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BINOMIAL EDGE IDEALS OF UNICYCLIC GRAPHS

RAJIB SARKAR

Abstract. Let G be a connected graph on the vertex set [n]. Then depth(S/JG) ≤ n+ 1.
In this article, we prove that if G is a unicyclic graph, then the depth of S/JG is bounded
below by n. Also, we characterize G with depth(S/JG) = n and depth(S/JG) = n+ 1. We
then compute one of the distinguished extremal Betti numbers of S/JG. If G is obtained
by attaching whiskers at some vertices of the cycle of length k, then we show that k − 1 ≤
reg(S/JG) ≤ k+1. Furthermore, we characterize G with reg(S/JG) = k− 1, reg(S/JG) = k
and reg(S/JG) = k + 1. In each of these cases, we classify the uniqueness of the extremal
Betti number of these graphs.

1. Introduction

Let R = K[x1, . . . , xm] be the standard graded polynomial ring over an arbitrary field K
and M be a finitely generated graded R-module. Let

0 −→
⊕

j∈Z

R(−p− j)βp,p+j(M)−→· · ·−→
⊕

j∈Z

R(−j)β0,j(M)−→M −→ 0,

be the minimal graded free resolution of M . The number βi,j(M) is called the (i, j)-th graded
Betti number of M . From the minimal free resolution of a graded module, one can obtain
two important invariants, namely the projective dimension and the Castelnuovo-Mumford
regularity. The projective dimension of M , denoted by pd(M), is defined as

pd(M) := max{i : βi,i+j(M) 6= 0 for some j}

and the Castelnuovo-Mumford regularity (or simply, regularity) of M , denoted by reg(M),
is defined as

reg(M) := max{j : βi,i+j(M) 6= 0 for some i}.

If βi,i+j(M) 6= 0 and for all pairs (k, l) 6= (i, j) with k ≥ i and l ≥ j, βk,k+l(M) = 0, then
βi,i+j(M) is called an extremal Betti number of M . If p = pd(M) and r = reg(M), then there
exist unique numbers i and j such that βp,p+i(M) and βj,j+r(M) are extremal Betti numbers.
These extremal Betti numbers are called the distinguished extremal Betti numbers of M , see
[13]. Note that M admits a unique extremal Betti number if and only if βp,p+r(M) 6= 0.

Let G be a simple graph on the vertex set V (G) = [n] := {1, . . . , n} and the edge set E(G).
Let S = K[x1, . . . , xn, y1, . . . , yn] be the polynomial ring on 2n variables over an arbitrary
field K. The binomial edge ideal of G, denoted by JG, defined as JG = (xiyj − xjyi :
i < j and {i, j} ∈ E(G)) ⊆ S was introduced by Herzog et al. in [12] and independently
by Ohtani in [26]. In the recent past, there has been considerable interest in computing
algebraic invariants such as depth and regularity of JG in terms of combinatorial invariants
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such as clique number, number of vertices, length of a longest induced path and number of
internal vertices of G, see [1, 2, 3, 8, 18, 22, 24, 31, 32, 33] for a partial list.

It is well known (see, for example [4, Proposition 1.2.13]) that depth(S/JG) ≤ dim(S/P )
for all P ∈ Ass(JG). It follows from [12, Theorem 3.2] that P = P∅(G) ∈ Ass(JG) with
dim(S/P ) = n + 1. Therefore, depth(S/JG) ≤ n + 1 for every connected graph G on n
vertices. In general, there is no lower bound for the depth of S/JG. In [37, Theorem 4.5],
Zafar proved that depth(S/JG) = n where G is a cycle on n vertices. If G = G1 ∗ G2, the
join product of G1 and G2, then Kumar and the present author gave a formula for the depth
of S/JG in terms of the depths of SG1/JG1 and SG2/JG2, see [21, Theorems 4.1, 4.3 and 4.4].
Recently, Rouzbahani Malayeri, Saeedi Madani and Kiani studied the depth of S/JG and
they characterized all graphs G such that depth(S/JG) = 4 in [30]. Let G be a connected
unicyclic graph of girth k on n vertices with n > k for k ≥ 3. If k = 3, then G is a chordal
graph with the property that any two maximal cliques intersect in at most one vertex. In
[7], Ene, Herzog and Hibi proved that depth(S/JG) = n + 1 for such graphs. For k ≥ 4, we
compute the depth of S/JG in a slightly more general setting.

Theorem 3.6. Let k ≥ 3 and m ≥ 2. Let G be the clique sum of H = Ck ∪e Km

and a forest along some vertices of H. Then depth(S/JG) ≥ n. Let A = {u ∈ V (Ck) :
there is a tree incident on u}. If e ∩ A 6= ∅ and G[A] is connected with k − 2 ≤ |A|, then
depth(S/JG) = n + 1.

Considering m = 2, we obtain our results for unicyclic graph. Moreover, we prove that if
there are trees attached to k− 2 consecutive vertices of the cycle in G, then depth(S/JG) =
n+ 1 and otherwise, depth(S/JG) = n, see Corollary 3.12.

In [24], Matsuda and Murai proved that ℓ(G) ≤ reg(S/JG) ≤ n − 1, where ℓ(G) is the
length of a longest induced path in G. It is evident that ℓ(G) is not a sharp lower bound. If
G is assumed to be a tree, then Chaudhry et al. [5] proved that reg(S/JG) = ℓ(G) if and only
if G is a caterpillar. An improved lower bound for trees was obtained by Jayanthan et al. in
[16], where they proved that iv(G) + 1 ≤ reg(S/JG). In the case of G being a block graph,
Herzog and Rinaldo [13] generalized their result and proved that iv(G)+ 1 ≤ reg(S/JG) and
they also characterized G admitting a unique extremal Betti number. There have been some
other works as well on the computation of extremal Betti numbers of binomial edge ideals.
In [6], de Alba and Hoang studied extremal Betti numbers of binomial edge ideals of closed
graphs, and Kumar studied extremal Betti numbers of binomial edge ideals of generalized
block graphs, [19]. Recently, Mascia and Rinaldo [23] studied extremal Betti numbers of
some Cohen-Macaulay bipartite graphs. In this article, we study extremal Betti numbers of
JG, and as a consequence, we obtain a lower bound for the regularity of JG, where G is a
unicyclic graph.

Corollary 3.13. Let G be a unicyclic graph of girth k ≥ 4 with pd(S/JG) = p. If trees
are attached to every vertex of the cycle in G, then βp,p+iv(G)+1(S/JG) is an extremal Betti
number of S/JG, and hence iv(G) + 1 ≤ reg(S/JG). Otherwise, either βp,p+iv(G)−1(S/JG) or
βp,p+iv(G)(S/JG) is an extremal Betti number of S/JG, and hence iv(G)− 1 ≤ reg(S/JG).

There are only few classes of graphs for which the regularity of their binomial edge ideals
are known, see [9, 14, 34, 35, 38]. In the last section, we study the regularity and behavior
of extremal Betti number of graphs G, where G is obtained by attaching whiskers to some
vertices of the cycle of length k. We first prove that the regularity of S/JG is bounded below
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by k− 1 and bounded above by k+1. We then characterize G such that reg(S/JG) = k+1,
reg(S/JG) = k − 1 and reg(S/JG) = k.

Corollary 4.10. Let G = Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0 and k ≥ 4. Let A = {vi ∈ V (Ck) :
ri ≥ 1} and suppose that A 6= ∅. Then k − 1 ≤ reg(S/JG) ≤ k + 1. Moreover,

(1) reg(S/JG) = k + 1 if and only if A = V (Ck),
(2) reg(S/JG) = k − 1 if and only if |A| = 1 or |A| = 2 and vertices of A are adjacent,
(3) reg(S/JG) = k if and only if A contains at least two non-adjacent vertices and A (

V (Ck).

Furthermore, we show that if reg(S/JG) = k+1 and reg(S/JG) = k−1, then S/JG admits
a unique extremal Betti number. If reg(S/JG) = k, then S/JG does not always admit a
unique extremal Betti number. In this case, we classify G such that S/JG admits a unique
extremal Betti number.

Acknowledgment: The author is grateful to his Ph.D. advisor, Prof. A. V. Jayanthan
for his constant support and insightful discussions. The author thanks University Grants
Commission, Government of India, for financial assistance. The author has extensively used
computer algebra software Macaulay2 [11] for computations. The author is also thankful to
the referee for carefully reading the manuscript and making several suggestions that improved
the exposition.

2. Preliminaries

Let G be a simple graph with the vertex set [n] and edge set E(G). A graph G on the
vertex set [n] is said to be a complete graph, if {i, j} ∈ E(G) for all 1 ≤ i < j ≤ n. We
denote the complete graph on n vertices by Kn. For A ⊆ V (G), the induced subgraph of G
on the vertex set A, denoted by G[A], is the graph such that for i, j ∈ A, {i, j} ∈ E(G[A])
if and only if {i, j} ∈ E(G). For a vertex v ∈ V (G), let G \ v denote the induced subgraph
of G on the vertex set V (G) \ {v}. For a subset U ⊆ V (G), if the induced subgraph G[U ] is
a complete graph then U is called a clique. A vertex v of G is said to be a simplicial vertex
if v belongs to only one maximal clique. If v is not a simplicial vertex, then v is called an
internal vertex. The number of internal vertices of G is denoted by iv(G). For a vertex v in G,
NG(v) := {u ∈ V (G) : {u, v} ∈ E(G)} denotes the neighborhood of v inG andGv is the graph
with the vertex set V (G) and edge set E(Gv) = E(G) ∪ {{u, w} : u, w ∈ NG(v)} i.e., Gv is
obtained from G by making a complete graph on NG(v)∪{v} in G. Set NG[v] := NG(v)∪{v}.
The degree of a vertex v, denoted by degG(v), is |NG(v)|. A cycle on the vertex set [k],
denoted by Ck, is a graph with the edge set {i, i + 1 : 1 ≤ i ≤ k − 1} ∪ {1, k} for k ≥ 3.
A graph is said to be a unicyclic graph if it contains exactly one cycle as a subgraph. The
girth of a graph G is the length of a shortest cycle in G. A graph G is called chordal if every
induced cycle of G has 3 vertices. A connected graph is a tree if it does not have a cycle.
A forest is a disconnected graph whose components are trees. A vertex v ∈ V (G) is said
to be a cut vertex if G \ v has more components than G. A block of a graph is a maximal
nontrivial connected subgraph which has no cut vertex. A graph G is called a block graph if
every block of G is a complete graph. It is easy to see that G is a block graph if and only if G
is a chordal graph with the property that any two maximal cliques intersect in at most one
vertex. A connected chordal graph G is said to be a generalized block graph if three maximal
cliques of G intersect non-trivially, then the intersection of each pair of them is the same.
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For T ⊆ V (G), let c(T ) denote the number of components of G[T̄ ], where T̄ = V (G) \ T .
Also, let G1, · · · , Gc(T ) be the components of G[T̄ ] and for every i, G̃i denotes the complete
graph on the vertex set V (Gi). Moreover, we set PT (G) := ( ∪

i∈T
{xi, yi}, JG̃1

, · · · , JG̃c(T )
). In

[12], Herzog et al. proved that JG = ∩
T⊆[n]

PT (G), which in particular, implies that JG is a

radical ideal. A set T ⊆ V (G) is said to have cut point property if for every i ∈ T , i is a
cut vertex of the graph G[T̄ ∪ {i}] i.e., c(T \ {i}) < c(T ). They also showed that PT (G) is
a minimal prime of JG if and only if either T = ∅ or T ⊂ V (G) has the cut point property,
see [12, Corollary 3.9].

