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CROSSED PRODUCT LEAVITT PATH ALGEBRAS

ROOZBEH HAZRAT AND LIA VAŠ

Abstract. If E is a directed graph and K is a field, the Leavitt path algebra LK(E) of E over K
is naturally graded by the group of integers Z. We formulate properties of the graph E which are
equivalent with LK(E) being a crossed product, a skew group ring, or a group ring with respect
to this natural grading. We state this main result so that the algebra properties of LK(E) are
also characterized in terms of the pre-ordered group properties of the Grothendieck Z-group of
LK(E). If E has finitely many vertices, we characterize when LK(E) is strongly graded in terms
of the properties of KΓ

0
(LK(E)). Our proof also provides an alternative to the known proof of the

equivalence LK(E) is strongly graded if and only if E has no sinks for a finite graph E. We also
show that, if unital, the algebra LK(E) is strongly graded and graded unit-regular if and only if
LK(E) is a crossed product.

In the process of showing the main result, we obtain conditions on a group Γ and a Γ-graded
division ring K equivalent with the requirements that a Γ-graded matrix ring R over K is strongly
graded, a crossed product, a skew group ring, or a group ring. We characterize these properties also
in terms of the action of the group Γ on the Grothendieck Γ-group K

Γ
0 (R).

0. Introduction

After emerging about fifteen years ago, Leavitt path algebras became a focus of intense research
which inspired various generalizations, surprising connections with other areas of mathematics, and
a variety of interesting conjectures. If K is a field considered trivially graded by Z, the Leavitt
path algebra LK(E) of a directed graph E is naturally graded by the ring of integers Z. One trend
in Leavitt path algebra research is to characterize (graded) algebra properties of LK(E) in terms
of the graph properties of E. Thus, if (graded) algebra properties (P1) and (P2) of LK(E) can
be characterized in terms of the properties (G1) and (G2) of E respectively, one can easily create
examples of (graded) algebras having (P1) and not (P2) by considering graphs having (G1) and not
(G2).

Strongly graded rings were introduced as generalized crossed product rings by Kanzaki in [10].
These rings were later renamed strongly graded rings by Dade who systematically studied them in
[5]. In the chain of implications below, the relation X ⇒ Y denotes that the class of graded rings
X is contained in the class of graded rings Y. In addition, in the chain below, whenever we have X
⇒ Y, the elements of X are considered to be especially well-behaved in the class Y.

Group rings ⇒ skew group rings ⇒ crossed products ⇒ strongly graded rings ⇒ graded rings.

We review the definitions of all five classes in Section 1.

The property of E equivalent with the condition that LK(E) is strongly graded was produced
in [6] for finite graphs and in [4] for general graphs. In the main result of this paper, Theorem
3.1, we formulate properties of E equivalent with conditions that LK(E) is a crossed product, a
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2 ROOZBEH HAZRAT AND LIA VAŠ

skew group ring, or a group ring. Hence, Leavitt path algebras in any of the five classes listed
above can be characterized by the properties of the underlying graph. We formulate Theorem 3.1
so that the algebra properties are also related to the appropriate pre-ordered group properties of
the Grothendieck Z-group of LK(E).

In the process of proving Theorem 3.1, we prove Theorem 2.1 listing conditions equivalent with
the requirements that a graded matrix ring R = Mn(K)(γ1, . . . , γn) over a Γ-graded division ring
K is strongly graded, a crossed product, a skew group ring or a group ring for any group Γ. If ΓK
is the set of γ ∈ Γ such that the γ-component of K is nonzero, then ΓK is a subgroup of Γ and
the permutation module Z[Γ/ΓK ] is naturally isomorphic to the Grothendieck Γ-group KΓ

0 (R). We
formulate the conditions of Theorem 2.1 in terms of the properties of the cosets γ1ΓK , . . . , γnΓK as
well as in terms of the type of action of Γ on the ordered group Z[Γ/ΓK ].

If the set of vertices E0 is finite, Theorem 4.1 characterizes when LK(E) is strongly graded in
terms of the properties of KΓ

0 (LK(E)). In addition, our proof provides an alternative to the known
proof of the equivalence LK(E) is strongly graded if and only if E has no sinks for a finite graph
E ([6, Theorem 3.15] and [12, Proposition 45]). In Corollary 4.3, we show that, if unital, LK(E) is
strongly graded and graded unit-regular if and only if LK(E) is a crossed product.

1. Prerequisites and preliminaries

We use Γ to denote an arbitrary group unless otherwise stated. We use multiplicative notation
for the operation of Γ and ε for the identity element.

1.1. Graded rings. A ring R is a Γ-graded ring if R =
⊕

γ∈ΓRγ for additive subgroups Rγ of R
such that RγRδ ⊆ Rγδ for all γ, δ ∈ Γ. If it is clear from the context that R is graded by Γ, R is
said to be a graded ring. The elements of

⋃

γ∈ΓRγ are the homogeneous elements of R. A unital
graded ring R is a graded division ring if every nonzero homogeneous element has a multiplicative
inverse. If a graded division ring R is commutative then R is a graded field. The set

ΓR = {γ ∈ Γ |Rγ 6= 0}

is the support of a graded ring R. A graded ring R is trivially graded if ΓR = {ε}. If K is a graded
division ring, ΓK is a subgroup of Γ.

We adopt the standard definitions of graded ring homomorphisms and isomorphisms, graded left
and right R-modules, graded module homomorphisms, graded algebras, graded left and right free
and projective modules as defined in [11] and [7]. If M is a graded right R-module and γ ∈ Γ,
the γ-shifted or γ-suspended graded right R-module (γ)M is defined as the module M with the
Γ-grading given by

(γ)Mδ =Mγδ

for all δ ∈ Γ. Analogously, if M is a graded left R-module, the γ-shifted left R-module M(γ) is the
module M with the Γ-grading given by M(γ)δ = Mδγ for all δ ∈ Γ. Any finitely generated graded
free right R-module is of the form (γ1)R⊕ . . .⊕(γn)R for γ1, . . . , γn ∈ Γ and an analogous statement
holds for finitely generated graded free left R-modules (both [11] and [7] contain details).

If M and N are graded right R-modules and γ ∈ Γ, then HomR(M,N)γ denotes

HomR(M,N)γ = {f ∈ HomR(M,N) | f(Mδ) ⊆ Nγδ},

then the subgroups HomR(M,N)γ of HomR(M,N) intersect trivially and HOMR(M,N) denotes
their direct sum

⊕

γ∈Γ HomR(M,N)γ . The notation ENDR(M) is used in the case if M = N and
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ENDR(M) is a Γ-graded ring. We use AUTR(M) to denote the subring of ENDR(M) consist-
ing of invertible elements. If M is finitely generated (which is the case we often consider), then
HomR(M,N) = HOMR(M,N) for any N (both [11] and [7] contain details), EndR(M) = ENDR(M)
is a Γ-graded ring, and AutR(M) = AUTR(M).

In [7], if R is a Γ-graded ring and γ1, . . . , γn ∈ Γ, then Mn(R)(γ1, . . . , γn) denotes the ring of
matrices Mn(R) with the Γ-grading given by

(rij) ∈ Mn(R)(γ1, . . . , γn)δ if rij ∈ Rγ−1

i δγj
for i, j = 1, . . . , n.

