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Abstract

By the density of a finite graph we mean its average vertex degree. For an

m-generated group, the density of its Cayley graph in a given set of generators, is

the supremum of densities taken over all its finite subgraphs. It is known that a

group with m generators is amenable iff the density of the corresponding Cayley

graph equals 2m.

A famous problem on the amenability of R.Thompson’s group F is still open.

What is known due to the result by Belk and Brown, is that the density of its

Cayley graph in the standard set of group generators {x0, x1}, is at least 3.5. This
estimate has not been exceeded so far.

For the set of symmetric generators S = {x1, x̄1}, where x̄1 = x1x
−1
0 , the same

example gave the estimate only 3. There was a conjecture that for this generating

set the equality holds. If so, F would be non-amenable, and the symmetric gen-

erating set had doubling property. This means that for any finite set X ⊂ F , the

inequality |S±1X| ≥ 2|X| holds.
In this paper we disprove this conjecture showing that the density of the Cayley

graph of F in symmetric generators S strictly exceeds 3. Moreover, we show that

even larger generating set S0 = {x0, x1, x̄1} does not have doubling property.

Introduction

Some introductory information here repeats the one of [20].

∗This work is partially supported by the Russian Foundation for Basic Research, project no. 19-01-

00591 A.
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The Richard Thompson group F can be defined by the following infinite group pre-
sentation

〈 x0, x1, x2, . . . | xjxi = xixj+1 (i < j) 〉. (1)

This group was found by Richard J. Thompson in the 60s. We refer to the survey [8] for

details. (See also [5, 6, 7].) It is easy to see that for any n ≥ 2, one has xn = x
−(n−1)
0 x1x

n−1
0

so the group is generated by x0, x1. It can be given by the following presentation with
two defining relations

〈 x0, x1 | x
x2

0

1 = xx0x1

1 , x
x3

0

1 = x
x2

0
x1

1 〉, (2)

where ab = b−1ab by definition. Also we define a commutator [a, b] = a−1ab = a−1b−1ab]
and notation a ↔ b whenever a commutes with b, that is, ab = ba.

Each element of F can be uniquely represented by a normal form, that is, an expres-
sion of the form

xi1xi2 · · ·xisx
−1
jt

· · ·x−1
j2
x−1
j1
, (3)

where s, t ≥ 0, 0 ≤ i1 ≤ i2 ≤ · · · ≤ is, 0 ≤ j1 ≤ j2 ≤ · · · ≤ jt and the following is
true: if (3) contains both xi and x−1

i for some i ≥ 0, then it also contains xi+1 or x
−1
i+1 (in

particular, is 6= jt).
An equivalent definition of F can be given in the following way. Let us consider

all strictly increasing continuous piecewise-linear functions from the closed unit interval
onto itself. Take only those of them that are differentiable except at finitely many dyadic
rational numbers and such that all slopes (derivatives) are integer powers of 2. These
functions form a group under composition. This group is isomorphic to F . Another useful
representation of F by piecewise-linear functions can be obtained if we replace [0, 1] by
[0,∞) in the previous definition and impose the restriction that near infinity all functions
have the form t 7→ t + c, where c is an integer.

The group F has no free subgroups of rank > 1. It is known that F is not elementary
amenable (EA). However, the famous problem about amenability of F is still open. If F is
amenable, then it is an example of a finitely presented amenable group, which is not EA.
If it is not amenable, then this gives an example of a finitely presented group, which is not
amenable and has no free subgroups of rank > 1. Note that the first example of a non-
amenable group without free non-abelian subgroups has been constructed by Ol’shanskii
[23]. (The question about such groups was formulated in [10], it is also often attributed to
von Neumann [22].) Adian [1] proved that free Burnside groups with m > 1 generators
of odd exponent n ≥ 665 are not amenable. The first example of a finitely presented
non-amenable group without free non-abelian subgroups has been recently constructed
by Ol’shanskii and Sapir [24]. Grigorchuk [15] constructed the first example of a finitely
presented amenable group not in EA.

