,...,m}\{i} Zpj
. These lattices are studied

in [Fio20] and there we can find an upper bound for their cardi-
nality. Furthermore, we prove that these clones can be generated
by a set of functions of arity at most max(p1, . . . , pm).

1. Introduction

The investigation of the lattice of all clones on a set A has been a fe-
cund field of research in general algebra with results such as Emil Post’s
characterization of the lattice of all clones on a two-element set [Pos41].
This branch was developed further, e. g., in [Ros69, PK79, Sze86] and
starting from [KBJ05], clones are used to study the complexity of cer-
tain constraint satisfaction problems (CSPs).
The aim of this paper is to describe the lattice of those clones on the

set Zn that contain the operation of addition of Zn, with n squarefree.
Thus we want to study the part of the lattice of all clones on Zn which
is above the clone of all linear mappings.
In [Idz99] P. Idziak characterized the number of polynomial Mal’cev

clones (clones containing the constants and a Mal’cev term) on a finite
set A, which is finite if and only if |A| ≤ 3. In [Bul02] A. Bulatov
shows a full characterization of all infinitely many polynomial clones
on the sets Zp ×Zp and Zp2 that contain +, where p is a prime. More-
over, a description of polynomial clones on Zpq containing the addition
for distinct primes p and q is given in [AM07] and polynomial clones
containing + on Zn, for n squarefree, are described in [May08].
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2 STEFANO FIORAVANTI

In [Kre19] S. Kreinecker proved that there are infinitely many non-
finitely generated clones above the clone Clo(Zp×Zp,+) of term oper-
ations of the group (Zp × Zp,+) for any prime p > 2.
Let C be a set of functions. We denote by C [n] the subset of n-ary

functions in C. In this paper we will make often use of the concept
of (F,K)-linearly closed clonoid as defined in [Fio20, Definition 1.1]
(generalization of [Fio19, Definition 1.1]). We recall this definition.

Definition 1.1. Let m, s ∈ N, let q1, . . . , qm, p1, . . . ps be powers of
primes, and let K =

∏m

i=1 Fqi, F =
∏s

i=1 Fpi be products of fields of
orders q1, . . . , qm, p1, . . . ps. An (F,K)-linearly closed clonoid is a non-

empty subset C of
⋃

k∈N

∏s

i=1 F

∏m
j=1 F

k
qj

pi with the following properties:

(1) for all n ∈ N, a , b ∈
∏s

i=1 Fpi, and f, g ∈ C [n]:

af + bg ∈ C [n];

(2) for all l, n ∈ N, f ∈ C [n], (x1, . . . , xm) ∈
∏m

j=1 F
l
qj
, and Ai ∈

F
n×l
qi

:

g : (x1, . . . , xm) 7→ f(A1 · x
t
1, · · · , Am · x t

m) is in C [l],

where with the juxtaposition af we denote the Hadamard product
of the two vectors (i.e. the component-wise product (a1, . . . , an) ·
(b1, . . . , bn) = (a1b1, . . . , anbn)).

In [Fio20, Theorems 1.2 and 1.3] we can find a complete description
of the lattice of all (F,K)-linearly closed clonoids with F andK products
of finite fields of pair-wise coprime order.
The main result of this chapter regards the cardinality of the lattice

of all clones on Zs that contain Clo(Zs,+), where s is squarefree.

Theorem 1.2. Let s = p1 · · · pm be a product of distinct primes and

let Fi =
∏

j∈[m]\{i} Zpj for all 1 ≤ i ≤ n. Then there is an injective

function from the lattice L(Zs,+) of all clones containing Clo(Zs,+), to
the direct product of the lattices of all (Zpi,Fi)-linearly closed clonoids,

L(Zpi,Fi), to the pi + 1 power, i. e:

L(Zs,+) →֒

n
∏

i=1

L(Zpi,Fi)
pi+1.

We will prove Theorem 1.2 in Section 5. Vice versa, we find also an
embedding of the lattice of all (Zp1 ,

∏m

i=2 Zpi)-linearly closed clonoids
into the lattice of all clones above Clo(Zp1···pm,+), where p1, . . . , pm are
not necessarily distinct prime numbers.
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Theorem 1.3. Let p1, . . . , pm be prime numbers and let F1 =
∏m

i=2 Zpi.

Then the lattice of all (Zp1 ,F1)-linearly closed clonoids is embedded in

the lattice of all clones above Clo(Zp1···pm,+).

From these results we can obtain bounds for the number of clones
on Zs that contain Clo(Zs,+).

Corollary 1.4. Let s = p1 · · · pm be a product of distinct primes and let

Fi =
∏

j∈[n]\{i} Zpj . Then the number of clones containing Clo(Zs,+)
is bounded by:

m
∑

i=1

|L(Zpi,Fi)| −m+ 1 ≤ |L(Zs,+)| ≤
m
∏

i=1

|L(Zpi,Fi)|
pi+1.

We will prove Corollary 1.4 in Section 5. This corollary extends the
finiteness results of [May08] for clones containing Clo(Zs,+) which do
not necessarily contain constants with s squarefree.
We can also use Theorem 1.2 to find a concrete bound on the arity

of the generators of clones containing Clo(Zs,+), with s squarefree.

Corollary 1.5. Let s = p1 · · ·pm be a product of distinct prime num-

bers. Then every clone containing Clo(Zs,+) can be generated by a set

of functions of arity at most max(p1, . . . , pm).

The last theorem states that there is a dichotomy for the cardinalities
of the clones of finite expanded abelian groups.