Let R = K[x1, . . . , xm], R
′ = K[xm+1, . . . , xn] and R′′ = K[x1, . . . , xn] be polynomial rings.

Let I ⊆ R and J ⊆ R′ be homogeneous ideals. Then it is well known that the minimal free
resolution of R′′/(I + J) is the tensor product of the minimal free resolutions of R/I and
R′/J . Therefore, we have for all i, j,

βi,i+j

(

R′′

I + J

)

=
∑

i1+i2=i
j1+j2=j

βi1,i1+j1

(

R

I

)

βi2,i2+j2

(

R′

J

)

. (1)

The following depth lemma and regularity lemma can be easily derived from the long exact
sequence of Tor and Ext corresponding to given short exact sequence.

Lemma 2.1. Let R be a standard graded ring and M,N, P be finitely generated graded

R-modules. If 0 → M
f
−→ N

g
−→ P → 0 is a short exact sequence with f, g graded homomor-

phisms of degree zero, then

(1) depth(M) ≥ min{depth(N), depth(P ) + 1},
(2) depth(N) ≥ min{depth(M), depth(P )},
(3) depth(P ) ≥ min{depth(M)− 1, depth(N)},
(4) depth(M) = depth(P ) + 1, if depth(N) > depth(P ) and
(5) depth(M) = depth(N), if depth(N) < depth(P ).

Lemma 2.2. Let R be a standard graded ring and M,N, P be finitely generated graded

R-modules. If 0 → M
f
−→ N

g
−→ P → 0 is a short exact sequence with f, g graded homomor-

phisms of degree zero, then

(1) reg(M) ≤ max{reg(N), reg(P ) + 1},
(2) reg(N) ≤ max{reg(M), reg(P )},
(3) reg(P ) ≤ max{reg(M)− 1, reg(N)},
(4) reg(M) = reg(P ) + 1, if reg(N) < reg(M) and
(5) reg(M) = reg(N), if reg(N) > reg(P ).

The following is a crucial lemma due to Ohtani, which is used repeatedly throughout this
article.

Lemma 2.3. ([26, Lemma 4.8]) Let G be a graph on V (G) and v ∈ V (G) such that v is not
a simplicial vertex. Then JG = (JG\v + (xv, yv)) ∩ JGv

.

Thus, we get the following short exact sequence:

0 −→
S

JG
−→

S

(xv, yv) + JG\v
⊕

S

JGv

−→
S

(xv, yv) + JGv\v
−→ 0, (2)
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and correspondingly the long exact sequence of Tor modules:

· · · −→ TorSi

(

S

JG
,K

)

i+j

−→ TorSi

(

S

(xv, yv) + JG\v
,K

)

i+j

⊕ TorSi

(

S

JGv

,K

)

i+j

−→ TorSi

(

S

(xv, yv) + JGv\v
,K

)

i+j

−→ TorSi−1

(

S

JG

,K

)

i+j

−→ · · · (3)

3. Unicyclic Graph

Let G be a connected unicyclic graph (which is not a cycle) of girth k on n vertices for
k ≥ 4. In this section, we prove that n ≤ depth(S/JG) and we characterize unicyclic graphs
G such that depth(S/JG) = n. We also compute one distinguished extremal Betti number
of S/JG.

Notation 3.1. Let G be a graph on V (G) = [n]. We reserve the notation S for the
polynomial ring K[xi, yi : i ∈ [n]] and for v ∈ V (G), S ′ for the polynomial ring K[xi, yi : i ∈
V (G) \ {v}]. If H is any other graph with the vertex set V (H), then we set SH = K[xi, yi :
i ∈ V (H)] and for v ∈ V (H), set S ′

H = K[xi, yi : i ∈ V (H) \ {v}].

To re-emphasize: Unless stated otherwise, G always denotes a graph on n vertices.

Definition 3.2. Let G1 and G2 be two subgraphs of a graph G. If G1 ∩G2 = Km, V (G1) ∪
V (G2) = V (G) and E(G1) ∪ E(G2) = E(G) with G1 6= Km then G is called the clique sum
of G1 and G2 along the complete graph Km, denoted by G1 ∪Km

G2. Sometimes we call this
clique sum that G1 is attached to G2 along Km. If G2 = Km, then G1 ∪Km

G2 = G1.

Notation 3.3. Let k ≥ 3. For the rest of the article, we fix the following notation for
the cycle graph on k-vertices. Let V (Ck) = {v = v1, v2, . . . , vk} be such that E(Ck) =
{{vi, vi+1}, {v1, vk} : 1 ≤ i ≤ k − 1}.

Let H be the clique sum of Ck and a complete graph Km along an edge e for m ≥ 2.
If m = 2, then H = Ck and in this case, Zafar and Zahid [38, Corollary 16] proved that
reg(SH/JH) = k−2 and βk,2k−2(SH/JH) is the unique extremal Betti number of SH/JH . For
m ≥ 3, Jayanthan et al. proved that reg(SH/JH) = k − 1, see [15, Proposition 3.11]. Here,
we prove that SH/JH admits a unique extremal Betti number, namely βn,n+k−1(SH/JH),
where |V (H)| = n.

Proposition 3.4. Let k,m ≥ 3 and H = Ck ∪e Km, with |V (H)| = n, be the clique sum
of a cycle Ck and a complete graph Km along an edge e. Then depth(SH/JH) = n and
βn,n+k−1(SH/JH) is the unique extremal Betti number of SH/JH .

Proof. Let e = {v, v2}. We proceed by induction on k. Suppose first that k = 3. Then H =
C3∪eKm, which is a generalized block graph. Thus by [17, Theorem 3.2], depth(SH/JH) = n,
and hence it follows from [19, Theorem 3.7] that βn,n+2(SH/JH) is the unique extremal Betti
number of SH/JH .

Now suppose that k ≥ 4. By Lemma 2.3, JH = JHv
∩ ((xv, yv) + JH\v), where Hv =

Ck−1 ∪e′ Km+1 and H \ v = Pk−1 ∪v2 Km−1 with e′ = {v2, vk}, and V (Pk−1) = V (Ck−1) =
{v2, . . . , vk}. Note that Hv \ v = Ck−1 ∪e′ Km. Therefore by induction, depth(SH/JHv

) =
n, depth(S ′

H/JHv\v) = n − 1 and βn,n+k−2(SH/JHv
), βn−1,n+k−3(S

′
H/JHv\v) are the unique

extremal Betti numbers. Thus it follows from (1) that βn+1,n+k−1(SH/((xv, yv)+JHv\v)) is the
unique extremal Betti number. Since iv(H \ v) = k−2, it follows from [7, Theorem 1.1] that
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depth(S ′
H/JH\v) = n, and hence by [13, Theorem 8] and (1), βn,n+k−1(SH/((xv, yv) + JH\v))

is the unique extremal Betti number. As v is not a simplicial vertex, we apply Lemma 2.1 on
the short exact sequence (2) for the pair (H, v) and get that depth(SH/JH) ≥ n. Considering
the long exact sequence of Tor (3) for i = n and in graded degree j = k − 1, we get

0 −→ TorSH

n+1

(

SH

((xv, yv) + JHv\v)
,K

)

n+k−1

−→ TorSH
n

(

SH

JH

,K

)

n+k−1

−→ · · ·

which implies that βn,n+k−1(SH/JH) 6= 0. Therefore by Auslander-Buchsbaum formula,
depth(SH/JH) ≤ n. Hence, depth(SH/JH) = n and βn,n+k−1(SH/JH) is the unique extremal
Betti number of SH/JH as reg(SH/JH) = k − 1, by [15, Proposition 3.11]. �

LetM be a graded S-module. Then the Betti polynomial of M is defined as
∑

i,j βi,j(M)sitj

and denoted by BM(s, t).
A graph G is said to be a decomposable graph if G is the clique sum of subgraphs G1 and

G2 along a simplicial vertex i.e., G = G1 ∪v G2, where v is a simplicial vertex of G1 and
G2. If G is not decomposable, then it is called an indecomposable graph. We now recall the
following result due to Herzog and Rinaldo.

Proposition 3.5. [13, Proposition 3] Let G = G1 ∪G2 be a decomposable graph. Then

BS/JG(s, t) = BSG1
/JG1

(s, t)BSG2
/JG2

(s, t).

As a corollary of the above Proposition, we get that if G = G1 ∪ · · · ∪Gl is a decomposi-
tion into indecomposable graphs Gi, then pd(S/JG) =

∑l
i=1 pd(SGi

/JGi
) and reg(S/JG) =

∑l
i=1 reg(SGi

/JGi
). These two equalities follow from [27, Theorem 2.7] and [16, Theorem

3.1], respectively, as well. Also, if for each i = 1, . . . , l, βpi,pi+ri(SGi
/JGi

) is an extremal

Betti number of SGi
/JGi

, then βp,p+r(S/JG) =
∏l

i=1 βpi,pi+ri(SGi
/JGi

) is an extremal Betti

number of S/JG, where p =
∑l

i=1 pi and r =
∑l

i=1 ri. Therefore to find the regularity,
projective dimension, and extremal Betti number of G, it is enough to consider G to be an
indecomposable graph. So for the rest of the section, we assume that G is an indecomposable
graph.

For a connected graph G, κ(G) ≥ 1, and so by [2, Theorems 3.19 and 3.20], depth(S/JG) ≤
n+1. Let H = Ck ∪eKm be the clique sum of Ck and Km along an edge e for k ≥ 3, m ≥ 2.
Let G be the clique sum of H and a forest along some vertices of H . We now study the depth
of S/JG and prove that n ≤ depth(S/JG). Therefore, depth(S/JG) ∈ {n, n + 1}. We then
characterize G with depth(S/JG) = n and depth(S/JG) = n + 1. Also, we obtain a lower
bound for the regularity and show that if there are trees attached to each vertex of Ck, then
iv(G)+ 1 ≤ reg(S/JG), otherwise iv(G)− 1 ≤ reg(S/JG) by computing its one distinguished
extremal Betti number.

Theorem 3.6. Let k ≥ 3 and m ≥ 2. Let G be the clique sum of H = Ck ∪e Km and
a forest along some vertices of H. Then depth(S/JG) ≥ n. Let A = {u ∈ V (Ck) :
there is a tree incident on u}. If e ∩ A 6= ∅ and G[A] is connected with k − 2 ≤ |A|, then
depth(S/JG) = n + 1.