It is not hard to see that F has an automorphism given by x0 7→ x−1
0 , x1 7→ x1x

−1
0 . To

check that, one needs to show that both defining relators of F in (2) map to the identity.
This is an easy calculations using normal forms. After that, we have an endomorphism
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of F . Aplying it once more, we have the identity map. So this is an automorphism of
order 2.

Notice that F has no non-Abelian homomorphic images [8]. So in order to check that
an endomorphism of F is a monomorphism, it suffices to show that the image of the
commutator [x0, x1] = x−1

0 x−1
1 x0x1 = x−1

2 x1 = x1x
−1
3 is nontrivial.

Later we will add more arguments to the importance of the symmetric set S =
{x1, x̄1 = x1x

−1
0 }. Obviously, it also generates F . It is easy to apply Tietze transor-

mation to get a presentation of F in the new generating set from (2). So we let α = x−1
1 ,

β = x̄−1
1 = x0x

−1
1 . It follows that x0 = βα−1. The first defining relation of (2) says

that xx0

1 ↔ x1x
−1
0 so αβα−1

↔ β. Therefore, αβ ↔ βα. From this relation we can derive

x
x2

0

1 = xx0x1

1 in the opposite direction.

Now the second defining relation of (2) means that x
x2

0

1 ↔ x1x
−1
0 , that is. αβα−1βα−1

↔
β. Conjugating by α, we get αβα−1β ↔ βα. Conjugation by α once more implies that
αβα−1βα ↔ βα2

. Since αβ commutes with βα = α−1βα, we conclude that the left-hand
side is αβ so we get the relation αβ ↔ βα2

. Clearly, from this relation we can derive

x
x3

0

1 = x
x2

0
x1

1 . Therefore, by standard Tietze transformations we obtain the following
presentation of F in terms of symmetric generating set:

〈α, β | αβ ↔ βα, αβ ↔ βα2

〉. (4)

Of course, from the symmetry reasons we know that βα ↔ αβ2

also holds in F .
Therefore, it is a consequence of the two relations of (4). Moreover, one can check that
for any positive integers m, n it holds αβm

↔ βαn

as a consequence of the defining
relations.

1 Density

By the density of a finite graph Γ we mean the average value of the degree of a vertex in
Γ. More precisely, let v1, . . . , vk be all vertices of Γ. Let degΓ(v) denote the degree of a
vertex v in the graph Γ, that is, the number of oriented edges of Γ that come out of v.
Then

δ(Γ) =
degΓ(v1) + · · ·+ degΓ(vk)

k
(5)

is the density of Γ.
Let G be a group generated by a finite set A. Let C(G,A) be the corresponding

(right) Cayley graph. Recall that the set of vertices of this graph is G and the set of
edges is G×A±1. For an edge e = (g, a), its initial vertex is g, its terminal vertex is ga,
and the inverse edge is e−1 = (ga, a−1). The label of e equals a by definition. For the
Cayley graph C = C(G,A) we define the number

δ̄(C) = sup
Γ

δ(Γ), (6)
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where Γ runs over all finite subgraphs of C = C(G,A). So this number is the least upper
bound of densities of all finite subgraphs of C. If C is finite, then it is obvious that
δ(C) = δ̄(C). So we may call δ̄(C) the density of the Cayley graph C.

This concept was used in [2] to study densities of the Cayley graphs of F .

Recall that a group G is called amenable whenever there exists a finitely additive
normalized invariant mean onG, that is, a mapping µ:P(G) → [0, 1] such that µ(A∪B) =
µ(A) + µ(B) for any disjoint subsets A,B ⊆ G, µ(G) = 1, and µ(Ag) = µ(gA) = µ(A)
for any A ⊆ G, g ∈ G. One gets an equivalent definition of amenability if only one-sided
invariance of the mean is assumed, say, the condition µ(Ag) = µ(A) (A ⊆ G, g ∈ G).
The proof can be found in [13].

