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ON THE SOLVABILITY OF GRADED NOVIKOV ALGEBRAS

Ualbai Umirbaev1 and Viktor Zhelyabin2

Abstract. We show that the right ideal of a Novikov algebra generated by the square of
a right nilpotent subalgebra is nilpotent. We also prove that a G-graded Novikov algebra
N over a field K with solvable 0-component N0 is solvable, where G is a finite additive
abelean group and the characteristic of K does not divide the order of the group G. We
also show that any Novikov algebra N with a finite solvable group of automorphisms G
is solvable if the algebra of invariants NG is solvable.
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1. Introduction

A nonassociative algebra N over a field K is called a Novikov algebra [17] if it satisfies
the following identities:

(x, y, z) = (y, x, z) (left symmetry),(1)

(xy)z = (xz)y (right commutativity),(2)

where (x, y, z) = (xy)z − x(yz) is the associator of elements x, y, z.
The defining identities of a Novikov algebra first appeared in the study of Hamiltonian

operators in the formal calculus of variations by I.M. Gelfand and I.Ya. Dorfman [8].
These identities played a crucial role in the classification of linear Poisson brackets of
hydrodynamical type by A.A. Balinskii and S.P. Novikov [1].

In 1987 E.I. Zelmanov [25] proved that all finite-dimensional simple Novikov algebras
over a field K of characteristic 0 are one-dimensional. V.T. Filippov [6] constructed a wide
class of simple Novikov algebras of characteristic p ≥ 0. J.M. Osborn [17, 18, 19] and X.
Xu [23, 24] continued the study of simple finite dimensional algebras over fields of positive
characteristic and simple infinite dimensional algebras over fields of characteristic zero.
A complete classification of finite dimensional simple Novikov algebras over algebraically
closed fields of characteristic p > 2 is given in [23].

E.I. Zelmanov also proved that if N is a finite dimensional right nilpotent Novikov
algebra then N2 is nilpotent [25]. In 2001 V.T. Filippov [7] proved that any left-nil
Novikov algebra of bounded index over a field of characteristic zero is nilpotent. A.S.
Dzhumadildaev and K.M. Tulenbaev [5] proved that any right-nil Novikov algebra of
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bounded index n is right nilpotent if the characteristic p of the field K is 0 or p > n. In
2020 I. Shestakov and Z. Zhang proved [21] that for any Novikov algebra N over a field
the following conditions are equivalent:

(i) N is solvable;
(ii) N2 is nilpotent;
(iii) N is right nilpotent.
The Freiheitssatz for Novikov algebras over fields of characteristic 0 was proven by L.

Makar-Limanov and U. Umirbaev [15]. L.A. Bokut, Y. Chen, and Z. Zhang [3] proved
that every Novikov algebra is a subalgebra of a Novikov algebra obtained from some
differential algebra by Gelfand-Dorfman construction [8].

This paper is devoted to the study of solvable, nilpotent, and right nilpotent Novikov
algebras and graded Novikov algebras. Notice that an algebra A over a field containing
all nth roots of unity admits an automorphism of order n if and only if A admits a Zn-
grading. For this reason the study of graded algebras is related to the study of actions of
finite groups. First we recall some definitions and classical results.

Let R be an algebra over a field K. For any automorphism φ of R the set of fixed
elements

Rφ = {x ∈ R|φ(x) = x}

is a subalgebra of R and is called the subalgebra of invariants of φ. An automorphism
φ is called regular if Rφ = 0. For any group G of automorphisms of R the subalgebra of
invariants

RG = {x ∈ R|φ(x) = x for all φ ∈ G}

is defined similarly.
In 1957 G. Higman [10] published a classical result on Lie algebras which says that if

a Lie algebra L has a regular automorphism φ of prime order p, then L is nilpotent. It
was also shown that the index of nilpotency h(p) of L depends only on p. An explicit
estimation of the function h(p) was found by A.I. Kostrikin and V.A. Kreknin [12] in
1963. A little later, V.A. Kreknin proved [13] that a finite dimensional Lie algebra with a
regular automorphism of an arbitrary finite order is solvable. In 2005 N. Yu. Makarenko
[14] proved that if a Lie algebra L admits an automorphism of prime order p with a
finite-dimensional fixed subalgebra of dimension t, then L has a nilpotent ideal of finite
codimension with the index of nilpotency bounded in terms of p and the codimension
bounded in terms of t and p.