Proof. Let e = {v, v2}. By Lemma 2.3, JG = JGv
∩ ((xv, yv) + JG\v), where G \ v is a block

graph on n− 1 vertices. So by [7, Theorem 1.1], depth(S ′/JG\v) ≥ n. We prove the theorem
by induction on k. For the case k = 3, it can be noted that Gv and Gv \ v are both block
graphs on n and n − 1 vertices, respectively. Thus it follows from [7, Theorem 1.1] that
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depth(S/JGv
) = n + 1 and depth(S ′/JGv\v) = n. Consider the short exact sequence (2)

and apply Lemma 2.1 to get that depth(S/JG) ≥ n. Now suppose that there is one tree
attached to v. Then G \ v is a disconnected block graph, and hence by [7, Theorem 1.1],
depth(S ′/JG\v) ≥ n+1. Therefore, by Lemma 2.1 and the short exact sequence (2), we have
depth(S/JG) = n + 1.

We now assume that k ≥ 4. Let K ′ and K ′′ be complete graphs on vertex sets NG[v] and
NG(v), respectively. Also, let H ′ = Ck−1 ∪e′ K

′ and H ′′ = Ck−1 ∪e′ K
′′, where e′ = {v2, vk}

and V (Ck−1) = {v2, . . . , vk}. Then it can be observed that Gv is the clique sum of H ′ and a
forest along some vertices of G. Also, Gv \ v is the clique sum of H ′′ and a forest along some
vertices of G. Therefore, by induction depth(S/JGv

) ≥ n and depth(S ′/JGv\v) ≥ n−1. Thus,
by applying Lemma 2.1 on the short exact sequence (2), we get depth(S/JG) ≥ n. Suppose
now that v ∈ A and G[A] is connected with k−2 ≤ |A|. Then Gv[A\{v}] and Gv \v[A\{v}]
are both connected with k − 3 ≤ |A \ {v}|. Hence, by induction depth(S/JGv

) = n + 1 and
depth(S ′/JGv\v) = n. By [7, Theorem 1.1], we have depth(S ′/JG\v) ≥ n + 1. Therefore it
follows from Lemma 2.1 and the short exact sequence (2) that depth(S/JG) = n+ 1. �

Let H = C3 ∪e Km for m ≥ 2. Let G be the clique sum of H and a forest along some
vertices of H . If m = 2, then G is a block graph. Ene, Herzog and Hibi [7, Theorem 1.1]
proved that in this case depth(S/JG) = n + 1. Let m ≥ 3. In Theorem 3.6 we proved that
depth(S/JG) ≥ n, and if there are trees attached to either one vertex of e or both the vertices
of e, then depth(S/JG) = n + 1. If there are no trees attached to any vertex of e, then G
is a generalized block graph. Hence it follows from [17, Theorem 3.2] and [19, Theorem 3.4]
that depth(S/JG) = n and βn,n+iv(G)(S/JG) is an extremal Betti number. Now we consider
the case when trees are attached to at least one of the vertices of e.

Theorem 3.7. Let H = C3∪eKm for m ≥ 3. Let G be the clique sum of H and a forest along
some vertices of H. If there are trees attached to one vertex of e, then βn−1,n−1+iv(G)(S/JG)
is an extremal Betti number and if there are trees attached to both the vertices of e, then
βn−1,n−1+iv(G)+1(S/JG) is an extremal Betti number. In particular, iv(G) ≤ reg(S/JG).

Proof. Let e = {v, v2} and suppose that there are trees attached to v in G. Then G \ v is a
disconnected block graph on n− 1 vertices. By virtue of [7, Theorem 1.1] and (1), we have
p = pd(S/((xv, yv) + JG\v)) ≤ n− 1. By Lemma 2.3, JG = JGv

∩ ((xv, yv) + JG\v). Note that
Gv and Gv \v are block graphs on n and n−1 vertices respectively. Therefore it follows from
[13, Theorem 6] and (1) that βp,p+iv(G\v)+1(S/((xv, yv)+JG\v)), βn−1,n−1+iv(Gv)+1(S/JGv

) and
βn,n+iv(Gv\v)+1(S/((xv, yv) + JGv\v)) are extremal Betti numbers. We consider the long exact
sequence (3) for i = n− 1

0 −→ TorSn

(

S

(xv, yv) + JGv\v
,K

)

n−1+j

−→ TorSn−1

(

S

JG
,K

)

n−1+j

−→

−→ TorSn−1

(

S

(xv, yv) + JG\v
,K

)

n−1+j

⊕ TorSn−1

(

S

JGv

,K

)

n−1+j

−→ · · · (4)

It is known [20, Lemma 3.2] that iv(G) > iv(Gv) = iv(Gv \ v) and iv(G) > iv(G \ v). Thus
βn−1,n−1+j(S/JGv

) = 0 = βn−1,n−1+j(S/((xv, yv) + JG\v)) for j ≥ iv(G) + 1. Therefore, we
obtain

TorSn

(

S

(xv, yv) + JGv\v
,K

)

n−1+j

≃ TorSn−1

(

S

JG

,K

)

n−1+j

for j ≥ iv(G) + 1.
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If there is no tree attached to v2, then iv(G) = iv(Gv \ v) + 2. Therefore it follows from
the equation (4) that βn−1,n−1+iv(G)(S/JG) 6= 0 and βn−1,n−1+j(S/JG) = 0 for j ≥ iv(G) +
1. If there is a tree attached to v2, then iv(G) = iv(Gv \ v) + 1, and similarly, we have
βn−1,n−1+iv(G)+1(S/JG) 6= 0 and βn−1,n−1+j(S/JG) = 0 for j ≥ iv(G) + 2. By Theorem 3.6,
pd(S/JG) = n − 1, and hence, either βn−1,n−1+iv(G)(S/JG) or βn−1,n−1+iv(G)+1(S/JG) is an
extremal Betti number of S/JG, as desired. �

For k = 3, we proved that depth(S/JG) = n+ 1 if and only if there are trees attached to at
least one vertex of e and in this case either βn−1,n−1+iv(G)(S/JG) or βn−1,n−1+iv(G)+1(S/JG)
is an extremal Betti number. From now on, we assume that k ≥ 4. Let H = Ck ∪e Km for
m ≥ 2. Let G be the clique sum of H and a forest along some vertices H . First, we compute
one distinguished extremal Betti number for the class of graphs G with depth(S/JG) = n+1,
considered in Theorem 3.6.

Theorem 3.8. Let H = Ck ∪e Km for k ≥ 4 and m ≥ 2. Also, let G be the clique sum of H
and a forest along some vertices of H. Let A = {u ∈ V (Ck) : there is a tree incident on u}.
If e∩A 6= ∅ and G[A] is connected with k−2 ≤ |A| ≤ k−1, then either βn−1,n−1+iv(G)−1(S/JG)
or βn−1,n−1+iv(G)(S/JG) is an extremal Betti number. If A = V (Ck), then βn−1,n−1+iv(G)+1(S/JG)
is an extremal Betti number. In particular, iv(G)− 1 ≤ reg(S/JG).

Proof. Let e = {v, v2}. Suppose that A ∩ e 6= ∅, G[A] is connected, and k − 2 ≤ |A| ≤
k − 1. Since A ∩ e 6= ∅, we may assume that v ∈ A. Then G \ v is a disconnected
block graph on n − 1 vertices, and hence it follows from [13, Theorem 6] and (1) that
βp,p+iv(G\v)+1(S/((xv, yv)+JG\v)) is an extremal Betti number of S/((xv, yv)+JG\v), where p =
pd(S/((xv, yv) + JG\v)). We prove the assertion by induction on k. First assume that k = 4.
By Lemma 2.3, JG = JGv

∩((xv, yv)+JG\v) where Gv belong to the class of graphs considered
in Theorem 3.7. Therefore, Gv\v also belong to the class of graphs considered in Theorem 3.7.
Hence, either βn−1,n−1+iv(Gv)(S/JGv

) or βn−1,n−1+iv(Gv)+1(S/JGv
) is an extremal Betti number

of S/JGv
and either βn,n+iv(Gv\v)(S/((xv, yv) + JGv\v)) or βn,n+iv(Gv\v)+1(S/((xv, yv) + JGv\v))

is an extremal Betti number of S/((xv, yv) + JGv\v). It is known [20, Lemma 3.2] that
iv(G) > iv(Gv) = iv(Gv \ v) and iv(G) > iv(G \ v). By virtue of [7, Theorem 1.1], p ≤ n−1.
Hence, we have βn−1,n−1+j(S/JGv

) = 0 = βn−1,n−1+j(S/((xv, yv) + JG\v)) for j ≥ iv(G) + 1.
Therefore, it follows from the equation (4) that for j ≥ iv(G) + 1,

TorSn

(

S

(xv, yv) + JGv\v
,K

)

n−1+j

≃ TorSn−1

(

S

JG
,K

)

n−1+j

. (5)

Case 1: Let A = {v, v2} or A = {v, v4}. By Theorem 3.7 and the equation (1), we get
that βn,n+iv(Gv\v)(S/((xv, yv) + JGv\v)) is an extremal Betti number. In this case, iv(G) =
iv(Gv \ v) + 2. Therefore, it follows from (4) that βn−1,n−1+iv(G)−1(S/JG) 6= 0.

Case 2: If A = {v, v2, v3} or A = {v, v4, v3}, then by Theorem 3.7 and (1), we get that
βn,n+iv(Gv\v)(S/((xv, yv) + JGv\v)) is an extremal Betti number. In this case, iv(G) = iv(Gv \
v) + 1. Therefore, by putting j = iv(G) in (4), we have βn−1,n−1+iv(G)(S/JG) 6= 0.

Case 3: If A = {v, v2, v4}, then by Theorem 3.7 and (1), βn,n+iv(Gv\v)+1(S/((xv, yv)+JGv\v))
is an extremal Betti number. In this case, iv(G) = iv(Gv \ v) + 2. Thus it follows from the
equation (4) that βn−1,n−1+iv(G)(S/JG) 6= 0.

For all the above three cases, it follows from (5) that βn−1,n−1+j(S/JG) = 0 for j ≥
iv(G) + 1. Hence, either βn−1,n−1+iv(G)−1(S/JG) or βn−1,n−1+iv(G)(S/JG) is an extremal Betti
number of S/JG.
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Case 4: If A = V (C4), then by Theorem 3.7 and the fact iv(G) = iv(Gv \ v) + 1, we have
βn,n+iv(G)(S/((xv, yv) + JGv\v)) is an extremal Betti number of S/((xv, yv) + JGv\v). Hence,
it follows from (5) that βn−1,n+iv(G)(S/JG) is an extremal Betti number of S/JG.

