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Abstract

This paper concerns a number of diagram categories, namely the partition, planar partition,
Brauer, partial Brauer, Motzkin and Temperley-Lieb categories. If K denotes any of these cat-
egories, and if σ ∈ Knm is a fixed morphism, then an associative operation ?σ may be defined
on Kmn by α ?σ β = ασβ. The resulting semigroup Kσmn = (Kmn, ?σ) is called a sandwich semi-
group. We conduct a thorough investigation of these sandwich semigroups, with an emphasis on
structural and combinatorial properties such as Green’s relations and preorders, regularity, stabil-
ity, mid-identities, ideal structure, (products of) idempotents, and minimal generation. It turns out
that the Brauer category has many remarkable properties not shared by any of the other diagram
categories we study. Because of these unique properties, we may completely classify isomorphism
classes of sandwich semigroups in the Brauer category, calculate the rank (smallest size of a gen-
erating set) of an arbitrary sandwich semigroup, enumerate Green’s classes and idempotents, and
calculate ranks (and idempotent ranks, where appropriate) of the regular subsemigroup and its
ideals, as well as the idempotent-generated subsemigroup. Several illustrative examples are con-
sidered throughout, partly to demonstrate the sometimes-subtle differences between the various
diagram categories.
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1 Introduction

Categories and algebras of diagrams (which are visual representations of set partitions) arise in many
branches of mathematics, including representation theory [24,49], statistical mechanics [34, 36,48,61],
knot theory [32, 33, 37, 38, 60], classical groups [6], invariant theory [42, 43], and more. An excellent
overview may be found in the survey [49], including a detailed discussion of the role played by diagram
categories in theoretical physics.

Sandwich semigroups were used in [11, 14, 15] to give algebraic structures to arbitrary hom-sets
in (locally small) categories, and indeed in more general structures called partial semigroups. If C is
a category, and if X and Y are fixed objects of C , then elements of the hom-set CXY can only be
directly composed if X = Y , in which case CXY = CX is an endomorphism monoid of C . However, if
we fix a morphism a ∈ CY X , then an associative operation ?a can be defined on CXY by f ?a g = fag,
and we obtain a sandwich semigroup C a

XY = (CXY , ?a). This construction generalises many families
of examples previously only studied as isolated special cases [7, 8, 44, 46, 56, 62]. For more background
and references, see the introductions to [10,11,14].

A general theory of sandwich semigroups in (locally small) categories has been developed in [11,14],
and this has been applied to several concrete categories of (linear) transformations in [11, 15]. The
current article continues to develop the general theory, and moves towards applications to a number of
diagram categories, namely the partition category P [34,48], the planar partition category PP [24,34],
the Brauer category B [6, 43], the partial Brauer category PB [50, 51], the Temperley-Lieb cate-
gory TL [60, 61] and the Motzkin category M [3]. While sandwich semigroups in these diagram
categories share some common properties with those in (linear) transformation categories, there are
some striking differences that will be emphasised during the article. There are also some intriguing
dichotomies between different diagram categories. For example, the behaviour of maximal elements in
the division order on sandwich semigroups in the planar categories PP, TL andM is quite different
to that in their nonplanar counterparts P, B and PB.

Perhaps most surprising of all is the long list of neat structural and combinatorial features possessed
by the Brauer category, but by none of the other diagram categories studied here. An entire section of
the paper is devoted to this exceptional category. The kinds of problems we solve mostly involve the
computation of combinatorial invariants, related to Green’s classes, minimal sizes of generating sets,
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isomorphism classes of sandwich semigroups, and so on. These take their inspiration from influential
works of Howie and others on combinatorial (transformation) semigroup theory; see for example [20–
23,27,28,30], and in particular [13,17] for related studies of diagram monoids. The introduction to [17]
contains many more references.

The article is organised as follows. Section 2 contains preliminary material on (partial) semigroups
and categories. Section 3 provides some general framework for working with sandwich semigroups; as
well as revising some of the key results from [11, 14], we also develop a theory of Green’s preorders
in arbitrary sandwich semigroups, with a focus on maximal classes, and connections to mid-identities
and one-sided invertibility. Section 4 introduces the diagram categories that will be the focus of our
study, and proves a number of structural and combinatorial results concerning them. Section 5 proves
many results on sandwich semigroups in diagram categories, including characterisations of the regular
elements, determination of Green’s relations and preorders, classification of maximal classes, description
of the idempotent-generated subsemigroup, and criteria for idempotent-generation of certain ideals.
Section 6 exclusively concerns the Brauer category B. As noted above, B has many special properties
not shared by any of the other diagram categories. These allow us to solve several additional problems
for B; in particular, we completely classify isomorphism classes of sandwich semigroups, calculate
the rank (minimum size of a generating set) of an arbitrary sandwich semigroup, enumerate Green’s
classes and idempotents, and calculate ranks (and idempotent ranks, where appropriate) of the regular
subsemigroup and its ideals, as well as the idempotent-generated subsemigroup. We also explain why
many of these results do not hold in the other diagram categories.

2 Preliminaries on (partial) semigroups and regular ∗-categories

2.1 Basic definitions

We begin by recalling some ideas from [11,14]), slightly adapting notation to suit our present purposes.
A partial semigroup is a 5-tuple (S, I,d, r, ·), where S and I are sets, d, r : S → I are mappings, and
(x, y) 7→ x · y is a partial binary operation (defined on a subset of S × S), such that for all x, y, z ∈ S:

(i) x · y is defined if and only if r(x) = d(y), in which case d(x · y) = d(x) and r(x · y) = r(y),

(ii) if x · y and y · z are defined, then (x · y) · z = x · (y · z).

If the context is clear, we usually write xy for a well-defined product x·y. If the set I, the mappings d, r,
and the product · are all understood, we will often refer to “the partial semigroup S” instead of “the
partial semigroup (S, I,d, r, ·)”. By (ii), we may omit parentheses on products of length greater than
two. If |I| = 1, then of course S is just a semigroup. For i, j ∈ I, we define the set

Sij = {x ∈ S : d(x) = i, r(x) = j}.

The sets Si = Sii are semigroups.
As in [45, page 21], an element x ∈ S is (von Neumann) regular if there exists a ∈ S such that

x = xax; note then that d(a) = r(x) and r(a) = d(x). Following standard semigroup terminology,
we then call a a pre-inverse of x, and x a post-inverse of a. We write Pre(x) and Post(x) for the sets
of all pre- or post-inverses of x, respectively. Note that x ∈ Post(a) ⇔ a ∈ Pre(x). As usual, the
elements of Pre(x) ∩ Post(x) are called inverses of x; we denote this set by V (x). If a ∈ Pre(x), then
axa ∈ V (x), so Pre(x) 6= ∅ ⇔ V (x) 6= ∅. It is possible to have Pre(x) = ∅ 6= Post(x). If every
element of S is regular, we say S is (von Neumann) regular. (Note that the term “regular” has another
meaning within category theory; here we always mean von Neumann regular.)

We call the partial semigroup S a (small) category if it additionally satisfies the following:

(iii) for all i ∈ I there exists ei ∈ Si such that for all x ∈ S, xer(x) = ed(x)x = x.

In the usual meaning of the word “category”,
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• the objects of S ≡ (S, I,d, r, ·) are the elements of I,

• the hom-sets (a.k.a. morphism sets) are the Sij (i, j ∈ I),

• the semigroups Si = Sii (i ∈ I) are monoids; the elements of Si are endomorphisms, and invertible
elements of Si are automorphisms,

• d(x) and r(x) are the domain and range (or source and target) of the morphism x ∈ S,

• · is the composition operation (and morphisms are composed left to right).

Even if a partial semigroup S is not a category, we will still usually refer to the Sij as hom-sets, the Si
as endomorphism semigroups, and so on.

By a partial ∗-semigroup, we mean a 6-tuple (S, I,d, r, ·, ∗) such that (S, I,d, r, ·) is a partial
semigroup, and ∗ : S → S : x 7→ x∗ a mapping such that for all x, y ∈ S,

(iv) d(x∗) = r(x), r(x∗) = d(x) and (x∗)∗ = x,

(v) if xy is defined, then (xy)∗ = y∗x∗.

Analogously to [57], by a regular partial ∗-semigroup, we mean a partial ∗-semigroup S such that

(vi) x = xx∗x for all x ∈ S.

In particular, any regular partial ∗-semigroup is regular. If a regular partial ∗-semigroup happens to be
a category, we call it a regular ∗-category. All of our motivating examples in Sections 4–6 are regular
∗-categories. It follows from (vi) and (iv) that x∗ = x∗(x∗)∗x∗ = x∗xx∗ for all x ∈ S.

2.2 Green’s relations and preorders

As in [11], for a partial semigroup S ≡ (S, I,d, r, ·), we denote by S(1) the category obtained by
adjoining an identity morphism at each object that did not already have one. Green’s preorders on S
are defined, for x, y ∈ S, by

• x ≤R y ⇔ x = ya for some a ∈ S(1),

• x ≤L y ⇔ x = ay for some a ∈ S(1),

• x ≤J y ⇔ x = ayb for some a, b ∈ S(1),

• x ≤H y ⇔ x ≤R y and x ≤L y.

Note that x ≤R y implies that d(x) = d(y); other such implications hold, but we will not state them
all. Note that S(1) can be replaced by S in all of the above if S is regular and/or a category.

It is worth noting that x ≤J a for any a ∈ Pre(x), that x ≥J a for any a ∈ Post(x), and that
x J a for any a ∈ V (x).

If K is any of R, L , J or H , then Green’s K relation is defined by K = ≤K ∩≥K . Green’s D
relation is defined to be D = R ∨L , the join of R and L in the lattice of equivalences on S: i.e.,
the least equivalence containing R ∪L . As with semigroups, we have D = R ◦L = L ◦R ⊆ J ;
cf. [11, Lemma 2.6].

The next result shows that the R, L and H relations and preorders in a regular partial ∗-semigroup
may be characterised equationally (instead of asserting the existence of further elements). Elements
of a regular partial ∗-semigroup of the form xx∗ are called projections; they may also be characterised
as the elements z for which z2 = z = z∗; projections are always endomorphisms.
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Lemma 2.1. If S is a regular partial ∗-semigroup, and if x, y ∈ S, then

(i) x ≤R y ⇔ xx∗ = yy∗xx∗,

(ii) x R y ⇔ xx∗ = yy∗,

(iii) x ≤L y ⇔ x∗x = x∗xy∗y,

(iv) x L y ⇔ x∗x = y∗y.

Proof. (i). If x ≤R y, then x = ya for some a ∈ S, in which case

xx∗ = yaa∗y∗ = yy∗yaa∗y∗ = yy∗xx∗.

Conversely, if xx∗ = yy∗xx∗, then x = xx∗x = yy∗xx∗x ≤R y.

(ii). If x R y, then x ≤R y and y ≤R x, and so xx∗ = yy∗xx∗ and yy∗ = xx∗yy∗, by (i), which gives

xx∗ = (xx∗)∗ = (yy∗xx∗)∗ = xx∗yy∗ = yy∗.

The converse is quickly checked.

(iii) and (iv). These are dual to (i) and (ii).

If K is any of Green’s relations R, L , H , J or D , then for any x ∈ Sij we write

Kx = {y ∈ Sij : x K y},

and we call these the K -classes of Sij . For K 6= D , Green’s preorder ≤K on S induces a partial
order on K -classes; we generally denote these partial orders by the same symbol, so for x, y ∈ Sij , we
write Kx ≤K Ky ⇔ x ≤K y. The ≤J order on J -classes is usually denoted simply by ≤.

The structure of a semigroup T can be visualised by means of eggbox diagrams. We draw the
elements of a D-class so that all R-related elements are in the same row, L -related elements in
the same column, and H -related elements in the same cell. If an H -class contains an idempotent
(x = x2), then that H -class is a group, and it is shaded grey; the group is usually labelled by a
standard representative of its isomorphism class (or sometimes we simply list the elements of T in the
appropriate cells). In the case that T is finite, we may draw all the J = D-classes like this, and
illustrate the ≤ = ≤J order by including an edge from Jx up to Jy for each cover Jx < Jy. Many
examples of eggbox diagrams are given in this paper; see Figures 1–5, 10 and 12.

2.3 Rectangular bands and groups

Recall that a left-zero semigroup is a semigroup U with multiplication u1u2 = u1. A left-group is
(isomorphic to) a direct product of a left-zero semigroup and a group; the degree of the left-group
is the size of the associated left-zero semigroup. Right-zero semigroups and right-groups are defined
analogously

A ρ× λ rectangular band is (isomorphic to) a semigroup of the form U × V , where U is a left-zero
semigroup of size ρ, and V a right-zero semigroup of size λ. A ρ×λ rectangular group over a group G is
(isomorphic to) a direct product of a ρ×λ rectangular band with G. Note that a left-group of degree d
is a d×1 rectangular group. The R-classes of the rectangular band U×V are the sets {u}×V (u ∈ U),
and a similar statement holds for L -classes. Thus, a ρ × λ rectangular band has ρ R-classes and λ
L -classes.

An idempotent of a semigroup S is an element e of S such that e = e2. For any subset A of S,
we write E(A) for the set of all idempotents contained in A. An idempotent e of S is primitive if
ef = fe = f ⇒ e = f for all idempotents f of S. A semigroup is simple if it has a single J -class,
and completely simple if it is simple and contains a primitive idempotent.

It is known that a semigroup S is a rectangular band if and only if x = xyx for all x, y ∈ S;
see [29, page 7]. It is known that a semigroup is a rectangular group if and only if it is completely
simple, regular and its idempotents form a subsemigroup; see [29, Exercise 10, page 139]. The next
result is stated without proof in [2, Proposition 1.6]; we provide one for convenience.
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Lemma 2.2. A semigroup S is a rectangular group if and only if it is regular and E(S) is a rectangular
band.

Proof. The forwards implication being clear, suppose S is regular and that E(S) is a rectangular
band. As noted above, it suffices to show that S is completely simple. If e, f ∈ E(S) are such that
ef = fe = f , then since e = efe (also noted above), we have e = efe = ef = f , so that in fact every
idempotent is primitive. So it remains to show that S is simple; we do this by showing that S is a
single D-class (meaning that S is in fact bisimple).

To do so, let x, y ∈ S. Since S is regular, we have x R e and y L f for some idempotents
e, f ∈ E(S). Since E(S) is a rectangular band, e and f are D-related in E(S), and hence also in S.
But then x R e D f L y, which gives x D y.

Recall from [11] that a (partial) semigroup S is stable if for all x, u ∈ S,

x J xu ⇒ x R xu and x J ux ⇒ x L ux. (2.3)

Stability is an extremely useful property; for example, we have J = D in any stable (partial) semi-
group; see [11, Lemma 2.6]. It is possible to prove the next two results using the Rees Theorem
(cf. [29, Theorem 3.2.3]), but we prefer the more direct approach here.

Lemma 2.4. Let D be a regular D-class of a stable semigroup S. If E(D) is a subsemigroup of S,
then E(D) is a rectangular band, and D is a rectangular group.

Proof. We show that E(D) is a rectangular band by showing that xyx = x for all x, y ∈ E(D). So
fix some x, y ∈ E(D). Since xy ∈ E(D) we have xy D x, so xy R x by stability. Thus, x = xyu for
some u ∈ S(1). Since xy ∈ E(D), it follows that x = (xy)2u = xy(xyu) = xyx, as required.

By Lemma 2.2, and since D is regular, it remains to show that D is a semigroup. To do so,
let x, y ∈ D. Fix inverses a ∈ V (x) and b ∈ V (y). Then xy = xaxyby ≤J axyb ≤J xy, so that
xy J axyb, whence xy ∈ Jaxyb = Daxyb (the latter since J = D , as S is stable). But ax, yb ∈ E(D),
so axyb ∈ E(D) ⊆ D. It follows that Daxyb = D, and so xy ∈ D.

Remark 2.5. Stability is a crucial assumption in Lemma 2.4. For example, the bicyclic semigroup is
a single regular D-class, and its idempotents form a subsemigroup; but it is certainly not a rectangular
group.

Lemma 2.6. If a regular D-class of a semigroup is an L -class, then it is a left-group.

Proof. Let D be the D-class in question. Since a semigroup is a left-group if and only if it is regular
and L -universal [9, Section 1.11], it is enough to show that D is a semigroup. So let x, y ∈ D. Since D
is regular, we have y R e for some idempotent e ∈ E(D). Since D is an L -class, we have x L e.
Thus, Lx ∩Ry contains an idempotent, so [29, Proposition 2.3.7] tells us that xy ∈ Rx ∩ Ly ⊆ D.

3 Sandwich semigroups

For the duration of Section 3, we fix a partial semigroup S ≡ (S, I,d, r, ·). We also fix some element
a ∈ Sji, where i, j ∈ I. As in [11], an associative operation ?a may be defined on Sij by x ?a y = xay
for x, y ∈ Sij . The resulting semigroup (Sij , ?a) is called a sandwich semigroup, and is denoted Saij .
When |I| = 1, S is a semigroup, and any sandwich semigroup in S is a so-called variant Sa = (S, ?a)
of S; cf. [10, 25,26,39]. In the case that S is a partial ∗-semigroup, it is easy to check that the map

Sij → Sji : x 7→ x∗

determines an anti-isomorphism Saij → Sa
∗
ji .

This section outlines some general machinery for working with arbitrary sandwich semigroups that
will be used when studying diagram categories in Sections 4–6. Sections 3.1 and 3.6 mostly revise results
we need from [11, 14], while Sections 3.2–3.5 develop a substantial new theory of Green’s preorders in
sandwich semigroups, with a focus on maximal elements and classes in these orderings.
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3.1 Green’s relations and regularity

Let K be any of R, L , J , H or D . We denote Green’s K relation on the sandwich semigroup Saij
by K a. Note for example that if x, y ∈ Sij , then

x Ra y ⇔ x = y or [x = yau and y = xav for some u, v ∈ Sij .]

For x ∈ Sij , we write

Kx = {y ∈ Sij : x K y} and Ka
x = {y ∈ Sij : x K a y}

for the K - and K a-classes of x in Sij , respectively; note that Ka
x ⊆ Kx.

To understand the K a relations, a crucial role is played by the sets P a1 , P a2 , P a3 and P a = P a1 ∩ P a2 ,
where

P a1 = {x ∈ Sij : xa R x}, P a2 = {x ∈ Sij : ax L x}, P a3 = {x ∈ Sij : axa J x}.

Note that x ∈ P a1 if and only if x = xav for some v ∈ S(1), in which case x = (xav)av = xa(vav) with
vav ∈ S (not just S(1)); note then that in fact vav ∈ Sij . With similar reasoning for the other sets, it
follows that

P a1 = {x ∈ Sij : x ∈ xaSij}, P a2 = {x ∈ Sij : x ∈ Sijax}, P a3 = {x ∈ Sij : x ∈ SijaxaSij}.

We will use this fact frequently in what follows, usually without explicit reference.
The following is [11, Theorem 2.13].

Theorem 3.1. Let S ≡ (S, I,d, r, ·) be a partial semigroup, and let a ∈ Sji where i, j ∈ I. If x ∈ Sij,
then

(i) Rax =

{
Rx ∩ P a1 if x ∈ P a1
{x} if x ∈ Sij \ P a1 ,

(ii) Lax =

{
Lx ∩ P a2 if x ∈ P a2
{x} if x ∈ Sij \ P a2 ,

(iii) Ha
x =

{
Hx if x ∈ P a

{x} if x ∈ Sij \ P a,

(iv) Da
x =


Dx ∩ P a if x ∈ P a

Lax if x ∈ P a2 \ P a1
Rax if x ∈ P a1 \ P a2
{x} if x ∈ Sij \ (P a1 ∪ P a2 ),

(v) Jax =

{
Jx ∩ P a3 if x ∈ P a3
Da
x if x ∈ Sij \ P a3 .

Further, if x ∈ Sij \ P a, then Ha
x = {x} is a non-group H a-class of Saij.

The set P a = P a1 ∩ P a2 may also be used to describe the regular elements of the sandwich semi-
group Saij . For any semigroup T , we denote by Reg(T ) the set of regular elements; this need not be a
subsemigroup of T . The next result is a special case of [14, Proposition 2.7]:

Proposition 3.2. Let a be an element of a regular partial semigroup S, say with a ∈ Sji. Then
Reg(Saij) = P a is a (regular) subsemigroup of Saij.