This definition is different in [11]: Mn(R)(γ1, . . . , γn) in [11] corresponds to Mn(R)(γ
−1
1 , . . . , γ−1

n )
in [7]. More details on the relations between the two definitions can be found in [15, Section 1].
Although the definition from [11] has been in circulation longer, some matricial representations of
Leavitt path algebras involve positive instead of negative integers making the definition from [7]
more convenient for us. So, we use the definition from [7]. With this definition, if F is the graded
free right module (γ−1

1 )R⊕ · · ·⊕ (γ−1
n )R, then HomR(F, F ) ∼=gr Mn(R)(γ1, . . . , γn) as graded rings.

We also recall [11, Remark 2.10.6] stating the first two parts in Lemma 1.1 and [7, Theorem
1.3.3] stating part (3) for Γ abelian. The proof of this statement generalizes to arbitrary Γ.

Lemma 1.1. [11, Remark 2.10.6], [7, Theorem 1.3.3]. Let R be a Γ-graded ring and γ1, . . . , γn ∈ Γ.

(1) If π a permutation of the set {1, . . . , n}, then

Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mn(R)(γπ(1), γπ(2) . . . , γπ(n)).

(2) If δ in the center of Γ, Mn(R)(γ1, γ2, . . . , γn) = Mn(R)(γ1δ, γ2δ, . . . , γnδ).
(3) If δ ∈ Γ is such that there is an invertible element uδ in Rδ, then

Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mn(R)(γ1δ, γ2 . . . , γn).

1.2. Strongly graded rings, crossed products and skew group rings. A graded ring R is
strongly graded if RγRδ = Rγδ for every γ, δ ∈ Γ. If R is unital with the identity 1, then R is strongly
graded if and only if 1 ∈ RγRγ−1 for any γ ∈ Γ (see [11, Proposition 1.1.1] or [7, Proposition 1.1.15]).

A unital graded ring R is a crossed product if there is an invertible element in Rγ for any γ ∈ Γ.
In this case, R is also strongly graded. If R is a graded ring and M and N are graded R-modules,
M and N are graded weakly isomorphic if M ⊕M ′ ∼=gr N

n and N ⊕N ′ ∼=gr M
m for some positive

integers n,m and some graded modules M ′ and N ′. We recall [11, Theorems 2.10.1 and 2.10.2].

Theorem 1.2. [11, Theorems 2.10.1 and 2.10.2]. Let R be a Γ-graded ring and M a graded R-
module.

(1) The graded ring ENDR(M) is strongly graded if and only if M and (γ)M are graded weakly
isomorphic for any γ ∈ Γ. Thus, if R is unital, R is strongly graded if and only if R and (γ)R
are graded weakly isomorphic for any γ ∈ Γ.

(2) The graded ring ENDR(M) is a crossed product if and only if M ∼=gr (γ)M for any γ ∈ Γ. Thus,
if R is unital, R is a crossed product if and only if R ∼=gr (γ)R for any γ ∈ Γ.

If M is a graded module over a graded ring R and H is the set of homogeneous elements in
AUTR(M), the equivalent conditions from part (2) of the above theorem are equivalent with

{1M} // AUTR(M)ε // AUTR(M) ∩H // Γ // {ε}

being exact (in the category of groups) where the first two maps are inclusions and the third map
is the degree map ([11, Proposition 1.4.1]).
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If R is a unital ring which is a crossed product, then R is a skew group ring if the above sequence
splits for M = R (see [11, Remark 1.4.3]). In this case, the splitting uniquely determines a map σ
from Γ to the set of invertible homogeneous elements of R. Such σ defines φ : Γ → AutRε

(Rε) by
mapping γ to the conjugation by σ(γ). If Rε ∗φ Γ denotes a free Rε-module with the basis Γ, then
the multiplication (rγ)(sδ) = (rφ(γ)(s))γδ for r, s ∈ Rε and γ, δ ∈ Γ makes Rε ∗φ Γ into a Γ-graded
ring such that R ∼=gr Rε ∗φ Γ.

A skew group ring R is a group ring if {1} is the image of σ. In this case we use Rε[Γ] for Rε ∗φΓ.

Recall that a graded unital ring R is graded unit-regular if for every a ∈ Rγ, there is an invertible
element u in Rγ−1 such that a = aua. If this holds, then every nonzero component Rγ of R has an
invertible element (this is direct to check or see [14, Lemma 2.5]). Hence, the following holds.

Proposition 1.3. A strongly graded, unital ring which is graded unit-regular is a crossed product.

Proof. Let R be a strongly graded, unital and graded unit-regular ring. Since R is graded unit-
regular, if Rγ is nonzero for some γ ∈ Γ, then Rγ has an invertible element. On the other hand,
since R is strongly graded, the ring identity is in RγRγ−1 for every γ ∈ Γ, so Rγ is nonzero for every
γ ∈ Γ. Thus, Rγ has an invertible element for every γ ∈ Γ. So, R is a crossed product. �

The converse of this proposition does not have to hold as the following example shows. Let Γ be
the infinite cyclic group on a generator x and R be the ring of Laurent polynomials Z[Γ] = Z[x, x−1]
graded by Γ so that Rxn = {kxn|k ∈ Z}. Then R is a group ring so it is a crossed product. However,
R is not graded unit regular since 2 ∈ Rε is such that 2 6= 2u2 for any invertible element u ∈ Rε.

While the converse of Proposition 1.3 does not hold in general, Corollary 4.3 shows that the
converse holds for unital Leavitt path algebras.

1.3. Pre-ordered Γ-groups. If Γ is a group and M an additive monoid with a left action of Γ
such that γ(g1 + g2) = γg1 + γg2 for all γ ∈ Γ and g1, g2 ∈M, we say that M is a Γ-monoid. If Γ is
a group and G an abelian group with a left action of Γ which satisfies this property, G is a Γ-group.

Let ≥ be a reflexive and transitive relation (a pre-order) on a Γ-monoid M (Γ-group G) such
that g1 ≥ g2 implies g1 + h ≥ g2 + h and γg1 ≥ γg2 for all g1, g2, h in M (in G) and γ ∈ Γ. We say
that such monoid M is a pre-ordered Γ-monoid and that such a group G is a pre-ordered Γ-group.

If G is a pre-ordered Γ-group, the set G+ = {x ∈ G | x ≥ 0}, called the positive cone of G, is a
Γ-monoid. Conversely, any additively closed subset M of G which contains 0 and is closed under
the action of Γ is a Γ-monoid and it defines a pre-order Γ-group structure on G with G+ =M . The
positive cone G+ is strict if G+ ∩ (−G+) = {0}. This is equivalent with ≤ being an order in which
case G is an ordered Γ-group. If Z+ is the set of nonnegative integers, ∆ a subgroup of Γ, and Γ/∆
the set of left cosets, Z[Γ/∆] is an ordered Γ-group with the order given by

∑

kγγ∆ ≥
∑

mγγ∆ if
kγ ≥ mγ for all γ. The monoid Z+[Γ/∆] is the strict positive cone of this order.