The class of amenable groups includes all finite groups and all abelian groups. It
is invariant under taking subgroups, quotient groups, group extensions, and ascending
unions of groups. The closure of the class of finite and abelian groups under these
operations is the class EA of elementary amenable groups. A free group of rank > 1
is not amenable. There are many useful criteria for (non)amenability [12, 21, 14]. We
need to mention the two properties of a finitely generated group G that are equivalent to
non-amenability.

NA1. If G is generated by m elements and C is the corresponding Cayley graph, then

the density of C does not have the maximum value, that is, δ̄(C) < 2m.

Note that if NA1 holds for at least one finite generating set, then the group is not
amenable and so the same property holds for any finite generating set. For the proof of
this property, we need to use the well-known Følner condition [12]. For our reasons it is
convenient to formulate this condition as follows.

Let C be the Cayley graph of a group. By dist(u, v) we denote the distance between
two vertices in C, that is, the length of a shortest path in C that connects vertices u, v.
For any vertex v and a number r let Br(v) denote the ball of radius r around v, that is,
the set of all vertices in C at distance ≤ r from v. For any set Y of vertices, by Br(Y ) we
denote the r-neighbourhood of Y , that is, the union of all balls Br(v), where v runs over
Y . By ∂Y we denote the (outer) boundary of Y , that is, the set B1(Y ) \ Y . The Følner
condition (for the case of a finitely generated group) says that G is amenable whenever
inf #∂Y/#Y = 0, where the infimum is taken over all non-empty finite subsets of G for a
Cayley graph of G in finite number of generators (this property does not depend on the
choice of a finite generating set). Any finite set Y of vertices in C defines a finite subgraph
(also denoted by Y ). The degree of any vertex v in C equals 2m, where m is the number
of generators. We know that exactly degY (v) of the 2m edges that come out of v, connect
the vertex v to a vertex from Y . The other 2m−degY (v) edges connect v to a vertex from
∂Y . Note that each vertex of ∂Y is connected by an edge to at least one vertex in Y .
This implies that the cardinality of ∂Y does not exceed the sum

∑
(2m− degY (v)) over

all vertices of Y . Dividing by #Y (the number of vertices in Y ) implies the inequality
#∂Y/#Y ≤ 2m−δ(Y ). If δ̄(C) = 2m, then Y can be chosen such that δ(Y ) is arbitrarily
close to 2m so #∂Y/#Y will be arbitrarily close to 0. On the other hand, for any vertex
v in Y there are at most 2m edges that connect v to a vertex in Y . Therefore, the sum
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∑
(2m− degY (v)) does not exceed 2m#∂Y . So 2m− δ(Y ) ≤ 2m#∂Y/#Y . If the right

hand side can be made arbitrarily close to 0, then δ(Y ) approaches 2m so δ̄(C) = 2m.

NA2. If C is the Cayley graph of G in a finite set of generators, then there exists a

function φ:G → G such that a) for all g ∈ G the distance dist(g, φ(g)) is bounded from

above by a constant K > 0, b) any element g ∈ G has at least two preimages under φ.

An elegant proof of this criterion based on the Hall – Rado theorem can be found in
[9], see also [11]. Note that this property also does not depend on the choice of a finite
generating set. A function φ from NA2 will be called a doubling function on the Cayley
graph C.

We need a definition. Suppose that NA2 holds for the Cayley graph of a group G
for the case K = 1. Then we say that the Cayley graph C is strongly non-amenable.
The function φ:G → G will be called a strong doubling function on the Cayley graph C.
Note that each vertex is either invariant under φ or it maps into a neighbour vertex. We
know that NA2 holds if and only if the group is not amenable, that is, δ̄(C) < 2m. Now
we would like to find out what happens if the Cayley graph of a 2-generated group is
strongly non-amenable.

The following fact was proved in [20].

Theorem. The Cayley graph of a group with two generators is strongly non-amenable

if and only if the density of this graph does not exceed 3.