In the case of regular partial ∗-semigroups, the sets P a1 and P a2 may be described equationally as
follows.

Lemma 3.3. Let S be a regular partial ∗-semigroup, let i, j ∈ I, and let a ∈ Sji. Then

(i) P a1 = {x ∈ Sij : x∗x ∈ Post(aa∗)} = {x ∈ Sij : aa∗ ∈ Pre(x∗x)},

(ii) P a2 = {x ∈ Sij : xx∗ ∈ Post(a∗a)} = {x ∈ Sij : a∗a ∈ Pre(xx∗)}.

Proof. We just prove (i), as (ii) is dual. If x ∈ P a1 , then x R xa so by Lemma 2.1(ii) we have
xx∗ = xa(xa)∗ = xaa∗x∗; it follows that x∗x = x∗(xx∗)x = x∗xaa∗x∗x, and so aa∗ ∈ Pre(x∗x). The
reverse containment is similar.
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Although it is not necessary for our purposes, the next result seems to be of independent interest.
Recall that an element a of a regular partial ∗-semigroup is a projection if a2 = a = a∗; such an element
must belong to an endomorphism semigroup Si.

Corollary 3.4. If S is a regular partial ∗-semigroup, and if a ∈ Si is a projection, then Reg(Sai ) is a
regular ∗-semigroup (with involution inherited from S).

Proof. Since S is regular, Proposition 3.2 tells us that Reg(Sai ) = P a. It remains to check that

x∗∗ = x, (x ?a y)∗ = y∗ ?a x
∗, x = x ?a x

∗ ?a x for all x, y ∈ P a.

The first is clear, and for the second we have (x ?a y)∗ = (xay)∗ = y∗a∗x∗ = y∗ax∗ = y∗ ?a x
∗. For

the third, let x ∈ P a. Since a is a projection, we have a = aa = aa∗. Since x ∈ P a1 , it follows
from Lemma 3.3(i) that x∗x = x∗xax∗x, and so xx∗ = x(x∗x)x∗ = x(x∗xax∗x)x∗ = xax∗. A similar
calculation gives x∗x = x∗ax. Together these give x ?a x∗ ?a x = xax∗ax = xx∗ax = xx∗x = x.

Remark 3.5. A special case of [14, Proposition 5.1] says that if S is an inverse category (a more
restrictive class than regular partial ∗-semigroups [35]), then Reg(Saij) is an inverse semigroup for any
a ∈ Sji. We cannot similarly strengthen Corollary 3.4 to work for arbitrary a in a regular partial
∗-semigroup. Indeed, consider the regular semigroup Reg(Bσ264 ) in Remark 6.18 below. As can be seen
from Figure 12, any D-class in this semigroup contains unequal numbers of R- and L -classes; it follows
from this that Reg(Bσ264 ) does not even have an involution. (See also Remark 6.2 and Figure 10.)

3.2 Green’s preorders

We now prove two results concerning Green’s preorders in Saij . Both concern the case in which the
sandwich element a has a left- and right-identity in S: i.e., a = ea = af for some e, f ∈ S. This
condition holds, for example, if a is regular, or if S is a category. The first result compares the
preorders ≤K a on Saij to the preorders ≤K on S.

Lemma 3.6. If a ∈ Sji has a left- and right-identity in S, and if x, y ∈ Sij, then

(i) x ≤Ra y ⇔ x = y or x ≤R ya,

(ii) x ≤L a y ⇔ x = y or x ≤L ay.

(iii) x ≤J a y ⇔ x = y or x ≤R ya or x ≤L ay or x ≤J aya.

Proof. We just prove (iii) as the others are similar. First note that x ≤J a y if and only if one of the
following holds:

(a) x = y,

(b) x = uay for some u ∈ Sij ,

(c) x = yav for some v ∈ Sij ,

(d) x = uayav for some u, v ∈ Sij .

Clearly (b) ⇒ x ≤L ay, while (c) ⇒ x ≤R ya and (d) ⇒ x ≤J aya. The converses of these are easily
established. For example, if x ≤J aya, then x = sayat for some s, t ∈ S(1); if e, f ∈ S are such that
a = ea = af , then x = s(ea)y(af)t, so that (d) holds (with u = se and v = ft, both from Sij).

The next result is a generalisation of [15, Proposition 3.21], which concerns the special case of the
category of partial maps. It shows how the ≤J a preorder on Saij simplifies when elements of P a1 , P a2
or P a3 are involved, under the same hypothesis on a having left- and right-identities. (Note that
P a = P a1 ∩ P a2 ⊆ P a3 .)
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Proposition 3.7. Suppose a ∈ Sji has a left- and right-identity in S, and let x, y ∈ Sij.

(i) If x ∈ P a1 , then x ≤J a y ⇔ x ≤J aya or x ≤R ya.

(ii) If x ∈ P a2 , then x ≤J a y ⇔ x ≤J aya or x ≤L ay.

(iii) If x ∈ P a3 , then x ≤J a y ⇔ x ≤J aya.

(iv) If y ∈ P a1 , then x ≤J a y ⇔ x ≤J ay or x ≤R y.

(v) If y ∈ P a2 , then x ≤J a y ⇔ x ≤J ya or x ≤L y.

(vi) If y ∈ P a3 , then x ≤J a y ⇔ x ≤J y.

Proof. Again note that x ≤J a y if and only if one of (a)–(d) holds, as in the proof of Lemma 3.6.
We just prove (i) and (iv), as the others are very similar.

(i). Suppose x ∈ P a1 , so that x = xaz for some z ∈ Sij .
Suppose first that x ≤J a y, so that one of (a)–(d) holds. If (c) holds, then x ≤R ya. If (d) holds,

then x ≤J aya. If (a) holds, then x = xaz = yaz ≤R ya. Similarly, (b) implies x ≤J aya.
The converse follows from Lemma 3.6(iii).

(iv). Suppose y ∈ P a1 , so that y = yaz for some z ∈ Sij .
If x ≤J a y, then one of (a)–(d) holds. Clearly (a) and (c) each imply x ≤R y, while (b) and (d)

each imply x ≤J ay.

Conversely, if x ≤J ay, then x = sayt for some s, t ∈ S(1); if e ∈ S is such that a = ea, then
x = s(ea)(yaz)t = (se)aya(zt), with se, zt ∈ Sij , so that (d) holds. On the other hand, if x ≤R y,
then x = yt for some t ∈ S(1), in which case x = (yaz)t = ya(zt), and (d) holds.

Remark 3.8. In the proofs of Lemma 3.6 and Proposition 3.7, the forwards implications did not
require the assumption on a having identities.

One could also prove similar simplifying statements for the Ra/R and L a/L relations: e.g.,

• If x ∈ P a1 , then x ≤Ra y ⇔ x ≤R ya.

• If y ∈ P a1 , then x ≤Ra y ⇔ x ≤R y.

3.3 Maximal J a-classes

As in Section 2.2, if K is any of R, L , H or J , then the ≤K a preorder on Saij induces a partial
order also denoted ≤K a on the K a-classes of Saij : for x, y ∈ Sij , we have Ka

x ≤K a Ka
y ⇔ x ≤K a y.

We will typically denote the ≤J a order on J a-classes simply by ≤. By a maximal J a-class in Saij ,
we mean a J a-class that is maximal with respect to this order. These maximal J a-classes will play
an important role in our investigation of diagram categories, and here we prove some general results
concerning them.

Our first result identifies a natural family of maximal J a-classes.

Lemma 3.9. If x ∈ Sij is such that x 6≤J a in S, then {x} is a maximal J a-class in Saij; addition-
ally, {x} is a nonregular Da-class.

Proof. Fix some such element x. To show that {x} is a maximal J a-class, it suffices to show that
for any y ∈ Sij , x ≤J a y implies x = y. To do so, suppose y ∈ Sij and x ≤J a y. Then one
of (a)–(d) holds, as in the proof of Lemma 3.6. Any of (b)–(d) would imply x ≤J a (in S), contrary
to assumption, so in fact x = y.

Now {x} ⊆ Da
x ⊆ Jax = {x}, so that {x} = Da

x is indeed a Da-class. If it was a regular Da-class,
then it would contain an idempotent; but then x = x ?a x = xax ≤J a, a contradiction.
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We will call a maximal J a-class of Saij trivial if it is of the form described in Lemma 3.9. Any
other J a-class will be called nontrivial. Nontrivial maximal J a-classes do not always exist (cf. Ex-
ample 3.16). The next result concerns nontrivial maximal J a-classes in the case that the sandwich
element a ∈ Sji is regular.

Lemma 3.10. Suppose a ∈ Sji is regular.

(i) There is at most one nontrivial maximal J a-class in Saij.

(ii) If a nontrivial maximal J a-class exists, then it contains Pre(a).

(iii) If a nontrivial maximal J a-class exists, and if it is a Da-class, then it is regular.

Proof. Since (i) clearly follows from (ii), it suffices to prove (ii) and (iii).

(ii). Suppose J is a nontrivial maximal J a-class. So J = Jax for some x ∈ Sij with x ≤J a. Let
b ∈ Pre(a) be arbitrary: i.e., a = aba. Since x ≤J a, we have x = uav for some u, v ∈ S(1). But then
x = uabababav = (uab) ?a b ?a (bav), with uab, bav ∈ Sij , so that J = Jax ≤ Jab . Maximality then gives
J = Jab : i.e., b ∈ J .

(iii). Suppose J is a nontrivial maximal J a-class; it suffices to show that J contains an idempotent.
Let b ∈ V (a). Then we have b ∈ Pre(a), so J = Jab by (ii): i.e., b ∈ J . But b = bab = b ?a b.

We now give necessary and sufficient conditions for a nontrivial maximal J a-class to exist, again
in the case that the sandwich element a ∈ Sji is regular.

Proposition 3.11. Suppose a ∈ Sji is regular. Then the following are equivalent:

(i) Saij has a nontrivial maximal J a-class,

(ii) for all x ∈ Sij, a ≤J axa ⇒ x ≤J a,

(iii) for all x ∈ Sij, a J axa ⇒ x J a.

Proof. Since a is regular, we may fix some b ∈ V (a). Write J = Jab , and note that if Saij has a
nontrivial maximal J a-class then it must be J (cf. Lemma 3.10(ii)). Since b ∈ V (a), we have a J b.
Also, from b = b(aba)b we deduce that b ∈ P a3 (indeed, b ∈ P a1 ∩ P a2 = P a).

(i) ⇒ (ii). Aiming to prove the contrapositive, suppose (ii) does not hold. So there exists x ∈ Sij
such that a ≤J axa and x 6≤J a. From x 6≤J a, Lemma 3.9 tells us that Jax = {x} is a maximal
J a-class, and that x is nonregular. From a ≤J axa and b J a, we have b ≤J axa, so b ≤J a x by
Lemma 3.6(iii). This means that J = Jab ≤ Jax . But J 6= Jax , since J contains the regular element b,
and since x is nonregular. It follows that J < Jax , and so J is not maximal.

(ii) ⇒ (iii). Suppose condition (ii) holds, and suppose x ∈ Sij satisfies a J axa. Then in particular,
a ≤J axa, so (ii) gives x ≤J a. But also a ≤J axa ≤J x, so it follows that x J a.

(iii) ⇒ (i). Suppose condition (iii) holds. We will show that J is maximal (and it is nontrivial since
it contains the regular element b). To do so, suppose x ∈ Sij is such that J ≤ Jax . We must show
that J = Jax , and it suffices to show that Jax ≤ J . Since Jab = J ≤ Jax , we have b ≤J a x. Since
b ∈ P a3 , Proposition 3.7(iii) gives b ≤J axa. Together with a J b, it follows that a ≤J axa, so that
a J axa. It follows from (iii) that x J a. In particular, x ≤J a, and so x ≤J b (as a J b). Since
b ∈ P a3 , Proposition 3.7(vi) then gives x ≤J a b, so that Jax ≤ Jab = J , as required.

A simple consequence worth noting is as follows:

Corollary 3.12. If a ∈ Sji has a pre-inverse that is not J -related to a (in S), then Saij has only
trivial maximal J a-classes.
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Proof. Suppose x is such a pre-inverse. Since a = axa, certainly a J axa; since (a, x) 6∈ J , by
assumption, the implication (iii) in Proposition 3.11 does not hold. It follows by that proposition
that Saij has no nontrivial maximal J a-class.

Although the converse of Corollary 3.12 does not hold in general (see Example 3.16(vii) below), it
does in a certain special case. To state this (see Proposition 3.15), we require the concept of stability, as
defined in (2.3). We have already noted that J = D in any stable partial semigroup [11, Lemma 2.6].
A special case of [14, Lemma 2.6] says that if the partial semigroup S is stable, then every sandwich
semigroup Saij is stable.

Lemma 3.13. If S is stable, and if a ∈ Sji and x ∈ Sij, then

(i) a J axa ⇔ a H axa,

(ii) if a J x, then x = xax ⇔ a = axa.

Proof. (i). Since H ⊆J , it suffices to prove the forwards implication, so suppose a J axa. From
a J a(xa), stability gives a R a(xa); similarly, a L (ax)a, and so a H axa.

(ii). By symmetry it suffices to prove only the forwards implication, so suppose x = xax. Now,
ax ≤J a J x = xax ≤J ax; it follows that ax J a, so stability gives ax R a. Thus, a = axv for
some v ∈ S(1). But then axa = ax(axv) = a(xax)v = axv = a.

Remark 3.14. Stability is necessary in both parts of Lemma 3.13. For example, suppose S is a
monoid with identity 1, and that there is a nonidentity idempotent e with e J 1 (the bicyclic monoid
has this property). Then e = e1e yet (1, 1e1) = (1, e) ∈J \H .

In the case that S is a semigroup, Lemma 3.13(i) is [58, Exercise A.2.2.1].

Proposition 3.15. If S is stable and H -trivial (i.e., H is the trivial relation), and if a ∈ Sji is
regular, then the following are equivalent:

(i) Saij has a nontrivial maximal J a-class,

(ii) every pre-inverse of a is J -related to a (in S),

(iii) Pre(a) = V (a).

Proof. (i) ⇔ (ii). By Lemma 3.13(i) and H -triviality, we have a J axa ⇔ a = axa, for x ∈ Sij .
Thus, condition (iii) of Proposition 3.11 is equivalent to:

• for all x ∈ Sij , a = axa ⇒ x J a: i.e., every pre-inverse of a is J -related to a.

(ii) ⇒ (iii). Clearly it suffices to show that Pre(a) ⊆ V (a). With this in mind, fix some x ∈ Pre(a), so
that a = axa. By (ii) we have x J a; it follows from Lemma 3.13(ii) that x = xax, and so x ∈ V (a).

(iii) ⇒ (ii). This is clear since every element of V (a) is J -related to a.

We now consider a number of examples, illustrating the above results on maximal J a-classes.
In each case, the partial semigroup S is in fact a semigroup, so the sandwich semigroups are all
variants Sa. In particular, examples (iv) and (v) show that Lemma 3.10(i) is not true in general
when a is nonregular; example (vii) shows that Proposition 3.15 need not hold if S is not H -trivial.

Example 3.16. (i) Consider the full transformation semigroup Tn, which consists of all functions
from {1, . . . , n} to itself, and let a ∈ Tn be a non-bijection. By [10, Proposition 4.4], all maximal
J a-classes in T an are trivial. See also Proposition 5.9 below, which shows that this is true in some
diagram categories as well.
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(ii) If M is a finite monoid with group of units G, then G is the unique maximal J -class of M . If
a ∈ G, then Ma ∼= M , so in fact G is the unique maximal J a-class of Ma, and it is regular; thus,
Ma has no trivial maximal J a-classes. (Note that every element of M is ≤J -below a.)

(iii) Consider the semigroup S = {a, b, 0} with multiplication table given in Figure 1. The multipli-
cation table for the variant Sa is also given in Figure 1. Here {a} and {b} are both maximal
J -classes of S, and they are both also maximal J a-classes of Sa. Here {b} is a trivial J a-class,
and {a} is nontrivial; note that a is regular (indeed, an idempotent), and is its own unique inverse.
Figure 1 also gives eggbox diagrams of S and Sa.

(iv) Consider the semigroup S = {a, b, 0} with multiplication table given in Figure 2; note that a is
nonregular. The multiplication table for the variant Sa is also given in Figure 2, as well as eggbox
diagrams for both S and Sa. Here {a} is the unique maximal J -class of S, and it is not regular.
The maximal J a-classes of Sa are {a} and {b}, and these are both nontrivial (as every element
of S is ≤J -below a), and they are both nonregular.

(v) Let S be the subsemigroup of T3 generated by the transformations f = [2, 1, 2] and a = [3, 1, 3].
(Here [x1, x2, x3] is the transformation mapping i 7→ xi for i = 1, 2, 3.) GAP [53] tells us that S
has size 7, and it displays the eggbox diagrams of the semigroup S and its variant Sa as shown in
Figure 3. Here a is a nonregular element of S (it belongs to the middle D-class). The variant Sa

has two trivial maximal J a-classes (corresponding to the two elements of the top D-class of S,
which are not ≤J -below a) and also two non-trivial maximal J a-classes (corresponding to the
two elements of the nonregular D-class of S).

(vi) Denote by TL4 the Temperley-Lieb monoid of degree 4 (which is stable, regular and H -trivial),

as defined in Section 4.2, and consider the (regular) partitions σ = and τ =

from TL4. Figure 4 shows eggbox diagrams for TL4 (and TL2, though this can be ignored for
now), as well as the variants TLσ4 and TLτ4 , again all generated by GAP. From this figure, it can
be seen that TLτ4 has a nontrivial maximal J τ -class, but TLσ4 does not have a nontrivial maximal
J σ-class; both have a single trivial maximal J σ/J τ -class. Note that σ J τ (in TL4), and that
the only element of TL4 strictly ≤J -above σ and τ is the identity element; this is a pre-inverse
of σ but not of τ (since σ is an idempotent and τ is not); cf. Corollary 3.12 and Proposition 3.15.

(vii) Denote by P3 the partition monoid of degree 3 (which is stable and regular), as defined in Sec-

tion 4.1, and consider the (regular) partition σ = ∈ P3. Figure 5 shows eggbox diagrams
for P3 (and P2, though this can be ignored for now), as well as the variant Pσ3 , again all gen-
erated by GAP. From this figure, it is immediate that Pσ3 has only trivial maximal J σ-classes.
However, one may easily check (by hand, or using GAP) that each pre-inverse of σ is J -related
to σ. This shows that the converse of Corollary 3.12 is not true in general. Comparing this to
Proposition 3.15, note that while P3 is stable (as it is finite, but see also Proposition 4.5), it is not
H -trivial. See also Remark 5.10, which puts this example into a more general context.

· a b 0

a a 0 0

b 0 b 0

0 0 0 0

a b

0

· a b 0

a a 0 0

b 0 0 0

0 0 0 0

a b

0

Figure 1: Multiplication table and eggbox diagram for S (left) and Sa (right), as in Example 3.16(iii).
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· a b 0

a b 0 0

b 0 0 0

0 0 0 0

a

b

0

· a b 0

a 0 0 0

b 0 0 0

0 0 0 0

a b

0

Figure 2: Multiplication table and eggbox diagram for S (left) and Sa (right), as in Example 3.16(iv).

1 1 1

*

*

C2

1 1 1

* * * *

Figure 3: Eggbox diagrams of the semigroup S (left) and variant Sa (right) from Example 3.16(v).

3.4 Mid-identities and regularity-preserving elements

In Section 3.3 we identified a natural family of maximal J a-classes of Saij , called the trivial ones,
namely those of the form Jax = {x}, where x ∈ Sij and x 6≤J a. In the case that a is regular, there is at
most one nontrivial maximal J a-class, and this contains Pre(a), so is of the form Jab for any b ∈ V (a).
Even in the case that Saij only has trivial maximal J a-classes, it is easy to see that V (a) is contained
in a single J a-class of Saij ; we will see in this section that this J a-class is still very important, even if
it is not maximal. (But note that if Saij only has trivial maximal J a-classes, then Pre(a) may or may
not be contained in a single J a-class of Saij .) The main result of this section (Proposition 3.17) shows
that under certain stability and regularity assumptions, the J a-class containing V (a) has a very nice
structure. Before we state this result, we must first gather some notions from [25,64].

