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NILPOTENCY AND THE HAMILTONIAN PROPERTY FOR CANCELLATIVE

RESIDUATED LATTICES

ALMUDENA COLACITO AND CONSTANTINE TSINAKIS

ABSTRACT. The present article studies nilpotent and Hamiltonian cancellative residuated

lattices and their relationship with nilpotent and Hamiltonian lattice-ordered groups. In

particular, results about lattice-ordered groups are extended to the domain of residuated

lattices. The two key ingredients that underlie the considerations of this paper are the cat-

egorical equivalence between Ore residuated lattices and lattice-ordered groups endowed

with a suitable modal operator; and Malcev’s description of nilpotent groups of a given

nilpotency class c in terms of a semigroup equation.

1. INTRODUCTION

The present article studies nilpotent and Hamiltonian cancellative residuated lattices

and their relationship with nilpotent and Hamiltonian lattice-ordered groups. In particular,

results about lattice-ordered groups (ℓ-groups) are extended to the domain of residuated

lattices. The two key ingredients that underlie the considerations of this paper are the

categorical equivalence of [37], which provides a new framework for the study of various

classes of cancellative residuated lattices by viewing these structures as ℓ-groups with a

suitable modal operator; and Malcev’s description [34] (see also [39]) of nilpotent groups

of a given nilpotency class c in terms of a semigroup equation Lc (to be defined in Section

3).

A plethora of evidence has been accumulated during the past two decades demonstrating

the fundamental importance of ℓ-groups in the study of algebras of logic1. For example, an

essential result [38] in the theory of MV-algebras is the categorical equivalence between

the category of MV-algebras and the category of unital Abelian ℓ-groups. Likewise, the

non-commutative generalization of this result in [18] establishes a categorical equivalence

between the category of pseudo MV-algebras and the category of unital ℓ-groups. Further,

the generalization of these two results in [37] shows that one can view GMV-algebras as

ℓ-groups with a suitable modal operator. The categorical equivalence in [37] mentioned

above is another example in point.

In a complementary direction, the articles [32, 22, 5, 23, 33, 6, 24] have shown that

large parts of the Conrad Program can be profitably extended to the much wider class of
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e-cyclic residuated lattices, that is, those residuated lattices satisfying the equation x\e ≈
e/x. The term Conrad Program traditionally refers to P. Conrad’s approach to the study

of ℓ-groups, which analyzes the structure of individual ℓ-groups, or classes of ℓ-groups,

by means of an overriding inquiry into the lattice-theoretic properties of their lattices of

convex ℓ-subgroups. In the 1960s, Conrad’s articles [9, 10, 11, 12, 13, 14] pioneered this

approach and demonstrated its usefulness.

The present work builds on the aforementioned research. Nilpotent ℓ-groups are the

ℓ-groups whose group reducts are (necessarily torsion-free) nilpotent groups. They share

many important properties with Abelian ℓ-groups, including representability (semilinear-

ity) and the Hamiltonian property. In particular, they satisfy the congruence extension

property. The notion of Hamiltonian algebra arises as a generalization of the concept of

Hamiltonian group [19]. Borrowing the terminology from group theory, an ℓ-group is

said to be Hamiltonian if every convex ℓ-subgroup is normal. Hamiltonian ℓ-groups were

first introduced implicitly in [35], and later studied extensively (see, e.g., [8, 40, 25, 3]).

While Hamiltonian ℓ-groups do not form a variety ([8, Proposition 1.4]), a largest vari-

ety of Hamiltonian ℓ-groups does exist and was identified in [40]. A significant property

of Hamiltonian ℓ-groups is representability—namely, each Hamiltonian ℓ-group is a sub-

direct product of totally ordered groups. Representability and the Hamiltonian property

were established for nilpotent ℓ-groups in [31] (see also [28] and [40], respectively).

We conclude the introduction by illustrating the article’s discourse. In Section 2, we

dispatch some preliminaries on residuated lattices and their convex subuniverses. In Sec-

tion 3, we study the quasivariety of submonoids of nilpotent ℓ-groups. In particular, The-

orem 3.8 shows that submonoids of nilpotent ℓ-groups are precisely those nilpotent can-

cellative monoids that have unique roots. The theorem also provides a characterization

for the quasivariety of submonoids of nilpotent cancellative residuated lattices. Its proof

makes use of Theorem 3.6, which provides a bridge that connects nilpotent cancellative

residuated lattices and nilpotent ℓ-groups. The focus of Section 4 is the prelinearity prop-

erty, with particular interest for some of its implications and equivalent formulations. We

show in Theorem 4.2 that residuals in a prelinear residuated lattice preserve finite joins

in the numerator, and convert finite meets to joins in the denominator. While prelinearity

implies semilinearity in the presence of commutativity [26], this is no longer the case for

non-commutative varieties of residuated lattices. However, Theorem 4.2 shows that any

prelinear cancellative residuated lattice has a distributive lattice reduct.