It is also convenient to use the concept of Cheeger boundary ∂∗Y of a finite subgraph
in the Cayley graph of a group regarded as a set of vertices, as above. It consists of all
directed edges that start at a vertex in Y and end at a vertex outside Y . Clearly, the
density of Y as a subgraph equals 2m#Y −#∂∗Y .

We have to mention that the density of a Cayley graph of a group is closely related to
an isoperimetric constant ι∗ of a graph defined as #∂∗Y/#Y ; see also [9]). Namely, one
has the equality ι∗(C) + δ̄(C) = 2m for the Cayley graph C of an m-generated group.

The above Theorem applied to the Cayley graph C of F in any two generators (x0,
x1, or α, β) means that if we cannot find a subgraph in with density greater than 3, then
there exists a strong doubling function on C. One can imagine this doubling function in
the following way. Suppose that a bug lives in each vertex of C. We allow these bugs to
jump at the same time such that each bug either returns to its initial position or it jumps
to a neighbour vertex. As a result, we must have at least two bugs in each vertex.

It is natural to ask how much the value of δ(Y ) can be for the finite subgraphs we
are able to construct. In [20] it was constructed a family of finite subgraphs with density
approaching 3. In the Addendum yo the same paper, there was a modification of the
above construction showing that there are subgraphs with density strictly greater than
3. A much stronger result was obtained in [4]. This was a family of finite subgraphs with
density approaching 3.5. We will describe this example in the next Section. Before that,
we present a technical lemma.

First of all, we regard finite subgraphs in Cayley graphs of groups as automata, that
is, labelled oriented graphs. Let v be a vertex and let a be a group generator or its inverse.

5



We say that the automaton accepts a whenever it has an edge labelled by a starting at
v. If the automaton does not accept a, then the edge labelled by a starting at v in the
Cayley graph, belongs to the Cheeger boundary. We claim that the number of such edges
labelled by a is the same that the number of edges labelled by a−1.

Lemma 1 Let G be a finitely generated group and let C = C(G,A) be its Cayley graph.

Let Y be a nonempty finite subgraph of C. Then for any a ∈ A±1 the number of edges

in the Cheeger boundary ∂∗Y labelled by a is the same as the number of edges in ∂∗Y
labelled by a−1.

Proof. We establish a natural bijection between edges of both types. Let e be an
edge labelled by a in ∂Y . Its starting vertex v belongs to Y . Let v0 = v, and for any
n ≥ 0 let vn+1 be the starting point of an edge in C labelled by a whose terminal point
is vn. If a has an infinite order in G, then all vertices of the form vn (n ≥ 0) differ from
each other. In this case, since Y is finite, there is the smallest n > 0 such that vn does
not belong to Y . So vn−1 belongs to Y , and the automaton dots not accept the egde from
vn−1 to vn with label a−1. This edge f will correspond to e.

Suppose that a has finite order in G. Then there is a loop in C at v labelled by a
power of a. This loop has vertices outside Y . So, as in the previous paragraph, we can
choose the smallest n with the same property. In this case we also let e 7→ f , as above.

It is clear that we have a bijection between edges in ∂∗Y labelled by a and a−1. The
inverse mapping f 7→ e is the same as above if we replace a in the beginning by a−1.

The proof is complete.

To find the density of a subgraph, we will need to know the number of edges in its
Cheeger boundary. If we found this number for a generator a, then we automatically
know the number of edges for a−1 due to the above Lemma.

2 The Brown – Belk Construction

Let us recall the concept of a rooted binary tree. Formally, the definition of a rooted
binary tree can be done be induction.

1) A dot . is a rooted binary tree.
2) If T1, T2 are rooted binary trees, then (T1ˆT2) is a rooted binary tree.
3) All rooted binary trees are constructed by the above rules.

Instead of formal expressions, we will use their formal realizations. A dot will be
regarded as a point. It coincides with the root of that tree. If T = (T1ˆT2), then we draw
a caret forˆas a union of two closed intervals AB (goes left down) and AC (goes right
down). The point A is the roof of T . After that, we draw trees for T1, T2 and attach their
roots to B, C respectively in such a way that they have no intersections. It is standard
that for any n ≥ 0 the number of rooted binary trees with n carets is equal ti the nth
Catalan number cn = (2n)!

n!(n+1)!
.