Let T be a regular semigroup. Recall [64] that an element u of T is a mid-identity if xy = xuy
for all x, y ∈ T ; for such a mid-identity u, the variant semigroup T u = (T, ?u) is precisely the original
semigroup T . Recall [25] that an element u of T is regularity-preserving if the variant T u is regular. We
denote by MI(T ) and RP(T ) the (possibly empty) sets of all mid-identities and regularity-preserving
elements of T . Clearly MI(T ) ⊆ RP(T ). If T is a monoid, then RP(T ) is the group of units [39,
Proposition 1], and MI(T ) contains only the identity element. It was argued in [39] that RP(T ) is a
good “substitute” for the group of units in a non-monoid.

The next result involves rectangular bands and groups; cf. Section 2.3. Recall that E(T ) denotes
the set of idempotents of a semigroup T .

Proposition 3.17. Suppose S is stable, and a ∈ Sji is regular. Fix some b ∈ V (a). Then

(i) Jab = Da
b ,

(ii) E(Jab ) = V (a) is a rectangular band (under ?a),

(iii) Jab is a rectangular group (under ?a),

(iv) if S is regular, then Jab = RP(P a) and E(Jab ) = MI(P a).

Proof. (i). Since S is stable, [11, Lemma 2.6] gives J = D (in S). It then follows from [14,
Corollary 2.5] that Da = J a (in Saij). The result is now clear.
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1

1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

*

*

*

1 1

1 1

* *

*

1 1

1 1

*

* *
*

*

1 1

1 1
*

1

1

Figure 4: Eggbox diagrams of the Temperley-Lieb monoids TL4 (left) and TL2 (right), and the vari-
ants TLσ4 (middle-left) and TLτ4 (middle-right) from Example 3.16(vi).

(ii) and (iii). Suppose x ∈ E(Jab ). Then x = x ?a x = xax, and also x ∈ Jab ⊆ Jb; the latter gives
x J b J a. It then follows from Lemma 3.13 that a = axa, and so x ∈ V (a).

Conversely, suppose x ∈ V (a). Then x = xax and a = axa. Then x = xax = xabax and
b = bab = baxab, which gives x J a b: i.e., x ∈ Jab . Since x = xax = x ?a x, it follows that x ∈ E(Jab ).

Since Jab is a regular Da-class, the proof will be complete if we can show that E(Jab ) is a subsemi-
group of Saij (cf. Lemma 2.4). But for any x, y ∈ E(Jab ) = V (a), it is easy to verify that x ?a y ∈ V (a).

(iv). It was proved in [14, Proposition 4.5] that MI(P a) = V (a) holds under the weaker assumption
that every element of {a} ∪ aSija is regular (and without assuming stability of S); this condition on a
was called sandwich regularity in [14]. Combined with part (ii), this completes the proof of the second
assertion.

It was shown in [4, Theorem 1.2] that if T is a regular semigroup with a mid-identity, then RP(T )
consists of all elements of T that are H -related to a mid-identity. Thus, since P a = Reg(Saij) is regular,
and since MI(P a) = V (a) 6= ∅, it follows that

RP(P a) =
⋃

x∈MI(Pa)

Ha
x =

⋃
x∈E(Dab )

Ha
x = Da

b = Jab .

Remark 3.18. One may readily locate the J a-class containing V (a) in Figures 4 and 5; see also
Figures 10 and 12. The rectangular group structure of this J a-class is evident from the figures.

3.5 Right-invertibility

As in [14, Section 2.2], we say a ∈ Sji is right-invertible if there exists b ∈ Sij such that ab is a right-
identity for Sij : i.e., x = xab for all x ∈ Sij . Such an element b is called a right-inverse of a, and it
is then apparent that b is right-identity for Saij . Note that ab need not be a right-identity for every x
with r(x) = j; see Remark 3.20 for an example. We write RI(a) for the set of all right-inverses of a.

Left-invertibility and left-inverses are defined analogously. Every result in this section has a dual
statement, but we will omit these.

Lemma 3.19. (i) If a ∈ Sji is right-invertible, then V (a) = Pre(a) ⊆ RI(a) ⊆ Post(a).

(ii) If a ∈ Sji is right-invertible and regular, then V (a) = Pre(a) = RI(a) ⊆ Post(a).
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Figure 5: Eggbox diagrams of the partition monoids P3 (left) and P2 (right), and the variant Pσ3
(middle), from Example 3.16(vii).

Proof. (i). Let x ∈ Pre(a), so that x ∈ Sij and a = axa. Since a is right-invertible, we may fix some
b ∈ RI(a). Since ab is a right-identity for Sij , we have x = x(ab). But then ax = ax(ab) = (axa)b = ab
is a right-identity for Sij , so that x ∈ RI(a).

Let x ∈ RI(a). Since ax is a right-identity for Sij , and since x ∈ Sij , we have x = x(ax): i.e.,
x ∈ Post(a).

We have proved that Pre(a) ⊆ RI(a) ⊆ Post(a), and so also V (a) = Pre(a) ∩ Post(a) = Pre(a).

(ii). In light of (i), it is enough to show that RI(a) ⊆ Pre(a), so let x ∈ RI(a). Since a is regular, we
have a = aya for some y ∈ Sij . Since ax is a right-identity for Sij , it follows that a = aya = a(yax)a =
(aya)xa = axa, so that x ∈ Pre(a).

Remark 3.20. It is possible for an element of a partial semigroup to be right-invertible but not
regular. For example, let X and Y be distinct nonempty sets. Let I = {X,Y }, and consider the
partial semigroup

S = SX,X ∪ SX,Y ∪ SY,Y ∪ SY,X ,

where SY,X consists of all partial maps Y → X, SY,Y consists of all partial maps Y → Y , and where each
other SU,V contains only the empty map ∅U,V : U → V . If a ∈ SY,X is nonempty, then a∅X,Y = ∅Y,Y

is a right-identity for SX,Y = {∅X,Y }, so that a is right-invertible; however, a is nonregular. Note also
that ∅Y,Y is not a right-identity for SY,Y .

On the other hand, if we wished to study some sandwich semigroup Saij with a right-invertible, then
we could assume without loss of generality that a is regular. Indeed, fix some right-inverse b ∈ RI(a),
and define c = aba ∈ Sji. Then since RI(a) ⊆ Post(a), we have bab = b, so cbc = abababa = aba = c, so
that c is regular; also, c is still right-invertible (b is a right-inverse). Since xay = xcy for all x, y ∈ Sij ,
it follows that the sandwich semigroups Saij and S

c
ij are precisely the same semigroup.

Next we wish to prove a result on maximal J a-classes in the case that a is right-invertible (Propo-
sition 3.22 below). To do this, we need the following simple lemma.

Lemma 3.21. If T is a stable partial semigroup, and if u, v ∈ T satisfy u ≤L v ≤J u, then u L v.
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Proof. From u ≤L v ≤J u we have u J v, and also u = xv for some x ∈ T (1). But then v J u = xv,
so stability gives v L xv = u.

The next result concerns left-groups, which were defined in Section 2.3.

Proposition 3.22. Suppose a ∈ Sji is right invertible.

(i) The sandwich semigroup Saij has a maximum J a-class, and this contains RI(a).

(ii) If Saij is stable, then the maximum J a-class of Saij is in fact an L a-class, and is a left-group with
set of idempotents RI(a).

Proof. (i). Let b ∈ RI(a) be arbitrary. It is enough to show that every element x ∈ Sij is ≤J a-below b;
but this is clear because x = x(ab) = x ?a b ≤L a b, whence x ≤J a b.

(ii). Again, let b ∈ RI(a), so that the maximum J a-class of Saij is J
a
b . By definition we have Lab ⊆ Jab .

Conversely, let x ∈ Jab . As above, x ≤L a b; since also b J a x, we have x ≤L a b ≤J a x. Lemma 3.21
(applied in the semigroup T = Saij) then gives x L a b: i.e., x ∈ Lab .

Since Jab is an L a-class, it is certainly a Da-class. Since it is regular (as b ∈ Jab is an idempotent),
it follows from Lemma 2.6 that it is a left-group.

Finally, we prove that E(Jab ) = RI(a). First, if x ∈ RI(a), then part (i) gives x ∈ Jab ; since ax
is a right identity for x ∈ Sij , x = x(ax) = x ?a x, so that in fact x ∈ E(Jab ). Conversely, suppose
x ∈ E(Jab ). So x = xax, and since x L a b (as x ∈ Jab = Lab ), we have b = uax for some u ∈ Sij .
But then for any z ∈ Sij we have z = zab = zauax = zauaxax = zabax = zax, so that ax is a
right-identity for Sij : i.e., x ∈ RI(a).

Remark 3.23. Stability is essential in Proposition 3.22(ii). For example, let S = PT be the category
of partial transformations, as studied in [15, Section 3]. Let X be an infinite set, let a ∈ PTX = PTXX
be an injective mapping with domain X that is not surjective. Then a is right-invertible, so we may
fix some right-inverse b ∈ RI(a). Now, Jab is the maximum J a-class of PT aX (by Proposition 3.22(i)),
but Jab is not even a Da-class, let alone an L a-class. (This all follows from [15, Lemma 3.7] and the
proof of [15, Proposition 3.17].)

The next result is analogous to Proposition 3.22, but concerns K -classes of the hom-set Sij rather
than K a-classes of the semigroup Saij . The proof is virtually identical.

Lemma 3.24. Suppose a ∈ Sji is right-invertible.

(i) The hom-set Sij has a maximum J -class, and this contains RI(a).

(ii) If S is stable, then the maximum J -class of Sij is in fact an L -class.

The final result of this section is somewhat technical, but it will be used in Section 6.2 when
studying sandwich semigroups in the Brauer category. To give the statement, we first introduce some
notation.

Suppose S is stable, and that a ∈ Sji is right-invertible; fix some right-inverse b ∈ RI(a). By [11,
Proposition 2.14], Saij is stable. By Lemma 3.24, Jb = Lb is the maximum J -class of the hom-set Sij .
By Proposition 3.22, Jab = Lab is the maximum J a-class of the sandwich semigroup Saij ; moreover, Jab
is a left-group over Ha

b . Let X be a cross-section of the H -classes contained in Jb, by which we mean
that Jb =

⋃
x∈X Hx, with Hx ∩Hy = ∅ for x 6= y.

Now, Jab = Lab is a regular Da-class (since it is a left-group), so it follows from Theorem 3.1
that Ha

x = Hx for all x ∈ Jab . Thus, we have Jab =
⋃
x∈X1

Hx =
⋃
x∈X1

Ha
x for some X1 ⊆ X.

Put X2 = X \ X1. Note that for x ∈ X2, Hx is an H -class of S, but is not an H a-class of Saij
(unless |Hx| = 1); cf. Theorem 3.1(iii).

Recall that the rank of a semigroup T , denoted rank(T ), is the minimum size of a generating set
for T . In the next statement and proof, if Ω ⊆ Sij , we write 〈Ω〉 for the subsemigroup of Saij generated

16



by Ω: i.e., the set of all (nonempty) products of the form y1 ?a y2 ?a · · · ?a yk, with y1, y2, . . . , yk ∈ Ω.
It follows from results of Ruškuc [59] (see also [14, Proposition 4.11]) that the rank of a left-group of
degree λ over a group G is equal to max(λ, rank(G)). In particular, since Jab (as above) is a left-group
of degree |X1| = |Jab /H a| over Ha

b , we have

rank(Jab ) = max
(
|Jab /H a|, rank(Ha

b )
)
. (3.25)

(Here, if ε is an equivalence relation on a set A, and if B ⊆ A is a union of ε-classes, we write B/ε for
the set of all such ε-classes.)

Proposition 3.26. Suppose S is stable, and that a ∈ Sji is right-invertible. Keep the above notation
(the right-inverse b, the set X = X1 ∪ X2, etc.). Let T = 〈Jb〉 be the subsemigroup of Saij generated
by Jb.

(i) We have T = 〈Jab ∪X2〉.

(ii) If rank(Ha
b ) ≤ |Jab /H a|, then rank(T ) = |Jb/H |.

Proof. (i). Since Jab ∪X2 ⊆ Jb, it suffices to show that Jb ⊆ 〈Jab ∪X2〉, so let y ∈ Jb be arbitrary. Let
x ∈ X be such that y ∈ Hx. In particular, y R x, and so y = xu for some u ∈ S(1). Since x ∈ Sij , and
since ab is a right-identity for Sij , we have y = xu = x(ab)u = x ?a (bu). Since x ∈ X ⊆ Jab ∪X2, the
proof of (i) will be complete if we can show that bu ∈ Jab . First note that b J y = xabu ≤J bu ≤J b,
so that all these elements are J -related; in particular, bu J b, so that bu ∈ Jb = Lb. Since also
bu = b(ab)u = b · a(bu) we have bu L a(bu): i.e., bu ∈ P a2 . But then it follows (using Theorem 3.1(ii))
that bu ∈ Lb ∩ P a2 = Lab = Jab , as required.

(ii). By (3.25), and by assumption, we have rank(Jab ) = |Jab /H a| = |X1|. Fix a generating set Ω of
Jab with |Ω| = |X1|. By (i), we have T = 〈Jab ∪X2〉 = 〈Ω ∪X2〉, so it follows that

rank(T ) ≤ |Ω ∪X2| = |Ω|+ |X2| = |X| = |Jb/H |.

On the other hand, since Jb is a maximal (indeed, maximum) J -class in Sij , [14, Lemma 6.1(ii)] tells
us that any generating set for Saij has size at least |Jb/R|, so that rank(Saij) ≥ |Jb/R|. But since Jb is
an L -class, every R-class contained in Jb is in fact an H -class, so |Jb/R| = |Jb/H |.

3.6 Structure of the regular subsemigroup, and connections to nonsandwich semi-
groups

Throughout Section 3.6 we assume the partial semigroup S ≡ (S, I,d, r, ·) is regular. We also
fix a ∈ Sji, and an inverse b ∈ V (a). (If S was a regular partial ∗-semigroup, we could take b = a∗

throughout.) As in [14, Section 3],

• (Sija, ·) is a subsemigroup of the (ordinary) semigroup Si,

• (aSij , ·) is a subsemigroup of the (ordinary) semigroup Sj ,

• (aSija, ?b) is a subsemigroup of the sandwich semigroup Sbji.

In fact, [14, Proposition 3.5] tells us that (aSija, ?b) is a regular monoid with identity a, and that we
have commutative diagrams of semigroup surmorphisms (i.e., surjective homomorphisms):

(Sij , ?a)

(Sija, ·) (aSij , ·)

(aSija, ?b)

x 7→xa x 7→ax

y 7→ay y 7→ya

Reg(Sij , ?a)

Reg(Sija, ·) Reg(aSij , ·)

(aSija, ?b)

x7→xa x 7→ax

y 7→ay y 7→ya

(3.27)
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From Sija = Sijaba ⊆ Siba ⊆ Sija, it follows that Sija = Siba is in fact the principal left ideal of Si
generated by the idempotent ba. Similarly, aSij = abSj is the principal right ideal of Sj generated by
the idempotent ab.

Of particular importance is the surmorphism

φ : Reg(Saij)→ (aSija, ?b) : x 7→ axa (3.28)

induced by the second diagram in (3.27). This map was a key ingredient in many results of [14]
that demonstrate close structural relationships between the regular semigroup P a = Reg(Saij) and the
regular monoid (aSija, ?b).

If K denotes any of Green’s relations, then we define a relation K̂
a on P a by

x K̂
a
y ⇔ xφ K b yφ in (aSija, ?b).

Then D̂
a

= Da and Ĵ
a

= J a, while K a ⊆ K̂
a ⊆ Da if K is any of R, L or H ; cf. [14, Lemma 3.11].

For x ∈ P a, we write K̂a
x for the K̂

a-class of x. The following is [14, Theorem 3.14]. (Rectangular
bands and groups were defined in Section 2.3.)

Theorem 3.29. Let x ∈ P a = Reg(Saij), and put ρ = |Ĥa
x/R

a| and λ = |Ĥa
x/L

a|. Then

(i) the restriction to Ha
x of the map φ : P a → (aSija, ?b) is a bijection φ|Ha

x
: Ha

x → Hb
xφ,

(ii) Ha
x is a group if and only if Hb

xφ is a group, in which case these groups are isomorphic,

(iii) if Ha
x is a group, then Ĥa

x is a ρ× λ rectangular group over Ha
x ,

(iv) if Ha
x is a group, then Ea(Ĥa

x) is a ρ× λ rectangular band.

Remark 3.30. One of the most important consequences of Theorem 3.29 is that a Da-class Da
x of

P a = Reg(Saij) can be thought of as a kind of “inflation” of the Db-class Db
xφ of (aSija, ?b). This is

explained at length in [14, Remark 3.15], so we will not repeat the full details here. But one may get
an idea of this kind of “inflation” by examining Figures 4, 5 and 12.

As in [14, Remark 3.6], the maps

aSija→ aSijab = abSjab : x 7→ xb and aSija→ baSija = baSiba : x 7→ bx (3.31)

induce isomorphisms (aSija, ?b) → (abSjab, ·) and (aSija, ?b) → (baSiba, ·). In particular, (aSija, ?b)
is isomorphic to both

• abSjab, the local submonoid of Sj with identity ab, and

• baSiba, the local submonoid of Si with identity ba.

In the diagram categories studied in Sections 4–6, the monoid abSjab will always be naturally isomor-
phic to an ordinary diagram monoid.

Combining (3.27) with the first isomorphism in (3.31), we obtain the following diagrams, with all
maps surmorphisms, and with all semigroups other than Saij and Reg(Saij) having · as their operation:

Saij

Siba abSj

abSjab

x 7→xa x 7→ax

y 7→ayb y 7→yab

Reg(Saij)

Reg(Siba) Reg(abSj)

abSjab

x 7→xa x 7→ax

y 7→ayb y 7→yab

(3.32)
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The map
Φ : Reg(Saij)→ abSjab : x 7→ axab (3.33)

induced by the second diagram in (3.32) is the composition of φ (as in (3.28)) with the first map
in (3.31). As such, the results from [14, Section 3] may be rephrased in terms of the Φ map, including
Theorem 3.29 above.

A final result from [14] that will be important to note concerns idempotents, and the idempotent-
generated subsemigroup. For a semigroup T , recall that E(T ) = {x ∈ T : x = x2} is the set of all
idempotents from T ; we will also write E(T ) = 〈E(T )〉 for the subsemigroup of T generated by the
idempotents. Note that E(Saij) = {x ∈ Sij : x = xax} is precisely the set Post(a) of all post-inverses
of a. It was shown in [14, Lemma 3.13 and Theorem 3.17] that

E(Saij) = E(P a) = E(aSija, ?b)φ
−1 and E(Saij) = E(P a) = E(aSija, ?b)φ

−1.

(If ψ : U → V is a semigroup surmorphism, then E(U) ⊆ E(V )ψ−1 and E(U) ⊆ E(V )ψ−1 always hold,
but the reverse inclusions do not in general.) Combining these with the first isomorphism from (3.31),
it of course quickly follows that

E(Saij) = E(P a) = E(abSjab)Φ
−1 and E(Saij) = E(P a) = E(abSjab)Φ

−1. (3.34)

4 Diagram categories

We now wish to apply the results of Sections 2 and 3 to a number of diagram categories. In this section
we recall the definitions of these categories, and then prove a number of structural results concerning
them. Section 5 treats sandwich semigroups in these categories; Section 6 concerns the particular case
of the Brauer category, which turns out to be especially amenable to analysis.

4.1 The partition category

The diagram categories we wish to study are all subcategories of the partition categories, so we define
these first. We write N = {0, 1, 2, . . .} for the set of all natural numbers. For n ∈ N, we write
[n] = {1, . . . , n}, interpreting [0] = ∅. For A ⊆ N, we write A′ = {a′ : a ∈ A} and A′′ = {a′′ : a ∈ A}.
For m,n ∈ N, we denote by Pmn the set of all set partitions of [m] ∪ [n]′, and we write

P =
⋃

m,n∈N
Pmn

for the set of all such set partitions. For m,n ∈ N and α ∈ Pmn, we write d(α) = m and r(α) = n.
Then as in [49],

P ≡ (P,N,d, r, ·, ∗)
is a regular ∗-category, under operations · and ∗ to be defined shortly.