In 1973 G. Bergman and I. Isaacs [2] published a classical result on the actions of finite
groups on associative algebras. Let G be a finite group of automorphisms of an associative
algebra R and suppose that R has no |G|-torsion. If the subalgebra of invariants RG is
nilpotent then the Bergman-Isaacs Theorem [2] states that R is also nilpotent. Since
then a very large number of papers have been devoted to the study of automorphisms of
associative rings. The central problem of these studies was to identify the properties of
rings that can be transformed from the ring of invariants to the whole ring. In 1974 V.
K. Kharchenko [11] proved if RG is a PI-ring then R is a PI-ring under the conditions of
the Bergman-Isaacs Theorem.
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The Bergman-Isaacs Theorem was partially generalized by W.S. Martindale and S.
Montgomery [16] in 1977 to the case of a finite group of Jordan automorphisms, that is a
finite group of automorphisms of the adjoint Jordan algebra R(+).

An analogue of Kharchenko’s result for Jordan algebras was proven by A. P. Semenov
[20] in 1991. In particular, A. P. Semenov proved that if JG is a solvable algebra over a
field of characteristic zero, then so is the Jordan algebra J . His proof uses a deep result
by E.I. Zel’manov [26] which says that every Jordan nil-algebra of bounded index over a
field of characteristic zero is solvable. If a Jordan algebra J over a field of characteristic
not equal to 2, 3 admits an automorphism φ of order 2 with solvable Jφ, then J is solvable
[27].

In the case of alternative algebras one cannot expect that nilpotency of the invariant
subalgebra implies the nilpotency of the whole algebra. There is an example (see [4, 30])
of a solvable non-nilpotent alternative algebra with an automorphism of order two such
that its subalgebra of invariants is nilpotent. A combination of Semenov’s result [20]
and Zhevlakov’s theorem [29] gives that, for an alternative algebra A over a field of
characteristic zero, the solvability of the algebra of invariants AG for a finite group G
implies the solvability of A. It is also known [22] that if A is an alternative algebra
over a field of characteristic not equal to 2 with an automorphism φ of order two, then
the solvability of the algebra of invariants Aφ implies the solvability of A. In [9] M.
Goncharov proved that an alternative Z3- graded algebra A = A0 ⊕ A1 ⊕ A2 over a field
of characteristic not equal to 2, 3, 5 is solvable if A0 is solvable.

It was shown in [28] for every n of the form n = 2k3l that a Zn- graded Novikov

N = N0 ⊕ . . .⊕Nn−1

over a field of characteristic not equal to 2, 3 is solvable if N0 is solvable.
In this paper we first prove that if L is a right nilpotent subalgebra of a Novikov algebra

N then the right ideal of N generated by L2 is right nilpotent (Theorem 1). This result
gives a deeper explanation of the results on the nilpotency of N2 mentioned above. The
main result of the paper (Theorem 2) says that if N is a G-graded Novikov algebra with
solvable 0-component N0, where G is a finite additive abelian group, then N is solvable.
This result allows us to prove (Theorem 3) that if N is a Novikov algebra with solvable
algebra of invariants NG, where G is a finite solvable group of automorphisms of N ,
then N is solvable. Theorems 2 and 3 are formulated for fields of characteristic 0 or
positive characteristic p that does not divide |G|. Notice that the solvability and the right
nilpotency of Novikov algebras are equivalent by the result of I. Shestakov and Z. Zhang
mentioned above.

The paper is organized as follows. In Section 2 we prove some identities and Theorem
1. Sections 3–5 are devoted to the study of the structure of Zn-graded Novikov algebras.
Theorems 2 and 3 are formulated and proven in Section 6.

2. Right nilpotent subalgebras

The identities (1) and (2) easily imply the identities

(xy, z, t) = (x, z, t)y(3)
3



and

(x, yz, t) = (x, y, t)z.(4)

Let A be an arbitrary algebra. The powers of A are defined inductively by A1 = A and

Am =
m−1∑

i=1

AiAm−i

for all positive integers m ≥ 2. The algebra A is called nilpotent if Am = 0 for some
positive integer m.