Each rooted binary trees has leaves . Formally they are defined as follows: for the
one-vertex tree (which is called trivial) the only leaf coincides with the root. In case
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T = (T1ˆT2), the set of leaves equals the union of the sets of leaves for T1 and T2. In this
case the leaves are exactly vertices of degree 1.

We also need the concept of a height of a rooted binary tree. For the trivial tree, its
height equals 0. For T = (T1ˆT2), its height is ht T = max(ht T1, htT2) + 1.

Now we define a rooted binary forest as a finite sequence of rooted binary trees T1,
... , Tm, where m ≥ 1. The leaves of it are the leaves of the trees. It is standard from
combinatorics that the number of rooted binary forests with n leaves also equals cn. The
trees are enumerated from left to right and they are drawn in the same way.

A marked (rooted binary) forest if the the above forest where one of the trees is
marked.

Let n ≥ 1, k ≥ 0 be integer parameters. By BB(n, k) we denote the set of marked
forests that have n leaves, and each tree has height at most k. The group F has a left

partial action on this set. Namely, x0 acts by shifting the marker left if this is possible.
The action of x1 is as follows. If the marked tree is trivial, this is not applied. If the
marked tree is T = (T1ˆT2), then we remove its caret and mark the tree T1. It is easy to
see that applying x̄1 = x1x

−1
0 means the same replacing T1 by T2 for the marked tree.

The action of x−1
1 and x̄−1

1 are defined analogously. Namely, if the marked tree of a
forest is rightmost, then x−1

1 cannot be applied. Otherwise, if the marked tree T has a
tree T ′′ to the right of it, then we add a caret to these trees and the tree T ˆT ′′ will be
marked in the result. Notice that if we are inside B(n, k), then both trees T , T ′′ must
have height < k: otherwise x−1

1 cannot be applied. For the action of x̄−1
1 , it cannot be

applied if T is leftmost. Otherwise the marked tree T has a tree T ′ to the left of it. Here
we add a caret to these trees and the tree T ′ˆT will be marked in the result. As above,
both trees T ′, T ′ must have height < k to be possible to stay inside B(n, k).

We have to emphasize that the definition of these actions is very important for Sec-
tion 3. So the reader has to keep in mind these rules. We will use them without reference.

It can be checked directly that applying defining relations of F leads to the trivial
action (in case when the action of each letter is possible. For details we refer to [4]. So
one can regard BB(n, k) as a set of vertices of the Cayley graph of F . This can be done
for each of the three generating sets {x0, x1}, {x1, x̄1}, and {x1, x̄1, x0}.

For any fixed k, let n ≫ k. Since any tree of height k has at most 2k leaves, any forest
in B(n, k) contains at least n

2k
trees. Therefore. if we randomly take a marked forest, the

probabililty for this vertex of an automaton to accept both x0, x
−1
0 approaches 1. Now

look at the probability to accept x−1
1 . The contrary holds if and only if the marked tree is

trivial. We may assume this tree is not the rightmost one of the forest. Then we remove
the trivial tree and move the marker to the right. As a result, we obtain an element of
B(n−1, k). The inverse operation is always possible. So the probability we are interested
in, equals #B(n− 1, k)/#B(n, k). It approaches some number ξk as n → ∞. If k is big
enough, then ξk is close to

1
4
. Indeed, for large k the number of elements in the set B(n, k)

grows almost like 4n, as Catalan numbers do.
For the inverse letter x−1

1 , straightforward estimating the probability not to accept it
is more complicated. However, it is the same as for x1 due to Lemma 1. We see that
the number of outer edges in the subgraph (that is, the edges in its Cheeger boundary of
B(n, k) approaches one half of the cardinality of this set. This means that the density of