First we recall some terminology. We say a nonempty subset X ⊆ N ∪ N′ is

• a transversal if X ∩ N and X ∩ N′ are both nonempty,

• an upper nontransversal if X ⊆ N,

• a lower nontransversal if X ⊆ N′.

If α ∈ P, we will write
α =

(
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

)
(4.1)

to indicate that α has transversals Ai ∪B′i (1 ≤ i ≤ r), upper nontransversals Ci (1 ≤ i ≤ s) and lower
nontransversals D′i (1 ≤ i ≤ t). This notation uniquely determines d(α) and r(α), since

[d(α)] =

r⋃
i=1

Ai ∪
s⋃
i=1

Ci and [r(α)] =

r⋃
i=1

Bi ∪
t⋃
i=1

Di.
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Note that any of q, r, s could be zero in (4.1); they could even all be zero, in which case α = ∅ is the
unique element of P0,0.

As usual, we identify a partition α ∈ Pmn with any graph on vertex set [m]∪ [n]′ whose connected
components are the blocks of α. When depicting such a graph in the plane R2, we always draw

• vertex x at (x, 1) for each 1 ≤ x ≤ m,

• vertex x′ at (x, 0) for each 1 ≤ x ≤ n,

• all edges in the rectangle
{

(x, y) ∈ R2 : 1 ≤ x ≤ max(m,n), 0 ≤ y ≤ 1
}
.

For example, graphs corresponding to the partitions

α =
{
{1, 4}, {2, 3, 4′, 5′}, {5, 6}, {1′, 2′, 6′}, {3′}, {7′, 8′}

}
∈ P6,8, (4.2)

β =
{
{1, 2}, {3, 4, 1′}, {5, 4′, 5′}, {6}, {7}, {8, 6′, 7′}, {2′}, {3′}

}
∈ P8,7 (4.3)

are pictured in Figure 6.
Now let α ∈ Pmn and β ∈ Pnk. We define α↓ to be the graph on vertex set [m] ∪ [n]′′ obtained

by changing each lower vertex x′ of (a graph representing) α to x′′; similarly, we define β↑ to be the
graph on vertex set [n]′′ ∪ [k]′ obtained by changing each upper vertex x of β to x′′. The product graph
Π(α, β) is the graph on vertex set [m] ∪ [n]′′ ∪ [k]′ whose edge set is the union of the edge sets of α↓
and β↑. The product αβ ∈ Pmk is the partition such that x, y ∈ [m]∪ [k]′ belong to the same block of
αβ if and only if x, y are in the same connected component of Π(α, β). As an example, Figure 6 shows
how to calculate the product

αβ =
{
{1, 4}, {2, 3, 1′, 4′, 5′}, {5, 6}, {2′}, {3′}, {6′, 7′}

}
∈ P6,7,

where α ∈ P6,8 and β ∈ P8,7 are as in (4.2) and (4.3).

α =

β =

= αβ

Figure 6: Left to right: partitions α ∈ P6,8 and β ∈ P8,7, the product graph Π(α, β), and the product
αβ ∈ P6,7.

The involution ∗ : P → P is easier to describe. For α ∈ P as in (4.1), we define

α∗ =
(
B1 · · · Br D1 · · · Dt
A1 · · · Ar C1 · · · Cs

)
.

Diagrammatically, α∗ is the result of reflecting (a graph representing) α in a horizontal axis.
The endomorphism monoids in P are the partition monoids Pn = Pnn (n ∈ N). The identity of Pn

is the partition idn =
{
{x, x′} : x ∈ [n]

}
, with respect to which the invertible elements of Pn are those

of the form
{
{x, (xπ)′} : x ∈ [n]

}
, for some permutation π ∈ Sn. Such a partition will be identified

with π itself, so that the automorphism groups in P are (identified with) the symmetric groups Sn.
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4.2 Subcategories

A partition α ∈ Pmn is called

• a Brauer partition if each block of α has size 2,

• a partial Brauer partition if each block of α has size 1 or 2.

We denote by B and PB the sets of all Brauer and partial Brauer partitions, respectively. These are
both subcategories of P, and are both closed under the ∗ map; in particular, they are both regular
∗-categories, and they are called the Brauer and partial Brauer categories [43, 50].

As in [34], a partition α ∈ Pmn is planar if (some graph representing) α can be drawn in the
plane R2, with vertices in the locations specified above, edges in the specified rectangle, and with no
edge crossings in the interior of this rectangle. For example, with α, β as in (4.2) and (4.3), β is planar
but α is not; cf. Figure 6. To each planar partition α, we may associate a canonical (planar) graph,
as shown by example in Figure 8 (see the black edges, and ignore the grey edges for now); for a more
explicit definition, see [18, Section 7].

If α and β are planar, and satisfy r(α) = d(β), then the product αβ is planar as well (consider the
product graph Π(α, β)). It follows that the set

PP = {α ∈ P : α is planar}

is a subcategory of P. We also have corresponding planar subcategories of B and PB. These are the
Temperley-Lieb and Motzkin categories:

TL = B ∩PP and M = PB ∩PP.

Again, the categories PP, TL andM are all regular ∗-categories. Figure 7 shows the relative inclusions
of the above subcategories of P, as well as representative elements of each. Endomorphism monoids in
these categories are Brauer monoids Bn, partial Brauer monoids PBn, planar partition monoids PPn,
Motzkin monoids Mn, and Temperley-Lieb monoids TLn (also known as Jones monoids Jn). Au-
tomorphism groups in B and PB are (identified with) symmetric groups Sn; automorphism groups
in PP,M and TL are trivial.

P

PB

B

PP

M

TL

Figure 7: Subcategories of P (left) and representative elements from each (right).

Before moving on, we note that the planar partition category PP is isomorphic to the “even
subcategory” TLeven of TL defined by

TLeven =
⋃

m,n∈N
TL2m,2n.

21



Indeed, an isomorphism PP → TLeven : α 7→ α̃ may be constructed as follows. Given α ∈PPmn, we
represent α by its canonical graph (as in [18, Section 7]), and then construct α̃ ∈ TL2m,2n by “tracing
around” the edges of α, as shown in Figure 8. This observation is inspired by similar facts about planar
partition and Temperley-Lieb monoids; see for example [24, Section 1].

Figure 8: A planar partition α from PP8,6 (black), with its corresponding Temperley-Lieb partition α̃
from TL16,12 (grey).

Next we wish to give formulae for the sizes of hom-sets in our diagram categories. To do so, and for
later use, we fix some notation for certain well-known number sequences. More information about these
numbers (including the combinatorial descriptions given below) can be found at the quoted entries on
the Online Encyclopedia of Integer Sequences [1].

• The Stirling numbers of the second kind, S(n, k), are defined by S(n, 1) = S(n, n) = 1 and
S(n, k) = S(n− 1, k− 1) + kS(n− 1, k) for 1 < k < n; cf. [1, A008277]. Note that S(n, k) is the
number of partitions of an n-element set into k blocks. We also define S(0, 0) = 1.

• The nth Bell number is B(n) =
∑n

k=1 S(n, k); cf. [1, A000110]. Note that B(n) is the number
of partitions of an n-element set. We also define B(0) = 1.

• The double factorial, n!!, is defined to be 0 if n is even, or n · (n − 2) · · · 3 · 1 if n is odd;
cf. [1, A123023]. By convention, we define (−1)!! = 1. Note that number of partitions of an
n-element set into blocks of size 2 is (n− 1)!!.

• The numbers a(n) are defined by a(0) = a(1) = 1 and a(n) = a(n−1)+(n−1)a(n−2) for n ≥ 2;
cf. [1, A000085]. Note that a(n) is the number of partitions of an n-element set into blocks of
size ≤ 2 (and also the number of involutions of an n-element set).

• The nth Catalan number is C(n) = 1
n+1

(
2n
n

)
; cf. [1, A000108]. Note that C(n) is the number

of non-crossing partitions of an n-element set, and also the number of non-crossing partitions of
a 2n-element set into blocks of size 2. By convention, we define C(x) = 0 if x is not a natural
number.

• The Motzkin triangle numbers, µ(n, k), are defined by µ(0, 0) = 1, µ(n, k) = 0 if n < k or k < 0,
and µ(n, k) = µ(n−1, k−1)+µ(n−1, k)+µ(n−1, k+1) if n ≥ 1 and 0 ≤ k ≤ n; cf. [1, A064189].
(It is not as easy to give a succinct combinatorial description of this sequence, but the above
OEIS entry gives a few.)

• The nth Motzkin number is µ(n) = µ(n, 0); cf. [1, A001006]. Note that µ(n) is the number of
non-crossing partitions of an n-element set into blocks of size ≤ 2.

The next result follows quickly from the combinatorial descriptions of the above number sequences.
Note that elements of the planar categories correspond to non-crossing partitions in the way shown in
Figure 9.

Proposition 4.4. If m,n ∈ N, then

|Pmn| = B(m+ n), |PBmn| = a(m+ n), |Bmn| = (m+ n− 1)!!,

|PPmn| = C(m+ n), |Mmn| = µ(m+ n), |TLmn| = C(m+n
2 ).
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Figure 9: A planar partition α from PP8,6, with its corresponding non-crossing partition of [8] ∪ [6]′.

4.3 Green’s relations and stability

Before we even describe Green’s relations in our diagram categories, we may quickly establish stability
(see (2.3) for the definition) using results of [14]. First, we recall that an element u ∈ S is stable if
the implications in (2.3) hold for all x ∈ S. Next, we recall that a semigroup T is periodic if for all
x ∈ T , some power of x is an idempotent; for example, it is well known that every finite semigroup is
periodic; see [29, Proposition 1.2.3].

Proposition 4.5. The categories P, PB, B, PP, M and TL are all stable. In particular, J = D
in each of these categories.

Proof. Let K denote any of the stated categories. Let α ∈ K, say with α ∈ Kmn. Since αKnm
and Knmα are finite semigroups (they are subsemigroups of the finite monoids Km and Kn, respec-
tively), they are periodic. It then follows from [14, Lemma 2.3] that α is stable. Since α ∈ K was
arbitrary, it follows that K is itself stable. The second assertion follows from [11, Lemma 2.6], which
states that J = D in any stable partial semigroup.

Green’s relations on our diagram categories may be described in terms of a number of parameters,
defined as follows. The (co)domain and (co)kernel of a partition α ∈ Pmn are

dom(α) = {x ∈ [m] : x belongs to a transversal of α},
codom(α) = {x ∈ [n] : x′ belongs to a transversal of α},

ker(α) = {(x, y) ∈ [m]× [m] : x, y belong to the same block of α},
coker(α) = {(x, y) ∈ [n]× [n] : x′, y′ belong to the same block of α}.

The rank of α, denoted rank(α), is the number of transversals of α. Note that dom(α) and codom(α)
are subsets of [m] and [n], while ker(α) and coker(α) are equivalences on [m] and [n], and rank(α) is
an integer between 0 and min(m,n). Following [19], we write NU (α) for the set of upper nontransver-
sals of α, and NL(α) for the set of lower nontransversals. For α =

(
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

)
, we have

rank(α) = r, and

dom(α) =

r⋃
i=1

Ai, NU (α) = {Ci : 1 ≤ i ≤ s}, [m]/ ker(α) = {Ai : 1 ≤ i ≤ r} ∪ {Ci : 1 ≤ i ≤ s},

codom(α) =
r⋃
i=1

Bi, NL(α) = {Di : 1 ≤ i ≤ t}, [n]/ coker(α) = {Bi : 1 ≤ i ≤ r} ∪ {Di : 1 ≤ i ≤ t}.

We have a number of obvious identities such as the following (and their duals), which are valid
whenever the stated products are defined:

dom(αβ) ⊆ dom(α), dom(α∗) = codom(α), NU (αβ) ⊇ NU (α), (4.6)
ker(αβ) ⊇ ker(α), ker(α∗) = coker(α), rank(αβγ) ≤ rank(β). (4.7)
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Before we give the characterisation of Green’s relations and preorders on our diagram categories
(Theorem 4.9), we first note a property of planarity from [18]. LetA = {a1, . . . , ak} andB = {b1, . . . , bl}
be nonempty finite subsets of N with a1 < · · · < ak and b1 < · · · < bl. We say that A and B are
separated if ak < b1 or bl < a1; in these cases, we write A < B or B < A, respectively. We say that A
is nested by B if there exists some 1 ≤ i < l such that bi < a1 and ak < bi+1; we say that A and B are
nested if A is nested by B or vice versa.

Lemma 4.8. Let α =
(
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

)
∈ P, with min(A1) < · · · < min(Ar). Then α is planar if

and only if the following hold:

• A1 < · · · < Ar and B1 < · · · < Br,

• for all 1 ≤ i < j ≤ s, Ci and Cj are either nested or separated,

• for all 1 ≤ i < j ≤ t, Di and Dj are either nested or separated,

• for all 1 ≤ i ≤ r and 1 ≤ j ≤ s, either Ai and Cj are separated or else Cj is nested by Ai,

• for all 1 ≤ i ≤ r and 1 ≤ j ≤ t, either Bi and Dj are separated or else Dj is nested by Bi.

Proof. The forwards implication is essentially [18, Lemma 7.1]; the converse is clear.

We also note an obvious parity issue involving elements of B (and TL), which follows from the fact
that all blocks of Brauer partitions have size 2. If m,n ∈ N, then

Bmn 6= ∅ ⇔ TLmn 6= ∅ ⇔ m ≡ n (mod 2),

in which case any α ∈ Bmn satisfies rank(α) ≡ m ≡ n (mod 2).
Here is the result describing Green’s relations and preorders on our diagram categories. For the

corresponding statements on diagram monoids, see [13,19,41,63].

Theorem 4.9. Let K denote any of the categories P, PB, B, PP, M or TL. If α, β ∈ K, then in
the category K we have

(i) α ≤R β ⇔ d(α) = d(β), ker(α) ⊇ ker(β) and NU (α) ⊇ NU (β),

(ii) α ≤L β ⇔ r(α) = r(β), coker(α) ⊇ coker(β) and NL(α) ⊇ NL(β),

(iii) α ≤J β ⇔

{
rank(α) ≤ rank(β) if K is not B or TL
rank(α) ≤ rank(β) and rank(α) ≡ rank(β) (mod 2) if K is one of B or TL,

(iv) α R β ⇔ ker(α) = ker(β) and NU (α) = NU (β)

⇔ dom(α) = dom(β) and ker(α) = ker(β),

(v) α L β ⇔ coker(α) = coker(β) and NL(α) = NL(β)

⇔ codom(α) = codom(β) and coker(α) = coker(β),

(vi) α J β ⇔ α D β ⇔ rank(α) = rank(β).

Proof. Throughout the proof we write α =
(
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

)
and β =

(
E1 · · · Eq G1 · · · Gu
F1 · · · Fq H1 · · · Hv

)
, where

min(A1) < · · · < min(Ar) and min(E1) < · · · < min(Eq), and we also assume that α ∈ Pmn and
β ∈ Pkl.

(i). Suppose first that α ≤R β, so that α = βγ for some γ ∈ P. Then d(α) = d(βγ) = d(β). By (4.6)
and (4.7), we also have ker(α) = ker(βγ) ⊇ ker(β) and NU (α) = NU (βγ) ⊇ NU (β).

Conversely, suppose d(α) = d(β), ker(α) ⊇ ker(β) and NU (α) ⊇ NU (β). From the latter we
have u ≤ s, and we may assume that Gi = Ci for 1 ≤ i ≤ u. Together with d(α) = d(β) and
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ker(α) ⊇ ker(β), it follows that each Ai (1 ≤ i ≤ r) and each Cj (u < j ≤ s) is a union of Ek’s. Since
ββ∗ =

(
E1 · · · Eq C1 · · · Cu
E1 · · · Eq C1 · · · Cu

)
, it quickly follows that α = ββ∗α ≤R β.

(iv). This follows quickly from (i), or alternatively from Lemma 2.1(ii), as αα∗ =
(
A1 · · · Ar C1 · · · Cs
A1 · · · Ar C1 · · · Cs

)
and ββ∗ =

(
E1 · · · Eq G1 · · · Gu
E1 · · · Eq G1 · · · Gu

)
.

(ii) and (v). These are dual to (i) and (iv).

(iii). If α ≤J β, then α = γβδ for some γ ∈ Kmk and δ ∈ Kln; (4.7) then gives rank(α) ≤ rank(β).
If K is one of B or TL, then also rank(α) ≡ m ≡ k ≡ rank(β) (mod 2), using the facts noted before
the statement.

Conversely, suppose r ≤ q, and also that r ≡ q (mod 2) if K is either B or TL. Then α = γβδ with

γ =
(
A1 · · · Ar C1 · · · · · · · · · · · · Cs
E1 · · · Er Er+1 · · · Eq G1 · · · Gu

)
and δ =

(
F1 · · · Fr Fr+1 · · · Fq H1 · · · Hv
B1 · · · Br D1 · · · · · · · · · · · · Dt

)
.

This clearly completes the proof (of (iii)) if K = P. If α, β belong to PB, then γ, δ do as well, so the
proof is also complete for K = PB. If α, β are planar, then the above assumption about the ordering
of the transversals, combined with Lemma 4.8, ensures that γ, δ are planar, so the proof is complete
for the categories PP andM as well. Finally, suppose K is one of B or TL. Note that here we have
|Ei| = |Fi| = 1 and |Gj | = |Hk| = 2 for appropriate i, j, k; we write Ei = {ei} and Fi = {fi} for all i.
Since r ≡ q (mod 2), the sets {er+1, . . . , eq} and {fr+1, . . . , fq} have even size, so we may replace γ, δ
as above with

γ′ =
(
A1 · · · Ar C1 · · · · · · · · · · · · · · · · · · Cs
E1 · · · Er er+1, er+2 · · · eq−1, eq G1 · · · Gu

)
and δ′ =

(
F1 · · · Fr fr+1, fr+2 · · · fq−1, fq H1 · · · Hv
B1 · · · Br D1 · · · · · · · · · · · · · · · · · · Dt

)
.

Then γ′, δ′ ∈ B, and we still have α = γ′βδ′. Moreover, if α, β ∈ TL, then by Lemma 4.8, the ei
(respectively, fi) are unnested by the upper (respectively, lower) nontransversals of β, so it quickly
follows that γ′, δ′ ∈ TL.

(vi). The equivalence α J β ⇔ rank(α) = rank(β) clearly follows from (iii), and the equivalence
α J β ⇔ α D β from Proposition 4.5.

We immediately obtain the following description of the J = D-classes in each diagram category,
along with their ordering.

Corollary 4.10. Let K denote any of the categories P, PB, B, PP, M or TL. Let m,n ∈ N, and
suppose m ≡ n (mod 2) if K is B or TL. Then the J = D-classes of the hom-set Kmn are the sets

Dr = Dr(Kmn) = {α ∈ Kmn : rank(α) = r} for each 0 ≤ r ≤ min(m,n),
and where r ≡ m ≡ n (mod 2) if K = B or TL.

These form a chain under the usual ordering of J -classes: Dq ≤ Dr ⇔ q ≤ r.

The next result gives formulae for the number of R-classes contained in the D-classes of our
diagram categories, as well as the sizes of H -classes. The statement uses the number sequences
defined in Section 4.2.
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Proposition 4.11. Let K denote any of the categories P, PB, B, PP, M or TL. Let m,n ∈ N, fix
some 0 ≤ r ≤ min(m,n), and suppose r ≡ m ≡ n (mod 2) if K is B or TL.

(i) The number of R-classes contained in Dr = Dr(Kmn) is given by

|Dr/R| =



∑m
q=r

(
q
r

)
S(m, q) if K = P(

m
r

)
a(m− r) if K = PB(

m
r

)
(m− r − 1)!! if K = B

2r+1
2m+1

(
2m+1
m−r

)
if K = PP

µ(m, r) if K =M
r+1
m+1

(
m+1

(m−r)/2
)

if K = TL.

(ii) The size of any H -class H in Dr is given by

|H| =

{
r! if K is one of P, PB or B
1 if K is one of PP,M or TL.

Proof. Part (ii) is clear, and part (i) follows from arguments given elsewhere, specifically:

• Theorems 7.5, 8.4 and 9.5 from [17] for P, B and TL, respectively, and

• Propositions 2.7 and 2.8 from [13] for PB andM, respectively.