Section 5 is devoted to Hamiltonian residuated lattices. Theorem 5.2 shows that any

Hamiltonian prelinear e-cyclic residuated lattice is semilinear, which implies that any

Hamiltonian prelinear cancellative residuated lattice is semilinear (Corollary 5.4). In par-

ticular, the result that Hamiltonian ℓ-groups are representable is extended in Corollary 5.4

to prelinear cancellative residuated lattices. With these results at hand, we prove that there

exists a largest variety of Hamiltonian prelinear cancellative residuated lattices (Theo-

rem 5.5), thereby extending the corresponding result for ℓ-groups. The main focus of

Section 6 is the class of nilpotent residuated lattices. First, nilpotent cancellative residuated

lattices are proved to be Hamiltonian. As a consequence, nilpotent prelinear cancellative

residuated lattices are semilinear. The arguments make use of the corresponding results for

ℓ-groups, by means of the categorical equivalence between nilpotent cancellative residu-

ated lattices and nilpotent ℓ-groups with a conucleus (see Theorem 3.6).

Given the role that semilinearity plays in the study of Hamiltonian and nilpotent pre-

linear cancellative varieties, the final section of the paper discusses varieties of semilinear
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cancellative residuated lattices. We show, inter alia, that any variety V of semilinear can-

cellative integral residuated lattices defined by monoid equations is generated by residuated

chains whose monoid reducts are finitely generated objects in the quasivariety of monoid

subreducts corresponding to V (Theorem 7.3).

2. RESIDUATED LATTICES: BASIC CONCEPTS

In this section we briefly recall some basic facts about residuated lattices and their

structure; we refer to [2], [29], [21], and [36] for further details.

The set of positive natural numbers is N := {1, 2, . . .}, and Z
+ is the set N ∪ {0}.

Throughout, by ‘poset’ we mean ‘partially ordered set’. If L is a signature and L′ ⊆ L, an

L′-algebra A is an L′-subreduct of an L-algebra B if A is a subalgebra of the L′-reduct

of B. For simplicity, when L′ is the monoid (resp. group, lattice or semilattice) signature,

we sometimes refer to A as a submonoid (resp. subgroup, sublattice or subsemilattice) of

the L-algebra B.

A residuated lattice is an algebra L = 〈L,∧,∨, ·, \, /, e〉, where 〈L, ·, e〉 is a monoid,

〈L,∧,∨〉 is a lattice, and \ and / are binary operations such that, for all a, b, c ∈ L,

(2.1) ab ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c,

where ab stands for the product a · b, and ≤ is the lattice order. We write e for the monoid

identity. The operations \ and / are referred to as left residual and right residual of ·, re-

spectively. We refer to a as the denominator of a\b (resp. b/a), and to b as the numerator of

a\b (resp. b/a). Condition (2.1) is equivalent to · being order-preserving in each argument

and, for every a, b ∈ L, the sets

(2.2) {c ∈ L | a · c ≤ b} and {c ∈ L | c · a ≤ b}

containing greatest elements a\b and b/a, respectively. Residuated lattices form a variety

denoted by RL [1, 2]. Throughout, we often write t ≤ s for the equation t ∧ s ≈ t.
We recall here some relevant standard facts.

Proposition 2.1. The monoid operation · of any residuated lattice preserves all existing

joins in each argument. The residuals \ and / preserve all existing meets in the numerator,

and convert existing joins in the denominator into meets. Consequently, residuals preserve

order in the numerator, and reverse order in the denominator.

