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Abstract

We construct an ordered set of commutators in a partially commutative nilpotent
group F'(X;T;91,,). This set allows us to define a canonical form for each element
of F(X;T';M,,). Namely, we construct a Maltsev basis for the group F(X;T;M,,).
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1. Introduction

hese is the class of so-called partially commutative algebraic structures. These structures
e well known applications both in mathematics and in computer sciences as well as in
resotics.
In the paper, let I' = (X; E) be a simple graph with the set of vertices X and the set of
Qd%@s E.
HFirst partially commutative structures being studied were monoids. A free partially
commutative monoid on X associated with I' is the monoid denoted by M (X;I') which is
ned by the monoid presentation

—

= M(X:T) = (X;zy = yx, {z,y} € E).

The notion of partially commutative monoid was introduced by P. Cartier and D. Foata in 1969
[1]) to study combinatorial problems in connection with word rearrangements.

O\JA free partially commutative group F(X;T') is closely related to M(X;T'). It is defined by

tg group presentation

gﬂany classes of algebraic structures are defined through the category of simple graphs. One

F(X;TD) = (Xs0y =y, {z,y} € E).

g The groups F(X;T") were first introduced in the 1970’s by A. Baudisch (see [2]) as “semifree
groups” and then were studied in the 1980’s by C. Droms (see [3, 4, 5]) calling these groups by
“graph groups”.

The class of free partially commutative groups contains free and free abelian groups. Free
partially commutative groups possess a number of remarkable properties. For example, a
group F(X;T) is a residually torsion-free nilpotent group (see [6]). Therefore free partially
commutative groups are torsion-free. These groups are linear (see [7]). Fundamental groups of
almost all surfaces are subgroups of free partially commutative groups (see [8]). In [9], it is
observed that two free partially commutative groups F'(X;I') and F(Y;A) are isomorphic iff
their defining graphs I' and A are isomorphic.

Free partially commutative groups have provided several crucial examples having shaped
the theory of finitely presented groups; notably M. Bestvina and N. Brady’s example of a
homologically finite (of type FP) but not geometrically finite (in fact not of type F2) group;
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and Mikhailova’s example of a group with unsolvable subgroup membership problem. Recently
it was shown by work of M. Sageev, F. Haglund, D. Wise, I. Agol and others that many well-
known families of groups virtually embed into free partially commutative groups: among these
are Coxeter groups, limit groups, and fundamental groups of closed 3-manifold groups (see for
example [10]).

Consider a variety 91 of groups. A partially commutative group in 91 with a defining graph
[ is a group F(X;T;9) defined as

F(X;T;M) = (X 2y = yx, {z,y} € E)

in 9.

Consequently a free partially commutative group F'(X;T) is a partially commutative group
in the variety & of all groups.

Recall that the commutator (g, g2) of two elements ¢y, g2 of a group G is defined by (g1, g2) =
g7 95 1 9192. By % denote a variety of all metabelian groups, i.e., all groups satisfying an identity
((z,9),(z,0v)) = L.

Among all partially commutative groups F'(X;T;9), 9 # &, the most studied case is the
case of partially commutative metabelian groups, i.e. the groups F(X;T;2(?).

Let v(x,...,x;,) be a representation of an element v € F(X;I;9) as a product
of generators in X, where the vertices z;,,...,x; occur in this representation. Then set
o(v) = {wz,...,z;,}. Denote by I', the subgraph of I' generated by the set o(v) and by
I', . the connected component of the graph I', such that this component contains a vertex
x € o(v). Let us order the set X as 1 < 22 < ... < z,,. By max(I', ;) denote the greatest
vertex in the connected component I', .

The following theorem describes a basis of the commutant G’ of a partially commutative
metabelian group G = F(X;T';A?).