Theorem 1.6. Let G be a finite abelian group. Then G has finitely

many expansions up to term equivalence or, equivalently, the lattice

of all clones containing Clo(G,+,−, 0) is finite if and only if G is of

squarefree order.

We will prove Theorem 1.6 in Section 5. Thus this theorem shows
a surprising dichotomy about the cardinalities of the clones of finite
expanded abelian groups up term equivalence. Indeed, the order of a
group seems to have no connection in principle with the finiteness of
the lattice of all distinct clones up term equivalence above the linear
mappings on it.

2. Preliminaries and notation

We use boldface letters for vectors, e. g., u = (u1, . . . , un) for some
n ∈ N. Moreover, we will use 〈v ,u〉 for the scalar product of the
vectors v and u . Let A be a set and let 0A ∈ A. We denote by 0n a
constant 0A vector of length n.
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We denote by [n] the set {i ∈ N | 1 ≤ i ≤ n} and by [n]0 the set
[n] ∪ {0}. Moreover we denote by N0 the set N ∪ {0}. Let x ∈ Z

n
p and

let a ∈ [p− 1]n0 . Then we denote by xa the product
∏n

i=1 x
ai
i . We use

also convention that an empty product is 1.
From now on we will consider the group

∏m

i=1 Zpi instead of Zs,
where s =

∏m

i=1 pi is squarefree. We can observe that the two groups
are isomorphic and thus equivalent for our purpose.
Moreover, we consider

∏m

i=1 Z
n
pi
instead of (

∏m

i=1 Zpi)
n as the domain

of the n-ary functions we want to study.
Let S be a set of finitary functions from a group G to itself . We

denote by Clg(S) the clone generated by S∪{+} on G. Let K and F be
product of finite fields with pair-wise coprime order. We write Cig(F )
for the (F,K)-linearly closed clonoid generated by a set of functions

F ⊆
⋃

k∈N F
K

k

, as defined in [Fio20].

3. Facts about clones

In this paper we want to study sets of finitary functions from
∏m

i=1 Zpi

to itself. The sets of functions that we want to study are the clones
containing Clo(Zs,+), where s is a product of distinct primes.
Furthermore, let n ∈ N. We denote by L(Zn,+) the lattice of all

clones containing Clo(Zn,+).
In [May08] we can find a description for polynomial clones (clones

containing all constants) which contain Clo(Zs,+), where s is a product
of distinct primes. With a different strategy we will show a character-
ization that extends the finiteness result in [May08] to those clones of
finite abelian groups that do not necessarily contain all constants.
Let us now show some basic facts about finitary functions from Zn

to Zn.

Remark 3.1. It is a well-known fact that every finite field is poly-
nomially complete. Thus for all f : Fn

p → Fp, there exists a sequence
{am}m∈[p−1]n

0
⊆ F

n
p such that for all x ∈ F

n
p , f satisfies:

f(x ) =
∑

m∈[p−1]n
0

amxm .

We can observe that if p1, . . . , pm are distinct prime numbers we
can split a function f :

∏m

i=1 Z
n
pi

→
∏m

i=1 Zpi in f =
∑m

i=1 fi, where

fi =
∏

j∈[m]\{i} p
pi−1
j f . This implies, for example, that we can prove

the following remark.
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Remark 3.2. Let p1 · · · pm = s be a product of distinct prime numbers
and let C be a clone containing Clo(Zs,+). Then for all k ∈ N and
(a1, . . . ,am) ∈

∏m

i=1 Z
k
pi
, h(a1,...,am) :

∏m

i=1 Z
k
pi
→

∏m

i=1 Zpi defined by:

h(a1,...,am) : (x1, . . . , xm) 7→ (〈a1, x1〉, . . . , 〈am, xm〉)

is in C.

Let A be a set and let Fp be a field of order p. With the following
lemma we show that every function from F

n
p ×As to Fp can be seen as

the induced function of a polynomial of R[x1, . . . , xn], where R = F
As

p .
This easy fact will be often used later.

Lemma 3.3. Let A be a set and let Fp be a field of order p. Then for

every function f from F
n
p×As to Fp there exists a sequence of functions

{fm}m∈[p−1]n
0
from As to Fp such that f satisfies for all x ∈ F

n
p , y ∈ As:

f(x , y) =
∑

m∈[p−1]n
0

fm (y)xm .

The previous lemma in our setting implies the following.

Lemma 3.4. Let p1, . . . , pm be distinct prime numbers. Then for every

function f from
∏m

i=1 Z
n
pi

to
∏m

i=1 Zpi there exist m sequences of func-

tions {f(i,hi)}hi∈[pi−1]n
0
from

∏

j∈[m]\{i}Z
n
pj

to Zpi, for all i ∈ [m], such

that f satisfies for all (x1, . . . , xm) ∈
∏m

i=1 Z
n
pi
:

f(x1, . . . , xm) = (
∑

h1∈[p1−1]n
0

f(1,h1)(x2, . . . , xm)x
h1

1 , . . . ,

∑

hm∈[pm−1]n
0

f(m,hm)(x1, . . . , xm−1)x
hm
m ).

4. Embedding of the Clonoids

The aim of this section is to prove that for all i ∈ [m] there exists
an embedding of the lattice of all (Zpi,Fi)-linearly closed clonoids in
the lattice of all clones containing Clo(

∏

i∈[m] Zpi ,+), where p1, . . . , pm
are prime numbers and Fi =

∏

j∈[m]\{i} Zpj . This clearly provides a
lower bound for the cardinality of the lattice of all clones containing
Clo(Zn,+) when n is squarefree.