An element u of a pre-ordered Γ-monoid M is an order-unit if for any x ∈ M, x ≤ au for some
0 6= a ∈ Z+[Γ]. An element u of a pre-ordered Γ-group G is an order-unit if u ∈ G+ and for any
x ∈ G, x ≤ au for some 0 6= a ∈ Z+[Γ]. In this case, −x ≤ bu for some 0 6= b ∈ Z+[Γ] so that
−bu ≤ x and thus −(a + b)u ≤ −bu ≤ x ≤ au ≤ (a + b)u. It is direct to check that an order-unit
of G+ is an order-unit of G.

If G and H are pre-ordered Γ-groups, f : G→ H is a homomorphism of pre-ordered Γ-groups if
f is a group homomorphism which is order preserving (f(G+) ⊆ H+) and Γ-equivariant. If G and
H also have order-units u and v respectively, and such f preserves them (i.e. f(u) = v), we write
f : (G, u) → (H, v). If such f is a bijection, we write f : (G, u) ∼= (H, v).
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Consider the ordered Γ-group Z[Γ/∆] from the example above for some subgroup ∆ of Γ. One
directly checks that ∆ is an order-unit of Z[Γ/∆]. For a ∈ Z[Γ/∆], let

Stab(a) = {γ ∈ Γ | γa = a} and O(a) = {γa ∈ Z[Γ/∆] | γ ∈ Γ}

denote the stabilizer subgroup and the orbit of a. For γ ∈ Γ, Stab(γ∆) = γ∆γ−1 and O(γ∆) = Γ/∆.

1.4. The Grothendieck Γ-group. If R is a Γ-graded unital ring, let VΓ(R) denote the monoid of
graded isomorphism classes [P ] of finitely generated graded projective right R-modules P with the
direct sum as the addition operation, the usual pre-order, and the left Γ-action given by

(γ, [P ]) 7→ [(γ−1)P ]

making V
Γ(R) a pre-ordered Γ-monoid. The Γ-monoid structure can also be defined using the left

modules instead of the right, in which case the Γ action is given by (γ, [P ]) 7→ [P (γ)], and the two
approaches are equivalent by [11, Section 2.4] or [7, Section 1.2.3]. The Γ-monoid V

Γ(R) can also
be represented using the conjugation classes of homogeneous idempotent matrices as has been done
in [7, Section 3.2] for abelian groups Γ and in [15, Section 1.3] for arbitrary Γ.

The Grothendieck Γ-group KΓ
0 (R) is the group completion of the Γ-monoid V

Γ(R) which naturally
inherits the action of Γ from V

Γ(R). The image of VΓ(R) under the natural map V
Γ(R) → KΓ

0 (R)
is a positive cone making KΓ

0 (R) into a pre-ordered Γ-group. The element [R] is an order-unit (see
[7, Example 3.6.3]). If Γ is trivial, KΓ

0 (R) is the usual K0-group. In [7], the author uses “the graded
Grothendieck group” instead of “the Grothendieck Γ-group” and Kgr

0 (R) instead of KΓ
0 (R). In this

paper, we use “the Grothendieck Γ-group” since the group KΓ
0 (R) is not itself graded by Γ.

The proof of [7, Proposition 1.3.16] holds even if Γ is not necessarily abelian as was pointed
out in [15, Section 1.4]. Thus, (γ)R is graded isomorphic to (δ)R if and only if there is invertible
element a ∈ Rγδ−1 (a−1 is then necessarily in Rδγ−1). Hence, if K is a Γ-graded division ring,

(γ)K ∼=gr (δ)K iff γδ−1 ∈ ΓK iff γ−1ΓK = δ−1ΓK

for any γ, δ ∈ Γ by [7, Corollary 1.3.17]. So, (KΓ
0 (K), [K]) ∼= (Z[Γ/ΓK ],ΓK) by the map given by

[

n
⊕

i=1

(γ−1
i )Kni] =

n
∑

i=1

niγi[K] 7→

n
∑

i=1

ni γiΓK .

If R = Mn(K)(γ1, . . . , γn) for some γ1, . . . , γn ∈ Γ and eij is the (i, j)-th standard graded
matrix unit, then [R] = [

⊕n
i=1 eiiR] =

∑n
i=1 γiγ

−1
1 [e11R]. Also, [eiiR] ∈ V

Γ(R) corresponds to
[eii(

⊕n

i=1(γ
−1
i )K)] = [(γ−1

i )K] ∈ V
Γ(K) under the isomorphism induced by the equivalence from [7,

Corollary 2.1.2] (also [15, Section 1.4]). Thus, (KΓ
0 (R)), [R])

∼= (Z[Γ/ΓK ],
∑n

i=1 γiΓK).

1.5. Strong order-unit. If M is a pre-ordered Γ-monoid and u ∈ M, we say that u is a strong
order-unit of M if for any x ∈ M , there is 0 6= n ∈ Z+ such that x ≤ nu or, equivalently, if u is
an order-unit of M if M is considered as a pre-ordered {ε}-monoid. An element u of a pre-ordered
Γ-group G is a strong order-unit of G if u ∈ G+ and for any x ∈ G, there is 0 6= n ∈ Z+ such that
x ≤ nu. The following implications justify our terminology.

R is a graded ring =⇒ [R] is an order-unit of VΓ(R) (of KΓ
0 (R))

R is a strongly graded ring =⇒ [R] is a strong order-unit of VΓ(R) (of KΓ
0 (R))

The next proposition shows the second implication above as well as its converse.

Proposition 1.4. If R is a Γ-graded unital ring, then R is strongly graded if and only if [R] is a
strong order-unit of VΓ(R) (equivalently, of KΓ

0 (R)).
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Proof. If R is strongly graded and [P ] ∈ V
Γ(R), then [Pε] ∈ V(Rε) so [Pε] ≤ n[Rε] for some

0 6= n ∈ Z+. As [P ] = [Pε ⊗Rε
R] and [R] = [Rε ⊗Rε

R] (see [7, Theorem 1.5.1]) the relation
[Pε] ≤ n[Rε] implies [P ] ≤ n[R].

By Theorem 1.2, to prove the converse, it is sufficient to show that for every δ ∈ Γ, [R] ≤ k(δ)[R]
and (δ)[R] ≤ l[R] hold in V

Γ(R) for some positive integers k and l. If [R] is a strong order-
unit of VΓ(R) and δ ∈ Γ is arbitrary, then (δ)[R] ≤ l[R] holds for some positive integer l. Also,
(δ−1)[R] ≤ k[R] for some positive integer k and so [R] ≤ k(δ)[R]. �

1.6. Leavitt path algebras. Let E be a directed graph and let E0 denote the set of vertices, E1

the set of edges, and s and r the source and the range maps. The graph E is row-finite if s−1(v) is
finite for every v ∈ E0 and E is finite if both E0 and E1 are finite. A vertex v is a sink if s−1(v) is
empty and v is regular if s−1(v) is finite and nonempty. A cycle is a closed path such that different
edges in the path have different sources. A cycle has an exit if a vertex on the cycle emits an edge
outside of the cycle. The graph E is acyclic if there are no cycles and no-exit if no cycle has an exit.