7



the set B(n, k) approaches 3.5.
To be more precise, let us add some calculations. First of all, let Φk(z) be the

generating function of the set of rooted binary trees of height lek with n leaves. Clearly,
Φ0(z) = z. For k > 0 we have either a trivial tree that correspond to the summand z, or
it has an upper caret. Removing it, we have an ordered pair of trees of height ≤ k − 1.
Hence Φk(z) = z + Φk−1(z)

2.
So we have a sequence of polynomials with positive integer coefficients. All of them

are increasing functions on z ≥ 0 and approach infinity as z → ∞. So there exists a
unique solution of the equation Φk(z) = 1. We denote it by ξk. This is a decreasing
sequence. Let us show that ξk →

1
4
as k → ∞.

First of all, by induction on k one can easily check that Φk(
1
4
) < 1

2
for all k ≥ 0. Thus

1
4
< ξk. On the other hand, every tree with n ≤ k carets (so n+1 leaves) has height ≤ k.

Hence the first terms of Φk(z) coincide with Catalan numbers: the coefficient on xn+1

equals cn for n ≤ k. It is known that the series Φ(z) = c0z + c1z
2 + · · ·+ cnz

n+1 + · · · =
1−

√
1−4z
2

has radius of convergence 1
4
. So for any z > 1

4
, the partial sums of the series

approach infinity. Thus c0z+c1z
2+· · ·+cnz

n+1 > 1 if n is sufficiently large. In particular,
Φk(z) > 1 whenever k is large enough. So 1

4
< ξk < z = 1

4
+ ε for k ≫ 1. This proves

what we claim.

3 Main Results

Theorem 1 The density of the Cayley graph of Thompson’s group F in symmetric

generating set S = {x1, x̄1 = x1x
−1
0 } is strictly greater than 3.

Proof. First we consider the Brown – Belk set B(n, k). It gives a subgraph in the
Cayley graph C of the group F in generating set S. Let us find the generating function
of this set for any k. The coefficient on zn will show the number of marked forests with
n leaves where all trees of this forest have height ≤ k.

The marked tree of the forest has generating function Φk(z). To the left of it, we
may have any number of trees including zero. Thus for this part we get generating
function 1 + Φk(z) + Φ2

k(z) + · · · = 1
1−Φk(z)

. The same for the trees to the left of the

marker. Therefore, we get a function Ψk(z) =
Φk(z)

(1−Φk(z))2
. Its coefficient on zn in the series

expansion is exactly the cardinality of B(n, k). We shall denote it by βnk.
The radius of convergence of the series for Ψk(z) equals ξ

−1
k . On the other hand, the

quotient
βn−1,k

βnk
approaches the reciprocal of the radius, that is, for any k one has

βn−1,k

βnk

→ ξk (7)

as n → ∞.
The automaton corresponding to B(n, k) does not accept x1 whenever the marked

tree is trivial or it is the rightmost one in the forest. The former case happens with
probability ≤ 2k

n
since each forest has at least n

2k
trees. So for any k, the probability to

be rightmost is o(1) as n → ∞. If the tree is not rightmost, then we remove the trivial
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tree and move the marker right. The number of these new marked trees we obtain is
exactly βn−1,k. Indeed, an inverse operation of inserting the trivial tree and moving the
marker left is always possible. So the total probablility for a marked forest in B(n, k) not

to accept x1 equals
βn−1,k

βnk
+ o(1) = ξk + o(1) according to (7).

As for symmetric generator x̄1, the probability has exactly the same value (replace
“rightmost” by “leftmost”). Lemma 1 allows us to conclude that the same happens for
inverse letters. Therefore, the cardinality of the Cheeger boundary of B(n, k) divided by
the cardinality of B(n, k) itself, is 4ξk+o(1). It approaches 1 as k → ∞, so the density of
B(n, k) approaches 3. At the present time, the sets B(n, k) give the best density estimate
for the generating set {x0, x1}. So there was a conjecture that for S the density 3 could
be an optimal value.