For all f ∈ Z
F
n
1

p1 we define e(f) :
∏m

j=1Z
n
pj

→
∏m

j=1Zpj by:

e(f) : (x1, . . . , xm) 7→ (f(x2, . . . , xm), 0Zp2
, . . . , 0Zpm

)
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for all (x1, . . . , xm) ∈
∏m

j=1 Z
n
pj
.

Furthermore, we define γ from the lattice of all (Zp1 ,F1)-linearly
closed clonoids to the lattice of all clones containing Clo(

∏

i∈[m] Zpi ,+)

such that for all C ∈ L(Zp1 ,F1):

γ(C) :=
⋃

n∈N

{e(g) + h(a1,...,am) | g ∈ C [n], (a1, . . . ,am) ∈

m
∏

j=1

Z
n
pj
}(4.1)

where h(a1,...,am) is defined in Remark 3.2.
In order to prove Theorem 1.3 we first present an easy lemma omit-

ting the proof.

Lemma 4.1. Let F =
∏s

i=1 Fpi and K =
∏m

i=1 Fqi be products of finite

fields. Let X ⊆
⋃

n∈N F
Kn

. Then Cig(X) =
⋃

n∈NXn where:

X0 := X
Xn+1 := {af + bg | a , b ∈ F, f, g ∈ X

[r]
n , r ∈ N} ∪ {g : (y1, . . . , ym) 7→

f(A1 · y
t
1, · · · , Am · y t

m) | f ∈ X
[k]
n , Ai ∈ F

k×l
qi

}.

We omit the straightforward proof of this Lemma which allows us to
prove Theorem 1.3.

Proof of Theorem 1.3. Let γ be the function defined in (4.1). First
we show that γ is well-defined and then we show that γ is injective
and that γ is a homomorphism. Let C be a (Zp1 ,F1)-linearly closed
clonoid. Clearly γ(C) contains the projections and the binary addi-
tion on

∏m

i=1 Zpi . Moreover, let f, f1, . . . , fn ∈ γ(C) be an n-ary and
n s-ary functions respectively. Then there exist gf , g1, . . . , gn ∈ C,
(a1, . . . ,am) ∈

∏m

i=1 Z
n
pi
, and (a(1,j), . . . ,a(m,j)) ∈

∏m

i=1 Z
s
pi
, for all

j ∈ [n], such that:

f(x1, . . . , xm) = (〈a1, x1〉+ gf (x2, . . . , xm), 〈a2, x2〉, . . . , 〈am, xm〉),

for all (x1, . . . , xm) ∈
∏m

i=1 Z
n
pi
and for all 1 ≤ j ≤ n:

fj(y1, . . . , ym) = (〈a(1,j), y1〉+gj(y2, . . . , ym), 〈a(2,j), y2〉, . . . , 〈a(m,j), ym〉)

for all (y1, . . . , ym) ∈
∏m

i=1 Z
s
pi
. Then h = f ◦(f1, . . . , fn) can be written

as:

h(y1, . . . , ym) = (〈c1, y1〉+ gh(y2, . . . , ym), 〈c2, y2〉, . . . , 〈cm, ym〉),

where for all u ∈ [m], j ∈ [s], (cu)j =
∑n

i=1(au)i(a(u,i))j and gh :
∏m

i=2 Z
s
pi

→ Zp1 is defined by:
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gh(y2, . . . , ym) =〈a1,d(y2, . . . , ym)〉+ gf (〈a(2,1), y2〉, . . . , 〈a(2,n), y2〉

, . . . , 〈a(m,1), ym〉, . . . , 〈a(m,n), ym〉),

with d(y2, . . . , ym) = (g1(y2, . . . , ym), . . . , gn(y2, . . . , ym)) for all (y2,
. . . , ym) ∈

∏m

i=2 Z
s
pi
. We can see from Definition 1.1 that gh ∈ C. Thus

γ(C) is closed under composition and γ is well-defined.
Next we prove that γ is injective. Let C and D be two (Zp1 ,F1)-

linearly closed clonoids such that γ(C) = γ(D) and let g ∈ C be an
l-ary function. Then let s :

∏m

i=1 Z
l
pi
→

∏m

i=1Zpi be such that e(g) = s.
Then s is in γ(C) = γ(D). By definition of γ, this implies that e(g) =
e(g′) + h(a1,...,am) for some g′ ∈ D and (a1, . . . ,am) ∈

∏m

i=1 Z
l
pi
. The

only possibility is that g = g′ ∈ D and thus C ⊆ D. We can repeat this
argument for the other inclusion and hence γ is injective. Furthermore,
we have that for all C,D ∈ L(Zp1 ,F1), γ(C ∩D) = γ(C) ∩ γ(D). We
can observe that γ is monotone, thus γ(C ∨D) ⊇ γ(C)∨γ(D). For the
other inclusion we prove by induction on n that γ(C)∨ γ(D) ⊇ e(Xn),
where C ∨D =

⋃

n∈N Xn with:

X0 = C ∪D
Xn+1 = {af + bg | a, b ∈ Zp1, f, g ∈ X

[r]
n , r ∈ N} ∪ {g : (y2, . . . , ym) 7→

f(A2 · y
t
2, · · · , Am · y t

m) | f ∈ X
[k]
n , Ai ∈ Z

k×l
pi

, k, l ∈ N}.