The result for PP follows from that for TL, and the isomorphism PP ∼= TLeven, keeping in mind
that rank(α̃) = 2 rank(α) for α ∈PP; cf. Figure 8.

Remark 4.12. By symmetry, we may obtain formulae for |Dr/L | in each of our diagram categories; we
simply replace all m’s in the above formulae for |Dr/R| by n’s. Then also |Dr/H | = |Dr/R| · |Dr/L |;
multiplying this by the size of an arbitrary H -class in Dr gives a formula for |Dr|; summing over
appropriate r gives a formula for |Kmn|, although simpler such formulae are given in Proposition 4.4.

For example, in the Brauer category B, we have

|Dr/R| =
(
m
r

)
(m− r − 1)!!, |Dr/H | =

(
m
r

)(
n
r

)
(m− r − 1)!!(n− r − 1)!!,

|Dr/L | =
(
n
r

)
(n− r − 1)!!, |Dr| =

(
m
r

)(
n
r

)
(m− r − 1)!!(n− r − 1)!!r!.

Summing over r, and using |Bmn| = (m+ n− 1)!!, we obtain the identity

(m+ n− 1)!! =
∑

0≤r≤min(m,n)
r≡n (mod 2)

(
m
r

)(
n
r

)
(m− r − 1)!!(n− r − 1)!!r!.

5 Sandwich semigroups in diagram categories

Throughout this section K denotes any of the categories P, PB, B, PP,M or TL. We fix some σ ∈ K,
say with σ ∈ Knm, with the aim of studying the sandwich semigroup Kσmn = (Kmn, ?σ); note that if K
is either B or TL, then we have m ≡ n (mod 2). Since Kσmn ∼= Kσ

∗
nm, we may assume by symmetry that

m ≥ n. Note then that r ≤ n ≤ m. We will assume that

σ =
(
X1 · · · Xr U1 · · · Us
Y1 · · · Yr V1 · · · Vt

)
. (5.1)

In the case that K is one of PP,M or TL, we will additionally assume that min(X1) < · · · < min(Xr).
(When K is one of P, PB or B, we will make no assumption on the ordering of any of the blocks of σ.)
It will also be convenient to define the partition

τ =
(

1 · · · r

X1 · · · Xr U1 · · · Us

)
∈ Krn. (5.2)

The assumption on the ordering of the Xi ensures that τ is planar if σ is; cf. Lemma 4.8.
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5.1 Commutative diagrams and connections to nonsandwich diagram monoids

We begin with some brief comments on the commutative diagrams in (3.32) when applied to diagram
categories. First note that σ∗ ∈ V (σ), and that

σσ∗ =
(
X1 · · · Xr U1 · · · Us
X1 · · · Xr U1 · · · Us

)
∈ Kn and σ∗σ =

(
Y1 · · · Yr V1 · · · Vt
Y1 · · · Yr V1 · · · Vt

)
∈ Km.

Any partition α ∈ σσ∗Knσσ∗ contains the nontransversals Ui and U ′i for each 1 ≤ i ≤ s; any other
block of α (whether a transversal or nontransversal) is of the form B =

⋃
i∈I Xi ∪

⋃
j∈J X

′
j for some

subsets I, J ⊆ [r], with at least one of I, J nonempty. We write α\ for the partition of [r] ∪ [r]′ with
each such block B ⊆ [n] ∪ [n]′ replaced by I ∪ J ′ ⊆ [r] ∪ [r]′. Note that in fact α\ = τατ∗ for any
α ∈ σσ∗Knσσ∗, where τ is defined in (5.2); in particular, since τ ∈ K, this shows that α\ ∈ Kr for any
such α. Since τ∗τ = σσ∗, it quickly follows that the map

σσ∗Knσσ∗ → Kr : α 7→ α\ (5.3)

is an isomorphism. Combining (3.32) and (5.3), we obtain the following commutative diagrams of
semigroup surmorphisms:

Kσmn

Kmσ∗σ σσ∗Kn

σσ∗Knσσ∗

Kr

α7→ασ α 7→σα

β 7→σβσ∗ β 7→βσσ∗

γ 7→γ\

Reg(Kσmn)

Reg(Kmσ∗σ) Reg(σσ∗Kn)

σσ∗Knσσ∗

Kr

α 7→ασ α 7→σα

β 7→σβσ∗ β 7→βσσ∗

γ 7→γ\

(5.4)
We will use the symbol Ψ to denote the surmorphism

Ψ : Reg(Kσmn)→ Kr : α 7→ (σασσ∗)\ (5.5)

induced from the second diagram in (5.4); in fact, since σσ∗ = τ∗τ , we have αΨ = τσασσ∗τ∗ = τσατ∗

for all α ∈ Reg(Kσmn). It is useful to note here that

rank(α) = rank(αΨ) for all α ∈ P σ. (5.6)

Indeed, from

α J σασ = σσ∗σασσ∗σ = τ∗τσατ∗τσ ≤J τσατ∗ = τσατ∗ττ∗ = τσασσ∗τ∗ ≤J σασ J α,

it follows that α J τσατ∗ = αΨ, and so rank(α) = rank(αΨ) by Theorem 4.9(vi).
By Theorem 3.29(i), the restriction

Ψ|Hσ
α

: Hσ
α → HαΨ

of Ψ to any H σ-class Hσ
α of Reg(Kσmn) is a bijection, and such a restriction maps (non)group H σ-

classes of Reg(Kσmn) to (non)group H -classes of Kr, respectively; in the case that Hσ
α is a group, Ψ|Hσ

α

is an isomorphism. In particular, if α ∈ Kmn is a ?σ-idempotent of rank q, then the group Hσ
α is trivial

if K is one of PP,M or TL; otherwise, Hσ
α is isomorphic to the symmetric group Sq.
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5.2 Green’s relations and regularity in Kσmn

As discussed in Section 3.1, Green’s relations and regularity in the sandwich semigroups Kσmn are
governed by the sets P σ1 , P σ2 , P σ3 and P σ = P σ1 ∩P σ2 . Because of stability (cf. Proposition 4.5), it follows
from [14, Proposition 2.4] that P σ3 = P σ. Since K is regular, Proposition 3.2 gives P σ = Reg(Kσmn).
Combining all of this with Theorem 4.9(vi), and again using stability, we obtain the following:

Proposition 5.7. We have

P σ1 = {α ∈ Kmn : rank(ασ) = rank(α)},
P σ2 = {α ∈ Kmn : rank(σα) = rank(α)},

Reg(Kσmn) = P σ = P σ3 = {α ∈ Kmn : rank(ασ) = rank(σα) = rank(α)}
= {α ∈ Kmn : rank(σασ) = rank(α)}.

It is possible to give combinatorial criteria for membership of these sets, but it does not give a great
deal of additional insight (e.g., it does not allow us to readily compute the size of P σ = Reg(Kσmn) in
general). For example, if rank(α) = q, then the product ασ will have rank q if and only if q of the
coker(α)∨ker(σ)-classes contain elements of codom(α), and each of these classes also contain elements
of dom(σ). In the case that K = B is the Brauer category, however, cleaner descriptions can be
made (cf. Proposition 6.15), and these do lead to useful consequences (see for example Theorems 6.17
and 6.21 and Corollary 6.19).

Together with the above description of the sets P σ1 , P σ2 and P σ, characterisations of Green’s
relations and preorders in Kσmn follow from Theorem 3.1 and Proposition 3.7. Note that J σ = Dσ

since Kσmn is finite. It will be convenient to describe the regular J σ = Dσ-classes.

Proposition 5.8. (i) The regular J σ = Dσ-classes of Kσmn are precisely the sets

Dσ
q = Dσ

q (Kσmn) = Dq ∩ P σ = {α ∈ P σ : rank(α) = q} for each 0 ≤ q ≤ r,
and where q ≡ r (mod 2) if K = B or TL.

These form a chain under the usual ordering of J σ-classes: Dσ
p ≤ Dσ

q ⇔ p ≤ q.

(ii) The group H σ-classes in Dσ
q are

• isomorphic to the symmetric group Sq if K is one of P, PB or B,
• trivial if K is one of PP,M or TL.

Proof. (i). This follows immediately from Theorem 3.1(iv), Proposition 3.7(vi) and Theorem 4.9(iii)
and (vi).

(ii). We observed this at the end of Section 5.1.

In general, Kσmn has many more J σ = Dσ-classes than just these regular ones; cf. Figures 4 and 5.
Next we describe the maximal J σ-classes in a sandwich semigroup Kσmn. Note that if r = n, then

σ =
(

1 · · · n
Y1 · · · Yn V1 · · · Vt

)
is right-invertible; indeed, in this case σσ∗ = idn.

Proposition 5.9. Suppose K is one of P, PB or B, and that m ≥ n.

(i) If r < n, then the maximal J σ-classes of Kσmn are the singleton sets {α} for α ∈ Kmn with
rank(α) > r.

(ii) If r = n, then the set Dσ
r = {α ∈ P σ : rank(α) = r} is the maximum J σ-class of Kσmn; it is a

left-group over Sr.
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Proof. We begin with (ii). As noted above, if r = n then σ is right-invertible. It then follows from
Proposition 3.22(i) that Kσmn has a maximum J σ-class, and that this is Jσσ∗ . Since σ∗ ∈ P σ and
rank(σ∗) = r, it follows from Proposition 5.8(i) that Jσσ∗ = Dσ

r . It follows from Proposition 3.22(ii)
that Dσ

r is a left-group over Hσ
σ∗ . Since Hσ

σ∗
∼= Sr (cf. Proposition 5.8(ii)), the proof is complete.

(i). For any α with rank(α) > r, Theorem 4.9(iii) gives α 6≤J σ; it follows from Lemma 3.9 that
Jσα = {α} is a (trivial) maximal J σ-class. It remains to show that there is no nontrivial maximal J σ-
class. By Proposition 3.11, it suffices to show that there exists α ∈ Kmn such that in K, (σ, σασ) ∈J
but (α, σ) 6∈ J : i.e., that rank(σασ) = r < rank(α). To construct such an α we must consider a
number of cases.

Case 1. First suppose s and t are both nonzero (and note that this must be the case if K is one of PB
or B, as r < n ≤ m). Put

α =
(
Y1 · · · Yr Vt V1 · · · Vt−1

X1 · · · Xr Us U1 · · · Us−1

)
.

Then σασ = σ, so certainly rank(σασ) = r. We also have rank(α) = r + 1 > r. This completes the
proof (in this case) if K = P. If K is one of PB or B, then α as above may not belong to K, so we may
have to modify the definition of α to ensure that it does.

• If |Us| = |Vt| = 2 (the only possibility for K = B), then we write Us = {u1, u2} and Vt = {v1, v2},
and we replace the transversal Vt ∪ U ′s of α by the pair of transversals {v1, u

′
1} and {v2, u

′
2}.

Again we have σ = σασ, but this time rank(α) = r + 2.

• If |Us| = 2 and |Vt| = 1, say with Us = {u1, u2} and Vt = {v}, then we replace the transversal
Vt ∪ U ′s of α by the pair of blocks {v, u′1} and {u′2}. Here σ = σασ and rank(α) = r + 1.

• The case in which |Us| = 1 and |Vt| = 2 is dual.

• The case in which |Us| = |Vt| = 1 poses no problems, as then α (as above) belongs to Dr+1(PB)
provided that σ does.

Case 2. Next suppose s = 0 but t > 0, so that σ =
(
X1 · · · Xr
Y1 · · · Yr V1 · · · Vt

)
. As noted above, this case

(and all remaining ones) only applies to K = P. Since r < n, we may assume without loss of generality
that |Xr| ≥ 2. Fix some x ∈ Xr, write Z = Xr \ {x}, and define

α =
(
Y1 · · · Yr−1 Yr Vt V1 · · · Vt−1

X1 · · · Xr−1 x Z

)
.

Then we have σ = σασ and rank(α) = r + 1.

Case 3. The case in which t = 0 and s > 0 is dual.

Case 4. Finally suppose s = t = 0, so that σ =
(
X1 · · · Xr
Y1 · · · Yr

)
. Since r < n ≤ m we have |Xi| ≥ 2 and

|Yj | ≥ 2 for some i, j ∈ [r]. Renaming if necessary, we may assume that i = r, and that j = r or r− 1.
Fix some x ∈ Xr and y ∈ Yj , and write U = Xr \ {x} and V = Yj \ {y}.

• If j = r, then with α =
(
Y1 · · · Yr−1 y V

X1 · · · Xr−1 x U

)
we have σ = σασ and rank(α) = r + 1.

• If j = r − 1, then with α =
(
Y1 · · · Yr−2 Yr y V

X1 · · · Xr−2 Xr−1 x U

)
we have σασ =

(
X1 · · · Xr−2 Xr−1 Xr
Y1 · · · Yr−2 Yr Yr−1

)
; in

particular, rank(σασ) = r < r + 1 = rank(α).

Remark 5.10. In the proof of Proposition 5.9(i), every case except for the j = r − 1 subcase of
Case 4 involved showing that σ has a pre-inverse not J -related to σ (in K); cf. Corollary 3.12. In the
exceptional (sub)case, the α constructed did not satisfy σ = σασ, but one may check that σ = σασασ;
in general, there may or may not be any α satisfying σ = σασ and rank(α) > r; this depends on the
sizes of the other blocks (if any) of σ; cf. Example 3.16(vii).
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We now give the characterisation for the planar diagram categories. For the statement, recall that
Pre(σ) = {α ∈ Kmn : σ = σασ}, and that Dr(Kmn) = {α ∈ Kmn : rank(α) = r}.

Proposition 5.11. Suppose K is one of PP,M or TL, and that m ≥ n.

(i) If r < n, then the trivial maximal J σ-classes of Kσmn are the singleton sets {α} for α ∈ Kmn with
rank(α) > r. Moreover, the following are equivalent:

• Kσmn has a nontrivial maximal J σ-class,

• Pre(σ) ⊆ Dr(Kmn),

• Pre(σ) = V (σ),

in which case the nontrivial maximal J σ-class is the set Dσ
r = {α ∈ P σ : rank(α) = r}.

(ii) If r = n, then the set Dσ
r = {α ∈ P σ : rank(α) = r} is the maximum J σ-class of Kσmn; it is a

left-zero semigroup.

Proof. (i). The statement concerning trivial maximal J σ-classes again follows from Lemma 3.9 and
Theorem 4.9(iii). The assertion regarding the existence of a nontrivial maximal J σ-class (which would
have to be Jσσ∗ = Dσ

r , by Lemma 3.10(ii)) follows from Proposition 3.15, since K is regular, stable and
H σ-trivial.

(ii). This is proved in the same way as Proposition 5.9(ii), but keeping in mind that group H -classes
of Kr are all trivial if K is any of PP,M or TL (cf. Proposition 5.8(ii)).

Remark 5.12. Sometimes the containment Pre(σ) ⊆ Dr(Kmn) holds, and sometimes it does not; it
depends on the structure of σ. Example 3.16(vi) gives examples in both cases when K = TL; it is easy
to construct examples for the categories PP andM (by hand or with GAP [53]).

It will also be convenient to describe the minimum J σ-class of a sandwich semigroup Kσmn. Note
that every finite semigroup has a minimum J -class, and this coincides with the minimal ideal of the
semigroup.

Proposition 5.13. If z is the smallest possible rank of partitions from Kmn, then the minimal ideal
of Kσmn is Dz = Dσ

z . Further, we have Dz/Rσ = Dz/R and Dz/L σ = Dz/L .

Proof. For any α ∈ Dz, we have rank(σασ) ≤ rank(α) = z, so that rank(σασ) = z (as z is the
smallest possible rank). It follows that Dz ⊆ P σ (cf. Proposition 5.7), and so Dσ

z = Dz ∩ P σ = Dz.
By Proposition 3.7(iii) and Theorem 4.9(iii), Dz is the minimum J σ-class.

For the last assertion, suppose α ∈ Dz. Since α ∈ P σ, Theorem 3.1(i) gives Rσα = Rα ∩ P σ2 . Since
Rα ⊆ Dz ⊆ P σ ⊆ P σ2 , it follows that Rσα = Rα ∩ P σ2 = Rα. The statement for L σ-classes is dual.

5.3 The idempotent-generated subsemigroup

We write E(Kσmn) = {α ∈ Kmn : α = α ?σ α} for the set of all ?σ-idempotents from Kσmn, and
E(Kσmn) = 〈E(Kσmn)〉 for the idempotent-generated subsemigroup of Kσmn. Using (3.34) and the iso-
morphism (5.3), it follows that

E(Kσmn) = E(Kr)Ψ−1 and E(Kσmn) = E(Kr)Ψ−1, (5.14)

where Ψ : P σ = Reg(Kσmn) → Kr is the surmorphism from (5.5). Since the idempotent-generated
subsemigroups E(Kr) are well understood for each K [5, 13, 16, 24, 47], (5.14) is in principal enough to
completely describe E(Kσmn). However, in most cases we can give a more precise statement. Note that
E(Kσmn) = E(Kr)Ψ−1 ⊆ P σ. The next result shows that we have equality when K is TL or PP.

Theorem 5.15. If K is one of TL or PP, then E(Kσmn) = P σ = Reg(Kσmn).
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Proof. Since Kr is idempotent-generated [5, 24], we have E(Kr) = Kr. The result then follows
from (5.14), and the fact that Ψ : Reg(Kσmn)→ Kr is surjective.

For the other categories, we first prove a simple lemma:

Lemma 5.16. Suppose 0 ≤ q ≤ r, and that q ≡ r (mod 2) if K is B or TL. Then

E(Dq(Kr))Ψ−1 = E(Dσ
q ).

Proof. This follows from E(Kσmn) = E(Kr)Ψ−1, and the fact that rank(αΨ) = rank(α) for α ∈ P σ;
cf. (5.14) and (5.6).

Next we consider the categories P and B. If K denotes either of these, then by [16, Proposition 16]
and [47, Proposition 2] we have E(Kr) = {idr} ∪ (Kr \ Sr). (The papers [16] and [47] were concerned
with presentations for the singular ideal Kr \ Sr.) It follows that

E(Kσmn) = E(Kr)Ψ−1 = idr Ψ−1 ∪
⋃
q<r

Dσ
q .

Note that the union is over {q : 0 ≤ q < r} for K = P or over {q : 0 ≤ q < r, q ≡ r (mod 2)} for
K = B. In both cases it follows that

E(Kσmn) = idr Ψ−1 ∪ (P σ \Dσ
r ).

Theorem 5.17. If K is one of P or B, then E(Kσmn) = V (σ) ∪ (P σ \Dσ
r ).

Proof. It remains to observe, using Lemma 5.16 and Proposition 3.17(ii), that

idr Ψ−1 = E(Dr(Kr))Ψ−1 = E(Dσ
r ) = E(Jσσ∗) = V (σ).

It was shown in [13, Theorem 3.18] that the idempotent-generated subsemigroup of the partial
Brauer monoid PBr is given by

E(PBr) = E
(
Dr(PBr) ∪Dr−1(PBr)

)
∪
r−2⋃
q=0

Dq(PBr).

As above, and using Lemma 5.16, we quickly obtain the following:

Theorem 5.18. We have E(PBσmn) = E(Dσ
r ∪Dσ

r−1) ∪
r−2⋃
q=0

Dσ
q .

The situation for the Motzkin category M is more complicated, due to the far more complex
structure of the idempotent-generated subsemigroup of Mr; see [13, Theorem 4.17]. Thus, we leave
our description of E(Mσ

mn) at (5.14).

5.4 Ideals of Reg(Kσmn)

In this section we study the ideals of the regular subsemigroup P σ = Reg(Kσmn). The ideals of the
monoids Kr are often (but not always) idempotent-generated, and it turns out that there is a close
parallel with idempotent-generation in ideals of P σ.

Throughout Section 5.4, it will be convenient to define the indexing set

Q = {rank(α) : α ∈ P σ} =

{
{q : 0 ≤ q ≤ r} if K is one of P, PB, PP orM
{q : 0 ≤ q ≤ r, q ≡ r (mod 2)} if K is one of B or TL.
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By Proposition 5.8, the J σ = Dσ-classes Dσ
q (q ∈ Q) of P σ form a chain: Dσ

p ≤ Dσ
q ⇔ p ≤ q. It

follows quickly from this that the ideals of P σ are precisely the sets

Iq = Iq(P
σ) =

⋃
p≤q

Dσ
p for each q ∈ Q.