Now assume that k ≥ 5. Let K ′ and K ′′ denote complete graphs on vertex sets NG[v]
and NG(v) respectively. Also, let H ′ = Ck−1 ∪e′ K

′ and H ′′ = Ck−1 ∪e′ K
′′, where e′ =

{v2, vk} and V (Ck−1) = {v2, . . . , vk}. Then Gv (resp. Gv \ v) is the clique sum of H ′

(resp. H ′′) and a forest along some vertices of G. Clearly, Gv[A \ {v}] and Gv \ v[A \ {v}]
are both connected with k − 3 ≤ |A \ {v}| ≤ k − 2, and so Gv and Gv \ v satisfy induction
hypotheses. Therefore by induction either βn−1,n−1+iv(Gv)−1(S/JGv

) or βn−1,n−1+iv(Gv)(S/JGv
)

is an extremal Betti number. Also, by induction and (1), either βn,n+iv(Gv\v)−1(S/((xv, yv) +
JGv\v)) or βn,n+iv(Gv\v)(S/((xv, yv)+JGv\v)) is an extremal Betti number. Note that iv(G) =
iv(Gv) + 1 = iv(Gv \ v) + 1. Therefore the assertion follows from the equations (4) and
(5). Suppose now that A = V (Ck). Then clearly trees are attached to all the vertices
of Ck−1 in both Gv and Gv \ v. Thus by induction and (1), βn−1,n−1+iv(Gv)+1(S/JGv

) and
βn,n+iv(Gv\v)+1(S/((xv, yv) + JGv\v)) are extremal Betti numbers of S/JGv

and S/((xv, yv) +
JGv\v) respectively. Therefore it follows from (5) and the fact iv(G) = iv(Gv \ v) + 1 that
βn−1,n+iv(G)(S/JG) is an extremal Betti number of S/JG. �

By Theorem 3.6, we have that depth(S/JG) ≥ n. We now characterize graphs attaining
the lower bound. Also, we give a lower bound for the regularity of S/JG by computing one
distinguished extremal Betti number of S/JG. First, we consider the case m ≥ 3.

Theorem 3.9. Let H = Ck ∪e Km for k ≥ 4 and m ≥ 3. Let G be the clique sum of H
and a forest along some vertices of H. Let A = {u ∈ V (Ck) : there is a tree incident on u}.
Suppose either A ∩ e = ∅ or if A ∩ e 6= ∅, then A does not contain any k − 2 consecutive
vertices. Then either βn,n+iv(G)−1(S/JG) or βn,n+iv(G)(S/JG) is an extremal Betti number of
S/JG. In particular, depth(S/JG) = n and iv(G)− 1 ≤ reg(S/JG).

Proof. Let e = {v, v2}. Then NCk
(v) = {v2, vk}. We proceed by induction on k. Let k = 4.

First assume that A∩e 6= ∅ and A does not contain any 2 consecutive vertices. If v ∈ A, then
v is an internal vertex in G and by Lemma 2.3, we can write JG = JGv

∩ ((xv, yv) + JG\v).
It can be noted that Gv and Gv \ v are generalized block graphs on n and n − 1 vertices
respectively. If v2 ∈ A, then v2 is an internal vertex in G and it follows from Lemma 2.3 that
JG = JGv2

∩ ((xv2 , yv2) + JG\v2). We can make similar conclusion about Gv2 and Gv2 \ v2.
Now, suppose A ∩ e = ∅. If A = {v3}, then Gv and Gv \ v are generalized block graphs and
if A = {v4}, then Gv2 and Gv2 \ v2 are generalized block graphs. If A ∩ e 6= ∅ and v ∈ A or
A = {v3}, then set w = v. If A∩e 6= ∅ and v2 ∈ A or A = {v4}, then set w = v2. Then by [17,
Theorem 3.2] and (1), pd(S/JGw

) = n and pd(S/((xw, yw)+JGw\w)) = n+1. Hence it follows
from [19, Theorem 3.4] that βn,n+iv(Gw)(S/JGw

) and βn+1,n+1+iv(Gw\w)(S/((xw, yw) + JGw\w))
are extremal Betti numbers of S/JGw

and S/((xw, yw) + JGw\w) respectively. Since w is not
a simplicial vertex, we consider the long exact sequence (3) for i = n:

0 −→ TorSn+1

(

S

(xw, yw) + JGw\w
,K

)

n+j

−→ TorSn

(

S

JG

,K

)

n+j

−→

−→ TorSn

(

S

(xw, yw) + JG\w
,K

)

n+j

⊕ TorSn

(

S

JGw

,K

)

n+j

−→ · · · (6)
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By virtue of [20, Lemma 3.2], we have iv(G) > iv(Gw) = iv(Gw \w) and iv(G) > iv(G \ w).
Hence, βn,n+j(S/JGw

) = 0 for j ≥ iv(G). Since G \ w is a block graph on n − 1, by [7,
Theorem 1.1], pd(S/((xw, yw) + JG\w)) ≤ n. Now it follows from [13, Theorem 6] and (1)
that βn,n+j(S/((xw, yw) + JG\w)) = 0 for j ≥ iv(G) + 1. Therefore, we get the isomorphism:

TorSn+1

(

S

(xw, yw) + JGw\w
,K

)

n+j

≃ TorSn

(

S

JG
,K

)

n+j

forj ≥ iv(G) + 1. (7)

If v3 ∈ A or v4 ∈ A, then note that iv(G) = iv(Gw \w)+1, otherwise iv(G) = iv(Gw \w)+2.
Therefore it follows from (6) and (7) that either βn,n+iv(G)(S/JG) 6= 0 or βn,n+iv(G)−1(S/JG) 6=
0 and βn,n+j(S/JG) = 0 for j ≥ iv(G)+1. Hence, either βn,n+iv(G)−1(S/JG) or βn,n+iv(G)(S/JG)
is an extremal Betti number of S/JG.

Now the last case is A = {v3, v4}. Then Gv and Gv \v belong to class of graphs considered
in Theorem 3.7. Hence, βn−1,n−1+iv(Gv)(S/JGv

) and βn,n+iv(Gv\v)(S/((xv, yv) + JGv\v)) are
extremal Betti numbers. Note that iv(G) = iv(Gv \ v) + 1. Therefore, βn,n+j(S/((xv, yv) +
JGv\v)) = 0 for j ≥ iv(G). Since G \ v is a block graph on n − 1, by [7, Theorem 1.1],
pd(S/((xv, yv) + JG\v)) = n. Therefore, it follows from the long exact sequence (3) that

TorSn

(

S

JG

,K

)

n+j

≃ TorSn

(

S

(xv, yv) + JG\v
,K

)

n+j

for j ≥ iv(G).

Since iv(G) = iv(G \ v)+1, by the help of [13, Theorem 6] and the equation (1), we get that
βn,n+iv(G)(S/((xv, yv) + JG\v)) is an extremal Betti number of S/((xv, yv) + JG\v). Therefore,
βn,n+iv(G)(S/JG) is an extremal Betti number of S/JG.

Now we assume that k ≥ 5. Suppose, either A ∩ e = ∅ or if A ∩ e 6= ∅, then A does not
contain any k − 2 consecutive vertices. Let K ′ and K ′′ be complete graphs on vertex sets
NG[v] and NG(v) respectively. Also, let H ′ = Ck−1 ∪e′ K

′ and H ′′ = Ck−1 ∪e′ K
′′, where

e′ = {v2, vk} and V (Ck−1) = {v2, . . . , vk}. Then Gv (resp. Gv \ v) is the clique sum of H ′

(resp. H ′′) and a forest along some vertices of G. Obviously, A \ {v} ⊆ V (Ck−1) is the set
of vertices at which trees are attached in both Gv and Gv \ v.

Case 1: If |A| ≤ k − 4, then clearly Gv and Gv \ v satisfy induction hypotheses.

Case 2: Let |A| = k − 3. If v ∈ A, then also Gv and Gv \ v satisfy induction hypotheses.
If v /∈ A and v2 ∈ A, then Gv2 and Gv2 \ v2 satisfy induction hypotheses. Let v, v2 /∈ A.
Then v3 ∈ A or vk ∈ A. If v3 ∈ A, then Gv, Gv \ v and if vk ∈ A, then Gv2 , Gv2 \ v2 satisfy
induction hypotheses.

Case 3: Let |A| = k − 2 with A ∩ e 6= ∅. If v ∈ A, then Gv and Gv \ v satisfy induction
hypotheses, and if v /∈ A, then Gv2 and Gv2 \ v2 satisfy induction hypotheses.

If Gv satisfies induction hypotheses, then set w = v, and if Gv2 satisfies induction hy-
potheses then set w = v2. Now we apply induction on Gw and Gw \ w. Therefore,
either βn,n+iv(Gw)−1(S/JGw

) or βn,n+iv(Gw)(S/JGw
) is an extremal Betti number of S/JGw

.
Also, by induction and the equation (1), either βn+1,n+1+iv(Gw\w)−1(S/((xw, yw) + JGw\w)) or
βn+1,n+1+iv(Gw\w)(S/((xw, yw)+JGw\w)) is an extremal Betti number of S/((xw, yw)+JGw\w).
Here, it can be observed that iv(G) = iv(Gw)+1 = iv(Gw\w)+1. Hence, βn,n+j(S/JGw

) = 0
for j ≥ iv(G). Since G\w is a block graph, it follows from [7, Theorem 1.1] and [13, Theorem
6] that βn,n+j(S/((xw, yw) + JG\w)) = 0 for j ≥ iv(G) + 1. Therefore, we get from (6) that:

TorSn+1

(

S

(xw, yw) + JGw\w
,K

)

n+j

≃ TorSn

(

S

JG

,K

)

n+j

for j ≥ iv(G) + 1. (8)
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Hence, it follows from (6) and (8) that either βn,n+iv(G)−1(S/JG) or βn,n+iv(G)(S/JG) is an
extremal Betti number of S/JG.

Case 4: The last case is A ∩ e = ∅ and |A| = k − 2. Then Gv and Gv \ v are graphs
such that there are trees attached to k − 2 consecutive vertices with vk ∈ e′ ∩ A \ {v}.
Then by Theorem 3.8, we have that either βn−1,n−1+iv(Gv)−1(S/JGv

) or βn−1,n−1+iv(Gv)(S/JGv
)

is an extremal Betti number of S/JGv
and either βn,n+iv(Gv\v)−1(S/((xv, yv) + JGv\v)) or

βn,n+iv(Gv\v)(S/((xv, yv) + JGv\v)) is an extremal Betti number of S/((xv, yv) + JGv\v). Since,
iv(G) > iv(Gv \ v), βn,n+j(S/((xv, yv) + JGv\v)) = 0 for j ≥ iv(G). By [13, Theorem 6] and
(1), βn,n+iv(G\v)+1(S/((xv, yv) + JG\v)) is an extremal Betti number as G \ v is a block graph
on n− 1 vertices. Therefore, it follows from the long exact sequence (3) that:

TorSn

(

S

JG
,K

)

n+j

≃ TorSn

(

S

(xv, yv) + JG\v
,K

)

n+j

for j ≥ iv(G).

Note that iv(G) = iv(G \ v) + 1. Hence, βn,n+iv(G)(S/JG) is an extremal Betti number of
S/JG. Therefore, pd(S/JG) ≥ n, and so we have depth(S/JG) ≤ n. Hence, by Theorem 3.6,
depth(S/JG) = n, as desired. �

Remark 3.10. Let H = Ck∪eKm for k ≥ 3 and m ≥ 3. Let G be the clique sum of H and a
forest along some vertices of H . Let A = {u ∈ V (Ck) : there is a tree incident on u}. By [2,
Theorems 3.19 and 3.20] and Theorem 3.6, n ≤ depth(S/JG) ≤ n + 1. Moreover, it follows
from Theorems 3.6, 3.7 and 3.9 that A ∩ e 6= ∅ and G[A] is connected with k − 2 ≤ |A| if
and only if depth(S/JG) = n + 1.