The right powers of A are defined inductively by A[1] = A and A[m+1] = A[m]A for all
integers m ≥ 1. The algebra A is called right nilpotent if there exists a positive integer
m such that N [m] = 0. In general, the right nilpotency of an algebra does not imply its
nilpotency. This is also true in the case of Novikov algebras.

Example 1. [25] Let N = Fa + Fb be a vector space of dimension 2. The product on
N is defined as

ab = b, a2 = b2 = ba = 0.

It is easy to check that N is a right nilpotent Novikov algebra, but not nilpotent.
The derived powers of A are defined by A(0) = A, A(1) = A2, and A(m) = A(m−1)A(m−1)

for all positive integers m ≥ 2. The algebra A is called solvable if A(m) = 0 for some
positive integer m. Every right nilpotent algebra is solvable, and, in general, the converse
is not true. But every solvable Novikov algebra is right nilpotent [21].

It is well known that if I and J are ideals of a Novikov algebra N , then IJ is also an
ideal of N . Consequently, if N is a Novikov algebra then Nm, N [m], and N (m) are ideals
of N . If S is a subset of a Novikov algebra N , then denote by 〈S〉 the right ideal of N
generated by S. Notice that if I is a right ideal of N , then IS is a right ideal of N for
any subset S ⊆ N by (2).

In any algebra we denote by x1x2 . . . xk the right normed product (. . . (x1x2) . . .)xk of
elements x1, x2, . . . , xk. For any x, y denote by x ◦ y = xy + yx the Jordan product.

Lemma 1. Any Novikov algebra satisfies the following identities:

a(bx1 . . . xt) = abx1x2 . . . xt −
t∑

i=1

(a, b, xi)x1 . . . xi−1xi+1 . . . xt(5)

for each positive integer t ≥ 1,

(ax1 . . . xs) ◦ (bxs+1 . . . xt) = (a ◦ b)x1x2 . . . xt −
k∑

i=1

(a, b, xi)x1 . . . xi−1xi+1 . . . xt(6)

for all nonnegative integers 0 ≤ s < t, and

(ax1 . . . xs) ◦ (bxs+1 . . . xt) = a ◦ (bx1 . . . xt).(7)

Proof. We prove (5) by induction on t. If t = 1, then (5) is true by the definition of the
associator. By (4), we have

a(bx1 . . . xt) = a(bx1 . . . xt−1)xt − (a, bx1 . . . xt−1, xt)

= a(bx1 . . . xt−1)xt − (a, b, xt)x1 . . . xt−1.
4



Using this and the induction proposition, we get

a(bx1 . . . xt) = (abx1x2 . . . xt−1 −
t−1∑

i=1

(a, b, xi)x1 . . . xi−1xi+1 . . . xt−1)xt

−(a, b, xt)x1 . . . xt−1 = abx1x2 . . . xt −
t∑

i=1

(a, b, xi)x1 . . . xi−1xi+1 . . . xt.

By (2), (3), and (5), we get

(ax1 . . . xs)(bxs+1 . . . xt) = (ab)x1x2 . . . xt −

t∑

i=s+1

(a, b, xi)x1 . . . xi−1xi+1 . . . xt.

This implies (6). The identity (7) is a direct consequence of (2), (5), and (6). ✷
Let N be a Novikov algebra and let L be a subalgebra of N . Set L0 = N and Lk = 〈L[k]〉

for each positive integer k.
Consider the descending sequence of right ideals

N = L0 ⊇ L1 ⊇ L2 ⊇ . . . ⊇ Lk ⊇ . . .

of the algebra N .

Lemma 2. LsLt ⊆ Ls+t−1 for all positive integers s, t.

Proof. We prove the lemma by induction on t. It is true for t = 1 by the definition of
Ls. Notice that

Ls = L1 L . . . L︸ ︷︷ ︸
s−1

for each s ≥ 1 by (2).
Suppose that t ≥ 2 and let x ∈ Ls and y = za1 . . . at−1 ∈ Lt, where z ∈ L1 and

a1, . . . , at−1 ∈ L. By (5), we get

xy = xza1 . . . at−1 −

t−1∑

i=1

(x, z, ai)a1 . . . âi . . . at−1

where âi means that ai is absent. Notice that xz ∈ Ls and

xza1 . . . at−1 ∈ Ls L . . . L︸ ︷︷ ︸
t−1

= Ls+t−1.