Base step n = 0: e(C ∪D) = e(C) ∪ e(D) ⊆ γ(C) ∨ γ(D).
Induction step n > 0: suppose that the claim holds for n−1. Then let

g ∈ e(Xn). Thus there exists u ∈ Xn such that e(u) = g and either u is

a linear combination of functions in Xn−1 or there exist f ∈ X
[k]
n , Ai ∈

Z
k×l
pi

for all i ∈ [m]\{1}, and k, l ∈ N such that u : (y2, . . . , ym) 7→
f(A2 · y

t
2, · · · , Am · y t

m). In both cases we have g ∈ Clg(e(Xn−1) ∪
⋃

t∈N{h(a1,...,am) | (a1, . . . ,am) ∈
∏

i∈[m] Z
t
pi
}) ⊆ γ(C) ∨ γ(D) and this

concludes the induction proof. By Lemma 4.1, γ(C)∨γ(D) ⊇ e(C∨D).
We can observe that γ(C ∨D) is the clone generated by e(C ∨D), +

and all the mappings h(a1,...,am) defined in Remark 3.2. Since e(C∨D) ⊆
γ(C) ∨ γ(D), it follows that γ(C ∨D) ⊆ γ(C) ∨ γ(D) . Hence γ is an
embedding. �

5. A general bound

In the current section our goal is to determine a bound for the
cardinality of the lattice of all clones containing Clo(Zs,+), where
s = p1 · · ·pm is a product of distinct primes. Theorem 5.9 gives a
complete list of generators for a clone containing Clo(Zs,+) that ex-
plains the connection between clonoids and clones in this case. The
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generators of Theorem 5.9 are substantially formed by a product of
a unary member of a generating set of a (Zpi ,

∏

j∈[m]\{i}Zpj )-linearly

closed clonoid and a monomial generating a clone on Zpi for i ∈ [m].
This puts together the characterization in [Kre19]and [Fio20, Theorem
1.2] which are the main ingredients of this section.
We start showing some lemmata which we need to prove that clones

containing Clo(Zs,+) are strictly characterized by the (Zpi,Fi)-linearly
closed clonoids, where we denote by Fi the product

∏

j∈[m]\{i}Zpj .
In this section we have to deal with polynomials whose coefficients

are finitary functions from Fi to Zpi. The next step will be to generalize
some results in [Kre19] about p-linearly closed clonoids to polynomials
in a polynomial ring over a set of countably many variables. Let us
start with the notation. Let R be a ring. We fix an alphabet X :=
{xi | i ∈ N} and we denote by R[X ] the polynomial ring over R in the
variables X .
Following [Kre19] we denote by tD(h) the total degree of a monomial

h, which is defined as the sum of the exponents. We also denote by
tD(f) := max({d | d = tD(h), h is a monomial in f}) the maximum
of the total degrees of monomials in f . Let f ∈ R[x1, . . . , xk] and let
x = (x1, . . . , xk). Then f can be written as:

f =
∑

m∈Nk
0

rmxm ,

for some sequence {rm}m∈Nk
0
in R with only finitely many non-zero

members and where xm =
∏n

i=1 x
mi

i .
Next we introduce a notation for the composition of multivariate

polynomials. Let l, h ∈ N, g, f1, . . . , fh ∈ R[x1, . . . , xl], and let b =
(b1, . . . , bh) ∈ N

h with 1 ≤ b1 < b2 < · · · < bh ≤ l. Then we define
g ◦b (f1, . . . , fh) by:

g ◦b (f1, . . . , fh) := g(x1, . . . , xb1−1, f1, xb1+1, . . . , xb2−1, f2, xb2+1, . . . ).

Let R[X ] be a polynomial ring and let f ∈ R[X ]. Since later we want
to introduce the induced function of a polynomial, in order to have a
unique polynomial for every induced function, we consider the ideal I
generated by the polynomials xp

i − xi in R[X ], for every xi ∈ X . By
[Eis95, Chapter 15.3] there is a unique remainder rem(f) of f with
respect to I. This remainder has the property that the exponents of
the variables are less or equal p − 1. Following [Kre19, Section 2], we
define
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R[X ]p := {
∑

m∈[p−1]k
0

rmxm | k ∈ N0, rm ∈ R, x = (x1, . . . , xk)}

We can observe that these polynomials form a set of representatives of
the set of all classes of the quotient R/I.
With the next definition we want to introduce sets of polynomials

in polynomial rings closed under composition from the right and from
the left with linear mappings.

Definition 5.1. Let A be a set and let R be a ring. Let RA[X ] be
a polynomial ring. An RA-polynomial linearly closed clonoid is a non-
empty subset C of RA[X ] with the following properties:

(1) for all f ∈ C, g ∈ C, and a, b ∈ R

af + bg ∈ C;

(2) for all s ∈ N, f ∈ C ∩RA[x1, . . . , xs], and M ∈ Rs×l:

g = f(M · (x1, . . . , xl)
t) is in C.

We can observe that item (2) of Definition 5.1 implies that for all
s, k ∈ N, l ≤ s, f ∈ C ∩RA[x1, . . . , xs], and a ∈ Rk:

g = f ◦(l) (
∏

i∈[k]

aixi) is in C.

Let S ⊆ RA[X ]. Then we denote by 〈S〉RA the RA-polynomial linearly

closed clonoid generated by S. We can see that RA[X ]p forms an RA-
linearly closed clonoid.
Let us now modify [Kre19, Lemmata 3.8 and 3.9] to deal with RA-

polynomial linearly closed clonoids. Indeed [Kre19, Lemmata 3.8] is
stated for Zp-polynomial linearly closed clonoids and works for RA-
polynomial linearly closed clonoids in general with essentially the same
proof as in [Kre19].