This mirrors the situation with the ideals of the monoid Kr, which are all of the form

Iq(Kr) =
⋃
p≤q

Dp(Kr) for each q ∈ Q.

Keeping in mind that PPn ∼= TL2n (cf. [24, Section 1]), it was shown in [13,17] that

Iq(Kr) is idempotent-generated ⇔ q ≤ µ, where µ = µ(K) =


r if K = PP or TL
r − 1 if K = P
r − 2 if K = PB or B
b r2c − 1 if K =M.

(5.19)

In fact, it was shown in [17, Theorems 7.5, 8.4 and 9.5] that if K is any of P, B, PP or TL, then a proper
ideal Iq(Kr), q < r, is generated by the idempotents in its top D-class: i.e., Iq(Kr) =

〈
E(Dq(Kr)

〉
.

This is true of approximately half the ideals of PBr, but only of the minimal ideal ofMr [13].
In the following proof, it will be convenient to write α = αΨ for α ∈ P σ. If K is any of Green’s

relations, we will also write K̂σ
α for the K̂

σ-class of α ∈ P σ. (As in Section 3.6, and using the
isomorphism (σKmnσ, ?σ∗) ∼= Kr, the K̂

σ relation is defined on P σ by α K̂
σ
β ⇔ α K β in Kr.)

Throughout the proof, we make frequent use of (5.6), which says that rank(α) = rank(α) for all α ∈ P σ.

Theorem 5.20. Let K be one of P, PB, B, PP,M or TL, and let µ = µ(K) be as in (5.19). Then
for any q ∈ Q, the ideal Iq = Iq(P

σ) is idempotent-generated if and only if q ≤ µ.

Proof. Since Ψ : P σ → Kr preserves ranks and is surjective, it follows that Iq(Kr) = Iq(P
σ)Ψ for all

q ∈ Q. Thus, if Iq = Iq(P
σ) is idempotent-generated, then so too is Iq(Kr); it then follows from (5.19)

that q ≤ µ.
Conversely, suppose q ≤ µ, and let α ∈ Iq. To complete the proof, we must show that α is a

product of idempotents from Iq.
Write rank(α) = p, and note that α ∈ Dp(Kr) ⊆ Ip(Kr). Since p ≤ q ≤ µ, it follows from (5.19)

that Ip(Kr) is idempotent-generated. Thus, α = β1 · · ·βk for some idempotents β1, . . . , βk ∈ E(Ip(Kr)).
Since p ≥ rank(βi) ≥ rank(β1 · · ·βk) = p for all 1 ≤ i ≤ k, it follows in fact that β1, . . . , βk ∈ E(Dp(Kr)).
For each i, fix some γi ∈ P σ such that γi = βi, noting that γi ∈ E(Dσ

p ) ⊆ E(Iq) by Lemma 5.16.
Since rank(α) = p = rank(β1), we have β1 J α = β1(β2 · · ·βk), so it follows from stability that

γ1 = β1 R β1(β2 · · ·βk) = α: i.e., γ1 R̂
σ
α, which gives R̂σα = R̂σγ1 . Since rank(α) = rank(γ1), we have

α Dσ γ1, so we may fix some δ ∈ Rσα ∩ Lσγ1 . Note then that

δ ∈ Rσα ∩ Lσγ1 ⊆ R̂
σ
α ∩ L̂σγ1 = R̂σγ1 ∩ L̂

σ
γ1 = Ĥσ

γ1 .

Since γ1 is an idempotent of Kr, it follows from Theorem 3.29(iii) that Ĥσ
γ1 is a rectangular group, and

hence Hσ
δ is a group. Thus, without loss of generality, we may assume that δ is the identity element

of this group. Since δ ∈ Ĥσ
γ1 , we have δ H γ1; but δ and γ1 are idempotents of Kr, so it follows

that δ = γ1.
The key conclusion of the previous paragraph is that there exists an idempotent δ such that δ Rσ α

and δ = γ1. By a symmetrical argument, there exists an idempotent ε such that ε L σ α and ε = γk.
Now consider the element ρ = δ ?σ (γ1 ?σ · · · ?σ γk) ?σ ε. Then since δ = γ1 and ε = γk are

idempotents,
ρ = δ(γ1 · · · γk)ε = γ1 · · · γk = α.
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Consequently, rank(ρ) = rank(ρ) = rank(α) = p = rank(δ), so that ρ J σ δ. But then

δ J σ ρ = δ ?σ (γ1 ?σ · · · ?σ γk) ?σ ε,

so that δ Rσ δ ?σ (γ1 ?σ · · ·?σ γk)?σ ε, by stability: i.e., δ Rσ ρ. Since δ Rσ α, it follows that ρ Rσ α. A
symmetrical argument shows that ρ L σ ε L σ α, so it follows that ρ H σ α. Thus, since ρ = α (shown
above), and since Ψ is injective when restricted to any H σ-class (cf. Theorem 3.29(i)), it follows that
α = ρ. But ρ is a product of idempotents, so the proof is complete.

Remark 5.21. It follows from the above proof that if q ≤ µ, then any element of Dσ
q is a product

of idempotents from E(Dσ
q ). We will see in Section 6.6 that a stronger statement holds when K = B,

namely that any element of Iσq is a product of idempotents from E(Dσ
q ). This mirrors the situation

with the monoids Pr, Br, PPr and TLr, as noted just after (5.19).
However, this is not the case for the other diagram categories. For example, consider the partition

σ = from P4 = P4,4. The regular subsemigroup P σ = Reg(Pσ4 ) has four J σ = Dσ-classes:
Dσ

0 < Dσ
1 < Dσ

2 < Dσ
3 . The proper ideal I2 = Dσ

0∪Dσ
1∪Dσ

2 is idempotent-generated (by Theorem 5.20),
but it is not generated by E(Dσ

2 ). Indeed, GAP [53] shows that I2 has size 2476, while the subsemigroup
generated by E(Dσ

2 ) has size 2332.

6 The Brauer category

It turns out that the Brauer category B has many properties not shared by any of the other diagram
categories studied in this paper, many of which make B more amenable to further analysis. For
example:

• Sandwich elements σ, τ ∈ Bnm give rise to isomorphic variants Bσmn ∼= Bτmn if rank(σ) = rank(τ);
this leads to a neat classification of the isomorphisms between sandwich semigroups in B; see
Section 6.1.

• Every sandwich semigroup Bσmn with rank(σ) < min(m,n) is generated by its trivial maximal
J σ-classes, a fact that leads to neat formulae for the rank of Bσmn; see Section 6.2.

• The sets P σ1 and P σ2 may be readily described in a way that yields convenient description of
the regular subsemigroup of a sandwich semigroup; see Section 6.4. Among other things, this
means that Green’s classes and idempotents in the regular subsemigroup P σ = Reg(Bσmn) may
be enumerated by analysing joins of certain equivalence relations, as described in Section 6.3.

• The regular subsemigroup P σ = Reg(Bσmn) has the so-called MI-domination property, as defined
in [14, Section 4]. We show this in Section 6.5, and then apply this to calculate the (idempotent)
ranks of P σ and the idempotent-generated subsemigroup E(Bσmn).

• The proper ideals of P σ = Reg(Bσmn) are all generated by the idempotents in their top Dσ-class,
and simple formulae exist for their rank and idempotent rank (which are equal); see Section 6.6.

We believe it would be interesting (but challenging) to investigate the corresponding problems for the
other diagram categories.

6.1 Isomorphism of sandwich semigroups in B

In this section, we give necessary and sufficient conditions for two sandwich semigroups Bσmn and Bτkl
to be isomorphic; see Theorem 6.4. We begin with a simple lemma; as well as being a key ingredient
in the proof of Theorem 6.4, it will also be used to simplify some calculations in Sections 6.2–6.6.

Lemma 6.1. If m,n ∈ N, and if σ, τ ∈ Bnm are such that rank(σ) = rank(τ), then Bσmn ∼= Bτmn.
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Proof. Since rank(σ) = rank(τ), we have σ = π1τπ2 for some permutations π1 ∈ Sn and π2 ∈ Sm. It
is then easy to check that the map α 7→ π2απ1 determines an isomorphism Bσmn → Bτmn.

Remark 6.2. Lemma 6.1 does not hold in any of the categories P, PB, PP, M or TL. Ex-
ample 3.16(vi) gives two elements σ, τ from TL4 = TL4,4 with rank(σ) = rank(τ) = 2 for which
TLσ4 6∼= TLτ4 ; cf. Figure 4. There are nine partitions from TL4 of rank 2, and Figure 10 gives eggbox
diagrams of the corrsponding nine variants of TL4, all produced using GAP [53]. Up to isomorphism,
there are five such variants; up to isomorphism and anti-isomorphism, there are four. It would be
interesting to attempt to classify the isomorphism classes of sandwich semigroups in TL, and indeed
in all the other diagram categories.
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Figure 10: The variants TLσ4 for each σ ∈ D2(TL4).

The next result gives another situation in which distinct sandwich semigroups can be isomorphic.
There is an obvious dual, but we will not state it. Here Z+ = {1, 2, 3, . . .} is the set of positive integers.

Lemma 6.3. If q ∈ Z+, then

(i) Bσ2q,0 is a left-zero semigroup of size (2q − 1)!! for any σ ∈ B0,2q,

(ii) Bσ2q−1,1 is a left-zero semigroup of size (2q − 1)!! for any σ ∈ B1,2q−1.

Proof. We just prove (i), as (ii) is virtually identical. If α, β ∈ B2q,0, then α ?σ β = ασβ = α id0 = α,
so Bσ2q,0 is a left-zero semigroup. The size follows from Proposition 4.4.

We are now ready to prove the classification result.

Theorem 6.4. Let m,n, k, l ∈ N with m ≡ n (mod 2) and k ≡ l (mod 2), and let σ ∈ Bnm and
τ ∈ Blk with r = rank(σ) and s = rank(τ). Then Bσmn ∼= Bτkl if and only if one of the following holds:

(i) (m,n, r) = (k, l, s),

(ii) m+ n ≤ 2 and k + l ≤ 2,

(iii) renaming if necessary, (m,n, r) = (2q, 0, 0) and (k, l, s) = (2q − 1, 1, 1) for some q ∈ Z+,

(iv) renaming if necessary, (m,n, r) = (0, 2q, 0) and (k, l, s) = (1, 2q − 1, 1) for some q ∈ Z+.

Proof. For the forwards implication,

• (i) ⇒ Bσmn ∼= Bτkl by Lemma 6.1,

• (ii) ⇒ Bσmn ∼= Bτkl, because both semigroups have size 1,

• ((iii) or (iv)) ⇒ Bσmn ∼= Bτkl by Lemma 6.3 and its dual.
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Conversely, suppose Bσmn ∼= Bτkl, and suppose further that (ii) does not hold. By Proposition 4.4, we
have (m+ n− 1)!! = (k + l − 1)!!. Since m + n and k + l are not both ≤ 2, and since x!! is strictly
increasing for odd x ≥ 1, it follows that m+ n = k + l. We consider two cases.

Case 1. Suppose first that (m,n) = (k, l). Then r ≡ s (mod 2). The largest group H -classes in
Bσmn and Bτkl are isomorphic to Sr and Ss (cf. Proposition 5.8(ii)), and these have sizes r! and s!,
respectively. Thus, r! = s!. Since x! is strictly increasing for even x ≥ 0, and also for odd x ≥ 1, it
follows that r = s, so that (i) holds in this case.

Case 2. Now suppose (m,n) 6= (k, l), say with m > k (and n < l). Let z ∈ {0, 1} be such that
z ≡ m (mod 2). By Proposition 5.13, Dz(Bmn) is the minimal ideal of Bσmn. By Propositions 5.13
and 4.11(i) (and the dual of the latter),

|Dz(Bmn)/Rσ| = |Dz(Bmn)/R| = f(m) and |Dz(Bmn)/L σ| = |Dz(Bmn)/L | = f(n),

where f : N→ N is defined by

f(x) =

{
x!! if x is odd
(x− 1)!! if x is even.

Similarly, if w ∈ {0, 1} is such that w ≡ k (mod 2), then the minimal ideal of Bτkl is Dw(Bkl), and we
have

|Dz(Bkl)/Rτ | = f(k) and |Dz(Bkl)/L τ | = f(l).

Since Bσmn ∼= Bτkl, it follows that f(m) = f(k) and f(n) = f(l). For x, y ∈ N with x < y, we have
f(x) = f(y) if and only if (x, y) = (0, 1) or (2q − 1, 2q) for some q ∈ Z+. Since m > k and n < l, it
follows that

• (m, k) = (1, 0) or (2q, 2q − 1) for some q ∈ Z+, and

• (n, l) = (0, 1) or (2p− 1, 2p) for some p ∈ Z+.

Since m ≡ n (mod 2) and k ≡ l (mod 2), it follows that

• (m, k) = (1, 0) and (n, l) = (2p− 1, 2p) for some p ∈ Z+, or

• (m, k) = (2q, 2q − 1) and (n, l) = (0, 1) for some q ∈ Z+.

Thus, one of (iii) or (iv) holds in this case.

Remark 6.5. One could readily deduce a classification up to isomorphism and anti-isomorphism using
the fact that Bσmn and Bσ∗nm are anti-isomorphic.

6.2 The rank of Bσmn

Recall that the rank of a semigroup S, denoted rank(S), is the smallest cardinality of a generating
set for S. In this section we calculate the rank of an arbitrary sandwich semigroup in the Brauer
category B. To this end, we fix m,n ∈ N with m ≡ n (mod 2), and some σ ∈ Bnm. We may assume
by symmetry that m ≥ n, and we write r = rank(σ). Further, by Lemma 6.1, we may assume without
loss of generality that

σ =
(

1 · · · r r + 1, r + 2 · · · n− 1, n

1 · · · r r + 1, r + 2 · · · m− 1,m

)
. (6.6)

The value of rank(Bσmn) depends on whether r < n or r = n; see Theorems 6.8 and 6.9. Note that if
r = n = m, then σ = idn, so that Bσmn = Bn is the Brauer monoid of degree n. Since the rank of Bn is
known to be 3 for n ≥ 3 (cf. [52, Lemma 2.1]), we will exclude the case of r = n = m.

We begin with a lemma that will be of use in both cases. Throughout Section 6.2, we write
Dq = Dq(Bmn) for each 0 ≤ q ≤ n with q ≡ n (mod 2).

Lemma 6.7. If α ∈ Dq, where q ≤ r and q < n, then α = β ?σ γ for some β, γ ∈ Dq+2.
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Proof. Write α =
(
a1 · · · aq c1, d1 · · · cs, ds
b1 · · · bq e1, f1 · · · et, ft

)
. Since q < n, we have s, t ≥ 1. Then with

β =
(
a1 · · · aq cs ds c1, d1 · · · cs−1, ds−1

1 · · · q n− 1 n q + 1, q + 2 · · · n− 3, n− 2

)
and γ =

(
1 · · · q m− 1 m q + 1, q + 2 · · · m− 3,m− 2

b1 · · · bq et ft e1, f1 · · · et−1, ft−1

)
,

one may easily check (with separate diagrams for the r = n < m and r < n ≤ m cases) that
α = βσγ.

Theorem 6.8. If r < n ≤ m, then Bσmn = 〈Ω〉, where Ω = {α ∈ Bmn : rank(α) > r}. Furthermore,
every generating set for Bσmn contains Ω, and so

rank(Bσmn) = |Ω| =
∑
r<q≤n

r≡n (mod 2)

(
m
q

)(
n
q

)
(m− q − 1)!!(n− q − 1)!!q!.

Proof. Note that Ω = Dr+2∪Dr+4∪· · ·∪Dn, so the formula for |Ω| follows from the formulae for |Dq|
given in Remark 4.12. By Proposition 5.9(i), Ω is the union of all the maximal J σ-classes of Bσmn,
and all of these are singletons; it follows immediately that every generating set for Bσmn contains Ω.

It remains to show that Bσmn = 〈Ω〉. To do this, we must show that 〈Ω〉 contains Dq for each
0 ≤ q ≤ n with q ≡ n (mod 2). We do this by descending induction on q, noting that Dq ⊆ Ω ⊆ 〈Ω〉
for q ≥ r + 2. Now suppose q ≤ r, and fix some α ∈ Dq. By Lemma 6.7, we have α = β ?σ γ for some
β, γ ∈ Dq+2. By induction we have β, γ ∈ 〈Ω〉, so it follows that α = β ?σ γ ∈ 〈Ω〉, as required.

We now treat the case in which r = n < m. Here we have σ =
(

1 · · · n
1 · · · n n+ 1, n+ 2 · · · m− 1,m

)
, and

we note that σ is right-invertible; indeed, σσ∗ = idn.

Theorem 6.9. If r = n < m, then rank(Bσmn) =
(
m
n

)
(m− n− 1)!!.

Proof. We first claim that Bσmn = 〈Dn〉. Indeed, it may be proved by descending induction that
Dq ⊆ 〈Dn〉 for all 0 ≤ q ≤ n with q ≡ n (mod 2). The q = n case is obvious, and the inductive step
again follows from Lemma 6.7.

Next we note that Dn = Jσ∗ is the maximum J -class in the hom-set Bmn (cf. Lemma 3.24 and
Corollary 4.10). Since σ∗ is a right-inverse of σ, Dσ

n = Jσσ∗ is the maximum J σ-class in Bσmn, and this
is a left-group over Hσ

σ∗
∼= Sn (cf. Propositions 3.22 and 5.9(ii)). Now,

β =
(

1 · · · n− 1 m n,n+ 1 · · · m− 2,m− 1

1 · · · n− 1 n

)
is a right-inverse of σ, and hence an idempotent of Dσ

n. Since β 6= σ∗ (as n < m), it follows that
|Dσ

n/H
σ| ≥ 2 ≥ rank(Sn). It follows from Proposition 3.26(ii) and Proposition 4.11(i) that

rank(Bσmn) = rank(〈Dn〉) = |Dn/H | = |Dn/R| =
(
m
n

)
(m− n− 1)!!.

Remark 6.10. Although there is not generally a unique generating set for Bσmn of minimum cardinality
for r = n < m, it is possible to classify the generating sets of minimum cardinality (modulo a classifica-
tion of the generating sets of the symmetric group Sn). Indeed, following the proof of Proposition 3.26,
these are all of the form X1 ∪X2, where:

• X1 is a cross-section of the H -classes of Bmn contained in Dσ
n such that Dσ

n = 〈X1〉, and

• X2 is an arbitrary cross-section of the H -classes of Bmn contained in Dn \Dσ
n.

Writing k = |Dσ
n/H |, sets X1 of the above form are in one-one correspondence with the ordered lists

(π1, . . . , πk) where Sn is generated by {π1, . . . , πk}; see the proof of [14, Proposition 4.11].
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Remark 6.11. Theorems 6.8 and 6.9 do not have direct analogues for the other diagram categories.
In general:

• If r < n ≤ m, then Kσmn is not generated by its maximal J σ-classes (regardless of whether there
is a nontrivial maximal J σ-class or not).

• If r = n < m, then Kσmn is not generated by Dn.

All of this may be verified with GAP [53]. Calculating the ranks of sandwich semigroups in other
diagram categories appears to be an interesting (and challenging) problem.

6.3 A combinatorial digression

In this section we introduce certain numbers that will play an important role in all that follows.
Let ε be an equivalence on a set X. We say ε is a 2-equivalence if every ε-class has size 2. If

|X| = m, then there are (m−1)!! 2-equivalences on X; recall that we define (−1)!! = 1, and k!! = 0 if k
is even. We say ε is a 1-2-equivalence if each ε-class has size 1 or 2. The rank of a 1-2-equivalence ε,
denoted rank(ε), is defined to be the number of singleton ε-classes; note that rank(ε) ≡ |X| (mod 2)
if |X| is finite. (Of course the 1-2-equivalences on [m] are simply the kernels of elements of Bmn; for
α ∈ Bmn, the rank of the 1-2-equivalence ker(α) is just rank(α).)