Proposition 2.2. Every residuated lattice satisfies the equations

x\(y/z) ≈ (x\y)/z, x/yz ≈ (x/z)/y, xy\z ≈ y\(x\z),

For any residuated lattice L, the set L− = {a ∈ L | a ≤ e} of negative elements of L
(including the monoid identity) is its negative cone. It is the universe of a submonoid, and

a sublattice of L, and it can be made into a residuated lattice, by defining \L− and /L− as

a\L−b := a\b ∧ e

a/L−b := a/b ∧ e,

for a, b ∈ L−. Residuated lattices satisfying x ∧ e ≈ x are called integral. The class of

integral residuated lattices can be equivalently defined relative to RL by the equations

(2.3) x\e ≈ e ≈ e/x.
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We call a residuated lattice cancellative if its monoid reduct is a cancellative monoid.

The class of cancellative residuated lattices is a variety (see [1, Lemma 2.5]) defined rela-

tive to RL by the equations:

(2.4) xy/y ≈ x ≈ y\yx.

Replacing x by e in the preceding equation, we get:

Proposition 2.3. The equations x\x ≈ e ≈ x/x hold in any cancellative residuated

lattice.

A residuated lattice is said to be e-cyclic if it satisfies the equation x\e ≈ e/x.

Proposition 2.4. Any cancellative residuated lattice is e-cyclic.

Proof. For any residuated lattice L and a ∈ L, we have a\(a/a) = (a\a)/a by Proposi-

tion 2.2. Thus, by Proposition 2.3, if L is cancellative, a\e = e/a for every a ∈ L. �

If L is a residuated lattice, we write C(L) for the set of all convex subuniverses of L,

ordered by set inclusion. Here, a convex subuniverse is an order-convex subuniverse of L.

If L is e-cyclic, C(L) is a distributive lattice (see, e.g., [5, Theorem 3.8]).

For any S ⊆ L, we write C[S] for the smallest convex subuniverse of L containing S.

As usual, we call C[S] the convex subuniverse generated by S, and write C[a] for C[{a}].
We refer to C[a] as the principal convex subuniverse of L generated by the element a ∈ L.

If L is a residuated lattice, and a ∈ L, the absolute value |a| ∈ L− is defined as

a ∧ (e/a) ∧ e.

Note that when a ≤ e, |a| = a.

If S ⊆ L, we write 〈S〉 for the submonoid generated by S in L. The following results

are established in [5] (see Lemma 3.2, Corollary 3.3, and Lemma 3.6 in [5]).

Lemma 2.5. In any e-cyclic residuated lattice L, the followings hold:

(a) For any S ⊆ L, the convex subuniverse generated by S is

C[S] = C[|S|] = {c ∈ L | t ≤ c ≤ t\e, for some t ∈ 〈|S|〉}

= {c ∈ L | t ≤ |c|, for some t ∈ 〈|S|〉},

where |S| := {|s| : s ∈ S}.

(b) For any a ∈ L, the convex subuniverse generated by a is

C[a] = C[|a|] = {c ∈ L | |a|n ≤ c ≤ |a|n\e, for some n ∈ N}

= {c ∈ L | |a|n ≤ |c|, for some n ∈ N}.

(c) For any a, b ∈ L, C[|a| ∨ |b|] = C[a] ∩ C[b] and C[|a| ∧ |b|] = C[a] ∨ C[b].

If L is a residuated lattice, and a, b ∈ L, we define

(2.5) λb(a) := (b\ab) ∧ e and ρb(a) := (ba/b) ∧ e,

and refer to λb(a) and ρb(a) respectively as the left and right conjugate of a by b. For any

residuated lattice L, a convex subuniverse H ∈ C(L) is said to be normal if for any a ∈ H
and any b ∈ L, λb(a) ∈ H and ρb(a) ∈ H . It was proved in [2, Theorem 4.12] that the

lattice NC(L) of convex normal subuniverses of any residuated lattice L is isomorphic to

its congruence lattice Con(L).
A lattice-ordered group (briefly, ℓ-group) is an algebra G = 〈G,∧,∨, ·,−1, e〉 such

that 〈G, ·,−1, e〉 is a group, 〈G,∧,∨〉 is a lattice, and the group operation distributes over
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the lattice operations. The class of ℓ-groups is a variety. Here, it is identified with the

term-equivalent subvariety LG of RL defined by the equations

x(x\e) ≈ e ≈ (e/x)x.

The equivalence is given by x−1 := x\e = e/x, x−1y := x\y, and yx−1 := y/x. In any

residuated lattice L, an element a ∈ L is invertible, that is, it has a multiplicative inverse if

a(a\e) = e = (e/a)a.

Hence, the class of ℓ-groups is identified with the class of those residuated lattices in which

every element is invertible.