Theorem 1. [11]| Let the set X = {x1,...,x,} of vertices of a graph T" be ordered as follows
T < 1y < ...<x, and let G = F(X;T;A?). Then a basis of the commutant G' is the set
consisting of all elements v of the form

v =u""(x;, x;)u, where u= a3 akm {ty,. . tn} C Z\{0},

such that the following conditions hold:
(a) j<ji<jo.. <jm<m1<j<i<m
(b) the vertices x; and x; are in different connected components of the graph I'y;
(¢) x; = max([, .,).

There are results obtained for centralizers and annihilators of groups F(X;T;2%) ([12]),
embeddings these groups into matrix groups (see [13]), and their groups of automorphisms
([14]) and values of centralizer dimensions (|15, 16]). The universal and elementary theories of
these groups are investigated in [12, 17, 18|.

The lower central series of a group G is the sequence of subgroups G(,), n > 1, defined

inductively as follows
Gay =G, Guy = (G, G),

where (G(;),G) denotes the subgroup of G generated by the commutators (z,y) with z €
G(i), y € G.
A variety 1. consists of all groups G' such that G,y = 1.
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The properties of partially commutative nilpotent groups F'(X; I'; 0M,) are much less studied.
Even a canonical form for elements of groups F'(X;T';91.) for ¢ > 4 is not known yet (the cases
¢ = 2,3 are considered in [19]).

In this paper, we study partially commutative groups in .. All groups considered below
are finitely generated. So, the set X = {x1,...,z,} is finite.

For a subset H of a group G denote by gp(H) the subgroup generated by H.

If G is a torsion-free finitely generated nilpotent group then G has a central series

G:G1>G2>...>Gs+1:1 (1)
with infinite cyclic factors. Take elements ay, ..., a, such that G; = gp(a;, Gi11).

Definition 1. (see [20]) An ordered system {ai,...,as} of elements is called a Maltsev basis
for G obtained by the central series (1).

The construction of a Maltsev basis of a group makes it possible to indicate a canonical
form of its elements. Every element g € G can be uniquely represented in the form

g=ai...a% t, €L

A Maltsev basis for a group F'(X;T; 2% A1) was found in [19]. Let us recall its description.
Define a commutator ¢,, = (y1,¥2, ..., Ym), where y; € X, by induction: c¢s = (y1,92), ¢ =

(Cmfh ym> .
Let B be the set of commutators of the form

v= (2,5, .., T5,), 2<m<c,

in a group F(X;T;2A% AM,) such that the following conditions hold:
() 1 <jo<Jj3s<jgm<m, Jo<iji <m
(b) the vertices z;, and z;, are in different connected components of the graph I';
(¢) x5, = max (I'yz; ).

Theorem 2. [19] The set of elements X U B is a Maltsev basis of F(X; T, 2> AN.) obtained
by refining the lower central series of this group.

The group F(X;I';0N,) = F(X;T')/Fe41)(X;T) is torsion-free (see [6], Theorem 2.1). This
means that there exists a Maltsev basis for F'(X;T";91.).

The aim of this paper is to find a Maltsev basis for the group F'(X;T";9.).

The study of the free partially commutative Lie algebra was started by G. Duchamp in 1987
(see [21]). Let R be a domain. A free partially commutative Lie R-algebra Lz(X;T") is the Lie
algebra defined by the Lie algebra presentation

Lr(X;T) = (X; [z, xj] =0,{z;,x;} € E).

Put £(X;T) = Lz(X;T). In [6], the relation between the graded Lie Z-algebra associated
with the quotients of the lower central series of F(X;I') and the Lie algebra £(X;I") was
established. We are going to use this relation.

The concept of basic commutators was introduced by Ph. Hall in [22]|. Hall’s commutators
are usually used in group theory.



For convenience, we will use so called standard commutators (see [23]) for the description
of a Maltsev basis.

Denote by X* the set of all words in X = {z1,...,x,} including the empty word denoted
by 1. We also denote by |u| the length of any u € X*. Let us extend an arbitrary linear order
on X to a lexicographic order ”"<” on X* as follows. Put u < 1 for each 1 # u € X* and by
induction put z;u’ < x;v" if x; < z; or x; = z;,u <V

Definition 2. Let
ALS(X) ={u € X" | Vuy,us € X*(u = ujug — uguy < ujuz)}.
A word u € ALS(X) is called an associative Lyndon—Shirshov word.
Let us define a set G(X) and a bar map G(X) — X* as follows.