An infinite path of a graph E is a sequence of edges e1e2 . . . such that r(ei) = s(ei+1) for
i = 1, 2, . . .. An infinite path is an infinite sink if none of its vertices emits more than one edge or
is on a cycle. An infinite path ends in a sink if there is a positive integer n such that the subpath
enen+1 . . . is an infinite sink. An infinite path ends in a cycle if there is a positive integer n such
that the subpath enen+1 . . . is equal to the path cc . . . for some cycle c.

If K is any field, the Leavitt path algebra LK(E) of E over K is a free K-algebra generated by
the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that for all vertices v, w and edges e, f,

(V) vw = 0 if v 6= w and vv = v, (E1) s(e)e = er(e) = e,
(E2) r(e)e∗ = e∗s(e) = e∗, (CK1) e∗f = 0 if e 6= f and e∗e = r(e),
(CK2) v =

∑

e∈s−1(v) ee
∗ for each regular vertex v.

By the first four axioms, every element of LK(E) can be represented as a sum of the form
∑n

i=1 aipiq
∗
i for some n, paths pi and qi, and elements ai ∈ K, for i = 1, . . . , n. Using this represen-

tation, it is direct to see that LK(E) is a unital ring if and only if E0 is finite in which case the sum
of all vertices is the identity. For more details on this and other basic properties, see [1].

A Leavitt path algebra is naturally graded by the group of integers Z so that the n-component
LK(E)n is the K-linear span of the elements pq∗ for paths p, q with |p| − |q| = n where |p| denotes
the length of a path p. One can grade a Leavitt path algebra by any group Γ when considering a
function w : E1 → Γ, called the weight function (see [7, Section 1.6.1]).

If K is a trivially Z-graded field, let K[xm, x−m] be the graded field of Laurent polynomials Z-
graded by K[xm, x−m]mk = Kxmk and K[xm, x−m]n = 0 if m does not divide n. By [8, Proposition
5.1], if E is a finite no-exit graph, then LK(E) is graded isomorphic to

R =

k
⊕

i=1

Mki(K)(γi1 . . . , γiki)⊕

n
⊕

j=1

Mnj
(K[xmj , x−mj ])(δj1, . . . , δjnj

)

where k is the number of sinks, ki is the number of paths ending in the i-th sink for i = 1, . . . , k,
and γil is the length of the l-th path ending in the i-th sink for l = 1, . . . , ki and i = 1, . . . , k. In
the second term, n is the number of cycles, mj is the length of the j-th cycle for j = 1, . . . , n, nj
is the number of paths which do not contain the cycle indexed by j and which end in a fixed but
arbitrarily chosen vertex of the cycle, and δjl is the length of the l-th path ending in the fixed vertex
of the j-th cycle for l = 1, . . . , nj and j = 1, . . . , n. This representation is not necessarily unique as
[13, Example 2.2] shows, but it is unique up to a graded isomorphism by Lemma 1.1. The algebra
R is as a graded matricial representation of LK(E).
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1.7. The Grothendieck Γ-group of a graph. If E is a graph and Γ is a group, the authors of
[3] construct a commutative monoid MΓ

E which is isomorphic to V
Γ(LK(E)) as a Γ-monoid. The

authors of [9] provide an alternative construction of MΓ
E which we briefly review and recall one

result of [9].

Let F Γ
E be a free commutative Γ-monoid generated by v ∈ E0 and elements qZ for any finite and

nonempty subset Z of s−1(v) if v is an infinite emitter. Thus, any a ∈ F Γ
E − {0} can be written

as
∑n

i=1 γigi for some positive integer n, γi ∈ Γ, and generators gi of F
Γ
E , possibly repeated, for

i = 1, . . . , n. This representation, unique up to a permutation, is a normal representation of a. The
set {gi|i = 1, . . . , n} is the support of a.

If w : E1 → Γ is any weight function, the monoidMΓ
E is the quotient of F Γ

E under the congruence
closure ∼ of the relation →1 defined by the three conditions below for any γ ∈ Γ and a ∈ F Γ

E .

(A1) If v is a regular vertex, then

a + γv →1 a+
∑

e∈s−1(v)

γw(e)r(e).

(A2) If v is an infinite emitter and Z a finite and nonempty subset of s−1(v), then

a+ γv →1 a + γqZ +
∑

e∈Z

γw(e)r(e).

(A3) If v is an infinite emitter and Z (W are finite and nonempty subsets of s−1(v), then

a + γqZ →1 a+ γqW +
∑

e∈W−Z

γw(e)r(e).

One often considers an intermediate step in the construction of∼ from→1 and let→ be the reflexive
and transitive closure of →1 . Then, ∼ can be defined as the congruence closure of →. The following

lemma was first shown for trivial Γ in [2, Proposition 5.9] in order to show that the monoid M
{ε}
E

has the refinement property. This proof was adapted to arbitrary Γ in [3, Lemma 5.9].

Lemma 1.5. [3, Lemma 5.9]. Let E be a graph, Γ a group, w : E1 → Γ a weight map and
a, b ∈ F Γ

E − {0}. The relation a ∼ b holds if and only if a→ c and b→ c for some c ∈ FE − {0}.

If [a] denotes the congruence class of a ∈ F Γ
E , ≤, defined below, is a pre-order on MΓ

E .

[a] ≤ [b] if there is c ∈ F Γ
E such that a+ c ∼ b

By [3, Corollary 5.8] (also by [9, Proposition 3.1]), if Γ is the infinite cyclic group on a generator
x, the monoidMΓ

E is cancellative. So, ≤ is an order and MΓ
E is the positive cone of its Grothendieck

group GΓ
E . Also, if E

0 is finite and 1E =
∑

v∈E0 [v], then 1E is an order-unit of MΓ
E (and GΓ

E).

If a ∈ F Γ
E and [a] = xn[a] for some positive integer n, the element [a] is said to be periodic.

In [9, Theorem 4.1], the authors characterize this property of [a] in terms of the properties of the
generators in a normal representation of a ∈ F Γ

E . We recall this result below.

Theorem 1.6. [9, Theorem 4.1]. If Γ is the infinite cyclic group on a generator x, the following
conditions are equivalent for an element a ∈ F Γ

E − {0}.

(1) The element [a] ∈MΓ
E − {0} is periodic.

(2) Any path originating at a generator in the support of a is a prefix of a path p ending in one of
finitely many cycles with no exits and such that all vertices of p are regular. Every infinite path
originating at a vertex in the support of a ends in a cycle with no exits.
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2. Strongly graded, crossed product and group ring characterizations of

graded matrix algebras over graded division rings

In this section, we characterize when a graded matrix ring R over a graded division ring K is
strongly graded, a crossed product, a skew group ring or a group ring in terms of the support ΓK
of K and the Γ-action on KΓ

0 (R) for any Γ. Recall that if R = Mn(K)(γ1, . . . , γn), then

(VΓ(R), [R]) ∼= (Z+[Γ/ΓK ],

n
∑

i=1

γiΓK) and (KΓ
0 (R), [R])

∼= (Z[Γ/ΓK ],

n
∑

i=1

γiΓK).

Theorem 2.1. Let K be a Γ-graded division ring with support ΓK , γ1, . . . , γn ∈ Γ, let R denote the
Γ-graded matrix ring Mn(K)(γ1, . . . , γn), and u =

∑n
i=1 γiΓK denote an order-unit of Z[Γ/ΓK ].