Residuated lattices with a commutative monoid reduct are called commutative residu-

ated lattices, and form a subvariety of RL. It is standard to call Abelian those ℓ-groups

whose underlying group is commutative. Here, a monoid-subvariety of V is any variety

defined relative to V ⊆ RL by monoid equations (e.g., commutative residuated lattices

form a monoid-subvariety of RL). We also refer to V as a monoid-variety.

For any monoid M, we say that ≤ ⊆ M ×M is a partial order on M if it is a partial

order on M and, for all a, b, c, d ∈ M , whenever a ≤ b, also cad ≤ cbd; if the order ≤ is

total, we call it a total order on M. If the total order is residuated, we say that M admits a

residuated total order, and we sometimes write 〈M,≤〉 for the resulting residuated lattice.

It is immediate that any total order on (the monoid reduct of) a group is a residuated total

order. Finally, a residuated lattice admits a (residuated) total order if its monoid reduct

admits a residuated total order that extends its lattice order.

3. SUBMONOIDS OF NILPOTENT LATTICE-ORDERED GROUPS

The primary focus of this section is the quasivariety of submonoids of nilpotent ℓ-groups.

The main result of this section, Theorem 3.8, provides a characterization of these monoids

and, equivalently, of submonoids of nilpotent cancellative residuated lattices. In particular,

a nilpotent monoid is a submonoid of a nilpotent ℓ-group if and only if it is cancellative

and has unique roots (in the sense to be defined below).

A nilpotent group is one that has a finite central series. Given c ∈ N, nilpotent groups

of class c (in short, c-nilpotent groups) are those possessing a central series of length at

most c; they form a variety defined by the equation

[[[x1, x2], . . . , xc], xc+1] ≈ e.

Thus, 1-nilpotent groups coincide with Abelian groups, and every c-nilpotent group, c ∈ N,

is also (c+ 1)-nilpotent.

Consider now the equation Lc : qc(x, y, z̄) ≈ qc(y, x, z̄), where z̄ abbreviates a se-

quence of variables z1, z2, . . . , and qc(x, y, z̄) is defined as follows, for c ∈ N:

q1(x, y, z̄) = xy

qc+1(x, y, z̄) = qc(x, y, z̄)zcqc(y, x, z̄).

The equation Lc characterizes c-nilpotent groups.

Proposition 3.1 ([39], Corollary 1). A group is c-nilpotent if and only if it satisfies the

equation Lc.

We call a monoid nilpotent of class c (in short, c-nilpotent) if it satisfies Lc, and call a

residuated lattice nilpotent of class c (briefly, c-nilpotent) if its monoid reduct is c-nilpotent.

The class of c-nilpotent residuated lattices is a monoid-variety of residuated lattices, and
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commutative residuated lattices coincide with 1-nilpotent residuated lattices. We refer to a

monoid (resp., residuated lattice) as nilpotent if it is c-nilpotent for some c ∈ N.

Example 3.2. Clearly, every c-nilpotent ℓ-group is a c-nilpotent residuated lattice. Simi-

larly, the negative cone of a c-nilpotent ℓ-group is a cancellative, integral c-nilpotent resid-

uated lattice.

We present below an example of a commutative cancellative integral residuated chain,

which is neither an ℓ-group nor the negative cone of an ℓ-group.

Example 3.3. Let M1(x, y) be the free 2-generated commutative monoid over {x, y}. We

consider the dual shortlex order, i.e., for words t, s ∈ M1(x, y) we have t ≤ s iff |t| > |s|
or |t| = |s| and t <lex s in the lexicographic order generated by y < x. For example,

e > x > y > x2 > xy > y2 > x3 > x2y > xy2 > y3 > . . .

Then M1(x, y) equipped with the considered order is an integral commutative cancellative

residuated chain. However, it is not the negative cone of an ℓ-group. Indeed, it is easy to

see that the negative cone of an ℓ-group satisfies the divisibility equation (w/z)z ≈ w ∧ z
(see [1, Corollary 6.3]), whereas we have (y/x)x = x2 = y = x ∧ y in M1(x, y).

We also provide an example of a non-commutative nilpotent cancellative integral resid-

uated chain, which is neither an ℓ-group nor the negative cone of an ℓ-group.

