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Abstract

We construct an ordered set of commutators in a partially commutative nilpotent
group F (X ; Γ;Nm). This set allows us to define a canonical form for each element
of F (X ; Γ;Nm). Namely, we construct a Maltsev basis for the group F (X ; Γ;Nm).
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1. Introduction

Many classes of algebraic structures are defined through the category of simple graphs. One
of these is the class of so-called partially commutative algebraic structures. These structures
have well known applications both in mathematics and in computer sciences as well as in
robotics.

In the paper, let Γ = 〈X ;E〉 be a simple graph with the set of vertices X and the set of
edges E.

First partially commutative structures being studied were monoids. A free partially
commutative monoid on X associated with Γ is the monoid denoted by M(X ; Γ) which is
defined by the monoid presentation

M(X ; Γ) = 〈X ; xy = yx, {x, y} ∈ E〉.

The notion of partially commutative monoid was introduced by P. Cartier and D. Foata in 1969
(see [1]) to study combinatorial problems in connection with word rearrangements.

A free partially commutative group F (X ; Γ) is closely related to M(X ; Γ). It is defined by
the group presentation

F (X ; Γ) = 〈X ; xy = yx, {x, y} ∈ E〉.

The groups F (X ; Γ) were first introduced in the 1970’s by A. Baudisch (see [2]) as “semifree
groups” and then were studied in the 1980’s by C. Droms (see [3, 4, 5]) calling these groups by
“graph groups”.

The class of free partially commutative groups contains free and free abelian groups. Free
partially commutative groups possess a number of remarkable properties. For example, a
group F (X ; Γ) is a residually torsion-free nilpotent group (see [6]). Therefore free partially
commutative groups are torsion-free. These groups are linear (see [7]). Fundamental groups of
almost all surfaces are subgroups of free partially commutative groups (see [8]). In [9], it is
observed that two free partially commutative groups F (X ; Γ) and F (Y ; ∆) are isomorphic iff
their defining graphs Γ and ∆ are isomorphic.

Free partially commutative groups have provided several crucial examples having shaped
the theory of finitely presented groups; notably M. Bestvina and N. Brady’s example of a
homologically finite (of type FP) but not geometrically finite (in fact not of type F2) group;
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and Mikhailova’s example of a group with unsolvable subgroup membership problem. Recently
it was shown by work of M. Sageev, F. Haglund, D. Wise, I. Agol and others that many well-
known families of groups virtually embed into free partially commutative groups: among these
are Coxeter groups, limit groups, and fundamental groups of closed 3-manifold groups (see for
example [10]).

Consider a variety M of groups. A partially commutative group in M with a defining graph
Γ is a group F (X ; Γ;M) defined as

F (X ; Γ;M) = 〈X ; xy = yx, {x, y} ∈ E〉

in M.
Consequently a free partially commutative group F (X ; Γ) is a partially commutative group

in the variety G of all groups.
Recall that the commutator (g1, g2) of two elements g1, g2 of a group G is defined by (g1, g2) =

g−1
1 g−1

2 g1g2. By A
2 denote a variety of all metabelian groups, i.e., all groups satisfying an identity

((x, y), (z, v)) = 1.
Among all partially commutative groups F (X ; Γ;M), M 6= G, the most studied case is the

case of partially commutative metabelian groups, i.e. the groups F (X ; Γ;A2).
Let v(xi1 , . . . , xim) be a representation of an element v ∈ F (X ; Γ;M) as a product

of generators in X, where the vertices xi1 , . . . , xim occur in this representation. Then set
σ(v) = {xi1 , . . . , xim}. Denote by Γv the subgraph of Γ generated by the set σ(v) and by
Γv,x the connected component of the graph Γv such that this component contains a vertex
x ∈ σ(v). Let us order the set X as x1 < x2 < . . . < xn. By max(Γv,x) denote the greatest
vertex in the connected component Γv,x.

The following theorem describes a basis of the commutant G′ of a partially commutative
metabelian group G = F (X ; Γ;A2).

Theorem 1. [11] Let the set X = {x1, . . . , xn} of vertices of a graph Γ be ordered as follows
x1 < x2 < . . . < xn and let G = F (X ; Γ;A2). Then a basis of the commutant G′ is the set
consisting of all elements v of the form

v = u−1(xi, xj)u, where u = xt1
j1
. . . xtm

jm
, {t1, . . . , tm} ⊂ Z\{0},

such that the following conditions hold:
(a) j ≤ j1 < j2 . . . < jm ≤ n, 1 ≤ j < i ≤ n;
(b) the vertices xi and xj are in different connected components of the graph Γv;
(c) xi = max(Γv,xi

).