Now we consider the case m = 2. Let G be a unicyclic graph of girth k(≥ 4). If there are
trees attached to k−2 consecutive vertices, then by Theorem 3.6, depth(S/JG) = n+1. We
now characterize unicyclic graph G such that depth(S/JG) = n.

Theorem 3.11. Let G be a unicyclic graph of girth k for k ≥ 4. Let A = {u ∈ V (Ck) :
there is a tree incident on u}. If A does not contain any k − 2 consecutive vertices, then
either βn,n+iv(G)−1(S/JG) or βn,n+iv(G)(S/JG) is an extremal Betti number of S/JG. In par-
ticular, depth(S/JG) = n and iv(G)− 1 ≤ reg(S/JG).

Proof. Suppose that A does not contain any k − 2 consecutive vertices. Since A 6= ∅,
we may assume that v ∈ A. Then G \ v is a disconnected block graph, and hence by
[7, Theorem 1.1] and (1), p = pd(S/((xv, yv) + JG\v)) ≤ n − 1. We prove the theo-
rem by induction on k. First assume that k = 4. Then v2, vk /∈ A, and hence Gv and
Gv \ v are generalized block graphs on n and n − 1 vertices respectively. By virtue of [17,
Theorem 3.2] and (1), we get that pd(S/JGv

) = n and pd(S/((xv, yv) + JGv\v)) = n + 1.
Hence, by [19, Theorem 3.4], βn,n+iv(Gv)(S/JGv

) is an extremal Betti number of S/JGv
and

βn+1,n+1+iv(Gv\v)(S/((xv, yv) + JGv\v)) is an extremal Betti number of S/((xv, yv) + JGv\v).
Since iv(G) > iv(Gv), βn,n+j(S/JGv

) = 0 for j ≥ iv(G). Thus, we have the following isomor-
phism from the long exact sequence (3):

TorSn+1

(

S

(xv, yv) + JGv\v
,K

)

n+j

≃ TorSn

(

S

JG
,K

)

n+j

forj ≥ iv(G). (9)

If v3 ∈ A, then iv(G) = iv(Gv \ v) + 1, otherwise iv(G) = iv(Gv \ v) + 2. Therefore, it
follows from (3) and (9) that either βn,n+iv(G)(S/JG) or βn,n+iv(G)−1(S/JG) is an extremal
Betti number of S/JG.
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Now we assume that k ≥ 5. Let nv = |NG(v)|. Then nv ≥ 3. Let H ′ = Ck−1 ∪e′ Knv+1

and H ′′ = Ck−1 ∪e′ Knv
where e′ = {v2, vk} and Ck−1 is a cycle on {v2, . . . , vk}. Therefore,

Gv (resp. Gv \ v ) is the clique sum of H ′ (resp. H ′′ ) and a forest along some vertices of
G. It can be easily seen that for Gv ( resp. Gv \ v), A \ v ⊂ V (Ck−1) is the set of vertices
along which trees are attached to H ′ (resp. H ′′). Set A′ = A \ v. If v2, vk /∈ A′, then
A′ ∩ e′ = ∅. Otherwise, if A′ ∩ e′ 6= ∅, then clearly A′ does not contain any k− 3 consecutive
vertices. Therefore, by Theorem 3.9, either βn,n+iv(Gv)−1(S/JGv

) or βn,n+iv(Gv)(S/JGv
) is

an extremal Betti number of S/JGv
and either βn+1,n+1+iv(Gv\v)−1(S/((xv, yv) + JGv\v)) or

βn+1,n+1+iv(Gv\v)(S/((xv, yv) + JGv\v)) is an extremal Betti number of S/((xv, yv) + JGv\v).
Note that iv(G) = iv(Gv \ v) + 1. Now the assertion follows from (3) and (9). �

Therefore, from Theorems 3.6 and 3.11, we can conclude the following result for unicyclic
graphs.

Corollary 3.12. Let G be a unicyclic graph on the vertex set [n] of girth k ≥ 4. Then
n ≤ depth(S/JG) ≤ n+1. Moreover, if there are trees attached to k− 2 consecutive vertices
of the cycle in G, then depth(S/JG) = n + 1, otherwise depth(S/JG) = n.

Also, we can conclude from Theorems 3.8 and 3.11 that.

Corollary 3.13. Let G be a unicyclic graph of girth k ≥ 4 with pd(S/JG) = p. If trees
are attached to every vertex of the cycle in G, then βp,p+iv(G)+1(S/JG) is an extremal Betti
number of S/JG, and hence iv(G) + 1 ≤ reg(S/JG). Otherwise, either βp,p+iv(G)−1(S/JG) or
βp,p+iv(G)(S/JG) is an extremal Betti number of S/JG, and hence iv(G)− 1 ≤ reg(S/JG).

4. Cycles with whiskers

Let G be a graph with the vertex set V (G) and v ∈ V (G). Let u1, . . . , ur be new vertices
and we define G∪W r(v) to be the graph with vertex set V (G∪W r(v)) = V (G)∪{u1, . . . , ur}
and edge set E(G ∪ W r(v)) = E(G) ∪ {{ui, v} : 1 ≤ i ≤ r} i.e., G ∪ W r(v) is the graph
obtained from G by attaching r whiskers or pendant edges at the vertex v. If r = 0, then
G ∪W 0(v) = G. Let v1, . . . , vs ∈ V (G). Then in a similar way, we can attach ri whiskers at
vi for 1 ≤ i ≤ s. We denote this graph by G ∪ (∪s

i=1W
ri(vi)). Algebraic effect of attaching

whiskers to a graph has already been studied for the case of monomial edge ideals, see [10],
[25] and [36]. The algebraic effect of attaching whiskers to a graph has been studied also for
binomial edge ideals. You can see, for instance, [5, 28, 29, 38]. Here we study the binomial
edge ideals of graphs with whiskers attached.

The graph G, given on the right, is
G = C5∪W 2(v1)∪W 2(v2)∪W 1(v5).

v1

v5 v2

v4 v3

G

Let G = Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. Then n = k +
∑k

i=1 ri. Let A = {vi ∈ V (Ck) :
ri ≥ 1}. If A = ∅, then G = Ck and in this case, Zafar and Zahid [38, Corollary 16] proved
that reg(S/JG) = k − 2. So, in the rest of the section we assume that A 6= ∅. If k = 3,
then 1 ≤ iv(G) ≤ 3, and hence by [13, Theorem 8], 2 ≤ reg(S/JG) = 1 + iv(G) ≤ 4. In
this section, we generalize their result for k ≥ 4 and prove that the regularity of S/JG is
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bounded below by k − 1 and bounded above by k + 1. We then characterize graphs G with
reg(S/JG) = k − 1, reg(S/JG) = k and reg(S/JG) = k + 1. We also classify G which admits
a unique extremal Betti number.

Theorem 4.1. Let H = Km ∪eCk for m ≥ 2, k ≥ 3. Let G = H ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0,
and suppose that A = {vi ∈ V (Ck) : ri ≥ 1}. If A 6= ∅, then k − 1 ≤ reg(S/JG) ≤ k + 1.

Proof. Note that G contains an induced path of length k− 1. Then the lower bound follows
from [24, Corollary 2.3]. Let e = {v, v2}. ThenG\v is the graphKm−1∪v2Pk−1∪(∪

k
i=2W

ri(vi))
with r1 isolated vertices, where V (Pk−1) = {v2, . . . , vk}. Since iv(G \ v) ≤ k − 1, it follows
from [13, Theorem 8] and (1) that reg(S/((xv, yv) + JG\v)) ≤ k. We prove the upper bound
by induction on k. Assume that k = 3. If m = 2, then the assertion follows from [13,
Theorem 8]. Suppose now that m ≥ 3. Since v is an internal vertex, by Lemma 2.3,
JG = JGv

∩ ((xv, yv) + JG\v), where Gv = Km+r1+1 ∪W r2(v2)∪W r3(v3). Therefore, Gv \ v =
Km+r1 ∪W r2(v2) ∪W r3(v3). Hence, by [13, Theorem 8], reg(S/JGv

) = iv(Gv) + 1 = iv(Gv \
v) + 1 = reg(S/((xv, yv) + JGv\v)) ≤ 3. We apply Lemma 2.2 on the short exact sequence
(2) to get that reg(S/JG) ≤ 4. If A = {v}, then Gv = Km+r1+1, Gv \ v = Km+r1 and G \ v =
Km−1 ∪v2 P2 with r1 isolated vertices. Therefore, reg(S/JGv

) = 1 = reg(S/((xv, yv) + JGv\v))
and reg(S/((xv, yv) + JG\v)) = 2. Thus it follows from Lemma 2.2 and the short exact
sequence (2) that reg(S/JG) = 2.

Now assume that k ≥ 4. Note that Gv = Km+r1+1 ∪{v2,vk} Ck−1 ∪ (∪k
i=2W

ri(vi)) and
Gv \v = Km+r1∪{v2,vk}Ck−1∪(∪k

i=2W
ri(vi)), where V (Ck−1) = {v2, . . . , vk}. If A = {v}, then

Gv = Km+r1+1 ∪{v2,vk} Ck−1 and Gv \ v = Km+r1 ∪{v2,vk} Ck−1 . Thus, by [15, Theorem 3.12],
reg(S/JGv

) = reg(S/((xv, yv)+JGv\v)) = k−2. Also, in this case G\v = Km−1∪v2 Pk−1 with
r1 isolated vertices, and hence by Proposition 3.5 and (1), reg(S/((xv, yv) + JG\v)) ≤ k − 1.
Therefore, by Lemma 2.2 and the short exact sequence (2), we have that reg(S/JG) ≤ k−1.
Hence, if A = {v}, then reg(S/JG) = k − 1. Let vi ∈ A for some 2 ≤ i ≤ k. Then by
induction, reg(S/JGv

) ≤ k and reg(S/((xv, yv) + JGv\v)) ≤ k. Thus, Lemma 2.2 and the
short exact sequence (2) together imply that reg(S/JG) ≤ k + 1. �

Considering m = 2 in Theorem 4.1, we obtain bounds for cycles with whiskers.

Corollary 4.2. Let k ≥ 3 and G = Ck ∪ (∪k
i=1W

ri(vi)), ri ≥ 0. Let A = {vi ∈ V (Ck) : ri ≥
1}. If A 6= ∅, then k−1 ≤ reg(S/JG) ≤ k+1. Moreover, if |A| = 1, then reg(S/JG) = k−1.

We now characterize G with reg(S/JG) = k+1. First, we prove the following Proposition.

Proposition 4.3. Let H = Km ∪e Ck for m ≥ 2, k ≥ 3. Let G = H ∪ (∪k
i=1W

ri(vi)) for
ri ≥ 0, and suppose that A = {vi ∈ V (Ck) : ri ≥ 1}. If e * A, then reg(S/JG) ≤ k.