Example 3.4. Let F2(x, y) be free 2-nilpotent group over {x, y} and let S2(x, y) be the

submonoid generated by {x, y}. The groupF2(x, y) is isomorphic to the groupUT3(Z) of

unitriangular matrices (see [30, Exercise 16.1.3]); the isomorphism, obtained by extending

the variable assignment

x 7−→





1 0 0
0 1 1
0 0 1



 ; y 7−→





1 1 0
0 1 0
0 0 1



 .

can be also described on each element xαyβ [x, y]γ of F2(x, y), for α, β, γ ∈ Z, as follows:

xαyβ [x, y]γ 7−→





1 β γ
0 1 α
0 0 1





Through this isomorphism, the monoidS2(x, y) is isomorphic to the submonoid ofUT3(Z)
whose underlying set is

{A ∈ UT3(Z) | α, β, γ ∈ Z
+ and γ ≤ αβ }.

We consider the following total order on S2(x, y) induced by the lexicographic order on

the triples (α, β, γ): if we identify a with (α1, β1, γ1) and b with (α2, β2, γ2), define

a ≤∗ b ⇐⇒ (α1, β1, γ1) ≥lex (α2, β2, γ2).

The monoid S2(x, y) equipped with this order is a nilpotent, cancellative, integral residu-

ated chain that is neither an ℓ-group nor the negative cone of an ℓ-group. Indeed, as was

noted above the negative cone of an ℓ-group satisfies the law (w/z)z ≈ w ∧ z (see [1,

Corollary 6.3]), whereas here (x/y)y = xy 6= x = x ∧ y.

A monoid M is right-reversible if Ma ∩Mb 6= ∅, for all a, b ∈ M . A group of (left)

quotients for a monoid M is a group G that has M as a submonoid, and such that every

c ∈ G is of the form c = a−1b for some a, b ∈ M . By a classical result due to Ore (see,
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e.g., [7, Section 1.10], [17]), a cancellative monoid M has a group of quotients (unique up

to isomorphism) if and only if M is right-reversible.

We call a right-reversible cancellative monoid Ore, and write G(M) for its group of

quotients. Further, we call a residuated lattice Ore if its monoid reduct is Ore.

Proposition 3.5 ([39], Theorem 1). A cancellative monoid has a c-nilpotent group of quo-

tients if and only if it satisfies the equation Lc.

The preceding result implies in particular that all nilpotent cancellative residuated lattices

are Ore.

The categorical equivalence in [37] provides a bridge between nilpotent cancellative

residuated lattices and nilpotent ℓ-groups. Recall that a function σ : P → P on a poset

P = 〈P,≤〉 is a co-closure operator if it is order-preserving (x ≤ y entails σ(x) ≤ σ(y)),
contracting (σ(x) ≤ x), and idempotent (σ(σ(x)) = σ(x)). The image of σ will be

denoted by Pσ . We say that a co-closure operator σ on a poset P is a conucleus if σ(e) = e

and σ(x)σ(y) ≤ σ(xy). If L = 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice and σ a conucleus

on L, then the image Lσ is a join-subsemilattice and a submonoid of L. It can be made

into a residuated lattice, with operations ∧σ , \σ, and /σ , defined by

a ∧σ b := σ(a ∧ b) , a\σb := σ(a\b) , a/σb := σ(a/b),

for any a, b ∈ Lσ (see [37, Lemma 3.1]).

Let LGcn be the category with objects 〈G, σ〉 consisting of an ℓ-group G augmented

with a conucleus σ such that the underlying group of the ℓ-group G is the group of quo-

tients of the monoid reduct of σ[G]. The morphisms of LGcn are ℓ-groups homomor-

phisms that commute with the conuclei. The category ORL of Ore residuated lattices

and residuated lattice homomorphisms was shown to be equivalent to LGcn [37, Theorem

4.9]. The results collected here suffice to provide a restriction of this equivalence to the

category N c CanRL of c-nilpotent cancellative residuated lattices and residuated lattice

homomorphisms, and the full subcategory N cLGcn of LGcn consisting of objects whose

first component is a c-nilpotent ℓ-group.

We will not make use of the full categorical equivalence, but keep in mind the follow-

ing key idea: Every nilpotent cancellative residuated lattice L (of class c) ‘sits’ inside a

uniquely determined nilpotent ℓ-group G(L) (of class c) as a submonoid, and as a join-

subsemilattice. Further, L can be seen as the image of G(L) relative to a suitable conu-

cleus.