Definition 3. (a) z; € G(X) for all z; € X, T; = ;.
(b) If u,v € G(X), then (u,v) € G(X) and (u,v) =u .

The bar map erases all parentheses and commas.
We put
Gn(X) = {u | u € G(X), [a =m}, then G(X) = | Gn(X).
m>1

Now we give a definition of the set (X*) of standard commutators.

Definition 4. (a) z; € (X*) fori=1,...,n.

(b) Let w = (u,v). Then w € (X*) if and only if the following conditions are true:
(b1) w € ALS(X);

(b2) u,v € (X*), u > v;

(b2) if u = (u1,us) then v > .

Let
(X)m = {u|u e (X7), [u] =m}.
If F is the free group with the basis X = {x1,...,2,}, and (x,y) = 27y~ oy for x,y € F,

then the set of commutators (X*),, forms a basis of the free abelian group Fiy,)/F(n11) for
m=1,2... (see [23], Theorem 3.5).

Definition 5. Let u € X*. By §;(u) denote the number of occurrences of z; in u. For
u € X*, put

supp(u) = {x;] di(u) # 0}.

Finally, let us define by induction a subset C(X;T') of (X*).

Definition 6. (a) All elements of X belong to C(X;T).

(b) An element u € (X*),,,m > 2, belongs to C(X,TI") if u = (v,w), where v and w are
elements of C(X;T") and there is an element in supp(v) such that this element is not connected
in ' with the first letter of w.

(¢) There are no other elements in C(X;T).

Let
C(X;T)={uel(X;)||ul =14, i=0,1,...}.
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Let ”<” on C(X;T') such that u < v if u € C,(X;T), v € C(X;T), 1 <p<gq.
Let
cm(X;T) = |J G(x;T).

1<i<m

Theorem 3. The set C™ (X;T') with respect to the order "<” is a Maltsev basis for the
group F(X;T;M,,) obtained by refining the lower central series.

2. Bases for partially commutative nilpotent Lie algebras

An explicit construction for bases of free partially commutative Lie algebras was obtained
in [24]. To give this description let us first recall a definition of Lyndon—Shirshov words.

The lexicographic order "< has been defined above (in the last paragraph before Definition
2as well as the set ALS(X) of associative Lyndon—Shirshov words on X (see Definition 2).

Let £(X) be the free Lie algebra on the set X = {xy,...,2,}.

Let us give a definition of a set [X*], [X*] C L(X), of non-associative Lyndon—Shirshov
words.

Definition 7. (a) z; € [X*] fori=1,...,n;

(b) Let [w] = [[u], [v]]. Then [w] € [X*]| if and only if the following conditions hold:

(b1) w e ALS(X);

(b2) [u],[v] € [X*], w > v, where u,v denote the words in X* obtained from [u],[v] by
omitting the Lie brackets [, |;

(b3) if [u] = [[u1], [us]] then v > us.

It was shown in [25] that the set [X*] of all non-associative Lyndon—Shirshov words is a
linear basis of the free Lie R-algebra Lz(X) over a domain R.

For a free partially commutative Lie algebra Lr(X;I') over a domain R define inductively
the set of partially commutative Lyndon—Shirshow words (PCLS-words for short) by induction.

Definition 8. (a) All elements of X are PCLS-words.

(b) A Lyndon-Shirshov word [u] such that |u| > 1 is a PCLS-word if [u] = [[v], [w]], where
[v] and [w] are PCLS-words and there is an element in supp(v) such that it is not connected in
I' with the first letter of w.

(c) There are no other PCLS-words.

Denote the set of all PCLS-words of a free partially commutative Lie R-algebra Lr(X;T)
by PCLS(X;T).

The first result on bases of free partially commutative Lie algebras Lz(X;I') was obtained
by D. Duchamp and D. Krob in [26], but they did not give an explicit description of a basis.