Proof. Let e = {v, v2}. We assume that v2 /∈ A, i.e., r2 = 0. We proceed by induction on
k. Note that G \ v = Km−1 ∪v2 Pk−1 ∪ (∪k

i=3W
ri(vi)) with r1 isolated vertices. Hence by [13,

Theorem 8] and (1), reg(S/((xv, yv) + JG\v)) ≤ k. For k = 3, Gv = Km+r1+1 ∪W r3(v3) and
Gv\v = Km+r1∪W

r3(v3). Then by virtue of [13, Theorem 8], reg(S/JGv
) = reg(S/((xv, yv)+

JGv\v)) ≤ 2. Therefore, by applying Lemma 2.2 on the short exact sequence (2), we get
reg(S/JG) ≤ 3. Now suppose that k ≥ 4. Then Gv = Km+r1+1 ∪{v2,vk} Ck−1 ∪ (∪k

i=3W
ri(vi))

and Gv \ v = Km+r1 ∪{v2,vk} Ck−1 ∪ (∪k
i=3W

ri(vi)). Hence by induction, reg(S/JGv
) ≤ k − 1

and reg(S/((xv, yv) + JGv\v)) ≤ k − 1. Therefore, it follows from Lemma 2.2 and the short
exact sequence (2) that reg(S/JG) ≤ k. �
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Corollary 4.4. Let k ≥ 3 and G = Ck ∪ (∪k
i=1W

ri(vi)), ri ≥ 0. Let A = {vi ∈ V (Ck) : ri ≥
1}. Then A = V (Ck) if and only if reg(S/JG) = k+ 1. Moreover, in this case, S/JG admits
a unique extremal Betti number.

Proof. First, we assume that whiskers are attached at every vertex of Ck i.e., ri ≥ 1 for all
1 ≤ i ≤ k. For k = 3, by [13, Theorem 8], we have that βn−1,n−1+4(S/JG) is the unique
extremal Betti number. For k ≥ 4, by Theorem 3.8, βn−1,n−1+k+1(S/JG) is an extremal Betti
number, which further implies that k+1 ≤ reg(S/JG). By Corollary 4.2, reg(S/JG) ≤ k+1.
Hence, reg(S/JG) = k+1 and S/JG admits a unique extremal Betti number. For the converse
part, suppose there exists i ∈ [k] such that ri = 0. Then by Proposition 4.3, reg(S/JG) ≤ k,
which is a contradiction. Hence, the assertion follows. �

If ∅ 6= A ( V (Ck), then by Corollary 4.2 and Proposition 4.3, k− 1 ≤ reg(S/JG) ≤ k. We
now characterize G with reg(S/JG) = k − 1 and reg(S/JG) = k.

Theorem 4.5. Let k ≥ 4 and G = Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. Let A = {vi ∈ V (Ck) :
ri ≥ 1}. If either |A| = 1 or |A| = 2 and vertices of A are adjacent, then reg(S/JG) = k− 1.
Moreover, in this case, S/JG admits a unique extremal Betti number.

Proof. Suppose G = Ck ∪ (∪k
i=1W

ri(vi)) and whiskers are attached only at one vertex. Then
by Corollary 4.2, reg(S/JG) = k − 1. Now assume that whiskers are attached only at two
adjacent vertices of Ck, say G = Ck ∪W r1(v)∪W r2(v2) for r1, r2 ≥ 1. Note that G \ v is the
graph Pk−1 ∪W r2(v2) with r1 isolated vertices, where V (Pk−1) = {v2, . . . , vk}. Thus by [5,
Theorem 4.1] and (1), reg(S/((xv, yv) + JG\v)) = k − 1. Here, Gv = Kr1+3 ∪{v2,vk} (Ck−1 ∪
W r2(v2)) and Gv \ v = Kr1+2 ∪{v2,vk} (Ck−1 ∪ W r2(v2)). Then it follows from the proof of
Theorem 4.1 that reg(S/JGv

) = k − 2 and reg(S/((xv, yv) + JGv\v)) = k − 2. Therefore by
Lemma 2.2 and the short exact sequence (2), reg(S/JG) ≤ k− 1. Hence, reg(S/JG) = k− 1.
Now it follows from Corollary 3.13 that βp,p+k−1(S/JG) is the unique extremal Betti number
of S/JG, where p = pd(S/JG). �

Now we prove that if G does not belong to the class of graphs considered in Theorem 4.5,
then reg(S/JG) = k. To prove this, we first need to compute extremal Betti number of some
intermediate graphs.

Proposition 4.6. Let G = Ck ∪e Km ∪e′ Km′ for k,m,m′ ≥ 3. Then βn,n+k(S/JG) is the
unique extremal Betti number of S/JG.

Proof. Let e = {v, v2}. It is enough to prove that n ≤ depth(S/JG), reg(S/JG) ≤ k and
βn,n+k(S/JG) 6= 0. We prove this by induction on k. Assume that k = 3. Since e ∩ e′ 6= ∅,
we assume that e′ = {v, v3}. Then, it can be seen that Gv = Kn, Gv \ v = Kn−1 and G \ v =
Km−1 ∪v2 P2 ∪v3 Km′−1. Thus, we have that depth((S/JGv

)) = n + 1, depth(S/((xv, yv) +
JGv\v)) = n and reg((S/JGv

)) = reg(S/((xv, yv) + JGv\v)) = 1. Moreover, βn−1,n(S/JGv
) and

βn,n+1(S/((xv, yv)+JGv\v)) are the unique extremal Betti numbers of S/JGv
and S/((xv, yv)+

JGv\v), respectively. By Proposition 3.5, reg(S/((xv, yv) + JG\v)) = 3. Also, it follows from
[7, Theorem 3.1] that JG\v is Cohen-Macaulay. Hence, depth(S/((xv, yv) + JG\v)) = n and
βn,n+3(S/((xv, yv) + JG\v)) is the unique extremal Betti number. Therefore, by applying
Lemmas 2.1 and 2.2 on the short exact sequence (2), we get that depth(S/JG) ≥ n and
reg(S/JG) ≤ 3. Now it follows from the long exact sequence (3) for i = n and j = 3 that

TorSn

(

S

JG

,K

)

n+3

≃ TorSn

(

S

(xv, yv) + JG\v
,K

)

n+3

6= 0.
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Therefore, βn,n+3(S/JG) 6= 0. Now assume that k ≥ 4.

Case 1: Let e ∩ e′ 6= ∅. Suppose v ∈ e ∩ e′. Then e′ = {v, vk}. Note that Gv =
Km+m′−1∪{v2,vk}Ck−1, Gv \ v = Km+m′−2 ∪{v2,vk}Ck−1 and G \ v = Km−1∪v2 Pk−1∪vk Km′−1.
Thus, by virtue of [15, Proposition 3.11], we have reg(S/JGv

) = k − 2 = reg(S/((xv, yv) +
JGv\v)). By Proposition 3.4, depth(S/JGv

) = n, depth(S/((xv, yv) + JGv\v)) = n − 1 and
βn,n+k−2(S/JGv

), βn+1,n+1+k−2(S/((xv, yv) + JGv\v)) are the unique extremal Betti num-
bers. It follows from Proposition 3.5 that reg(S/((xv, yv) + JG\v)) = k. By virtue of [7,
Theorem 3.1], JG\v is Cohen-Macaulay. Therefore, depth(S/((xv, yv) + JG\v)) = n and
βn,n+k(S/((xv, yv) + JG\v)) is the unique extremal Betti number. Hence, by using Lemmas
2.1 and 2.2 on the short exact sequence (2), we have n ≤ depth(S/JG) and reg(S/JG) ≤ k.
Consider the long exact sequence (3) for i = n, j = k and we get that

TorSn

(

S

JG
,K

)

n+k

≃ TorSn

(

S

(xv, yv) + JG\v
,K

)

n+k

6= 0.

Case 2: Let e ∩ e′ = ∅. Let e′ = {vi, vi+1} for i ≥ 3. It can be noted that Gv =
Km+1∪{v2,vk}Ck−1∪e′Km′ , Gv\v = Km∪{v2,vk}Ck−1∪e′Km′ and G\v = Km−1∪v2Pk−1∪e′Km′ .
Thus, by induction and (1), βn,n+k−1(S/JGv

) and βn+1,n+1+k−1(S/((xv, yv) + JGv\v)) are the
unique extremal Betti numbers of S/JGv

and S/((xv, yv) + JGv\v) respectively. By virtue of
Proposition 3.5, reg(S/((xv, yv) + JG\v)) = k − 1. It is known [7, Theorem 3.1] that JG\v is
Cohen-Macaulay, and hence depth(S/((xv, yv)+JG\v)) = n and βn,n+k−1(S/((xv, yv)+JG\v))
is the unique extremal Betti number. Therefore, by applying Lemmas 2.1, 2.2 on the short
exact sequence (2), we have depth(S/JG) ≥ n and reg(S/JG) ≤ k. Also, it follows from the
long exact sequence (3) for i = n+ 1 and in graded degree j = k − 1 that

TorSn+1

(

S

(xv, yv) + JGv\v
,K

)

n+1+k−1

≃ TorSn

(

S

JG
,K

)

n+1+k−1

6= 0.

Therefore, βn,n+k(S/JG) 6= 0, as required. �

Proposition 4.7. Let m ≥ 3, k ≥ 4 and G = Km ∪e Ck ∪ W r1(v) for r1 ≥ 1 with v /∈ e.
Then βn,n+k(S/JG) is the unique extremal Betti number of S/JG.

Proof. As in the previous result, we prove that n ≤ depth(S/JG), reg(S/JG) ≤ k and
βn,n+k(S/JG) 6= 0. Note that G \ v = Km ∪e Pk−1 with r1 isolated vertices. By Proposition
3.5, reg(S/((xv, yv) + JG\v)) = k − 2, and by [7, Theorem 1.1], pd(S/((xv, yv) + JG\v)) =
n−r1 ≤ n−1. Here, Gv = Km∪eCk−1∪{v2,vk}Kr1+3 and Gv\v = Km∪eCk−1∪{v2,vk}Kr1+2. By
virtue of Proposition 4.6, we have that βn,n+k−1(S/JGv

) and βn+1,n+1+k−1(S/((xv, yv)+JGv\v))
are the unique extremal Betti numbers of S/JGv

and S/((xv, yv) + JGv\v) respectively. Then
it follows from Lemmas 2.1, 2.2 and the short exact sequence (2) that depth(S/JG) ≥ n and
reg(S/JG) ≤ k. Now consider the long exact sequence (3) for i = n + 1 and j = k − 1, we
get the isomorphism:

TorSn+1

(

S

(xv, yv) + JGv\v
,K

)

n+1+k−1

≃ TorSn

(

S

JG
,K

)

n+1+k−1

.