There are results obtained for centralizers and annihilators of groups F (X ; Γ;A2) ([12]),
embeddings these groups into matrix groups (see [13]), and their groups of automorphisms
([14]) and values of centralizer dimensions ([15, 16]). The universal and elementary theories of
these groups are investigated in [12, 17, 18].

The lower central series of a group G is the sequence of subgroups G(n), n ≥ 1, defined
inductively as follows

G(1) = G, G(i+1) = (G(i), G),

where (G(i), G) denotes the subgroup of G generated by the commutators (x, y) with x ∈
G(i), y ∈ G.

A variety Nc consists of all groups G such that G(c+1) = 1.
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The properties of partially commutative nilpotent groups F (X ; Γ;Nc) are much less studied.
Even a canonical form for elements of groups F (X ; Γ;Nc) for c ≥ 4 is not known yet (the cases
c = 2, 3 are considered in [19]).

In this paper, we study partially commutative groups in Nc. All groups considered below
are finitely generated. So, the set X = {x1, . . . , xn} is finite.

For a subset H of a group G denote by gp〈H〉 the subgroup generated by H .
If G is a torsion-free finitely generated nilpotent group then G has a central series

G = G1 > G2 > . . . > Gs+1 = 1 (1)

with infinite cyclic factors. Take elements a1, . . . , as such that Gi = gp〈ai, Gi+1〉.

Definition 1. (see [20]) An ordered system {a1, . . . , as} of elements is called a Maltsev basis
for G obtained by the central series (1).

The construction of a Maltsev basis of a group makes it possible to indicate a canonical
form of its elements. Every element g ∈ G can be uniquely represented in the form

g = at11 . . . atss , ti ∈ Z.

A Maltsev basis for a group F (X ; Γ;A2∧Nc) was found in [19]. Let us recall its description.
Define a commutator cm = (y1, y2, . . . , ym), where yi ∈ X, by induction: c2 = (y1, y2), cm =

(cm−1, ym).
Let B be the set of commutators of the form

v = (xj1 , xj2, . . . , xjm), 2 ≤ m ≤ c,

in a group F (X ; Γ;A2 ∧Nc) such that the following conditions hold:
(a) 1 ≤ j2 ≤ j3 ≤ jm ≤ n, j2 < j1 ≤ n;
(b) the vertices xj1 and xj2 are in different connected components of the graph Γv;
(c) xj1 = max (Γv,xj1

).

Theorem 2. [19] The set of elements X ⊔B is a Maltsev basis of F (X ; Γ,A2∧Nc) obtained
by refining the lower central series of this group.

The group F (X ; Γ;Nc) ∼= F (X ; Γ)/F(c+1)(X ; Γ) is torsion-free (see [6], Theorem 2.1). This
means that there exists a Maltsev basis for F (X ; Γ;Nc).

The aim of this paper is to find a Maltsev basis for the group F (X ; Γ;Nc).
The study of the free partially commutative Lie algebra was started by G. Duchamp in 1987

(see [21]). Let R be a domain. A free partially commutative Lie R-algebra LR(X ; Γ) is the Lie
algebra defined by the Lie algebra presentation

LR(X ; Γ) = 〈X ; [xi, xj ] = 0, {xi, xj} ∈ E〉.

Put L(X ; Γ) = LZ(X ; Γ). In [6], the relation between the graded Lie Z-algebra associated
with the quotients of the lower central series of F (X ; Γ) and the Lie algebra L(X ; Γ) was
established. We are going to use this relation.

The concept of basic commutators was introduced by Ph. Hall in [22]. Hall’s commutators
are usually used in group theory.
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For convenience, we will use so called standard commutators (see [23]) for the description
of a Maltsev basis.

Denote by X∗ the set of all words in X = {x1, . . . , xn} including the empty word denoted
by 1. We also denote by |u| the length of any u ∈ X∗. Let us extend an arbitrary linear order
on X to a lexicographic order ”<” on X∗ as follows. Put u < 1 for each 1 6= u ∈ X∗ and by
induction put xiu

′ < xjv
′ if xi < xj or xi = xj , u

′ < v′.

Definition 2. Let

ALS(X) = {u ∈ X∗ | ∀u1, u2 ∈ X∗(u = u1u2 −→ u2u1 < u1u2)}.

A word u ∈ ALS(X) is called an associative Lyndon—Shirshov word.

Let us define a set G(X) and a bar map G(X) −→ X∗ as follows.

Definition 3. (a) xi ∈ G(X) for all xi ∈ X, xi = xi.
(b) If u, v ∈ G(X), then (u, v) ∈ G(X) and (u, v) = u v.