Moreover, (x, z, ai) belongs to the right ideal generated by (L[s], L, ai) by (3) and (4).
Consequently, (x, z, ai) ∈ Ls+1 and (x, z, ai)a1 . . . âi . . . at−1 ∈ Ls+t−1. ✷

In general, L1 is not an ideal of L0 = N .
Example 2. Let K[x, y] be the polynomial algebra over K in the variables x, y. Define

a new product · on K[x, y] by

f · g = f
∂g

∂x
, f, g ∈ K[x, y].

Then N = (K[x, y], ·) is a Novikov algebra.
5



Let L = Kx. Then L is a subalgebra of N since x · x = x. Let L1 = 〈L〉. It is clear
that L1 ⊆ xK[x, y]. Hence,

y · x = y
∂x

∂x
= y 6∈ L1.

Consequently, L1 is not an ideal of L0 = N .
But for each r ≥ 2 the right ideal Lr is an ideal of L1 by Lemma 2.

Corollary 1. Ln
2 ⊆ Ln+1 for all n ≥ 1.

Proof. It is trivial for n = 1 and true for n = 2 by Lemma 2. If Li
2 ⊆ L2+i−1 and

Lj
2 ⊆ L2+j−1, then Li

2L
j
2 ⊆ Li+1Lj+1 ⊆ Li+j+1. Leading an induction on n we get

Ln
2 =

∑

i+j=n,i,j≥1

Li
2L

j
2 ⊆ Ln+1. ✷

Theorem 1. Let L be a right nilpotent subalgebra of a Novikov algebra N over a field K.
Then the right ideal L2 = 〈L2〉 of N generated by L2 is nilpotent.

Proof. Suppose that L[n] = 0 for some n ≥ 2. Then Ln = 0. By Corollary 1, we have
Ln−1
2 ⊆ Ln = 0. This means that L2 is nilpotent. ✷

3. Zn-graded Novikov algebras

Let Zn = Z/nZ be the additive cyclic group of order n. Let

N = N0 ⊕N1 ⊕N2 ⊕ . . .⊕Nn−1, NiNj ⊆ Ni+j , i, j ∈ Zn,(8)

be a Zn-graded Novikov algebra over K.
If f ∈ Ni then we say that f is a homogeneous element of degree i. Notice that i is

an element of Zn. Sometimes we consider the subscripts i of Ni as integers satisfying the
condition 0 ≤ i ≤ n− 1.

Obviously, A = N0 is a subalgebra of N . Recall that A[r] is the right rth power of A.

Lemma 3. Let i1, i2, . . . , ik ∈ Zn and i1 + i2 + . . .+ ik = 0. Then

A[r]Ni1Ni2 . . . Nik ⊆ A[r].

Proof. By the definition of a Zn-graded algebra, we have

ANi1Ni2 . . . Nik ⊆ A.

Using this and (2), we get

A[r]Ni1Ni2 . . . Nik = ANi1Ni2 . . . Nik A . . . A︸ ︷︷ ︸
r−1

⊆ AA . . .A︸ ︷︷ ︸
r−1

= A[r]. ✷

Set A{0} = N and for any integer r ≥ 1 denote by A{r} = 〈A[r]〉 the right ideal of N
generated by A[r]. Obviously, A{r} is a Zn-graded algebra, i.e.,

A{r} = A
{r}
0 ⊕ A

{r}
1 ⊕ A

{r}
2 ⊕ . . .⊕ A

{r}
n−1.
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Corollary 2. If r ≥ 1 and 0 ≤ i ≤ n− 1, then

A
{r}
i =

∑

i1,i2,...,ik

A[r]Ni1Ni2 . . . Nik ,

where 0 ≤ i1, i2, . . . , ik ≤ n− 1, i1 + i2 + . . .+ ik ≡ i(mod n) and i1 + i2 + . . .+ ik < n.

In particular, A
{r}
0 = A[r].