This implies that βn,n+k(S/JG) 6= 0, as desired. �

Proposition 4.8. Let k ≥ 4, m ≥ 2 and G = Km ∪e Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. Let
A = {vi ∈ V (Ck) : ri ≥ 1}. If |A ∩ e| = 1, |A| = 2 and vertices of A are not adjacent, then
reg(S/JG) = k. Moreover, S/JG admits a unique extremal Betti number.
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Proof. Let e = {v, vk}, A = {v, vi} such that v and vi are non-adjacent. Then 3 ≤ i ≤ k− 1
and G = Km ∪e Ck ∪ W r1(v) ∪ W ri(vi) for r1, ri ≥ 1. It follows from Theorem 3.9 and
Proposition 4.3 that depth(S/JG) = n and reg(S/JG) ≤ k respectively. So we only need
to show that βn,n+k(S/JG) 6= 0. Note that G \ v is a block graph with r1 isolated vertices.
Thus, by [7, Theorem 1.1] and (1), pd(S/((xv, yv)+ JG\v)) ≤ n− 1. Also, it can be observed
that Gv = Km+r1+1 ∪{v2,vk} Ck−1 ∪W ri(vi) and Gv \ v = Km+r1 ∪{v2,vk} Ck−1 ∪W ri(vi) with
vi /∈ {v2, vk}. Then Gv and Gv \ v belong to the class of graphs considered in Proposition
4.7. Hence, βn,n+k−1(S/JGv

) and βn+1,n+1+k−1(S/((xv, yv) + JGv\v)) are the unique extremal
Betti numbers. Now it follows from the long exact sequence (3) for i = n+ 1 and j = k − 1
that βn,n+k(S/JG) 6= 0. Hence, the assertion follows. �

Corollary 4.9. Let k ≥ 4 and G = Ck∪(∪
k
i=1W

ri(vi)) for ri ≥ 0. Let A = {vi ∈ V (Ck) : ri ≥
1}. If |A| = 2 and vertices of A are non-adjacent or 3 ≤ |A| ≤ k − 1, then reg(S/JG) = k.

Proof. Let vj , vl ∈ A such that vj and vl are non-adjacent. Set G
′ = Ck ∪W rj (vj)∪W rl(vl).

Then, clearly G′ is an induced subgraph of G. By considering m = 2 in Proposition 4.8, we
have reg(SG′/JG′) = k. Hence it follows from [24, Corollary 2.2] and Proposition 4.3 that
reg(S/JG) = k. �

We now combine the results from Theorem 4.5 and Corollaries 4.2, 4.4, 4.9 to get the
following conclusion.

Corollary 4.10. Let G = Ck ∪ (∪k
i=1W

ri(vi)), ri ≥ 0. Let A = {vi ∈ V (Ck) : ri ≥ 1}. If
A 6= ∅, then k − 1 ≤ reg(S/JG) ≤ k + 1. Moreover,

(1) reg(S/JG) = k + 1 if and only if A = V (Ck),
(2) reg(S/JG) = k − 1 if and only if |A| = 1 or |A| = 2 and vertices of A are adjacent,
(3) reg(S/JG) = k if and only if A contains at least two non-adjacent vertices and A (

V (Ck).

Let k ≥ 4 and G = Ck ∪ (∪k
i=1W

ri(vi)), ri ≥ 0. If reg(S/JG) = k+1 or reg(S/JG) = k−1,
then we proved that S/JG admits a unique extremal Betti number, see Corollary 4.4 and
Theorem 4.5. From now, we suppose reg(S/JG) = k. We show that S/JG does not always
admit a unique extremal Betti number. In rest of the section, we study behavior of uniqueness
of extremal Betti number for them. Let A = {vi ∈ V (Ck) : ri ≥ 1}. First, we consider the
case when G[A] is disconnected.

Proposition 4.11. Let k ≥ 4 and G = Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. Let A = {vi ∈
V (Ck) : ri ≥ 1}. If 2 ≤ |A| ≤ k − 2 and G[A] is disconnected, then βn,n+k(S/JG) is the
unique extremal Betti number of S/JG.

Proof. Let A = {vi ∈ V (Ck) : ri ≥ 1}. Then G = Ck ∪ (∪vi∈AW
ri(vi)) for ri ≥ 1.

If |A| = 2, then we choose e such that A ∩ e 6= ∅. If |A| ≥ 3, then choose vj ∈ A
such that G[A \ vj ] is disconnected and e ∩ A = {vj}. Let H = Km ∪e G for m ≥ 2.
Set n′ = |V (H)|. Then n′ = n + m − 2. We claim that βn′,n′+k(SH/JH) 6= 0. We
prove this by induction on |A|. If |A| = 2, then the assertion follows from Proposition
4.8. Suppose |A| ≥ 3. Note that Hvj = Km+rj+1 ∪{vj−1,vj+1} Ck−1 ∪ (∪vi∈A\{vj}W

ri(vi))
and Hvj \ vj = Km+rj ∪{vj−1,vj+1} Ck−1 ∪ (∪vi∈A\{vj}W

ri(vi)). Since G[A \ {vj}] is discon-
nected with |A \ {vj}| ≥ 2, Hvj and Hvj \ vj satisfy induction hypotheses. Therefore,
βn′,n′+k−1(SH/JHvj

) and βn′+1,n′+1+k−1(SH/((xvj , yvj ) + JHvj
\vj )) are the unique extremal

Betti numbers of SH/JHvj
and SH/((xvj , yvj ) + JHvj

\vj ) respectively. By [7, Theorem 1.1],
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pd(SH/((xvj , yvj ) + JH\vj )) ≤ n′ − 1. Now consider the long exact sequence (3) for the pair
(H, vj) to get that βn′,n′+k(SH/JH) 6= 0. Taking m = 2, we get βn,n+k(S/JG) 6= 0. By
Corollaries 3.12 and 4.9, we have depth(S/JG) = n and reg(S/JG) = k. Hence, βn,n+k(S/JG)
is the unique extremal Betti number of S/JG. �

From now, we suppose G[A] is connected.

Proposition 4.12. Let k ≥ 5, m ≥ 3 and G = Km ∪e Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. Let
A = {vi ∈ V (Ck) : ri ≥ 1}. If |A ∩ e| = 1, 2 ≤ |A| ≤ k − 3 and G[A] is connected, then
βn,n+k−1(S/JG) is an extremal Betti number. In particular, if k ≥ 6, G = Ck∪ (∪k

i=1W
ri(vi))

and G[A] is connected with 3 ≤ |A| ≤ k − 3, then βn,n+k−1(S/JG) is an extremal Betti
number, i.e., S/JG does not admit a unique extremal Betti number.

Proof. Let G = Km ∪e Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. By Theorem 3.9, we have either
βn,n+k−1(S/JG) or βn,n+k(S/JG) is an extremal Betti number. So, it is enough to show
that βn,n+k(S/JG) = 0. We prove this by induction on |A|. Let e = {v, vk}. Since |A ∩
e| = 1, assume that v ∈ A. Set A = {v, v2, . . . , vt} for some 2 ≤ t ≤ k − 3. Since,
G \ v is a disconnected block graph with r1 + 1 components, by [7, Theorem 1.1] and (1),
pd(S/((xv, yv) + JG\v)) = n − r1 ≤ n − 1. Suppose |A| = 2. Then it can be noted that
Gv = Km+r1+1 ∪{vk ,v2} Ck−1 ∪ W r2(v2) and Gv \ v = Km+r1 ∪{vk ,v2} Ck−1 ∪ W r2(v2). Now
it follows from the proof of Theorem 4.1 that reg(S/JGv

) = k − 2 = reg(S/((xv, yv) +
JGv\v)). Therefore, by Theorem 3.9, βn,n+k−2(S/JGv

) and βn+1,n+1+k−2(S/((xv, yv) + JGv\v))
are extremal Betti numbers, and hence βn,n+k(S/JGv

) = 0 = βn+1,n+k(S/((xv, yv) + JGv\v)).
Thus, it follows from the long exact sequence (3) that βn,n+k(S/JG) = 0. Now assume that
|A| ≥ 3. Then Gv = Km+r1+1 ∪{vk ,v2} Ck−1 ∪ (∪t

i=2W
ri(vi)) and Gv \ v = Km+r1 ∪{vk ,v2}

Ck−1 ∪ (∪t
i=2W

ri(vi)). Clearly, Gv and Gv \ v satisfy induction hypotheses. Therefore,
βn,n+k−1(S/JGv

) = 0 = βn+1,n+1+k−1(S/((xv, yv) + JGv\v)). Hence, from the long exact
sequence (3), we get βn,n+k(S/JG) = 0.

Let G = Ck ∪ (∪k
i=1W

ri(vi)) for ri ≥ 0. Set A = {v, v2, . . . , vt} for some 3 ≤ t ≤
k − 3. Then G = Ck ∪ (∪t

i=1W
ri(vi)) for ri ≥ 1. Observe that Gv = Kr1+3 ∪{vk ,v2} Ck−1 ∪

(∪t
i=2W

ri(vi)) and Gv \ v = Kr1+2 ∪{vk ,v2} Ck−1 ∪ (∪t
i=2W

ri(vi)). Thus, by the above part
and (1), βn,n+k−1(S/JGv

) = 0 = βn+1,n+1+k−1(S/((xv, yv) + JGv\v)). Since, G \ v is a forest
with r1 + 1 trees, by [7, Theorem 1.1] and (1), pd(S/((xv, yv) + JG\v)) = n − r1 ≤ n − 1.
Hence, it follows from the long exact sequence (3) that βn,n+k(S/JG) = 0. By Corollary 4.9,
we have reg(S/JG) = k. Therefore, βn,n+k−1(S/JG) is not the unique extremal Betti number
of S/JG. �

Now we consider the case when |A| = k − 2 and G[A] is connected. We assume that
A = {v, v2, . . . , vk−2}. Then G = Ck ∪ (∪k−2

i=1W
ri(vi)) for ri ≥ 1. Now, we investigate the

uniqueness of extremal Betti number of S/JG.

Proposition 4.13. Let k ≥ 4, m ≥ 3 and G = Km ∪{v,vk} Ck ∪ (∪k−2
i=1W

ri(vi)) for ri ≥ 1.
If ri ≥ 2 for all 1 ≤ i ≤ k − 3, then βn−1,n−1+k−1(S/JG) is an extremal Betti number.
In particular, if k ≥ 5, G = Ck ∪ (∪k−2

i=1W
ri(vi)) with ri ≥ 2 for all 2 ≤ i ≤ k − 3, then

βn−1,n−1+k−1(S/JG) is an extremal Betti number, i.e., S/JG does not admit a unique extremal
Betti number.