(i) The following conditions are equivalent.
(1) R is strongly graded.

(2) Γ/ΓK = {γ1ΓK , . . . , γnΓK}.

(3) The orbit of γiΓK in Z[Γ/ΓK ] is {γ1ΓK , . . . , γnΓK} for every i = 1, . . . , n.
(4) The order-unit u is a strong order-unit of Z[Γ/ΓK ].

(ii) Let γi1, . . . , γim be a complete list of coset representatives of γ1ΓK , . . . , γnΓK and let kj denote
the number of times γijΓK appears in the list γ1ΓK , . . . , γnΓK so that u =

∑m

j=1 kjγijΓK . The
following conditions are equivalent.
(1) R is a crossed product.

(2) Γ/ΓK = {γ1ΓK , . . . , γnΓK} and k1 = k2 = . . . = km.

(3) R is a skew group ring.

(4) O(γiΓK) = {γ1ΓK , . . . , γnΓK} for every i = 1, . . . , n and Stab(u) = Γ where the orbit
and the stabilizer are taken in Z[Γ/ΓK ].

(iii) The following conditions are equivalent.
(1) R is group ring.

(2) Γ = ΓK .

(3) For every a ∈ Z[Γ/ΓK ], Stab(a) = Γ.
(4) Γ acts trivially on Z[Γ/ΓK ].

The above statements hold if Z[Γ/ΓK ] is replaced by Z+[Γ/ΓK ] in (i3), (i4), (ii4), (iii3), and (iii4).

Proof. (i) We show (1) ⇒ (2) first. Let F =
⊕n

i=1(γ
−1
i )K so that R ∼=gr EndK(F ). By Theorem

1.2, for any δ ∈ Γ, there is a finitely generated graded projective module P ′, positive integer k,
and a graded isomorphism F ⊕ P ′ ∼=gr (δ)F k. This isomorphism maps Fλ ⊕ P ′

λ onto F k
δλ for any

λ ∈ Γ. Thus, for λ = γ1, we have that 0 6= Kε ≤ Fγ1 ⊕ P ′
γ1

is mapped to F k
δγ1

which implies that

0 6= Fδγ1 =
⊕n

i=1Kγ−1

i δγ1
. So, for every δ, there is i = 1, . . . , n such that the equivalent conditions

below hold.

Kγ−1

i δγ1
6= 0 if and only γ−1

i δγ1 ∈ ΓK if and only if δγ1ΓK = γiΓK .

This shows that for any δ ∈ Γ, there is i = 1, . . . , n such that δΓK = δγ−1
1 γ1ΓK = γiΓK and so

Γ/ΓK = {γ1ΓK , . . . , γnΓK}.

Let us show (2) ⇒ (1) now. If Γ/ΓK = {γ1ΓK , . . . , γnΓK}, then {δ−1γ1ΓK , . . . , δ
−1γnΓK} is

also equal to Γ/ΓK for any δ ∈ Γ. Let γi1 , . . . , γim be a complete list of coset representatives of
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γ1ΓK , . . . , γnΓK and let kj denote the number of times γijΓK appears in the list γ1ΓK , . . . , γnΓK .

The terms of F =
⊕n

i=1(γ
−1
i )K can be permuted so that F ∼=gr

⊕m
j=1(γ

−1
ij

)Kkj .

Let lj be the multiplicity of γijΓK in the list δ−1γ1ΓK , . . . , δ
−1γnΓK so that we have that

(δ)F =

n
⊕

i=1

(γ−1
i δ)K ∼=gr

m
⊕

j=1

(γ−1
ij
δ)Kkj ∼=gr

m
⊕

j=1

(γ−1
ij
)K lj .

Let k be an integer such that klj − kj ≥ 0 for each j = 1, . . . , m and let P ′ =
⊕m

j=1(γ
−1
ij
)Kklj−kj .

Then,

F ⊕ P ′ ∼=gr

m
⊕

j=1

(γ−1
ij
)Kkj ⊕

m
⊕

j=1

(γ−1
ij
)Kklj−kj ∼=gr

m
⊕

j=1

(γ−1
ij
)Kklj ∼=gr (δ)F

k.

Similarly, one can show that (δ)F ⊕ Q′ ∼=gr F
l for some positive integer l and finitely generated

graded projective module Q′. Thus, R is strongly graded by Theorem 1.2.

The equivalence (2) ⇔ (3) is direct by the formula O(γΓK) = Γ/ΓK for any γ ∈ Γ.

The equivalence (1) ⇔ (4) follows from Proposition 1.4.

(ii) Assuming that (1) holds, consider
⊕m

j=1(γ
−1
ij
)Kkj as in the proof of (i2) ⇒ (i1). By Theorem

1.2, R is a crossed product if and only if

m
⊕

j=1

(γ−1
ij
)Kkj ∼=gr

m
⊕

j=1

(γ−1
ij
δ)Kkj

for any δ ∈ Γ. Consider the case when δ is γij for any j, and then consider the γil-component of the
two modules in the formula above for l = 1, . . . , m such that γilΓK = ΓK . Since

m
⊕

j′=1

(γ−1
ij′

)K
kj′
γil

=

m
⊕

j′=1

K
kj′

γ−1

i
j′
γil

= Kkl

γ−1

il
γil

= Kkl
ε and

m
⊕

j′=1

(γ−1
ij′
γij )K

kj′
γil

=

m
⊕

j′=1

K
kj′

γ−1

i
j′
γij γil

= Kkj
γil

∼= Kkj
ε ,

we have that Kkl
ε

∼= K
kj
ε . Thus, kj = kl. Since j was arbitrary, the condition (2) holds.

Assuming that (2) holds, F =
⊕n

i=1(γ
−1
i )K and (γ)F differ only in the order of the terms, so

they are graded isomorphic for every γ ∈ Γ. Hence, R is a crossed product and the sequence

{1F} // AutK(F )ε // AutK(F ) ∩H
ψ

// Γ // {ε}

is exact where H is the set of homogeneous elements of AutK(F ) and ψ is the degree map. To show
(3), we define a splitting φ : Γ → AutK(F ) ∩H.

For γ ∈ Γ, let φγ ∈ AutK(F )γ be an isomorphism F ∼=gr (γ)F and let π be the permutation of
{1, 2, . . . , n} which corresponds to the reordering of the terms done by φγ so that

φγ((γ
−1
i )K) = (γ−1

π(i))K and γiΓK = γ−1γπ(i)ΓK .

If δ ∈ Γ is such that φδ((γ
−1
i )K) = (γ−1

σ(i))K for a permutation σ, then γiΓK = δ−1γσ(i)ΓK =

δ−1γ−1γπσ(i)ΓK = (γδ)−1γπσ(i)ΓK . So, the composition πσ corresponds to the permutation of the
terms of F by the graded isomorphism φγδ. Thus, φγφδ((γ

−1
i )K) = φγ((γ

−1
σ(i))K) = (γ−1

πσ(i))K which

shows that φγφδ = φγδ and that the mapping γ 7→ φγ defines a group homomorphism φ : Γ →
AutK(F ) ∩H. Since ψφ is the identity, the short exact sequence above splits. Hence, R is a skew
group ring and (3) holds.
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The implication (3) ⇒ (1) is direct and we show that (2) ⇔ (4) next. If (2) holds, then
γu = γ

∑m
j=1 kjγijΓK =

∑m
j=1 kjγijΓK = u and so Stab(u) = Γ and (4) holds. To show the

converse, assume that (4) holds and let j, j′ ∈ {1, . . . , m} be arbitrary. Let l = 1, . . . , m be such
that γilγijΓK = γij′ΓK . Then γilu = u implies that there are kj terms with γij′ΓK on the left hand

side and kj′ terms with γij′ΓK on the right hand side of γilu = u. Hence, kj = kj′ and so (2) holds.