However, this conjecture is not true. There is an essential difference between the
standard generating set and the symmetric one. If we take a random marked forest, it
always accepts both x0 and x−1

0 if the marked tree is neither leftmost nor rightmost. We
already know that the probability to be leftmost (rightmost) does not exceed 2k

n
so it is

almost zero for n ≫ 1. Thus the degree of any vertex of a graph is at least 2 for almost
all cases if we work with standard generating set.

Now look at the vertices of the Cayley graph C. It turns out that they can be isolating.
Indeed, let we have a marked forest . . . , T ′, T, T ′′, . . . where T is marked. Suppose that T
is trivial. Then the vertex does not accept x1 as well as x̄1 (we cannot remove a caret).
Additionally suppose that both trees T ′, T ′′ have height k. This means that we cannot
apply neither x̄−1

1 (adding a caret to T ′ and T ), nor x−1
1 (adding a caret to T and T ′′).

So in this case we get an isolated vertex.
What is the probability for a vertex (that is, a random marked tree from B(n, k)) to

be isolated? If it is small, then we have no profit from that. But it turns out that the
probability is uniformly positive. That is, there exists a global positive constant p0 > 0
such that the probability of a vertex to be isolated will be at least p0 for all our graphs.

The fact we claim is sufficient to prove the theorem. Indeed, if we remove the isolated
vertices from B(n, k), then we get a subgraph, say, B′(n, k), where the number of its
edges is the same and the number of vertices will be less than (1 − p0)βnk. Since the
density is an average degree of a vertex, then the density of the new subgraph will be at
least 1

1−p0
multiplied by the density of B(n, k), which is 3− ε for arbitrarily small ε > 0.

This means that we can approach density 3
1−p0

> 3 of the Cayley graph C.

So let us show that the value p0 = 1
260

can be established (so that the density of C
will exceed 3.011). (Recall that strict inequality here makes useless the idea to find any
kind of a “doubling structure” on C, in the sense we have mentioned in the Introduction.)
Direct calculations with generating functions do not give us a clear way to prove the
statement. So we will prefer a probabilistic approach.

Let . . . , T−1, T0, T1, . . . be a random marked forest. Assume that all the three trees
T−1, T0, T1 are trivial. What is the probablility of that? If T1 is rightmost, then we
already know that the probability is o(1) so we can ignore this case. If we remove the
three trivial trees and move the marker to the tree that goes after T1 (let it be T2 in the
above notation), then we obtain a marked forest from B(n− 3, k). The inverse operation
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is always possible to do. So our probability is βn−3,k
βnk

+ o(1) = ξ3k + o(1) as n → ∞.
Now we start add carets. The first one is added to T1 and T2. Then we add a caret

to obtain ((T1ˆT2)ˆT3) and so on. At some step we will not be able to add a new caret.
This happens if we reach the rightmost tree (for what case the probability is very small),
or we cannot add a new caret to two trees because at least one of them has height k. To
be more precise, let us assume that the trees T2, ... , Tk+1 do exist in our marked forest.
If not, the probability for a marked tree T be close to the right border does not exceed
(k+1)2k

n
= o(1) as n → ∞. So the process of adding carets to the right of T will get us

..., T, T ′′
1 , T

′′
2 , ... where at least one of the trees T ′′

1 , T
′′
2 has height k.

The same process can be done to the left of T . There we get ..., T ′
2, T

′
1, T, ..., where at

least one of the trees T ′
2, T

′
1 has height k.

Suppose that both T ′
1, T

′′
1 have height k. Then the marked forest ..., T ′

1, T, T
′′
1 , ... gives

an isolated vertex as we have seen before. If T ′
1 does not have height k then T ′

2 has height
k so we can swap the trees T ′

2 and T ′
1 in the forest. Both of these forest will have the

same probability. Also if T ′′
1 does not have height k then T ′′

2 has height k and we swap
these trees. Then the probability of our event (when T ′

1 and T ′′
1 have height k) is at least

1
4
of the probablility of the event: (T ′

2 OR T ′
1 has height k) AND (T ′′

1 OR T ′′
2 has height

k). The former is ξ3k + o(1) since the process of adding carets is unique and the inverse
operations are possible to do. This will lead back to the case of three trivial trees for
which the probability is already known.