Consider the descending sequence of right ideals

N = A{0} ⊇ A{1} ⊇ . . . ⊇ A{r} ⊇ . . .(9)

of the algebra N and the quotient algebra

B = A{1}/A{2} = B0 ⊕B1 ⊕ B2 ⊕ . . .⊕ Bn−1, BiBj ⊆ Bi+j, i, j ∈ Zn.(10)

Notice that B is a right N -module. We establish some properties of the algebra B.

Lemma 4. Let B be the Novikov algebra defined by (10). Then
(i) B0 = A/A2;
(ii) BB0 = 0;
(iii) x ◦ y = xy + yx = 0 for any x ∈ Bi and y ∈ Bn−i.

Proof. The statement (i) is true since A
{r}
0 = A[r] by Corollary 2. The statement (ii) is

a direct corollary of the inclusion A{r}A ⊆ A{r+1}.

Let x = ax1x2 . . . xs ∈ A
{1}
i and y = bxs+1xs+2 . . . xt ∈ A

{1}
n−i, where a, b ∈ A and

xr ∈ Nkr for all 1 ≤ r ≤ t. If i = 0, then Ai = An−i = A and xy, yx ∈ A2. Suppose that
i, n − i 6= 0. Then Σs

r=1kr = i 6= 0, Σt
r=s+1lr = n − i 6= 0, and Σt

r=1kr = 0. In particular,
t > s ≥ 1. By (7), we have

x ◦ y = (ax1 . . . xs) ◦ (bxs+1 . . . xt) = a ◦ (bx1 . . . xt).

The condition Σt
r=1kr = 0 implies that bx1 . . . xt ∈ A. Consequently, x ◦ y ∈ A2. This

proves (iii). ✷

4. Right nilpotency modulo A{1}

In this section we show that if the 0-component A = N0 of a Zn-graded Novikov algebra
N of the form (8) is right nlpotent, then N [m] ⊆ A{1} for some positive integer m.

Lemma 5. Let N be an arbitrary Novikov algebra and let V be a subspace of N . Then
for any r ≥ 1 we have

NV [r]V ⊆ 〈V [r]〉+NV [r+1].

Proof. By (1), we get

(NV [r])V ⊆ (N, V [r], V ) +NV [r+1] ⊆ (V [r], N, V ) +NV [r+1] ⊆ 〈V [r]〉+NV [r+1]. ✷

Corollary 3. If r ≥ 1, then

N V . . . V︸ ︷︷ ︸
r+1

⊆ 〈V [r]〉+NV [r+1].
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Proof. It is true for r = 1 by Lemma 5. If it is true for some r ≥ 1, then we get

N V . . . V︸ ︷︷ ︸
r+2

⊆ 〈V [r]〉V +NV [r+1]V ⊆ 〈V [r+1]〉+NV [r+2]

by (2) and Lemma 5. ✷

Lemma 6. Let N be an arbitrary Zn-graded Novikov algebra N from (8) and suppose
that the 0-component A = N0 of N is right nilpotent. Then there exists a positive integer
m such that N [m] ⊆ A{1}.

Proof. Suppose that A[r] = 0 for some positive integer r. By Corollary 3,

N A . . . A︸ ︷︷ ︸
r+1

⊆ 〈A[r]〉+NA[r+1] = 0.

Again, by Corollary 3, we get

N Ni . . . Ni︸ ︷︷ ︸
n

⊆ 〈N
[n−1]
i 〉+NN

[n]
i .

Notice that N
[n]
i ⊆ A. Consequently,

N Ni . . . Ni︸ ︷︷ ︸
n+1

⊆ (〈N
[n−1]
i 〉+NA)Ni ⊆ 〈N

[n]
i 〉+NNiA ⊆ A{1} +NNiA.

Using this, we can easily show by induction on s that

N Ni . . . Ni︸ ︷︷ ︸
sn+1

⊆ A{1} +NNi A . . . A︸ ︷︷ ︸
s

.

Cosequently,

N Ni . . . Ni︸ ︷︷ ︸
(r+1)n+1

⊆ A{1} +NNi A . . . A︸ ︷︷ ︸
r+1

⊆ A{1}

since N A . . . A︸ ︷︷ ︸
r+1

= 0.