Lemma 5.2. Let A be a set and let R be a ring. Let d ∈ N, let r ∈ RA

and let g ∈ RA[X ] with tD(g) ≤ d, and the coefficient of x1d in g is 0.
Then rx1 · · ·xd ∈ 〈{rx1 · · ·xd + g}〉RA.

Proof. Let g ∈ RA[X ] and let C := 〈{rx1 · · ·xd+ g}〉RA. By setting all
variables xi with i > d to 0, we may assume that g ∈ RA[x1, . . . , xd].
Next we proceed by induction on the number of monomials of g in

order to show that rx1 · · ·xd ∈ 〈{rx1 · · ·xd + g}〉RA ⊆ C.
If g = 0 then the claim obviously holds. Let us suppose that

rx1 · · ·xd ∈ 〈{rx1 · · ·xd + s}〉RA for every s with t ≥ 0 monomials.
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Let the number of monomials of g be t+1. We observe that there exist
xl ∈ {x1, . . . , xd} and a monomial m of g such that xl does not appear
in m. Thus we obtain:

rx1 · · ·xd + g − (rx1 · · ·xd + g) ◦(l) 0 = rx1 · · ·xd + g − g ◦(l) 0 ∈ C.

Thus g′ := g− g ◦(l) 0 satisfies the properties that tD(g′) ≤ d, the coef-
ficient of x1d in g′ is 0, g′ ∈ RA[x1, . . . , xd] and g′ has fewer monomials
than g, since the monomial m is cancelled in g− g ◦(l) 0. By the induc-
tion hypothesis rx1 · · ·xd ∈ 〈{rx1 · · ·xd+g′}〉RA ⊆ 〈{rx1 · · ·xd+g}〉RA

and the claim holds. �

With Lemma 5.2 we can now prove the following generalization of
[Kre19, Lemma 3.9] with the same proof. The following Lemma gen-
eralizes [Kre19, Lemma 3.9], which is stated for Zp-polynomial linearly
closed clonoids, to Z

n
p -polynomial linearly closed clonoids.

Lemma 5.3. Let d, n ∈ N, let p be a prime and let f be a polynomial in

Z
n
p [X ]p with d := tD(f). Let m be a monomial with coefficient r ∈ Z

n
p

and tD(m) = d. Then:

rx1 . . . xd ∈ 〈{f}〉Zn
p
.

Proof. Let f =
∑

m∈[p−1]l
0
rmxm ∈ Z

n
p [x1, . . . , xl]p, C := 〈{f}〉Zn

p
, let

d := tD(f), and let m = rx s be a monomial of f with tD(m) =
d. Without loss of generality we suppose sj > 0 for all j ∈ [u] for
some u ≤ l and sj = 0 otherwise. We prove by case distinction that
rx1 . . . xd ∈ 〈{f}〉Zn

p
.

Case sj = 1 for all j ∈ [u]: then clearly there exists g with tD(g) ≤ d
such that rx s + g = rx1 . . . xd + g ∈ C and the coefficient of x s in g is
0. By Lemma 5.2 we have that rx1 . . . xd ∈ C.
Case ∃j ∈ [u] with sj > 1: then we show that there exist h and g

such that h + g ∈ C with h = r
∏

i∈[u+1] x
ti
i and t = (s1, . . . , sj−1, sj −

1, sj+1, . . . , su, 1). Furthermore, g satisfies tD(g) ≤ d and the coefficient
of y (s1,...,sj−1,sj−1,sj+1,...,su,1) in g is 0, where we denote by y the vector
of variables (x1, . . . , xu+1). Let g′ = f − m ∈ Z

n
p [x1, . . . , xl]p. Let

g′′ := g′ ◦(j) (xj + xu+1). Thus:
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(m+ g′) ◦(j) (xj + xu+1) =rx s ◦(j) (xj + xu+1) + g′ ◦(j) (xj + xu+1)

=r(
∑

k∈[sj]0

(

sj
k

)

x
sj−k

j xk
u+1) ·

∏

i∈[u]\{j}

xsi
i + g′′

=r · sj · y
(s1,...,sj−1,sj−1,sj+1,...,su,1)+

+r(
∑

k∈[sj]0\{1}

(

sj
k

)

x
sj−k

j xk
u+1) ·

∏

i∈[u]\{j}

xsi
i + g′′.

Note that sj is invertible in Zp and that h+g = s−1
j (m+g′)◦(j)(xj+xu+1)

is in C with:

h := r · y (s1,...,sj−1,sj−1,sj+1,...,su,1)

g = s−1
j r(

∑

k∈[sj]0\{1}

(

sj
k

)

x
sj−k

j xk
u+1) ·

∏

i∈[u]\{j}

xsi
i + s−1

j g′′.

Then h satisfies tD(h) = d with degree t . Furthermore, g satisfies
tD(g) ≤ d and the coefficient of y (t1,...,tj−1,tj−1,tj+1,...,tw,1) in g is 0. Thus h
and g are the searched polynomials. This implies that rx1 . . . xd+g′′′ ∈
C for some g′′′ ∈ Z

n
p [X ]p with tD(g′′′) ≤ d and such that the coefficient

of x1d in g′′′ is 0. By Lemma 5.2 we have that rx1 . . . xd ∈ C and the
claim holds. �

We are now ready to prove that an Z
n
p -polynomial linearly closed

clonoid generated by an element f ∈ Z
n
p [X ]p contains every monomial

of f .

Lemma 5.4. Let p be a prime and let f ∈ Z
n
p [X ]p be such that h =

rmxm is a monomial of f . Then h ∈ 〈f〉Zn
p
.