The bar map erases all parentheses and commas.
We put

Gm(X) = {u | u ∈ G(X), |u| = m}, then G(X) =
⋃

m≥1

Gm(X).

Now we give a definition of the set (X∗) of standard commutators.

Definition 4. (a) xi ∈ (X∗) for i = 1, . . . , n.
(b) Let w = (u, v). Then w ∈ (X∗) if and only if the following conditions are true:
(b1) w ∈ ALS(X);
(b2) u, v ∈ (X∗), u > v;
(b2) if u = (u1, u2) then v ≥ u2.

Let
(X∗)m = {u | u ∈ (X∗), |u| = m}.

If F is the free group with the basis X = {x1, . . . , xn}, and (x, y) = x−1y−1xy for x, y ∈ F,
then the set of commutators (X∗)m forms a basis of the free abelian group F(m)/F(m+1) for
m = 1, 2 . . . (see [23], Theorem 3.5).

Definition 5. Let u ∈ X∗. By δi(u) denote the number of occurrences of xi in u. For
u ∈ X∗, put

supp(u) = {xi | δi(u) 6= 0}.

Finally, let us define by induction a subset C(X ; Γ) of (X∗).

Definition 6. (a) All elements of X belong to C(X ; Γ).
(b) An element u ∈ (X∗)m, m ≥ 2, belongs to C(X,Γ) if u = (v, w), where v and w are

elements of C(X ; Γ) and there is an element in supp(v) such that this element is not connected
in Γ with the first letter of w.

(c) There are no other elements in C(X ; Γ).

Let
Ci(X ; Γ) = {u ∈ C(X ; Γ) | |u| = i, i = 0, 1, . . .}.
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Let ”≺” on C(X ; Γ) such that u ≺ v if u ∈ Cp(X ; Γ), v ∈ Cq(X ; Γ), 1 ≤ p < q.
Let

C(m)(X ; Γ) =
⋃

1≤i≤m

Ci(X ; Γ).

Theorem 3. The set C(m)(X ; Γ) with respect to the order ”≺” is a Maltsev basis for the
group F (X ; Γ;Nm) obtained by refining the lower central series.

2. Bases for partially commutative nilpotent Lie algebras

An explicit construction for bases of free partially commutative Lie algebras was obtained
in [24]. To give this description let us first recall a definition of Lyndon—Shirshov words.

The lexicographic order ”<” has been defined above (in the last paragraph before Definition
2as well as the set ALS(X) of associative Lyndon—Shirshov words on X (see Definition 2).

Let L(X) be the free Lie algebra on the set X = {x1, . . . , xn}.
Let us give a definition of a set [X∗], [X∗] ⊆ L(X), of non-associative Lyndon—Shirshov

words.

Definition 7. (a) xi ∈ [X∗] for i = 1, . . . , n;
(b) Let [w] = [[u], [v]]. Then [w] ∈ [X∗] if and only if the following conditions hold:
(b1) w ∈ ALS(X);
(b2) [u], [v] ∈ [X∗], u > v, where u, v denote the words in X∗ obtained from [u], [v] by

omitting the Lie brackets [ , ];
(b3) if [u] = [[u1], [u2]] then v ≥ u2.

It was shown in [25] that the set [X∗] of all non-associative Lyndon—Shirshov words is a
linear basis of the free Lie R-algebra LR(X) over a domain R.

For a free partially commutative Lie algebra LR(X ; Γ) over a domain R define inductively
the set of partially commutative Lyndon—Shirshow words (PCLS-words for short) by induction.

Definition 8. (a) All elements of X are PCLS-words.
(b) A Lyndon-Shirshov word [u] such that |u| > 1 is a PCLS-word if [u] = [[v], [w]], where

[v] and [w] are PCLS-words and there is an element in supp(v) such that it is not connected in
Γ with the first letter of w.

(c) There are no other PCLS-words.

Denote the set of all PCLS-words of a free partially commutative Lie R-algebra LR(X ; Γ)
by PCLS(X ; Γ).

The first result on bases of free partially commutative Lie algebras LR(X ; Γ) was obtained
by D. Duchamp and D. Krob in [26], but they did not give an explicit description of a basis.

Using the method of Gröbner—Shirshov bases E. Poroshenko in [24] obtained an explicit
description of bases for free partially commutative Lie algebras.

Theorem 4. [24] Let R be a unital commutative ring and Γ be a graph. Then the set
PCLS(X ; Γ) is a linear basis of the free partially commutative Lie R-algebra LR(X ; Γ).

Let Lm be a variety of all nilpotent Lie algebras of class at most m. Denote by LR(X ; Γ;Lm)
the partially commutative m−nilpotent R-algebra Lie.
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A linear basis for a partially commutative nilpotent Lie algebra can be easily obtained from
a linear basis for the corresponding free partially commutative Lie algebra.