Thus, every Ni acts on N nilpotently modulo A{1} from the right hand side. Moreover,
by (2), this action is commutative. This easily implies the existence of an integer m such
that N [m] ⊆ A{1}. ✷

5. Right nilpotency of B

In this section we prove that any Zn-graded Novikov algebra B defined by (10) is right
nilpotent if the characteristic of K does not divide n. Suppose that N is a Zn-graded
Novikov algebra of the form (8) satisfying the conditions

(a) NA = 0 and
(b) x ◦ y = xy + yx = 0 for any x ∈ Ni and y ∈ Nn−i and for any i ∈ Zn.
All statements in this section are formulated for the algebra N .
First we prove the following lemma.

Lemma 7. Let x ∈ Nn−i, u ∈ N
[k]
i , i ∈ Zn, and k ≥ 1. Then xu = −kux.

8



Proof. We prove the statement of the lemma by induction on k. If k = 1, then it is

true by (b). Suppose that k > 1 and u = vy, where v ∈ N
[k−1]
i and y ∈ Ni. Using (1),

(2), and the induction proposition, we get

xu = x(vy) = −(x, v, y) + (xv)y = −(v, x, y)− (k − 1)(vx)y

= −(vx)y + v(xy)− (k − 1)(vx)y = −k(vy)x+ v(xy) = −kux+ v(xy).

Notice that xy ∈ Nn−iNi ⊆ A and v(xy) = 0 by the condition (a). Consequently,
xu = −kux. ✷

Corollary 4. If the characteristic of the field K does not divide n, then N
[n]
i Nn−i = 0 for

any i ∈ Zn.

Proof. Notice that N
[n]
i ⊆ A and Nn−iN

[n]
i = 0 by the condition (a). Then Lemma 7

gives that nN
[n]
i Nn−i = 0. If the characteristic of K does not divide n, then this gives

N
[n]
i Nn−i = 0. ✷

Lemma 8. If the characteristic of the field K does not divide n, then

N Ni . . . Ni︸ ︷︷ ︸
2n

= 0

for any i ∈ Zn.

Proof. Corollary 3 and the condition (a) give that

N Ni . . . Ni︸ ︷︷ ︸
n

⊆ 〈N
[n−1]
i 〉+NN

[n]
i ⊆ 〈N

[n−1]
i 〉

since N
[n]
i ⊆ A. Notice that i(n − 1) = −i = n − i in Zn. This means N

[n−1]
i ⊆ Nn−i.

Cosequently,

N Ni . . . Ni︸ ︷︷ ︸
n

⊆ 〈Nn−i〉.

Using (2) and (a), we get

N Ni . . . Ni︸ ︷︷ ︸
n+1

⊆ 〈Nn−i〉Ni = 〈Nn−iNi〉 = 〈NiNn−i〉.

Then

N Ni . . . Ni︸ ︷︷ ︸
2n

⊆= 〈NiNn−i〉Ni . . . Ni︸ ︷︷ ︸
n−1

= 〈N
[n]
i Nn−i〉.

Corollary 4 implies the statement of the lemma. ✷

Proposition 1. Let N be a Zn-graded Novikov algebra of the form (8) satisfying the
conditions

(a) NA = 0 and
(b) x ◦ y = xy + yx = 0 for any x ∈ Ni and y ∈ Nn−i and for any i ∈ Zn.
If the characteristic of the field K does not divide n, then N is right nilpotent.

Proof. By Lemma 8, every Ni acts nilpotently on the right N -module N . Moreover,
this action is commutative by (2). Consequently, N acts nilpotently on N . ✷
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6. Solvability and right nilpotency

The solvability and the right nilpotency of Novikov algebras are equivalent [21]. In this
section we use these notions as synonyms.

Proposition 2. Let N be a Zn-graded Novikov algebra of the form (8) such that A = N0

is solvable. If the characteristic of the field K does not divide n, then N is solvable.

Proof. Consider the descending sequence of right ideals (9). By Lemma 6 there exists a
positive integer m such that N [m] ⊆ A{1}. The algebra B from (10) satisfies all conditions
of Proposition 1 by Lemma 4. By Proposition 1 there exists a positive integer t such that
B[t] = 0. This means that (A{1})[t] ⊆ A{2}. By Theorem 1, the algebra A{2} is nilpotent.
Consequently, A{1} and N are both solvable. ✷

Let G be an additive abelian group. We say that

N =
⊕

g∈G

Ng

is a G-graded algebra if NgNh ⊆ Ng+h for all g, h ∈ G.