Proof. The proof is by induction on the number k of monomials in f .
Base step k = 1: then clearly the claim holds.
Induction step k > 0: suppose that the claim holds for every g

with k − 1 monomials. Let f be a polynomial with k monomials. Let
d = tD(f) and let h be a monomial in f with degree d and coefficient
rh. By Lemma 5.3, we have that rhx1 · · ·xd ∈ 〈f〉Zn

p
. Clearly, this

yields h ∈ 〈f〉Zn
p
. From the induction hypothesis we have that all k− 1

monomials of f − h are in 〈f − h〉Zn
p
⊆ 〈f〉Zn

p
. Thus all monomials of f

are in 〈f〉Zn
p
. �

In this section we have to deal with polynomials whose coefficients
are finitary functions from Fi to Zpi , where Fi =

∏

j∈[m]\{i} Zpj and
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p1, . . . , pm are distinct primes. In order to connect this strategy with
the clones of an expanded group we define a non-standard concept
of induced functions of a polynomial. Let A be a set with a fixed
element 0. For every polynomial f ∈ RAn

[x1, . . . , xk]p of the form

f =
∑

m∈[p−1]k
0
rmxm we define its s-ary induced function f

[s]
: Rs ×

As → R ×A by:

(x , y) 7→ (
∑

m∈[p−1]k
0

rm (y ′)
k
∏

i=1

xmi

i , 0),

with s ≥ k, n and y ′ = (y1, . . . , yn). We can observe that we induce
also the functions {rm}m∈[p−1]k

0
coefficients of monomials in f and for

this reason we require s ≥ n. From now on, when not specified, s =
max(k, n), indeed we want an arity of the induced function sufficiently
large to induce both the monomials and the coefficients of the function
induced. Next we show a lemma that connects the monomials of an

(Z
∏m

i=1 Z
n
qi

p )-polynomial linearly closed clonoid to functions of a clones
on Zpq1···qm.

Lemma 5.5. Let p1, . . . , pm distinct primes, let RA = Z

∏m
i=2

Zn
pi

p1 , and

let h, h1 ∈ RA[X ]p1 with h ∈ 〈h1〉RA. Then h ∈ Clg({h1}).

Proof. Let f, g ∈ Clg({h1})
[s]. Then we can observe that for all a, b ∈

Zp1 we have that af + bg = h((a,b),0 )◦(f, g), where 0 = ((0Zp2
, 0Zp2

), . . . ,
(0Zpm

, 0Zpm
)) and h((a,b),0 ) is defined in Remark 3.2.

Furthermore for all M ∈ Z
s×l
p1

we have that f(M · (x1, . . . , xl)) =

f ◦ (g1, . . . , gs) where gi :
∏

i∈[m] Z
u
pi
→

∏

i∈[m] Zpi such that:

gi : (x , y2, . . . , ym) 7→ (Mi(x1, . . . , xl)
t, (y2)i, . . . , (ym)i)

for all (x , y2, . . . , ym) ∈
∏

i∈[m] Z
u
pi

,where Mi is the ith row of M and

u = max(l, n).
We know that every clone C containing Clo(Zp1···pm,+) is closed

under composition and, by Remark 3.2, contains every linear mapping
h(a1,...,am) with ai ∈ Z

n
pi
. Then it is clear that if a function h can

be generated from h1 with item (1) or (2) of Definition 5.1, then the
induced function h1 generates h in a clone containing Clo(Zp1···pm ,+),

simply composing h1 with the linear mappings of Remark 3.2 from the
right and from the left. �

With the next two lemmata we want to prove that in order to char-
acterize clones containing Clo(Zs,+), with s squarefree, we have only
to consider induced monomials with certain total degrees.
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Lemma 5.6. Let d ∈ N\{1}. Then for all k, l ∈ N, for all g ∈

Z

∏m
i=1

Zl
qi

p , and for all m ∈ [p− 1]k0\{0k} with tD(xm ) = u congruent to

d modulo p− 1 it follows that:

rxm ∈ Clg({rx1 · · ·xd}).

Proof. We can observe that composing rx1 · · ·xd with itself we obtain
that

rl+1x1 . . . xd+l(d−1) ∈ Clg(rx1 · · ·xd)

for all l ∈ N. Since rp = r yields rs(p−1)+1 = r for all s ∈ N, it follows
for l = s(p− 1) that

rx1 · · ·xd+s(p−1)(d−1) ∈ Clg(rx1 · · ·xd)

Let s ∈ N be such that d+ s(p− 1)(d− 1) ≥
∑k

i=1mi. Set the first
m1 variables in {x1, . . . , xd+s(p−1)(d−1)} to x1, the next m2 variables to
x2, and so forth with the last d+s(p−1)(d−1)−

∑

i∈[k−1]mi variables
set to xk. This yields

rxm ∈ Clg(rx1 · · ·xd).

�

Lemma 5.7. Let p1, . . . , pm distinct primes, let n ∈ N, let f :
∏m

i=1 Z
n
pi

→
∏m

i=1Zpi be an n-ary function, and let g = (p2 · · · pm)
p1−1f . Let

R = Zp1, A =
∏m

i=2 Z
n
pi
, and h ∈ RA[X ]p1 such that h = g. Let h′ be a

monomial of h with coefficient r and d = tD(h′). Then it follows that:

rx1 · · ·xd ∈ Clg({f}).