For m, q ∈ N with q ≤ m and q ≡ m (mod 2), let κ(m, q) be the number of 1-2-equivalences ε of
an m-element set with rank(ε) = q. Then

κ(m, q) =
(
m
q

)
(m− q − 1)!!. (6.12)

Indeed, to specify such an ε, we first choose the q singletons in
(
m
q

)
ways, and then pair the remaining

m− q elements of X in (m− q − 1)!! ways (cf. Proposition 4.11(i).)
Suppose m, r, q ∈ N are such q ≤ r ≤ m and q ≡ r ≡ m (mod 2). Fix a set X with |X| = m, and a

1-2-equivalence η on X with rank(η) = r. We define κ(m, r, q) to be the number of 1-2-equivalences ε
on X such that:

• rank(ε) = q, and

• the join ε ∨ η has precisely q classes of odd size.

Clearly the definition of κ(m, r, q) depends only on the cardinality of the set X and the rank of η.
(Note that if ε is an arbitrary 1-2-equivalence on X, then every ε ∨ η-class is a union of ε-classes, at
most two of which can be singletons.)

When working with 1-2-equivalences below, one can visualise a join ε ∨ η as follows. We draw the
vertices from X on a horizontal row, and indicate the nontrivial ε-classes (or η-classes) by drawing
edges below (or above) the vertices, respectively; the ε ∨ η-classes are then the connected components
of this graph.

Lemma 6.13. If m, r ∈ N are such that r ≤ m and r ≡ m (mod 2), then κ(m, r, r) = (m+r−1)!!
(2r−1)!! .

Proof. Without loss of generality we may assume that X = {1, . . . ,m}, and that the η-classes are
{1}, . . . , {r} and {r + 1, r + 2}, . . . , {m− 1,m}. Define the numbers λ(m, r), for m, r ∈ N with r ≤ m
and r ≡ m (mod 2), as follows:

(i) λ(m, r) = (m− 1)!! if r = 0,

(ii) λ(m, r) = 1 if r = m,

(iii) λ(m, r) = λ(m− 1, r − 1) + (m− r)λ(m− 2, r) if 0 < r < m.
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Wemay prove the lemma by showing that κ(m, r, r) and (m+r−1)!!
(2r−1)!! both satisfy the recurrence for λ(m, r).

The latter is easily checked.
For the former, first note that (i) holds because κ(m, 0, 0) is simply the number of 2-equivalences

on X. Item (ii) is clear. For (iii), suppose 0 < r < m. Consider a 1-2-equivalence ε of the desired
form, and let A be the ε-class of 1. Then one of the following holds:

A = {1} or A = {1, a} for some r < a ≤ m.

There are κ(m−1, r−1, r−1) and (m−r)κ(m−2, r, r) possibilities for ε in these two cases, respectively.
Adding these gives (iii). To see why there are (m − r)κ(m − 2, r, r) possibilities for ε in the second
case, we argue as follows. We first draw the edges from η above the vertices 1, . . . ,m as indicated in
the top diagram from Figure 11. Once a ∈ {r+ 1, . . . ,m} is chosen, we draw the edge {1, a} below the
vertices, as also indicated in Figure 11. The number of ways to complete this picture to obtain a graph
with r odd-sized components is the same as the number of ways to complete the bottom diagram from
Figure 11 to obtain a graph with r odd-sized components. By definition, there are κ(m− 2, r, r) ways
to do the latter.

1 r a mr+1 r+2 a−2 a−1 a+1 a+2 a+3 m−1

1 r mr+1 r+2 a−2 a−1 a+2 a+3 m−1

Figure 11: Graphs constructed during the proof of Lemma 6.13.

Lemma 6.14. If m, r, q ∈ N are such q ≤ r ≤ m and q ≡ r ≡ m (mod 2), then

κ(m, r, q) =

(
r

q

)
(r − q − 1)!!(m+ q − 1)!!

(r + q − 1)!!
.

Proof. Again we will assume that X = {1, . . . ,m}, and that the η-classes are {1}, . . . , {r} and
{r + 1, r + 2}, . . . , {m− 1,m}. Define the numbers λ(m, r, q), for m, r, q ∈ N with q ≤ r ≤ m and
q ≡ r ≡ m (mod 2), as follows:

(i) λ(m, r, q) = (m− 1)!! if q = 0,

(ii) λ(m, r, q) =
(
m
q

)
(m− q − 1)!! if m = r,

(iii) λ(m, r, q) = (m+r−1)!!
(2r−1)!! if r = q,

(iv) λ(m, r, q) = λ(m−1, r−1, q−1)+(r−1)λ(m−2, r−2, q)+(m−r)λ(m−2, r, q) for 0 < q < r < m.

We will show that κ(m, r, q) and
(
r
q

) (r−q−1)!!(m+q−1)!!
(r+q−1)!! both satisfy the recurrence for λ(m, r, q). Again

the latter is easily checked, though the calculation is somewhat involved for (iv). The rest of the proof
is devoted to the former.

(i) and (ii). If r = m or if q = 0, then ε ∨ η has q odd-sized blocks for every 1-2-equivalence ε with
rank(ε) = q; thus, κ(m, r, q) = κ(m, q), and we then apply (6.12).

(iii). This was proved in Lemma 6.13.
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(iv). Suppose 0 < q < r < m, consider a 1-2-equivalence ε of the desired form, and let A be the ε-class
of 1. Then one of the following holds:

A = {1} or A = {1, a} for some 1 < a ≤ r or A = {1, a} for some r < a ≤ m.

As in the proof of Lemma 6.13, there are κ(m − 1, r − 1, q − 1), (r − 1)κ(m − 2, r − 2, q) and
(m− r)κ(m− 2, r, q) possibilities for ε in these three cases, respectively. Adding these gives (iv).

6.4 The structure of the regular subsemigroup of Bσmn

Throughout Section 6.4 we fix m,n ∈ N with m ≡ n (mod 2), and some σ ∈ Bnm of rank r. Our
goal is to give a structural description of the regular subsemigroup P σ = Reg(Bσmn) of the sandwich
semigroup Bσmn. It is of no advantage to assume that m ≥ n holds, or that m = n = r does not hold,
so we make no such assumption during this section.

Let α ∈ Bmn, and consider the product graph Π(α, σ); this graph is defined in Section 4.1, and it is
used in the construction of the product ασ. Because of the form of Brauer partitions, every component
in the graph Π(α, σ) is a path or a loop, and these can be of the following types:

(C1) x α−−→ z for some x, z ∈ [m],

(C2) x′ σ−−→ z′ for some x, z ∈ [m],

(C3) x α−−→ y′′1
σ−−→ y′′2

α−−→ · · · σ−−→ y′′2k
α−−→ z for some x, z ∈ [m], k ∈ Z+ and y1, y2, . . . , y2k ∈ [n],

(C4) x′ σ−−→ y′′1
α−−→ y′′2

σ−−→ · · · α−−→ y′′2k
σ−−→ z′ for some x, z ∈ [m], k ∈ Z+ and y1, y2, . . . , y2k ∈ [n],

(C5) y′′1
α−−→ y′′2

σ−−→ · · · α−−→ y′′2k
σ−−→ y′′1 for some k ∈ Z+ and y1, y2, . . . , y2k ∈ [n],

(C6) x α−−→ y′′1
σ−−→ y′′2

α−−→ · · · α−−→ y′′2k−1
σ−−→ z′ for some x, z ∈ [m], k ∈ Z+ and y1, y2, . . . , y2k−1 ∈ [n].

Components of types (C1) and (C3) lead to upper nontransversals {x, z} in the product ασ; components
of types (C2) and (C4) lead to lower nontransversals {x′, z′} of ασ; components of type (C5) are closed
loops lying in the middle row of Π(α, σ), and these are discarded when forming ασ; finally, components
of type (C6) lead to transversals {x, z′} of ασ. Also note that every equivalence class of the join
coker(α) ∨ ker(σ) is of the form

• {y1, . . . , y2k} for some component of Π(α, σ) of type (C3), (C4) or (C5), or

• {y1, . . . , y2k−1} for some component of Π(α, σ) of type (C6).

In particular, keeping Proposition 5.7 in mind, and writing q = rank(α),

α ∈ P σ1 ⇔ rank(ασ) = q ⇔ Π(α, σ) has no components of type (C3)
⇔ Π(α, σ) has q components of type (C6)
⇔ coker(α) ∨ ker(σ) has q classes of odd size
⇔ coker(α) ∨ ker(σ) separates codom(α).

(Recall that an equivalence ε on a set X separates a subset A of X if each ε-class contains at most one
element of A.) Combining this with the dual statement concerning products of the form σα, we have
proved the following:

Proposition 6.15. We have

P σ1 =
{
α ∈ Bmn : coker(α) ∨ ker(σ) separates codom(α)

}
,

P σ2 =
{
α ∈ Bmn : ker(α) ∨ coker(σ) separates dom(α)

}
,

Reg(Bσmn) = P σ = P σ3 =
{
α ∈ Bmn : coker(α) ∨ ker(σ) separates codom(α)

and ker(α) ∨ coker(σ) separates dom(α)
}
.
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Remark 6.16. Of course Proposition 6.15 holds for the Temperley-Lieb category TL as well. However,
it does not hold for any of the other categories. For example, with α = and σ = , both fromM2

(and hence both from PB2, PP2 and P2), we have rank(ασ) = rank(σα) = 0 < rank(α), even though
coker(α) ∨ ker(σ) = ker(α) ∨ coker(σ) separates dom(α) = codom(α).

Recall from Section 5.1 that we have an surmorphism

Ψ : P σ = Reg(Bσmn)→ Br : α 7→ (σασσ∗)\ = τσατ∗.

Here τ ∈ Brn is as defined in (5.2). In what follows, it will be convenient to write α = αΨ for α ∈ P σ.
As in Section 3.6, for each of Green’s relations K we have a relation K̂

σ on P σ defined so that
α K̂

σ
β in Bσmn if and only if α K β in Kr, and we recall that D̂

σ
= Dσ. In particular, the Dσ-classes

Dσ
q = Dq(P

σ) of P σ map onto the D-classes Dq(Br) of Br for each q.
The next result uses the K̂

σ relations to give a finer description of the internal structure of the Dσ-
classes of P σ. In the statement and proof, we denote the K̂

σ-class of α ∈ P σ by K̂σ
α. By Lemma 6.1,

it suffices to assume that σ has the form in (6.6), in which case τ =
(

1 · · · r
1 · · · r r, r + 1 · · · n− 1, n

)
.

Theorem 6.17. Let 0 ≤ q ≤ r with q ≡ r (mod 2).

(i) Dσ
q contains

(
r
q

)
(r − q − 1)!! R̂

σ-classes, each of which contains (m+q−1)!!
(r+q−1)!! Rσ-classes.

(ii) Dσ
q contains

(
r
q

)
(r − q − 1)!! L̂

σ-classes, each of which contains (n+q−1)!!
(r+q−1)!! L σ-classes.

(iii) Dσ
q contains

(
r
q

)2
(r − q − 1)!!2 Ĥ

σ-classes, each of which contains (m+q−1)!!(n+q−1)!!
(r+q−1)!!2

H σ-classes.

(iv) Each H σ-class in Dσ
q has size q!, and group H σ-classes in Dσ

q are isomorphic to the symmetric
group Sq.

(v) An H σ-class Hσ
α ⊆ Dσ

q is a group if and only if Hα ⊆ Dq(Br) is a group H -class of Br, in which
case Ĥσ

α is a (m+q−1)!!
(r+q−1)!! ×

(n+q−1)!!
(r+q−1)!! rectangular group over Sq.

Proof. (i). By definition, the R̂
σ-classes in Dσ

q are in one-one correspondence with the R-classes in
Dq(Br); by Proposition 4.11(i), there are

(
r
q

)
(r − q − 1)!! of these.

An Rσ-class in Dσ
q is uniquely determined by the common kernel of all its elements. Such a kernel

is a 1-2-equivalence on [m] of rank q (as defined in Section 6.3) whose join with coker(σ) has q classes
of odd size (cf. Proposition 6.15 and the discussion before it). By definition, and using Lemma 6.14,
there are κ(m, r, q) =

(
r
q

) (r−q−1)!!(m+q−1)!!
(r+q−1)!! such equivalences.

Dividing κ(m, r, q) by the number of R̂
σ-classes gives (m+q−1)!!

(r+q−1)!! , so the proof of (i) will be complete
if we can show that each R̂

σ-class contains the same number of Rσ-classes. To do so, consider two
R̂
σ-classes R̂σα and R̂σβ , where α, β ∈ Dσ

q . Since R̂σα and R̂σβ are unions of Rσ-classes, it is enough to
show that these R̂

σ-classes have the same size.
Since α Dσ β, we have α Rσ γ L σ β for some γ ∈ Dσ

q . Since γ ∈ Rσα ⊆ R̂σα, we have R̂σα = R̂σγ , so
we may in fact assume without loss of generality that α L σ β. It follows that α L β in Br, so that
coker(α) = coker(β), whence β = πα for some permutation π ∈ Sr. Define the permutations

ρ =
(

1 · · · r r + 1 · · · m
1π · · · rπ r + 1 · · · m

)
∈ Sm and % =

(
1 · · · r r + 1 · · · n

1π · · · rπ r + 1 · · · n

)
∈ Sn.

It is easily checked that τσ · ρ = π · τσ and σρ = %σ.
We claim that there is a well-defined map

θ : R̂σα → R̂σβ : γ 7→ ργ.

To prove this, we must show that θ does indeed map R̂σα into R̂σβ . To do so, let γ ∈ R̂σα; we must show
that
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(a) γθ ∈ P σ, and (b) γθ R̂
σ
β: i.e., γθ R β.

Since γ ∈ R̂σα, it follows in particular that γ ∈ P σ, so that rank(σγσ) = rank(γ). Since ρ ∈ Sm and
% ∈ Sn, and using σρ = %σ, we have

rank(σ(γθ)σ) = rank(σργσ) = rank(%σγσ) = rank(σγσ) = rank(γ) = rank(ργ) = rank(γθ),

which verifies (a). For (b), using the facts that τσ · ρ = π · τσ, that γ R α (as γ ∈ R̂σα), and that R is
a left-congruence, we see that

γθ = ργ = τσ(ργ)τ∗ = π(τσγτ∗) = πγ R πα = β.

This completes the proof that θ is well defined. Since ρ is a permutation, θ is injective, so it follows
that |R̂σα| ≤ |R̂σβ|. The reverse inequality follows by symmetry, and so |R̂σα| = |R̂σβ|. As noted above,
this completes the proof of (i).

(ii). This is dual to (i).

(iii). This follows immediately from (i) and (ii).

(iv). This was proved in Proposition 5.8(ii).

(v). This follows from Theorem 3.29(ii) and (iii), and parts (i), (ii) and (iv).

Remark 6.18. Figure 12 gives eggbox diagrams for the regular semigroups Reg(Bσ166 ) and Reg(Bσ264 ),
where σ1 ∈ B66 and σ2 ∈ B46 both have rank 4; also pictured is the Brauer monoid B4; all were
produced using GAP [53]. These illustrate the relationships between K̂

σ-classes of Reg(Bσmn) and
K -classes of Br, as described in Theorem 6.17. (See also Figures 4 and 5 for similar comparisons
between Reg(Kσmn) and Kr in the categories TL and P. Note that in diagram categories other than B
it is possible for R̂

σ-classes in the same Dσ-class to contain different numbers of Rσ-classes.)
One may also compare Figure 12 with the combinatorial formulae given in Theorem 6.17. For

example, the Dσ1-classes Dσ1
4 , Dσ1

2 and Dσ1
0 of Reg(Bσ166 ) contain κ(6, 4, 4) = 9, κ(6, 4, 2) = 42 and

κ(6, 4, 0) = 15 Rσ1-classes, respectively.

Multiplying the two numbers from Theorem 6.17(iii) gives the number of H σ-classes in Dσ
q ; mul-

tiplying this by q! gives the size of Dσ
q ; summing over appropriate q gives the size of P σ:

Corollary 6.19. The size of the regular subsemigroup P σ = Reg(Bσmn) is given by

|P σ| =
∑

0≤q≤r
q≡r (mod 2)

κ(m, r, q)κ(n, r, q)q! =
∑

0≤q≤r
q≡r (mod 2)

(
r

q

)2 (r − q − 1)!!2(m+ q − 1)!!(n+ q − 1)!!

(r + q − 1)!!2
q!.

As another application of Theorem 6.17, we may calculate the number of idempotents in the
sandwich semigroup Bσmn. As usual, for a subset A of a semigroup T , we write E(A) for the set of all
idempotents of T contained in A; we also write e(A) = |E(A)| for the number of such idempotents.
Several formulae were given in [12] for the number e(Dq(Br)) of rank-q idempotents from the Brauer
monoid Br. Specifically, [12, Theorem 30] says that e(Dq(Br)) =

(
r
q

)
(r−q−1)!!arq, where arq is defined

by the recurrence

arr = 1 for all r, ar0 = (r − 1)!! for even r, arq = ar−1,q−1 + (r − q)ar−2,q for 1 < q < r.

In fact, by comparing this with the proof of Lemma 6.13, we see that arq = κ(r, q, q) = (r+q−1)!!
(2q−1)!! , so

that in fact
e(Dq(Br)) =

(
r

q

)
(r − q − 1)!!(r + q − 1)!!

(2q − 1)!!
. (6.20)
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Figure 12: Left to right: eggbox diagrams of Reg(Bσ166 ), Reg(Bσ264 ) and B4; cf. Remark 6.18.

Now, each idempotent of Dq(Br) corresponds to a group H -class in Dq(Br); by Theorem 6.17(v),
the preimage of this group H -class is a (m+q−1)!!

(r+q−1)!! ×
(n+q−1)!!
(r+q−1)!! rectangular group contained in Dσ

q .

This rectangular group of course has (m+q−1)!!(n+q−1)!!
(r+q−1)!!2

idempotents. Mutiplying this by e(Dq(Br))
(cf. (6.20)) gives the size of E(Dσ

q ), and summing over appropriate q gives the size of E(P σ) = E(Bσmn).

Theorem 6.21. The number of idempotents of the sandwich semigroup Bσmn is given by

e(Bσmn) =
∑

0≤q≤r
q≡r (mod 2)

(
r

q

)
(r − q − 1)!!(m+ q − 1)!!(n+ q − 1)!!

(r + q − 1)!!(2q − 1)!!
.

The qth term in the above sum gives the number of idempotents from Dσ
q .

Remark 6.22. Since the idempotents of Bσmn are precisely the post-inverses of σ, Theorem 6.21 also
gives the size of Post(σ).
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Remark 6.23. Using (6.20), we may give a simpler expression for the number of idempotents in a
Brauer monoid Br than that given in [12, Theorem 30]:

e(Br) =
∑

0≤q≤r
q≡r (mod 2)

(
r

q

)
(r − q − 1)!!(r + q − 1)!!

(2q − 1)!!
.

This formula is also the m = n = r case of Theorem 6.21. An alternative formula for e(Br) may be
found in [40, Proposition 4.10].

6.5 MI-domination and the ranks of Reg(Bσmn) and E(Bσmn)

The concept of MI-domination (see below for the definition) was introduced in [14]. Among other
things, it was shown in [14, Theorems 4.16 and 4.17] that if the regular subsemigroup P a = Reg(Saij)
of a sandwich semigroup Saij in a regular category S is MI-dominated, then convenient formulae exist
for the rank of P σ, and also for the rank and idempotent rank for the idempotent-generated subsemi-
group E(P a) = E(Saij). In this section we show that sandwich semigroups in the Brauer category B are
MI-dominated, and then use this to deduce the values of the various (idempotent) ranks mentioned
above.

Recall that the set E(T ) of idempotents of a semigroup T is partially ordered under the relation �
defined by e � f ⇔ e = ef = fe ⇔ e = fef . We have already implicitly referred to this partial
order in Section 2.3 when discussing primitive idempotents. (This order extends in a natural way to
the whole semigroup T , but we do not need to give the definition [54]. We also note that � is simply
the restriction of the ≤H = ≤R ∩ ≤L preorder to E(S).) It is easy to check that every mid-identity
u ∈ MI(T ) is maximal in the � order: i.e., u � e ⇒ e = u for all e ∈ E(T ). As in [14], we say the
semigroup T is MI-dominated if it is regular and if every idempotent of T is �-below a mid-identity
of T .