(iii) If R is a group ring, φ(γ) = φγ is the identity on F for any γ ∈ Γ where φ and φγ are the
maps from the proof of (ii2) ⇒ (ii3). By the definition of φ, γiΓK = γ−1γiΓK for any i = 1, . . . , n
and any γ ∈ Γ. Taking γ to be γ−1

j for arbitrary j = 1, . . . , n and i to be such that γiΓK = ΓK , we
have that ΓK = γjΓK . Since j was arbitrary, Γ = ΓK . This shows (1) ⇒ (2). Conversely, if Γ = ΓK ,
then γiΓK = ΓK = γ−1γiΓK for any i = 1, . . . , n and any γ ∈ Γ so φγ is the identity 1F . Hence,
{1F} is the image of φ and so (1) holds. The conditions (2), (3), and (4) are clearly equivalent. �

By Theorem 2.1, if K is a trivially Γ-graded field and Γ is infinite, then R = Mn(K)(γ1, . . . , γn)
is not strongly graded for any γ1, . . . , γn ∈ Γ.

We consider another special case of Theorem 2.1 which is relevant for Leavitt path algebras. To
shorten the notation, if each γi ∈ Γ, i = 1, . . . , m, appears ki times in the list

γ1, γ1, . . . , γ1, γ2, γ2 . . . , γ2, . . . . . . . . . , γm, γm, . . . , γm,

we abbreviate this list as

k1(γ1), k2(γ2), . . . , km(γm).

So, if K is a graded division ring, we use the following abbreviation

Mn(K)(γ1, γ1, . . . , γ1, γ2, γ2 . . . , γ2, . . . . . . . . . , γm, γm, . . . , γm) = Mn(K)(k1(γ1), k2(γ2), . . . , km(γm))

For example, if Γ is Z, we shorten M9(K)(0, 0, 0, 0, 1, 1, 1, 2, 2) as M9(K)(4(0), 3(1), 2(2)).

If K is any field, we consider the algebra K[xm, x−m] graded by Z as in Section 1.6.

Corollary 2.2. Let m and n be positive integers and γ1, . . . , γn be integers such that, when consid-
ered modulo m and when arranged in a non-decreasing list, the list becomes k0(0), . . . , km−1(m− 1)
for nonnegative integers k0, . . . , km−1. If R = Mn(K[xm, x−m])(γ1, . . . , γn), then the following hold.

(1) R is strongly graded if and only if k0, k1, . . . , km−1 are positive.
(2) R is a crossed product if and only if k0, k1, . . . , km−1 are positive and equal to each other. In

this case, R is a skew group ring.
(3) R is a group ring if and only if m = 1. In this case, R ∼=gr Mn(K[x, x−1])(0, 0, . . . , 0).

Proof. Note that Γ/ΓK[xm,x−m] = Z/mZ. If R′ = Mn(K[xm, x−m])(k0(0), k1(1), . . . , km−1(m − 1)),
then R ∼=gr R

′ by Lemma 1.1. The statements follow directly by applying Theorem 2.1 to R′. The
last sentence of part (3) follows by part (3) of Lemma 1.1. �

3. Crossed product and group ring Leavitt path algebras

In this section, we prove the main result, Theorem 3.1. Let (EDL) be the graph property below.

(EDL) For every cycle of length m, the lengths, considered modulo m, of all paths which do
not contain the cycle and which end in an arbitrary but fixed vertex of the cycle, are
k(0), . . . , k(m− 1) for some positive integer k.

The notation EDL shortens “equally distributed lenghts”. Example 3.2 contains finite graphs which
have (EDL) and a graph which fails to have (EDL).
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Theorem 3.1. Let E be a graph and K a field. In conditions (i5) and (ii4) and in the proof, Γ is
the infinite cyclic group generated by x.

(i) The following conditions are equivalent.
(1) The algebra LK(E) is a crossed product.
(2) The graph E is a finite no-exit graph without sinks such that Condition (EDL) holds.
(3) LK(E) is graded isomorphic to an algebra of the form

R =

n
⊕

i=1

Mkimi
(K[xmi , x−mi ])(ki(0), ki(1), . . . , ki(mi − 1))

where n, ki and mi are positive integers for i = 1, . . . , n.
(4) The algebra LK(E) is a skew group ring.
(5) The set E0 is finite and

(GΓ
E, 1E)

∼=

n
⊕

i=1

(

Z[xi]/(x
mi

i = 1),

mi−1
∑

j=0

kix
j

)

for some positive integers n, ki and mi for i = 1, . . . , n.
(ii) The following conditions are equivalent.

(1) The algebra LK(E) is a group ring.
(2) The graph E is a finite no-exit graph without sinks such that every cycle is of length one.
(3) LK(E) is graded isomorphic to an algebra of the form

n
⊕

i=1

Mki(K[x, x−1])(ki(0))

where n and ki are positive integers for i = 1, . . . , n.
(4) The set E0 is finite and (GΓ

E, 1E)
∼=
⊕n

i=1(Z, ki) for some positive integers n and ki for
i = 1, . . . , n.

Proof. (i) We show (1) ⇒ (2) first. If (1) holds, then LK(E) is unital and so E0 is a finite set. By
Theorem 1.2, LK(E) ∼=gr (1)LK(E) and so the relation [LK(E)] = x[LK(E)] holds in V

Γ(LK(E)).
Considering the isomorphism (VΓ(LK(E)), [LK(E)]) ∼= (MΓ

E , 1E), we obtain that 1E =
∑

v∈E0 [v] ∈
MΓ

E is such that 1E = x1E and so the element
∑

v∈E0 [v] is periodic. Since a summand of a periodic
element is periodic by [9, Theorem 4.1], [v] is periodic for every vertex v of E.

By Theorem 1.6, any path originating at any vertex of E is a prefix of a path p ending in one of
finitely many cycles with no exits and such that all vertices of p are regular. Since there are finitely
many vertices, there are finitely many such cycles with no exits. The vertices of the paths leading
to the cycles are regular and vertices on the cycles emit exactly one edge, so E is a row-finite graph.
A row-finite graph with finitely many vertices is finite, so E is finite.

If there is a cycle with an exit in E, then [v] is not periodic for every vertex v of that cycle (see
[9, Lemma 3.8]). As this cannot happen, E is a no-exit graph. By Theorem 2.1 and Lemma 1.1, if
R is a matricial representation of LK(E), then R necessarily has a form as in part (3) where n is
the number of cycles, mi their lengths and the lengths, considered modulo mi, of all paths which
do not contain the cycle and which end in an arbitrary vertex of the cycle, are ki(0), . . . , ki(mi− 1)
for some positive ki for all i = 1, . . . , n. Hence, (2) holds.