Theorem 3.6 ([37], Lemmas 4.2 - 4.3 - 4.4). Let L be a c-nilpotent cancellative residuated

lattice. If ≤ denotes the partial order of L, then the binary relation � ⊆ G(L) ×G(L)
defined, for a, b, c, d ∈ L, by

a−1b � c−1d iff there exist m,n ∈ L such that mb ≤ nd and ma = nc,

is the unique partial order on G(L) that extends ≤ and makes G(L) into a c-nilpotent

ℓ-group. Further, the map

σL : G(L) → G(L) ; σL(a
−1b) = a\b, for all a, b ∈ L,

is a conucleus on G(L) and L = G(L)σL
.

The main result of this section, Theorem 3.8 below, characterizes those cancellative

monoids that embed into nilpotent ℓ-groups, and into nilpotent cancellative residuated lat-

tices. Before we proceed with its proof, we recall a few pertinent properties of nilpotent

groups. In what follows, a monoid M (or a group) is said to have unique roots if, whenever

a, b ∈ M , and an = bn for some n ∈ N, then a = b.
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Lemma 3.7 ([30], Theorems 16.2.3 - 16.2.7 - 16.2.8). The following properties hold in

any nilpotent group G.

(a) Every nontrivial normal subgroup of G intersects the center nontrivially.

(b) The set of torsion elements of G is a normal subgroup of G.

(c) If G is torsion-free, it has unique roots.

For any variety V of residuated lattices, we write M(V) for the class of monoid sub-

reducts of V , that is, those monoids that are submonoids of the monoid reduct of a residu-

ated lattice from V . That M(V) is always a quasivariety is readily seen by checking that it

is closed under ultraproducts, submonoids and direct products.

Theorem 3.8. For any monoid M, the following are equivalent:

(1) M is a submonoid of a c-nilpotent ℓ-group.

(2) M is c-nilpotent, cancellative, and has unique roots.

(3) M has a group of quotients G(M), that is c-nilpotent and torsion-free.

(4) M is a submonoid of a totally ordered c-nilpotent group.

(5) M is a submonoid of a c-nilpotent cancellative residuated lattice.

Proof. For (1) ⇒ (2), assume that M is a submonoid of a c-nilpotent ℓ-group G. That M

is c-nilpotent is immediate by Proposition 3.1. It remains to show that M has unique roots.

To this end, suppose that an = bn for some n ∈ N, and a, b ∈ M . Then, an = bn in G.

Now, since G is an ℓ-group, it is torsion-free, and by Lemma 3.7(c), a = b.
For (2) ⇒ (3), observe that G(M) exists and is c-nilpotent by Proposition 3.5. Suppose

now that (a−1b)n = e, for some a 6= b ∈ M , and n ∈ N. Then, a−1b is in the torsion

subgroup of G(M), which is normal by Lemma 3.7(b). By Lemma 3.7(a), its intersection

with the center of G(M) is non-trivial, and hence, there exists a central element c−1d ∈
G(M) such that c 6= d ∈ M , and (c−1d)m = e for some m ∈ N. As c−1d is a central

element of G(M), c(c−1d) = (c−1d)c or, equivalently, dc−1 = c−1d. Therefore, an easy

induction on m ∈ N shows that

(c−1d)m = (c−1)mdm = e.

This implies cm = dm, which contradicts the assumption that M has unique roots, since c
and d are assumed to be distinct.

For (3) ⇒ (4), it suffices to observe that G(M) admits a total order, as it is torsion-free

and nilpotent (see [4, Theorem 2.2.4]).

Now, (4) ⇒ (5) is trivial, as any totally ordered c-nilpotent group is a c-nilpotent can-

cellative residuated lattice.

Finally, we show (5) ⇒ (1). By assumption M is a submonoid of a c-nilpotent can-

cellative residuated lattice L. Let G(L) be the ℓ-group of quotients of L, as defined in

Theorem 3.6. Since L is a submonoid of G(L), the result follows. �

We write Mc(X) for the free object over X in the quasivariety M(N c CanRL), and

Sc(T ) for the submonoid of the free c-nilpotent group Fc(X) generated by any subset

T ⊆ Fc(X).