Theorem 5. [24] Let R be a unital commutative ring and Γ be a graph. Then a linear
basis of the partially commutative nilpotent R-algebra LR(X ; Γ;Lm) consists of all elements of
PCLS(X ; Γ) whose lengthes are not greater than m.

3. Proof of Theorem 3

Let G be a group. Define the associated graded abelian group gr(G) as follows

gr(G) =
⊕

m≥1

grm(G),

where grm(G) = G(m)/G(m+1),. The group gr(G) has a structure of a graded Lie algebra over
the ring Z of integers with the bracket operation in gr(G) induced by the commutator operation
in G .

By F denote a graded Z-module

F =
⊕

m≥1

F(m)(X ; Γ)/F(m+1)(X ; Γ).

The element g∗ ∈ F is called a homogeneous element of degree m if this element is in
F(m)(X ; Γ)/F(m+1)(X ; Γ).

F can be equipped with a Lie Z-algebra structure as follows.
Let g∗ and h∗ be homogeneous elements of degrees m and n respectively. Denote by g a

preimage of g∗ in F(m)(X ; Γ) and by h a preimage of h∗ in F(n)(X ; Γ). Then (g, h) ∈ F(m+n)(X ; Γ)
according to a property of the lower central series. Thus we can equip F with the Lie bracket
defined by the relation

[g∗, h∗] = (g, h)F(m+n+1)(X ; Γ).

This Lie bracket is well-defined. It does not depend on the choice of preimages g and h for
elements g∗ and h∗. We can extend the bracket operation to F by distributivity.

Let vertices xi and xj be adjacent in Γ. Then

[xiF(2)(X ; Γ), xjF(2)(X ; Γ)] = (xi, xj)F(3)(X ; Γ) = F(3)(X ; Γ) = 0

in F . Therefore, we can extend mapping

α(x) = xF(2)(X ; Γ), x ∈ X,

to a homomorphism of the Lie Z-algebras L(X ; Γ) and F :

α : L(X ; Γ) −→ F .

Let us now define a family A(X) of L(X,Γ) by induction. We set A1(X) = X. For m ≥ 2,
put

Am(X) = {[u, v] | u ∈ Ap(X), v ∈ Aq(X), p+ q = m},

A(X) =
⋃

m≥1

Am(X).
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Let Lm(X ; Γ) be a submodule of L(X ; Γ) generated by Am(X).
In [6], Theorem 2.1, it was proved that α is an isomorphism of graded Lie algebras from

L(X ; Γ) graded by (Lm(X ; Γ)m≥1) into F .
Consequently

F(m)(X ; Γ)/F(m+1)(X ; Γ)
α
≃ Lm(X ; Γ),

for m ≥ 1.
By PCLSm(X ; Γ) denote the set of all PCLS(X ; Γ) words of length m. As follows from

Theorem 5, the set PCLSm(X ; Γ) forms a basis for the additive abelian group Lm(X ; Γ).
Comparing Definitions 4 and 7, and then Definition 6 and 8, we see that the isomorphism

α maps the set PCLSm(X ; Γ) onto the set Cm(X ; Γ). Therefore, Cm(X ; Γ) forms a basis for the
abelian group F(m)(X ; Γ)/F(m+1)(X ; Γ). This completes the proof.

Example. Let Γ = 〈x1, x2, x3; {x1, x2}〉, x1 > x2 > x3.
By construction,

C(3)(X ; Γ) = {x1, x2, x3; (x1, x3), (x2, x3); (x1, (x1, x3)),

(x2, (x2, x3)), ((x1, x3), x2), ((x1, x3), x3), ((x2, x3), x3)}

is a Maltsev basis of the group F (X ; Γ;N3).
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d’Universitè, Universitè Paris 7, LITP Report No.87-58 (1987) 87-58.

[22] Ph. Hall, Some word problems, J. London Math. Soc., 33 (1958), 482-496.
[23] K.T. Chen, R. H. Fox, R. C. Lyndon, Free Differential Calculus, IV. The Quotient

Groups of the Lower Central Series. The Annals of Mathematics, 2nd Ser. 68(1) (1958) 81-95.
[24] E. N. Poroshenko, Bases for partially commutative Lie algebras, Algebra and Logic

50(5) (2011) 405-417.
[25] A. I. Shirshov, On Free Rings, Math. Sb. 45(87)(2) (1958) 113-122 (Russian).
[26] G. Duchamp, D. Krob, The Free Partially Commutative Lie Algebra: Bases and Ranks,

Advances in Mathematics 92 (1992) 95-126.

8