Proof. Let n, h, and let f be as in the hypothesis. By Lemma 5.3, we
have that rx1 · · ·xd ∈ 〈h′〉RA. By Lemma 5.4, h′ ∈ 〈h〉RA and thus, by
Lemma 5.5, rx1 · · ·xd ∈ Clg({f}). �

We are now ready to prove the main result of this section which
allows us to provide a bound for the lattice of all clones containing the
addition of a squarefree abelian group.
Let s = p1 · · · pm be a product of distinct prime numbers. Then for

all i ∈ [m] and j ∈ [pi]0 we define ρ(i,j) : L(Zs,+) → L(Zpi,Fi) by:

(5.1) ρ(i,j)(C) :=
⋃

n∈N

{f : Fn
i → Zpi | fx1 · · ·xj ∈ C}
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for all C ∈ L(Zs,+). Let ρ : L(Zs,+) →
∏m

i=1 L(Zpi,Fi)
pi+1 be defined

by ρ(C) = (ρ(1,0)(C), . . . , ρ(1,p1)(C), . . . , ρ(m,0)(C), . . . , ρ(m,pm) (C)), for
all C ∈ L(Zs,+).

Proof of Theorem 1.2. Let s = p1 · · · pm be a product of distinct prime
numbers. We prove that for all i ∈ [m] and for all j ∈ [pi]0, the map
ρ(i,j) is well-defined and thus ρ is well-defined.
Let C ∈ L(Zs,+). Then we prove that ρ(1,j)(C), with 0 ≤ j, is

a (Zp1,F1)-linearly closed clonoid. To this end let n ∈ N, f, g ∈

ρ(1,j)(C)[n] and a, b ∈ Zp1 . Then fx1 · · ·xj , gx1 · · ·xj ∈ C. From

the closure with + we have that (af + bg)x1 · · ·xj ∈ C and thus
af + bg ∈ ρ(1,j)(C)[n] and item (1) of Definition 1.1 holds. Further-

more, let u, n ∈ N, f ∈ ρ(1,j)(C)[u], Ar ∈ Z
u×n
pr

, for all r ∈ [m]\{1}, and
let g :

∏m

k=2Z
n
pk

→ Zp1 be defined by:

g : (x2, . . . , xm) 7→ f(A2 · x
t
2, · · · , Am · x t

m).

It is clear that gx1 · · ·xj ∈ Clg({fx1 · · ·xj}) as composition of fx1 · · ·xj

and linear mappings of Remark 3.2. Thus g ∈ ρ(1,j)(C) which concludes
the proof of item (2) of Definition 1.1. In the same way we can prove
that ρ(i,j) is well-defined for all i ∈ [m] and j ∈ [pi]0. Hence ρ is
well-defined.
We prove that ρ is injective. Let C,D ∈ L(Zs,+) with ρ(C) = ρ(D).

Let f ∈ C [n]. By Lemma 3.4 we have that there exist m sequences of
functions {f(i,hi)}hi∈[pi−1]n

0
from

∏

j∈[m]\{i} Z
n
pj

to Zpi, for all i ∈ [m],

such that f satisfies for all (x1, . . . , xm) ∈
∏m

i=1 Z
n
pi
:

f(x1, . . . , xm) = (
∑

h1∈[p1−1]n
0

f(1,h1)(x2, . . . , xm)x
h1

1 , . . . ,

∑

hm∈[pm−1]n
0

f(m,hm)(x1, . . . , xm−1)x
hm

m ).

Let w ∈ RA[X ]p1 be such that w[n] =
∏m

i=2 p
p1−1
i f , where RA = Z

Fn
1

p1 .
Let h = flx

l be a monomial of w and let s = tD(h). We prove that
h ∈ D by case distinction.
Case s = 0, 1: from Lemma 5.7 it follows that h ∈ C. By Definition

5.1, fl ∈ ρ(1,s)(C) = ρ(1,s)(D) and thus h ∈ D.
Case s > 1: let d ∈ N be such that 2 ≤ d ≤ p1 and d = s mod-

ulo p1 − 1. By Lemma 5.7, C ⊇ Clg({flx1 · · ·xs}). Thus, by Lemma
5.6, C ⊇ Clg({flx1 · · ·xd}) and thus fl ∈ ρ(1,d)(C) = ρ(1,d)(D). Hence

flx1 · · ·xd ∈ D and, by Lemma 5.6, it follows that flx l ∈ D. This
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holds for a generic induced monomial in
∏m

i=2 p
p1−1
i f and thus the

function
∏m

i=2 p
p1−1
i f ∈ D. With the same strategy we can prove that

∏

i∈[m]\{j} p
pj−1
i f ∈ D for all j ∈ [m] and thus f =

∑

j∈[m]

∏

i∈[m]\{j}

p
pj−1
i f ∈ D. Hence C ⊆ D. With the same proof we have the other
inclusion and thus ρ is injective. �

Note that ρ is only an injective function and not a lattice embed-
ding. This happens because the (Zpi ,Fi)-linearly closed clonoids that
describe a clone in L(Zs,+) have several closure properties that are
not preserved by the (Zpi,Fi)-linearly closed clonoid lattice join.

Proof of Corollary 1.4. The proof follows from Theorems 1.2, 1.3 and
we observe the fact that the only clones in common in the embeddings
of Theorem 1.3 is the clone of all linear mappings. For this reason we
subtract m− 1 from the left hand side of the inequalities. �

Corollary 5.8. Let s = p1 · · · pm ∈ N be a product of distinct primes

and let Fi =
∏

j∈[m]\{i} Zpj for all i ∈ [m]. Then the number of clones

containing Clo(Zs,+) is bounded by:

|L(Zs,+)| ≤
m
∏

i=1

(
∑

1≤r≤ni

(

ni

r

)

pi

)pi+1

where ni =
∏

j∈[m]\{i} pj and

(

n

k

)

q

=

k
∏

i=1

qn−k+i − 1

qi − 1
.