If S is a partial semigroup, and if a ∈ Sji is regular, then any preinverse b ∈ Pre(a) is clearly
a mid-identity of the regular semigroup P a = Reg(Saij), and indeed of Saij itself. We have already
noted (cf. Proposition 3.17) that if S is stable and regular, then MI(P a) = V (a); it also follows
from [14, Proposition 4.5] that MI(P a) = Ĥa

b for any b ∈ V (a), where the latter denotes the Ĥ
a-class

of b.
We now work towards showing that the regular subsemigroup P σ = Reg(Bσmn) of a sandwich

semigroup Bσmn is MI-dominated. For the rest of Section 6.5, we fix m,n ∈ N with m ≡ n (mod 2),
and some σ ∈ Bnm with r = rank(σ). As usual, by Lemma 6.1, we may assume that σ has the form
given in (6.6).

Here is the main technical result we need; there is an obvious dual, but we will not state it.

Lemma 6.24. If α ∈ P σ2 , then α = λ ?σ α for some λ ∈ MI(P σ).

Proof. Write α =
(
a1 · · · aq C1 · · · Cs
b1 · · · bq D1 · · · Dt

)
. Since α L σα, we have codom(σα) = codom(α) = {b1, . . . , bq}.

Since also dom(σα) ⊆ dom(σ) = [r], it follows that the transversals of σα are {x1, b
′
1}, . . . , {xq, b′q},

for some x1, . . . , xq ∈ [r]. There are three kinds of nontransversals of σα:

• The lower nontransversals D′1, . . . , D′t of α are still nontransversals of σα; in fact, these are all
the lower nontransversals of σα.

• The upper nontransversals {r + 1, r + 2}, . . . , {n− 1, n} of σ are still nontransversals of σα.

• Any other upper nontransversal of σα is contained in [r], and there are k = r−q
2 of these. Suppose

these are {y1, z1}, . . . , {yk, zk}.

Thus, we have
σα =

(
x1 · · · xq y1, z1 · · · yk, zk r + 1, r + 2 · · · n− 1, n

b1 · · · bq D1 · · · · · · · · · · · · · · · · · · · · · Dt

)
. (6.25)

We will construct the element λ in stages. First:
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(i) {a1, x
′
1}, . . . , {aq, x′q} will all be transversals of λ, and

(ii) {r + 1, r + 2}′, . . . , {n − 1, n}′ will all be lower nontransversals of λ. In fact, these will be all the
lower nontransversals.

We still have to construct r − q = 2k further transversals, and all the upper nontransversals of λ. To
do the former, consider some 1 ≤ i ≤ k. Since {yi, zi} is a nontransversal of σα, and since {yi, y′′i } and
{zi, z′′i } are both edges in the product graph Π(σ, α), there is a path in Π(σ, α) from y′′i to z′′i . The
first edge in this path is of the form y′′i → w′′i for some upper nontransversal {yi, wi} of α; renaming if
necessary, we may assume that Ci = {yi, wi}. Now we stipulate that

(iii) {y1, y
′
1}, . . . , {yk, y′k} and {w1, z

′
1}, . . . , {wk, z′k} will all be transversals of λ.

The elements from [m] ∪ [n]′ involved in the blocks listed in (i)–(iii) are precisely the elements of
{a1, . . . , aq} ∪ {y1, . . . , yk} ∪ {w1, . . . , wk} ∪ [n]′. The remaining elements of [m] are precisely the
elements of Ck+1, . . . , Cs, so we may complete the definition of λ by specifying that

(iv) Ck+1, . . . , Cs will all be upper nontransversals of λ.

To summarise, we have defined

λ =
(
a1 · · · aq y1 · · · yk w1 · · · wk Ck+1 · · · Cs
x1 · · · xq y1 · · · yk z1 · · · zk r + 1, r + 2 · · · n− 1, n

)
. (6.26)

To complete the proof, we must show that α = λσα, and that λ ∈ MI(P σ). The first of these is clear,
in light of (6.25) and (6.26). Since MI(P σ) = V (σ), as noted before the statement of the lemma, it
remains to show that λ = λσλ and σ = σλσ; in fact, since σ J λ (as rank(λ) = r) it suffices to do
the latter, by Lemma 3.13(ii). We begin by identifying the transversals of σλ.

First note that since {y1, y
′
1}, . . . , {yk, y′k} are all transversals of both σ and λ, these are all transver-

sals of σλ as well.
Next consider some 1 ≤ i ≤ q. Since {xi, b′i} is a transversal of σα, there is a path in the product

graph Π(σ, α) of the form

xi
σ−−→ x′′i

α−−→ u′′1
σ−−→ u′′2

α−−→ · · · σ−−→ u′′2l = a′′i
α−−→ b′i for some l ∈ N and some u1, . . . , u2l ∈ [m].

(6.27)
Note that we could have l = 0, in which case the above path is simply xi

σ−−→ x′′i = a′′i
α−−→ b′i. Now,

all the edges in (6.27) coming from σ are also of course in the product graph Π(σ, λ). Next note that
the only upper nontransversals of α that are not blocks of λ are C1, . . . , Ck, and these are all involved
in components of Π(σ, α) of type (C3), as enumerated at the beginning of Section 6.4. Since the
path (6.27) is of type (C6), it follows that every edge in (6.27) coming from α, apart from a′′i

α−−→ b′i,
is also in the product graph Π(σ, λ). Since λ contains the transversal {ai, x′i}, it follows that Π(σ, λ)
contains the path

xi
σ−−→ x′′i

λ−−→ u′′1
σ−−→ u′′2

λ−−→ · · · σ−−→ u′′2l = a′′i
λ−−→ x′i.

In particular, σλ contains the transversals {x1, x
′
1}, . . . , {xq, x′q}.

Now consider some 1 ≤ i ≤ k. We know that {yi, zi} is an upper nontransversal of σα, with
yi, zi ∈ [r], and that the component of the product graph Π(σ, α) containing yi, zi begins with the
edges yi

σ−−→ y′′i
α−−→ w′′i . Let the full component be

yi
σ−−→ y′′i

α−−→ w′′i
σ−−→ v′′1

α−−→ v′′2
σ−−→ · · · α−−→ v′′2l = z′′i

σ−−→ zi where l ∈ N and v1, . . . , v2l ∈ [m].
(6.28)

See Figure 13. All edges in (6.28) but y′′i
α−−→ w′′i belong to the product graph Π(σ, λ) as well; since λ

contains the transversal {wi, z′i}, it follows that Π(σ, λ) contains the path

z′i
λ−−→ w′′i

σ−−→ v′′1
λ−−→ v′′2

σ−−→ · · · λ−−→ v′′2l = z′′i
σ−−→ zi.

In particular, σλ contains the transversals {z1, z
′
1}, . . . , {zk, z′k}.
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The previous three paragraphs show that σλ contains the transversals {1, 1′}, . . . , {r, r′}. Since σ
contains these transversals, so too therefore does σλσ. Since σλσ contains all the (upper and lower)
nontransversals of σ, it follows that σ = σλσ. As noted above, this completes the proof.

σ

yi zi

α
w′′
i

v′′1
v′′2

v′′3
v′′4

v′′5v′′6y′′i

σ

yi zi

λ

w′′
i

v′′1
v′′2

v′′3
v′′4

v′′5v′′6y′′i

y′i z′i

Figure 13: Left: a component of type (6.28) in the product graph Π(σ, α). Right: the corresponding
two components of Π(σ, λ).

We may now deduce the following:

Proposition 6.29. The semigroup P σ = Reg(Bσmn) is MI-dominated.

Proof. Let α ∈ E(P σ). Since α ∈ P σ = P σ1 ∩P σ2 , Lemma 6.24 and its dual tell us that α = λ?σ α?σ ρ
for some λ, ρ ∈ MI(P σ). Put ε = λ ?σ ρ, noting that ε ∈ MI(P σ), since MI(P σ) is a subsemigroup.
Since λ, ρ are mid-identities, we have α = λ ?σ α ?σ ρ = λ ?σ ρ ?σ α ?σ λ ?σ ρ = ε ?σ α ?σ ε, which shows
that α � ε.

Remark 6.30. If K is any of the other diagram categories studied in this paper, then the regular
subsemigroup Reg(Kσmn) is not MI-dominated in general, as may be verified by GAP [53]. For example,

consider the partition σ = from P3 = P3,3. Using Proposition 3.17(ii) and (iv), GAP calculates:

MI(Pσ3 ) = V (σ) =

{
, , , , , , , ,

}
.

It also tells us that E(Pσ3 ) has size 99, but the set {ε ?σ α ?σ ε : ε ∈ MI(Pσ3 ), α ∈ E(Pσ3 )} has
size 83. From this, it quickly follows that Reg(Pσ3 ) is not MI-dominated. As an explicit example,

consider α = ∈ P3. Then one may check that α = ασα, so that α ∈ E(Pσ3 ). But α is not ≤R-
below any of the above mid-identities (cf. Theorem 4.9(i)), so it follows that α is not �-below any
mid-identity.

Armed with Proposition 6.29, we may quickly deduce information about the ranks of the regular
subsemigroup P σ = Reg(Bσmn) and the idempotent-generated subsemigroup E(Bσmn), as well as the
idempotent rank of the latter. (Recall that the idempotent rank of an idempotent-generated semi-
group T , denoted idrank(T ), is the smallest size of a generating set for T consisting of idempotents.)

For the next proof, we also need the concept of relative rank [31]. If T is a semigroup, and if A ⊆ T ,
then the relative rank of T modulo A, denoted rank(T :A), is the smallest size of a subset B ⊆ T such
that T is generated by A ∪B. It follows immediately from [52, Lemma 2.1] that

rank(Br :Sr) =

{
1 if r ≥ 2

0 if r ≤ 1.
(6.31)

We will also need to refer to Ĥσ
σ∗ , the Ĥ

σ-class of σ∗. Note that the q = r case of Theorem 6.17(iii)
says that Dσ

r is a single Ĥ
σ-class; since σ∗ ∈ Dσ

r , it follows in fact that Ĥσ
σ∗ = Dσ

r . It follows from
the same theorem that

|Ĥσ
σ∗/R

σ| = (m+r−1)!!
(2r−1)!! and |Ĥσ

σ∗/L
σ| = (n+r−1)!!

(2r−1)!! . (6.32)
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The next result gives the rank of the regular semigroup P σ = Reg(Bσmn). If r = m = n, then
P σ = Bn. We have already noted that rank(Bn) = 3 for n ≥ 3, so we will exclude the r = m = n case
from the statement. Also, since Bσmn is anti-isomorphic to Bσ∗nm, it suffices to assume that m ≥ n.

Theorem 6.33. If m ≥ n, and if r = m = n does not hold, then the rank of the regular semi-
group P σ = Reg(Bσmn) is given by

rank(P σ) =
(m+ r − 1)!!

(2r − 1)!!
+

{
1 if r ≥ 2

0 if r ≤ 1.

Proof. By [14, Theorem 4.16], and since P σ is MI-dominated (cf. Proposition 6.29), we have

rank(P σ) = rank(Br :Sr) + max
(
|Ĥσ

σ∗/R
σ|, |Ĥσ

σ∗/L
σ|, rank(Sr)

)
.

The result now follows quickly from (6.31) and (6.32), along with the fact [55] that

rank(Sr) =

{
2 if r ≥ 3

1 if r ≤ 2.

In the next statement we again assume by symmetry that m ≥ n, but we do not need to exclude
the possibility that r = m = n.

Theorem 6.34. If m ≥ n, then the rank and idempotent rank of the idempotent-generated semi-
group E(Bσmn) are given by

rank(E(Bσmn)) = idrank(E(Bσmn)) =
(m+ r − 1)!!

(2r − 1)!!
+

(
r

2

)
.

Proof. By [14, Theorem 4.17], and since P σ is MI-dominated (cf. Proposition 6.29), we have

rank(E(Bσmn)) = rank(E(Br)) + max
(
|Ĥσ

σ∗/R
σ|, |Ĥσ

σ∗/L
σ|
)
− 1,

idrank(E(Bσmn)) = idrank(E(Br)) + max
(
|Ĥσ

σ∗/R
σ|, |Ĥσ

σ∗/L
σ|
)
− 1.

The result now follows from (6.32), along with the fact [47, Proposition 2] that

rank(E(Br)) = idrank(E(Br)) = 1 +
(
r
2

)
.

6.6 Ideals of Reg(Bσmn)

We now turn our attention to the ideals of the regular subsemigroup P σ = Reg(Bσmn). These are of the
form Iq = Iq(P

σ), for each 0 ≤ q ≤ r with q ≡ r (mod 2), in the notation of Section 5.4. Theorem 5.20
shows that any proper ideal Iq (q < r) is idempotent-generated. In this section we wish to improve this
result, and show that Iq is generated by the idempotents from E(Dσ

q ). We will also calculate the rank
and idempotent rank of each proper ideal Iq. Before we state the result (Theorem 6.41), we require
two results from [14]:

Lemma 6.35 (cf. [14, Proposition 4.3]). If T is a regular semigroup, then T is MI-dominated if and
only if T =

⋃
e∈MI(T )

eTe.

The next result makes use of the surmorphism

Φ : P a = Reg(Saij)→ abSjab : x 7→ axab,

defined for a regular partial semigroup S, and for a ∈ Sji and b ∈ V (a); cf. (3.33).

Lemma 6.36 (cf. [14, Proposition 4.8]). For any e ∈ V (a), the restriction of Φ to e ?a P a ?a e is an
isomorphism onto abSjab.
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Remark 6.37. In the case that S = B, and using the isomorphism σσ∗Bnσσ∗ → Br : α 7→ α\

from (5.3), it follows that for any ε ∈ V (σ), the map

ε ?σ P
σ ?σ ε→ Br : α 7→ (σασσ∗)\ = τσατ∗

is an isomorphism.

We also require the following basic fact about generating sets of stable semigroups (as usual, we
omit the dual statement):

Lemma 6.38. If J is a maximal J -class of a semigroup T , and if every element of J is stable, then
rank(T ) ≥ |J/R|.

Proof. Suppose T = 〈X〉. The proof will be complete if we can show that X contains at least
one element from each R-class of J . To do so, let z ∈ J be arbitrary. Then z = x1 · · ·xk for
some x1, . . . , xk ∈ X. Since z = x1 · · ·xk ≤J x1, maximality of J = Jz gives z J x1. But then
x1 J z = x1(x2 · · ·xk), so it follows from stability that x1 R x1(x2 · · ·xk) = z.

Remark 6.39. Lemma 6.38 could also be proved using the Rees Theorem [29, Theorem 3.2.3] and
results about generating sets for completely 0-simple semigroups; see for example [23, Theorem 7]
or [59, Lemma 3.1].

We now return our attention to the ideals of P σ.

Lemma 6.40. For any 0 ≤ p ≤ r − 4 with p ≡ r (mod 2), we have Dσ
p ⊆ 〈Dσ

p+2〉.

Proof. Let α ∈ Dσ
p . Since α ∈ Dp(Br) ⊆ Ip+2(Br) =

〈
Dp+2(Br)

〉
, using [17, Theorem 8.4] in the last

step, we have α = β1 · · ·βk for some β1, . . . , βk ∈ Dp+2(Br). For each i, we have βi = γi for some
γi ∈ Dσ

p+2.
Since P σ is MI-dominated (cf. Proposition 6.29), it follows from Lemma 6.35 that α ∈ ε ?σ P σ ?σ ε

for some ε ∈ MI(P σ). Now put δ = ε ?σ (γ1 ?σ · · · ?σ γk) ?σ ε. Since MI(P σ) = E(Jσσ∗) = E(Dσ
r ), by

Proposition 3.17(iv), it follows that ε ∈ E(Dr(Br)) = {idr}, and so δ = idr(γ1 · · · γk) idr = α. But α
and δ both belong to ε ?σ P σ ?σ ε, so by Lemma 6.36 (cf. Remark 6.37), it follows that α = δ. Thus,

α = (ε ?σ γ1) ?σ γ2 ?σ · · · ?σ γk−1 ?σ (γk ?σ ε).

Since γ2, . . . , γk−1 ∈ Dσ
p+2, the proof will be complete if we can show that ε?σ γ1 and γk ?σ ε also belong

to Dσ
p+2. But this follows from p + 2 = rank(γ1) = rank(idr γ1) = rank(ε ?σ γ1) = rank(ε ?σ γ1), and

the analogous calculation for γk ?σ ε.

We are now ready to prove our final main result. As usual, we may assume that m ≥ n.

Theorem 6.41. If m ≥ n, then for any 0 ≤ q < r with q ≡ r (mod 2), we have Iq =
〈
E(Dσ

q )
〉
.

Moreover,

rank(Iq) = idrank(Iq) =

(
r

q

)
(r − q − 1)!!(m+ q − 1)!!

(r + q − 1)!!
.

Proof. We first note that Iq = 〈Dσ
q 〉. Indeed, it follows from Lemma 6.40 and a simple descending

induction that Dσ
p ⊆ 〈Dσ

q 〉 for all 0 ≤ p ≤ q with p ≡ q (mod 2).

Next note that the top J σ-class of Iq is Dσ
q , and this has κ(m, r, q) =

(
r
q

) (r−q−1)!!(m+q−1)!!
(r+q−1)!! Rσ-

classes; cf. Theorem 6.17(i). Since Iq is stable, it follows from Lemma 6.38 that

rank(Iq) ≥ |Dσ
q /R

σ| =
(
r

q

)
(r − q − 1)!!(m+ q − 1)!!

(r + q − 1)!!
.

Thus, since idrank(T ) ≥ rank(T ) for any idempotent-generated semigroup T , it remains to construct
a generating set of the desired size, consisting of idempotents.
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By [17, Theorem 8.4], we have Iq(Br) =
〈
E(Dq(Br))

〉
and idrank(Iq(Br)) =

(
r
q

)
(r − q − 1)!!, so we

may fix some Ω ⊆ E(Dq(Br)) such that Iq(Br) = 〈Ω〉 and |Ω| =
(
r
q

)
(r − q − 1)!!. Let Γ = ΩΨ−1. First

we claim that Iq = 〈Γ〉.
To prove this claim, since we already know that Iq = 〈Dσ

q 〉, it suffices to show that Dσ
q ⊆ 〈Γ〉. With

this in mind, let α ∈ Dσ
q be arbitrary. Since α ∈ Dq(Br), we have α = β1 · · ·βk for some β1, . . . , βk ∈ Ω.

We then follow the proof of Theorem 5.20, and conclude that

α = δ ?σ (γ1 ?σ · · · ?σ γk) ?σ ε,

where γi = βi for each i, and where δ ∈ Ĥσ
γ1 and ε ∈ Ĥσ

γk
are both idempotents. By definition, we

have γi ∈ ΩΨ−1 = Γ for all i (since each βi ∈ Ω). Since δ ∈ Ĥσ
γ1 , we have δ H γ1; but since δ and γ1

are both idempotents, it follows that in fact δ = γ1 = β1 ∈ Ω, which means that δ ∈ ΩΨ−1 = Γ.
Similarly, ε ∈ Γ. It follows that α ∈ 〈Γ〉. This completes the proof of the claim that Iq = 〈Γ〉.

For each α ∈ Ω, let Γα = αΨ−1, so that Γ =
⋃
α∈Ω Γα. By Theorem 6.17(v) and (5.14), it follows

that Γα = E(HαΨ−1) is a (m+q−1)!!
(r+q−1)!! ×

(n+q−1)!!
(r+q−1)!! rectangular band. It follows from results of Ruškuc [59]

(see also [14, Proposition 4.11]) that the rank of a ρ×λ rectangular band is equal to max(ρ, λ). Thus,
for each α ∈ Ω, we may fix a subset Ξα of Γα such that

Γα = 〈Ξα〉 and |Ξα| = max

(
(m+ q − 1)!!

(r + q − 1)!!
,
(n+ q − 1)!!

(r + q − 1)!!

)
=

(m+ q − 1)!!

(r + q − 1)!!
.

Then with Ξ =
⋃
α∈Ω Ξα, we have Γ =

⋃
α∈Ω Γα =

⋃
α∈Ω〈Ξα〉 ⊆ 〈Ξ〉, so that Iq = 〈Γ〉 ⊆ 〈Ξ〉, whence

Iq = 〈Ξ〉. But Ξ consists of idempotents, and has the desired size, so the proof is complete.

Remark 6.42. We have already noted that while ideals of P σ = Reg(Kσmn) in other diagram categories
are often generated by their idempotents, they are generally not generated by the idempotents in their
top Dσ-class; cf. Theorem 5.20 and Remark 5.21. It would therefore be a very interesting problem to
try and calculate the (idempotent) ranks of these ideals in general.
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