Using the method of Grébner—Shirshov bases E. Poroshenko in [24] obtained an explicit
description of bases for free partially commutative Lie algebras.

Theorem 4. [24] Let R be a unital commutative ring and T' be a graph. Then the set
PCLS(X;T) is a linear basis of the free partially commutative Lie R-algebra Lr(X;T).

Let £, be a variety of all nilpotent Lie algebras of class at most m. Denote by Lr(X;T; £,,,)
the partially commutative m—nilpotent R-algebra Lie.
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A linear basis for a partially commutative nilpotent Lie algebra can be easily obtained from
a linear basis for the corresponding free partially commutative Lie algebra.

Theorem 5. [24] Let R be a unital commutative ring and T be a graph. Then a linear
basis of the partially commutative nilpotent R-algebra Lr(X;T; £,,) consists of all elements of
PCLS(X;T') whose lengthes are not greater than m.

3. Proof of Theorem 3

Let G be a group. Define the associated graded abelian group gr(G) as follows

gr(GQ) = P grn(G),

where g7,,(G) = G(m)/G@m+1),- The group gr(G) has a structure of a graded Lie algebra over
the ring Z of integers with the bracket operation in gr(G) induced by the commutator operation
in GG .

By F denote a graded Z-module

F = EBF(m)(X§P)/F(m+1)(X§ I).

m>1

The element ¢g* € F is called a homogeneous element of degree m if this element is in
Fiony (X3 1)/ Flany (X5 T).

F can be equipped with a Lie Z-algebra structure as follows.

Let ¢g* and h* be homogeneous elements of degrees m and n respectively. Denote by ¢ a
preimage of g* in F{,,y(X; ') and by h a preimage of h* in Fi,,)(X;T"). Then (g, h) € Fiin)(X;T)
according to a property of the lower central series. Thus we can equip F with the Lie bracket
defined by the relation

g7, "] = (9, ) Flm 41y (X5 1),

This Lie bracket is well-defined. It does not depend on the choice of preimages g and h for
elements g* and h*. We can extend the bracket operation to F by distributivity.
Let vertices z; and z; be adjacent in I'. Then

[2:F o) (X3 1), 2 Fioy (X T)] = (@4, 25) Fis) (X3 1) = Fiay (X5 1) = 0
in F. Therefore, we can extend mapping
a(r) = 2Fo)(X;T), v € X,
to a homomorphism of the Lie Z-algebras £(X;I") and F:
a: L(X;T) — F.

Let us now define a family A(X) of £(X,I') by induction. We set A;(X) = X. For m > 2,
put
Am(X) = {lu, v][u € Ay(X), v e A(X), p+q=m},

AX) = | An(X).

m>1
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Let £,,(X;T) be a submodule of L(X;T") generated by A,,(X).
In [6], Theorem 2.1, it was proved that « is an isomorphism of graded Lie algebras from
L(X;T) graded by (L,,,(X;I"),;,>1) into F.
Consequently
Flony (X5 1)/ Fiyngy (X5 T) = Lin (X5 1),

for m > 1.
By PCLS,,(X;I') denote the set of all PCLS(X;I") words of length m. As follows from
Theorem 5, the set PCLS,,(X;T") forms a basis for the additive abelian group £,,(X;T).
Comparing Definitions 4 and 7, and then Definition 6 and 8, we see that the isomorphism
a maps the set PCLS,,(X;T") onto the set C,,,(X;T'). Therefore, C,,(X;T") forms a basis for the
abelian group Fi,,)(X;T")/Fimy1)(X; ). This completes the proof.

Example. Let I' = (1, 29, x3; {21, 22}), 1 > x5 > 3.
By construction,

C(3) (X7 P) - {xla X2, T3, (xla 1'3), ($2, $3)7 (xla (xla $3)),

(22, (2, 73)), (21, 23), T2), (71, 23), x3), ((v2,73), 73) }

is a Maltsev basis of the group F(X;T;;).
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