Proof. Let G = Km ∪{v,vk} Ck ∪ (∪k−2
i=1W

ri(vi)), ri ≥ 1 and suppose that ri ≥ 2 for all
1 ≤ i ≤ k − 3. Then it follows from [7, Theorem 1.1] and (1) that pd(S/((xv, yv) + JG\v)) =
n − r1 ≤ n − 2. Due to Theorem 3.8, it is enough to show that βn−1,n−1+k(S/JG) = 0. We
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proceed it by induction on k. Assume that k = 4. Then Gv = Km+r1+1 ∪{v2,vk} C3 ∪W r2(v2)
and Gv \ v = Km+r1 ∪{v2,vk} C3 ∪W r2(v2). Thus, Gv and Gv \ v belong to the class of graphs
considered in Theorem 3.7. Hence, βn−1,n−1+2(S/JGv

) and βn,n+2(S/((xv, yv) + JGv\v)) are
extremal Betti numbers. Therefore, βn−1,n−1+4(S/JGv

) = 0 = βn,n−1+4(S/((xv, yv) + JGv\v)).
Now it follows from the long exact sequence (3) for i = n − 1 that βn−1,n−1+4(S/JG) = 0.
We assume that k ≥ 5. Then Gv = Km+r1+1 ∪{v2,vk} Ck−1 ∪ (∪k−2

i=2W
ri(vi)) and Gv \ v =

Km+r1 ∪{v2,vk}Ck−1∪ (∪k−2
i=2W

ri(vi)). Thus, by induction and (1), βn−1,n−1+k−1(S/JGv
) = 0 =

βn,n+k−1(S/((xv, yv) + JGv\v)). Hence, from the long exact sequence (3) for i = n− 1, we get
βn−1,n−1+k(S/JG) = 0.

Let G = Ck ∪ (∪k−2
i=1W

ri(vi)), where r1, rk−2 ≥ 1 and ri ≥ 2 for all 2 ≤ i ≤ k− 3. As in the
above part, it is enough to show that βn−1,n−1+k(S/JG) = 0. Note that G \ v is the graph
Pk−1∪(∪

k−2
i=2W

ri(vi)) with r1 isolated vertices. So, iv(G\v) = k−2. Then by [13, Theorem 8]
and (1) reg(S/((xv, yv)+JG\v)) = k−1, and hence βn−1,n−1+k(S/((xv, yv)+JG\v)) = 0. Here,

Gv = Kr1+3 ∪{v2,vk} Ck−1 ∪ (∪k−2
i=2W

ri(vi)) and Gv \ v = Kr1+2 ∪{v2,vk} Ck−1 ∪ (∪k−2
i=2W

ri(vi)).
Therefore, by the above part and (1), βn−1,n−1+k−1(S/JGv

) = 0 = βn,n+k−1(S/((xv, yv) +
JGv\v)). Now it follows from the long exact sequence (3) that βn−1,n−1+k(S/JG) = 0, as
required. �

Proposition 4.14. Let k ≥ 4 and m ≥ 3. Let G = Km∪{v,vk}Ck∪ (∪k−2
i=1W

ri(vi)) for ri ≥ 1.
If ri = 1 for some 1 ≤ i ≤ k − 3, then βn−1,n−1+k(S/JG) is an extremal Betti number of
S/JG. In particular, if k ≥ 5, G = Ck ∪ (∪k−2

i=1W
ri(vi)) and ri = 1 for some 2 ≤ i ≤ k − 3,

then βn−1,n−1+k(S/JG) is the unique extremal Betti number of S/JG.

Proof. Due to Theorem 3.8, it is enough to show that βn−1,n−1+k(S/JG) 6= 0. To prove this we
proceed by induction on k. Assume that k = 4. Then G = Km∪{v,vk}C4∪W r1(v)∪W r2(v2)
for r1 = 1 and r2 ≥ 1. In this case, G\v is the graph Km−1∪vk P3∪W r2(v2) with one isolated
vertex. Therefore, by [7, Theorem 1.1] and (1), pd(S/((xv, yv)+JG\v)) = n−1, and hence by
[13, Theorem 8] and (1), βn−1,n−1+4(S/((xv, yv) + JG\v)) is an extremal Betti number. Note
that Gv = Km+2∪{v2,vk}C3∪W

r2(v2) and Gv\v = Km+1∪{v2,vk}C3∪W
r2(v2). By Proposition

4.3, reg(S/JGv
) ≤ 3 and reg(S/((xv, yv) + JGv\v)) ≤ 3. Therefore, βn−1,n−1+j(S/JGv

) = 0 =
βn−1,n−1+j(S/((xv, yv) + JGv\v)) for j ≥ 4. Hence it follows from the long exact sequence (3)
that βn−1,n−1+4(S/JG) = βn−1,n−1+4(S/((xv, yv) + JG\v)) 6= 0.

Now, we assume that k ≥ 5. Let ri = 1 for some 1 ≤ i ≤ k−3. Then Gv = Km+r1+1∪{v2,vk}

Ck−1 ∪ (∪k−2
i=2W

ri(vi)) and Gv \ v = Km+r1 ∪{v2,vk} Ck−1 ∪ (∪k−2
i=2W

ri(vi)).

Case 1: Let r1 = 1 and ri ≥ 2 for all 2 ≤ i ≤ k − 3. Then Gv = Km+2 ∪{v2,vk} Ck−1 ∪

(∪k−2
i=2W

ri(vi)) and Gv \v = Km+1∪{v2,vk}Ck−1∪(∪k−2
i=2W

ri(vi)). By virtue of Proposition 4.3,
we have reg(S/JGv

) ≤ k−1 and reg(S/((xv, yv)+JGv\v)) ≤ k−1. Hence, βn−1,n−1+j(S/JGv
) =

0 = βn−1,n−1+j(S/((xv, yv) + JGv\v)) for j ≥ k. In this case, G \ v is the graph Km−1 ∪vk

Pk−1 ∪ (∪k−2
i=2W

ri(vi)) with one isolated vertex. Therefore, by [7, Theorem 1.1] and (1),
pd(S/((xv, yv)+JG\v)) = n−1, and hence by [13, Theorem 8] and (1), βn−1,n−1+k(S/((xv, yv)+
JG\v)) is an extremal Betti number. Therefore, from the long exact sequence (3), we get
that βn−1,n−1+k(S/JG) = βn−1,n−1+k(S/((xv, yv) + JG\v)) 6= 0.

Case 2: Let ri = 1 for some 2 ≤ i ≤ k − 3. By [7, Theorem 1.1] and (1), pd(S/((xv, yv) +
JG\v)) = n− r1 ≤ n− 1. In this case, notice that Gv and Gv \ v satisfy induction hypothe-
ses. Therefore, βn−1,n−1+k−1(S/JGv

) and βn,n+k−1(S/((xv, yv) + JGv\v)) are extremal Betti
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numbers. Then it follows from the long exact sequence (3) for i = n − 1 and j = k that
βn−1,n−1+k(S/JG) 6= 0.

As in the above part, it is enough to show that βn−1,n−1+k(S/JG) 6= 0. Note that G \ v is
the graph Pk−1∪(∪k−2

i=2W
ri(vi)) with r1 isolated vertices. Therefore, by [7, Theorem 1.1], p =

pd(S/((xv, yv)+JG\v)) = n−r2 ≤ n−1. Observe thatGv = Kr1+3∪{v2,vk}Ck−1∪(∪
k−2
i=2W

ri(vi))

and Gv \ v = Kr1+2 ∪{v2,vk} Ck−1 ∪ (∪k−2
i=2W

ri(vi)). Therefore, by the above part and (1),
βn−1,n−1+k−1(S/JGv

) and βn,n+k−1(S/((xv, yv) + JGv\v)) are extremal Betti numbers. Hence
the assertion follows from the long exact sequence (3) for i = n− 1 and j = k. �

Now we are left with the case that |A| = k − 1. In this case, we prove that S/JG admits
a unique extremal Betti number.

Proposition 4.15. Let H = Km ∪e Ck for k ≥ 3, m ≥ 2. Let G = H ∪ (∪k
i=1W

ri(vi)) for
ri ≥ 0. Let A = {vi ∈ V (Ck) : ri ≥ 1}. If |A| = k − 1 and e * A, then βn−1,n−1+k(S/JG) is
an extremal Betti number. In particular, if k ≥ 3, G = Ck ∪ (∪k

i=1W
ri(vi)) with |A| = k− 1,

then S/JG admits a unique extremal Betti number.

Proof. As in the previous result, it is enough to show that βn−1,n−1+k(S/JG) 6= 0. Let
e = {v, v2}. We may assume that r2 = 0. Then G = Km ∪e Ck ∪ (∪k

i=1,i 6=2W
ri(vi)) for

ri ≥ 1. We prove the first part by induction on k. If k = 3 and m = 2, then the result
follows from [13, Theorem 8]. If k = 3 and m ≥ 3, then the result follows from Theorem
3.7. Now assume that k ≥ 4. Note that Gv = Km+r1+1 ∪{v2,vk} Ck−1 ∪ (∪k

i=3W
ri(vi)), ri ≥ 1

and Gv \ v = Km+r1 ∪{v2,vk} Ck−1 ∪ (∪k
i=3W

ri(vi)), ri ≥ 1. Thus, by induction and (1),
βn−1,n−1+k−1(S/JGv

) and βn,n+k−1(S/((xv, yv) + JGv\v)) are extremal Betti numbers. Also,
by [7, Theorem 1.1], pd(S/((xv, yv) + JG\v)) = n − r1 ≤ n − 1. Hence it follows from the
long exact sequence (3) for i = n− 1 and j = k that βn−1,n−1+k(S/JG) 6= 0. Taking m = 2,
we get the second assertion. �

We now conclude the following result for the behavior of uniqueness of extremal Betti
number for cycles with whiskers graphs.

Corollary 4.16. Let G = Ck ∪ (∪k
i=1W

ri(vi)), ri ≥ 0 with reg(S/JG) = k. Let A = {vi ∈
V (Ck) : ri ≥ 1}.

(1) If 2 ≤ |A| ≤ k − 2 and G[A] is disconnected, then S/JG admits a unique extremal Betti
number.

(2) Suppose G[A] is connected:
(a) If 3 ≤ |A| ≤ k − 3, then S/JG does not admit a unique extremal Betti number.
(b) Suppose |A| = k − 2, A = {v1, . . . , vk−2}. If ri ≥ 2 for all 2 ≤ i ≤ k − 3, then S/JG

does not admit a unique extremal Betti number.
(c) Suppose |A| = k − 2, A = {v1, . . . , vk−2}. If ri = 1 for some 2 ≤ i ≤ k − 3, then

S/JG admits a unique extremal Betti number
(d) If |A| = k − 1, then S/JG admits a unique extremal Betti number.

To get a better insight into our results, let us look at some of the following examples:

n=11

G1

n=8

G2

n=9

G3

n=9

G4
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By Corollary 4.4, Theorem 4.5 and Corollary 4.9, reg(SG1/JG1) = 6, reg(SG2/JG2) = 4,
reg(SG3/JG3) = 5 and reg(SG4/JG4) = 5. Also, we get that β10,16(SG1/JG1) and β8,12(SG2/JG2)
are the unique extremal Betti numbers of SG1/JG1 and SG2/JG2 . By Proposition 4.11,
β9,14(SG3/JG3) is the unique extremal Betti number of SG3/JG3. By Proposition 4.13,
β8,12(SG4/JG4) is an extremal Betti number of SG4/JG4 , i.e., SG4/JG4 does not admit a
unique extremal Betti number.

It will be interesting to obtain an answer to:

Question 4.17. Characterize unicyclic graphs G such that S/JG admits a unique extremal
Betti number.
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