So we proved that the probability of a random vertex to be isolated is at least 1
4
ξ3k +

o(1). It approaches 1
44

= 1
256

> 1
260

= p0. This completes the proof.

At the end of this Section we will obtain one more result. Let us add x0 to the
generating set S. We will get three generators {x1, x̄1, x0}. What is the density of the
Cayley graph here, is not known. We only know that the isoperimetric constant ι∗ is at
least 1 but we cannot prove or disprove the strict inequality. The idea to remove isolated
vertex does not work here since in the new graph the former isolated vertex will have
degree 2 because of edges labelled by x±1

0 .
However, we can say something about the outer boundary ∂ instead of the Cheeger

boundary ∂∗. The question from the previous paragraph is equivalent to the following:
is there a finite set Y ⊂ F such that #∂∗Y < #Y ? We do not know the answer but we
are able to prove the following.

Theorem 2 For the symmetric generating set S = {x0, x1, x̄1 = x1x
−1
0 }, there exists

finite subsets Y ⊂ F in the Cayley graph of Thompson’s group F such that #∂Y < #Y .

Equivalently, the generating set S does not have doubling property, that is, there are

finite subsets Y in F such that the 1-neighbourhood N1(Y ) = Y ({1} ∪ S) has cardinality
strictly less than 2#Y .

Proof. The second statement follows to the first one (and in fact it is equivalent)
since the 1-neigbourhood of Y is the disjoint union of Y itself and its outer boundary.

The proof of the first statement will be easier that the proof of Theorem 1 since in
this case it suffices to take Y = B(n, k). For every vertex v in its outer boundary, we
choose an edge e connecting it to a vertex u in Y . If there are several edges with this

10



property, we fix one of them. The aim is to estimate the number of fixed edges, which is
equal to ∂Y .

If the label of a fixed edge is x−1
0 , we already know that the probability is o(1). Here

we think in terms of probabilities dividing the number of edges by #Y .
Suppose that the edge e has label x−1

1 . Then u as a vertex of the automaton Y does not
accept x1. This means that we cannot remove a caret of the marked tree corresponding
to u. This means that the tree is empty. So the number of edges e with label x−1

1 does not
exceed the number of marked forests with trivial marked tree. In terms of probabilities,
this gives the estimate ξk + o(1). Exactly the same holds for edges e labelled by x̄−1

1

because of symmetry.
Now look at the number of vertices v in the outer boundary for which the label of e

is x1 or x̄1. The vertex v can be represented as a marked forest. After we apply x−1
1 or

x̄−1
1 to it removing the upper caret, we get to u which is a forest with all trees of height

≤ k. Therefore, the tree T = T1ˆT2 which is marked for the vertex v, has height k + 1.
Applying x−1

1 to it means that the caret is removed and the marked tree becomes T1.
So the vertices v in the outer boundary for which the label of e is x1 or x̄1 are connected

to a vertex in Y by both of these edges. So in the process of choosing edges, we may
assume that the label of e is x1. Hence the number of vertices with this property does
not exceed the number of vertices in Y for which x−1

1 cannot be applied. By Lemma 1,
this number equals the one for the generator x1. The probability for that is ξk + o(1)
already know.

Summing the numbers, we obtain that #∂Y/#Y = 3ξk + o(1) < 1 for k ≫ 1. In fact,
the constant 2 in the statement of the Theorem can be replaced by 7

4
+ ε for any positive

ε.

The proof is complete.

Notice that in order to prove non-amenability of Thompson’s group F (if it is the
fact), it suffices to find a kind of a doubling structure on the Cayley graph of the group.
If the generating set is “small” then we have no chances to find this structure as the
above results show. If it is very “large”, then it is more difficult to work with the graph.
So we would like to offer the generating set {x0, x1, x2} for which there are chances to
find a doubling structure on the Cayley graph.
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