Theorem 2. Let G be a finite additive abelian group and let N be a G-graded Novikov
algebra with solvable 0-component N0. If the characteristic of the field K does not divide
the order of the group G, then N is solvable.

Proof. We prove the statement of the theorem by induction on the order |G| of G. If
G = Zn, then N is solvable by Proposition 2.

Every finite abelian group is a direct sum of cyclic subgroups. Suppose that G =
Zn1

⊕ Zn2
⊕ . . . ⊕ Znk

, where ni > 1 for all i and k ≥ 2. Then G = Zn1
⊕ G1, where

G1 = Zn2
⊕ . . .⊕ Znk

. Denote by pr the projection of G onto the group Zn1
. Set

N ′
i =

∑

g∈G,pr(g)=i

Ng,

where i = 0, 1, . . . , n1 − 1. It is easy to show that

N = N ′
0 ⊕ . . . N ′

n1−1

and N is a Zn1
-graded algebra.

It is also clear that

N ′
0 =

∑

g∈G,pr(g)=0

Ng

is a G1-graded algebra and the 0-component of N ′
0 is N0. Since |G1| < |G| it follows

that N ′
0 is solvable by the induction proposition. Now we can apply Proposition 2 to the

Zn1
-graded algebra N . Hence N is solvable. ✷
The statement of the next lemma is well known.

Lemma 9. Let G be a group of automorphisms of an arbitrary algebra A and let H be a
normal subgroup of G. Then AH is G-invariant, the quotient group G/H acts on AH by
automorphisms, and (AH)G/H = AG.
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Proof. Let a ∈ AH and let g ∈ G. Then ghg−1 ∈ H for any h ∈ H . Therefore,
aghg

−1

= a and

(ag)h = agh = aghg
−1g = (aghg

−1

)g = ag.

Consequently, the algebra AH is G-invariant. Let g ∈ G and let g be the image of g
in G/H . Then g defines an automorphism of the algebra A by the rule ag = ag. This
action is well defined. Hence the quotient group G/H acts on AH . It is easy to check
that (AH)G/H = AG. ✷

Corollary 5. Let N be a Novikov algebra and let G be a finite abelian group of automor-
phisms of N . If the algebra NG is solvable and the characteristic of the field K does not
divide the order of the group G, then N is solvable.

Proof. We may assume that K is algebraically closed. We prove the statement of the
corollary by induction on the order |G| of G. If G is a simple group, then G ∼= Zp, where
p is a prime number. Let φ be a generating element of the group G. Then φp = e, where e
is the identity element of G. Let ǫ be a primitive pth root of unity and let Ni = ker(φ−ǫi)
for all 0 ≤ i ≤ p − 1. The indexes i may be considered as elements of Zp since ǫp = 1.
Obviously,

N = N0 ⊕ . . .⊕Np−1

and it is easy to check that NiNj ⊆ Ni+j for all i, j ∈ Zp, i.e., N is a Zp-graded algebra.
Moreover, N0 = NG. By Proposition 2, N is solvable.

Let H be a proper subgroup of G. Then, by Lemma 9, the quotient group G/H acts on
NH by automorphisms and (NH)G/H = NG. We get that NH is solvable by the induction
proposition since |G/H| < |G|. Now we can apply the induction proposition to the group
H and get that N is solvable. ✷

Theorem 3. Let N be a Novikov algebra and let G be a finite solvable group of automor-
phisms of N . If the algebra NG is solvable and the characteristic of the field K does not
divide the order of the group G, then N is solvable.

Proof. We prove the statement of the theorem by induction on |G|. The case of abelian
groups is considered in Corollary 5. Suppose that G is not abelian. Then the commutator
subgroup G′ of the solvable finite group G is a proper normal subgroup.

By Lemma 9, (NG′

)G/G′

= NG. Then the algebra NG′

is solvable by the induction
proposition since |G/G′| < |G|. Applying the induction proposition to G′, we get that N
is solvable. ✷
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