If E is a graph as in (2), n is the number of cycles in E, mi their lengths and ki the number
as in Condition (EDL) for the i-th cycle, then a graded matricial representation of LK(E) has the
form as in condition (3). So, (2) ⇒ (3) holds.
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The algebra R in (3) is a skew group ring by Corollary 2.2 so (3) ⇒ (4). The implication (4)
⇒ (1) is direct, so the conditions (1) to (4) are equivalent. Since the implication (3) ⇒ (5) is also
direct, to complete the proof of (i), we show that (5) ⇒ (1).

If (5) holds, then x
∑mi−1

j=0 kix
j =

∑mi−1
j=0 kix

j and so x1E = 1E holds in GΓ
E. Consequently,

[LK(E)] = x[LK(E)] holds in KΓ
0 (LK(E)) and, hence, in V

Γ(LK(E)) also. Thus, LK(E) ∼=gr

(1)LK(E) which implies that LK(E) ∼=gr (n)LK(E) for any integer n. Hence, LK(E) is a crossed
product by Theorem 1.2.

(ii) To show (ii), we show (1) ⇒ (2) ⇒ (3) ⇒ (1) and (3) ⇔ (4).

If (1) holds, then (i1) holds so (i2) and (i3) hold. By Theorem 2.1, (1) and (i3) imply that mi = 1
for all i = 1, . . . , n for R as in (i3) and so all cycles of E have length one. Hence, (2) holds.

If E is a graph as in (2), n is the number of cycles in E, and ki the number of paths to the vertex
of the i-th cycle, then a graded matricial representation of LK(E) has the form as in condition (3).
So, (2) ⇒ (3) holds. The algebra in condition (3) is a group ring by Corollary 2.2 so (3) ⇒ (1).

The implication (3) ⇒ (4) is direct. To show the converse, assume that (4) holds. Then xa = a
holds for every element a ∈ GΓ

E . Since (4) implies (i5) with mi = 1 for all i = 1, . . . , n, LK(E) ∼=gr R
for some graded algebra R as in condition (i3) with mi = 1 for all i = 1, . . . , k. Hence, (3) holds. �

Theorem 3.1 enables one to directly check whether a finite graph is a crossed product.

Example 3.2. Consider the finite no-exit graphs without sinks below.

• // •
  
•aa • // • // •

  
•aa • // •

  
•aa •oo

For the first graph, 0, 1, and 1 are the lengths (modulo 2) of paths which end at any vertex
of the cycle and which do not contain the cycle. Since the numbers of zeros and ones on this list
are not equal, the Leavitt path algebra of this graph is not a crossed product. For the second two
graphs, the lengths in question (modulo 2) are 0, 0, 1, and 1. So, the Leavitt path algebras of the
last two graphs are crossed products.

4. Strongly graded Leavitt path algebras

By [6, Theorem 3.15] (or [7, Theorem 1.6.13]), if E is a finite graph, LK(E) is strongly graded if
and only if E has no sinks. This result was extended in [4, Theorem 4.2] by showing that LK(E) is
strongly graded if and only if E is a row-finite graph without sinks such that Condition (Y), given
below, holds.

(Y) For every positive integer k and every infinite path p there exists an initial subpath q of p
and a path r such that r(r) = r(q) and |r| − |q| = k.

Theorem 4.1 characterizes the condition that LK(E) is strongly graded in terms of the properties
of MΓ

E (and GΓ
E) in case when E0 is finite. In the case that E0 is finite, Theorem 4.1 also shows

that it is not necessary to require Condition (Y) in order to have that LK(E) is strongly graded in
[4, Theorem 4.2] and that it is not necessary to require that E1 is finite for the implication LK(E)
is strongly graded ⇒ E has no sinks in [7, Theorem 1.6.13] or [12, Proposition 45] (see also graphs
in part (1) and (3) of Example 4.2).

Theorem 4.1. Let E be a graph with finitely many vertices and let Γ be the infinite cyclic group
generated by x. The following conditions are equivalent.

(1) LK(E) is strongly graded.
(2) 1E is a strong order-unit of MΓ

E (equivalently of GΓ
E).
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(3) E is a row-finite graph with no sinks.

Proof. By Proposition 1.4, (1) ⇔ (2). We show (2) ⇒ (3) and (3) ⇒ (2).

If (2) holds, we show that E has neither sinks nor infinite emitters. Assume that v ∈ E0 is a
sink. Let n be a positive integer such that x−1[v] ≤ n1E so that x−1v + a ∼ n

∑

v∈E0 v holds in F Γ
E

for some a ∈ F Γ
E . By Lemma 1.5, there is c ∈ F Γ

E such that x−1v+ a→ c and n
∑

v∈E0 v → c. Since
v is a sink, none of (A1) to (A3) can be applied to x−1v and so x−1v is a summand of c. However,
since the axioms (A1) to (A3) increase the powers of x or leave them the same in the resulting
terms, the relation n

∑

v∈E0 v → c implies that no summand of c can be of the form x−1v. Hence,
we reach a contradiction.

Assume that v ∈ E0 is an infinite emitter. Following the steps of the previous case, we obtain
that x−1v + a → c and n

∑

v∈E0 v → c holds for some positive integer n and some a, c ∈ F Γ
E . The

first case shows that the term x−1v cannot remain unchanged in the process of obtaining c from
x−1v + a, so (A2) has to be used at some point for this term. Changing the order of the use of
the axioms for x−1v + a → c, we can assume that this application of (A2) is the first step. Hence,
x−1qZ +

∑

w∈Z r(e) + a → c for some finite and nonempty Z ⊆ s−1(v). In each subsequent step,
either the term x−1qZ is not changed, or (A3) is used for it and the result has a summand of the
form x−1qW for some finite and nonempty W ⊆ s−1(v) such that W ) Z. In any case, c ends up
having a summand of the form x−1qZ for some finite and nonempty Z ⊆ s−1(v). Using the same
argument as in the first case, we can conclude that the relation n

∑

v∈E0 v → c implies that no
summand of c can be of the form x−1qZ . Hence, we reach a contradiction in this case also.

If (3) holds, then E is a row-finite graph with finitely many vertices. Hence, E is finite. Since E
is finite and has no sinks, every vertex connects to a cycle. Thus, every vertex of E is either on a
cycle or it connects to finitely many cycles.

We claim that for any v ∈ E0, there is an element a ∈ F Γ
E − {0} with support containing only

vertices on cycles such that v → a. We prove this claim using induction on the minimum n of the
lengths of paths p from v to cycles such that only r(p) is on a cycle. If n = 0, v is on a cycle
and one can take a = v. Assuming the induction hypothesis, consider any v ∈ E0 with n > 0. If
v is on a cycle, we can take a = v again. If v is not on a cycle, the vertex v is regular since E is
finite and v is not a sink, so s−1(v) is nonempty and finite and (A1) can be applied to v. For every
e ∈ s−1(v), the minimum of lengths of paths from r(e) to cycles is less than n and we can use the
induction hypothesis to obtain ae ∈ F Γ

E with vertices in the support on cycles and r(e) → ae. Then
a =

∑

e∈s−1(v) xae has vertices in the support on cycles and

v →
∑

e∈s−1(v)

xr(e) →
∑

e∈s−1(v)

xae = a.