Proof. The proof follows from Corollary 1.4 and [Fio20, Theorem 1.4].
�

We can observe that the bound of Corollary 5.8 is not always reached.
We are ready to prove the Dichotomy of Theorem 1.6 and the main
result of this paper.

Proof of Theorem 1.6. The proof follows from Corollary 5.8 for an abelian
group of squarefree order. By [Bul02] and [Kre19] a group G of non-
squarefree order has infinitely many expansions up to term equiva-
lence. �

This nice dichotomy in the behaviour of the expansions of a finite
abelian group shows how different the expansions are in case of a
squarefree abelian group and in case of a not squarefree one.
With the next two results we can also find a concrete bound for the

arity of the generators that we need to characterize these clones.
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Theorem 5.9. Let s = p1 · · · pm be a product of distinct prime numbers

and let Fi =
∏

j∈[m]\{i}Zpj . Then a clone C containing Clo(Zs,+) is

generated by S =
⋃m

i=1 Si where:

Si :=

pi
⋃

j=0

{rx1 · · ·xj | r : Fi → Zpi , rx1 · · ·xj ∈ C}.

Proof. Let C be a clone containing Clo(Zs,+) and let f ∈ C [n]. By
Remark 3.4, for all i ∈ [m] there exists a sequence {f(i,hi)}hi∈[pi−1]n

0
of

functions from F
n
i to Zpi , such that f satisfies for all (x1, . . . , xm) ∈

∏m

i=1 Z
n
pi
:

f(x1, . . . , xm) =(
∑

h1∈[p1−1]n
0

f(1,h1)(x2, . . . , xm)x
h1

1 , . . . ,

∑

hm∈[pm−1]n
0

f(m,hm)(x1, . . . , xm−1)x
hm
m ).

Let w ∈ RA[X ]p1 be such that w[n] =
∏m

i=2 p
p1−1
i f , where RA = Z

F
n
1

p1 .
Let h = flx

l be a monomial of w and let s = tD(h). Then, by Lem-
mata 5.4 and 5.5, we have that h ∈ C. Furthermore, let d ∈ N0 be
such that if s 6= 0, 1, then 2 ≤ d ≤ p1 and d = s modulo p1 − 1. If
s = 0, 1 then s = d. Thus, by Lemmata 5.6 and 5.7 it follows that
Clg(h) = Clg({flx1 · · ·xs}) = Clg({flx1 · · ·xd}). Then let us consider
the (Zp1,F1)-linearly closed clonoid generated by fl . By [Fio20, The-
orem 1.2], there exists a set unary functions F from F1 to Zp1 such
that Cig({F}) = Cig({fl}). Hence, by the embedding of Theorem 1.2
(5.1), we have that Clg({flx1 · · ·xi}) = Clg({gx1 · · ·xi | g ∈ F}) for
all i ∈ [p1]0. Hence h ∈ Clg(S1) and thus

∏m

i=2 p
p1−1
i f ∈ Clg(S1) since

Clg(S1) contains every induced monomial in
∏m

i=2 p
p1−1
i f .

In the same way we can observe that
∏

j∈[m]\{i} p
pi−1
j f ∈ Clg(Si) for

all i ∈ [m] and thus f =
∑

i∈[m]

∏

j∈[m]\{i} p
pi−1
j f ∈ Clg(

⋃

i∈[m] Si) and
the claim holds. �

The proof of Corollary 1.5 follows directly from Theorem 5.9 and
gives an important connection between a clone C containing Clo(Zs,+)
and its subsets of generators Si, where s is a product of distinct primes.
Theorem 5.9 gives a possibly redundant list of generators for a clone
containing Clo(Zs,+) which shows how deep the link between clonoids
and clones is. The generators of Theorem 5.9 are a product of a unary
member of a set of generators for an (Zpi ,Fi)-linearly closed clonoid
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and a monomial generating a clone on Zpi . This unifies the characteri-
zation in [Kre19] and [Fio20, Theorem 1.2] and is the main reason why
Theorem 1.2 works. This also justifies the use of polynomials of Zn

p [X ]
done in this section to represent functions of a clone of a squarefree
abelian group and gives a different perspective to these functions.
Using [Fio19, Theorem 1.3] we can refine Corollary 1.4 to the follow-

ing version for clones containing the addition of Zpq, with p, q distinct
primes.

Corollary 5.10. Let p and q be distinct prime numbers. Let
∏n

i=1 p
ki
i

and
∏s

i=1 r
di
i be the factorizations of gp = xq−1 − 1 in Zp[x] and of

gq = xp−1 − 1 in Zq[x] for irreducible pi, qi, respectively. Then:

2(

n
∏

i=1

(ki + 1) +

s
∏

i=1

(di + 1))− 1 ≤ |L(Zpq,+)| ≤

≤ 2p+q+2

n
∏

i=1

(ki + 1)p+1

s
∏

i=1

(di + 1)q+1 ≤ 2qp+q+p.
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de l’Université de Montréal, Montreal, QC, 1986.

Stefano Fioravanti, Institut für Algebra, Johannes Kepler Univer-

sität Linz, 4040 Linz, Austria

Email address : stefano.fioravanti66@gmail.com
URL: http://www.jku.at/algebra


	1. Introduction
	2. Preliminaries and notation
	3. Facts about clones
	4. Embedding of the Clonoids
	5. A general bound
	Acknowledgements
	References