This shows that, for v ∈ E0, one can find a positive integer m, integers ki and vertices vi on
cycles for i = 1, . . . , m such that v →

∑m
i=1 x

kivi holds in F Γ
E . Moreover, since the axioms either

increase the degrees of monomials or leave them the same, ki ≥ 0 for all i. If ni is the length of the
cycle ci which contains vi, wi is a vertex on ci, and ti is a positive integer, then wi → xtiniwi + bi
some bi ∈ F Γ

E where → is obtained by applying the axioms (in this case only (A1) is applicable)
following the cycle ci for ti revolutions

1. Let us consider two cases ki + 1 ≤ ni and ki + 1 > ni. If
ki + 1 ≤ ni, let wi be the vertex on the cycle ci such that the length of the path on the cycle from
wi to vi is exactly ki+1. Then, wi → xki+1vi+ di for some di ∈ F Γ

E by applying (A1) following that

1Note that bi = 0 if and only if the cycle on which wi is has no exits by [9, Lemma 3.8].
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path. If ki + 1 > ni, let ki + 1 = tini + li for some positive ti and 0 ≤ li < ni. Let wi be the vertex
on the cycle ci such that the length of the path on the cycle from wi to vi is exactly li. Then,

wi → xtiniwi + bi → xtini+livi + d′i + bi = xki+1vi + di

for some bi, d
′
i ∈ F Γ

E and di = bi + d′i. Thus, in either case, the relation [wi] ≥ xki+1[vi] holds
in MΓ

E . Let lv be the maximal number of repetitions of a term in the sum
∑m

i=1[wi], kv be the
maximal number of repetitions of a term in the sum

∑

e∈s−1(v)[r(e)] and l be the maximum of the

set {lv | v ∈ E0} ∪ {kv | v ∈ E0}. Thus, we have that

x[v] =

m
∑

i=1

xki+1[vi] ≤

m
∑

i=1

[wi] ≤
∑

w∈E0

lv[w] = lv1E ≤ l1E

which implies that

x1E =
∑

v∈E0

x[v] ≤
∑

v∈E0

l1E = |E0|l1E

and so for any v ∈ E0, x2[v] ≤ xl1E ≤ |E0|l
21E . Continuing this argument, we obtain that

xn[v] ≤ |E0|
n−1ln1E .

In addition, since v →
∑

e∈s−1(v) xr(e) for any v ∈ E0, we have that

x−1[v] =
∑

e∈s−1(v)

[r(e)] ≤
∑

w∈E0

kv[w] = kv1E ≤ l1E

which implies that

x−11E =
∑

v∈E0

x−1[v] ≤
∑

v∈E0

l1E = |E0|l1E

and so for any v ∈ E0, x−2[v] ≤ x−1l1E ≤ |E0|l
21E. Continuing this argument, we obtain that

x−n[v] ≤ |E0|
n−1ln1E.

Thus, for any a ∈ F Γ
E with a normal representation a =

∑k
j=1 x

mjvj ,

[a] =
k
∑

j=1,mj=0

xmj [vj] +
k
∑

j=1,mj 6=0

xmj [vj ] ≤



k +
k
∑

j=1,mj 6=0

|E0|
|mj |−1 l|mj |



 1E .

Hence, 1E is a strong order-unit and so (2) holds. �

If every infinite path of E ends in a cycle, then one can directly check that Condition (Y) holds.
So, if E is a row-finite graph without sinks such that every infinite path ends in a cycle, then LK(E)
is strongly graded. The first graph below shows that the converse fails.

Example 4.2. (1) If E is the row-finite graph without sinks below,

// • // • // • // • //

it is direct to check that Condition (Y) holds because of the existence of paths of all lengths
ending at arbitrary vertex of any infinite path. Hence, LK(E) is strongly graded. However,
E has infinite paths which do not end in cycles.

Since every infinite path of this graph is an infinite sink, this example also shows that,
as opposed to finite sinks, the infinite sinks do not prevent the algebra LK(E) from being
strongly graded. One may suspect that if E is a row-finite graph without sinks such that
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every infinite path ends in a cycle or an infinite sink, then LK(E) is necessarily strongly
graded. However, that is also not true as the next example shows.

(2) Let E be the graph below.

• // • // • // • //

Condition (Y) fails for the infinite path containing every edge of this graph and k = 1 since
for any initial path q of length l there is no path of length l + 1 which ends in r(q). Hence,
LK(E) is not strongly graded.

(3) Based on the first example, one may question whether LK(E) being strongly graded implies
that E is a row-finite graph without sinks such that every infinite path ends in a cycle or
an infinite sink. A consideration of the graph E below shows that this is also not true.

•
��

•
��

•
��

• //

OO

• //

OO

• //

OO

• //

OO

•

OO

•

OO

•

OO

•

OO

OO OO OO OO

Just as the first graph, E is a row-finite graph without sinks and it is direct to check that
Condition (Y) holds. So, LK(E) is strongly graded. However, E has infinite paths which
end neither in cycles nor in infinite sinks.

Next, we show that the converse of Proposition 1.3 holds for unital Leavitt path algebras.

Corollary 4.3. If E is a graph with finitely many vertices, then the following are equivalent.

(1) LK(E) is a crossed product.
(2) E is a finite no-exit graph without sinks such that Condition (EDL) holds.
(3) LK(E) is strongly graded and graded unit-regular.

Proof. By Theorem 3.1, (1) ⇔ (2) and, by Proposition 1.3, (3) ⇒ (1). We show (1) ⇒ (3).

If (1) holds, then LK(E) is strongly graded. By Theorem 3.1, E is finite. So, the zero component
LK(E)0 is an ultramatricial algebra over K with unital connecting maps (see [1, Proposition 2.1.14])
and, hence, LK(E)0 is unit-regular. By Theorem 3.1 also, LK(E) is a skew group ring over LK(E)0
and so LK(E) ∼=gr LK(E)0 ∗φ Z for some map φ. It is direct to check that the unit-regularity of
LK(E)0 implies the graded unit-regularity of LK(E)0 ∗φ Z. So, LK(E) is graded unit-regular. �

By [14, Theorem 5.3], if E is a finite graph, then LK(E) is graded unit-regular if and only if E
is a no-exit graph without sinks which receive edges and such that Condition (EDL) holds. Thus,
if condition (2) of Corollary 4.3 holds then LK(E) is strongly graded by Theorem 4.1 and graded
unit-regular by [14, Theorem 5.3] so (3) holds. This provides an alternative proof of Corollary 4.3.

Corollary 4.3 and [14, Theorem 5.3] enable us to easily create examples of strongly graded rings
which are not graded unit-regular and graded unit-regular rings which are not strongly graded.
Indeed, if E is the first graph from Example 3.2, then LK(E) is strongly graded since E is a finite
graph without sinks. However, Condition (EDL) fails so LK(E) is not graded unit-regular. On the
other hand, if E is a single vertex • with no edges, then LK(E) is unit-regular by [14, Theorem 5.3]
but LK(E) is not strongly graded since this vertex is a sink.
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