Proposition 3.9. For any c ∈ N and any set X , the monoidSc(X) is isomorphic to the free

object Mc(X) over X in the quasivariety M(N c CanRL). Further, the free c-nilpotent

group Fc(X) is isomorphic to the group of quotients of Mc(X).
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Proof. First, observe that Sc(X) is a member of M(N c CanRL), by Theorem 3.8. There-

fore, the unique monoid homomorphism

γ : Mc(X) → Sc(X)

extending the identity map on X exists by the universal property of Mc(X). The map γ
is clearly onto, since Sc(X) is generated by X as a monoid. Further, observe that Mc(X)
sits as a submonoid inside a c-nilpotent group H, and that there exists a unique group

homomorphism

δ : Fc(X) → H

extending the identity map on X . This map restricts to a surjective monoid homomorphism

δ̂ : Sc(X) → Mc(X),

since Mc(X) is generated by X . Thus, γ and δ are inverses to each other. Finally, the

second part of the statement follows from the fact that the group of quotients of the monoid

Sc(X) is the free c-nilpotent group Fc(X). This is because any group generated by an Ore

monoid M is a group of quotients of M (see, e.g., [7, Section 1.10]). �

Let us remark that Proposition 3.9 could also be obtained as a consequence of a more

general result that can be found in [41, §5].

4. PRELINEARITY AND ITS IMPLICATIONS

The remainder of the paper will be concerned with classes of prelinear residuated lat-

tices. A residuated lattice is said to be prelinear if it satisfies the following equations:

(LPL) (x\y ∧ e) ∨ (y\x ∧ e) ≈ e and (RPL) (x/y ∧ e) ∨ (y/x ∧ e) ≈ e.

This section is devoted to exploring prelinearity, with particular interest for some of its

implications and equivalent formulations. More precisely, Theorem 4.2 below shows that

residuals in a prelinear residuated lattice preserve finite joins in the numerator, and con-

vert finite meets to joins in the denominator. While prelinearity implies semilinearity in

the presence of commutativity [26], this is no longer the case in non-commutative set-

tings. However, Theorem 4.2 shows that any prelinear cancellative residuated lattice has a

distributive lattice reduct.

We start with a preliminary lemma.

Lemma 4.1 ([1], Proposition 4.1). The followings are equivalent for any lattice L.

(1) L is distributive.

(2) For all a, b ∈ L with a ≤ b, there exists a join-endomorphism f : L → L such that

f(b) = a and f(x) ≤ x, for all x ∈ L.

The distributivity of the lattice reduct of any ℓ-group is an immediate consequence of

Lemma 4.1—it suffices to take f(x) = xb−1a.

Consider the following pairs of equations:

(LPL2) (y ∧ z)\x ≈ (y\x) ∨ (z\x) and (LPL3) x\(y ∨ z) ≈ (x\y) ∨ (x\z);

(RPL2) x/(y ∧ z) ≈ (x/y) ∨ (x/z) and (RPL3) (y ∨ z)/x ≈ (y/x) ∨ (z/x).

Parts of the next result can be found in [2, Proposition 6.10], and [1, Corollary 4.2].

Theorem 4.2. The followings hold for any residuated lattice L.

(a) (LPL) implies (LPL2) and (LPL3).
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(b) If L satisfies e ∧ (y ∨ z) ≈ (e ∧ y) ∨ (e ∧ z), the equations (LPL), (LPL2) and

(LPL3) are equivalent.

(c) (LPL3) and x\x ≈ e imply distributivity of the lattice reduct; in particular, any

prelinear cancellative residuated lattice has a distributive lattice reduct.

Proof. For (a), consider a residuated lattice L satisfying (LPL). For any a, b, c ∈ L,

(b ∧ c)\a ≥ (b\a) ∨ (c\a).

To obtain the reverse inequality, and hence conclude (LPL2), it suffices to show that

e ≤ [(b\a) ∨ (c\a)]/[(b ∧ c)\a].

Let u = (b\a) ∨ (c\a). Then, we have

u/[(b ∧ c)\a] ≥(1) (b\a)/[(b ∧ c)\a]

=(2) b\[a/[(b ∧ c)\a]]

≥(3) b\(b ∧ c)

=(4) (b\c) ∧ (c\c)

≥(5) (b\c) ∧ e,

where (1), (3), (4), and (5) follow by (2.1) – (2.2), and by Proposition 2.1, while (2) follows

by Proposition 2.2. Likewise,

u/[(b ∧ c)\a] ≥ (c\b) ∧ e.

Hence,

u/[(b ∧ c)\a] ≥ [(b\c) ∧ e] ∨ [(c\b) ∧ e] = e,

as was to be shown.

For (LPL3), observe that it is always the case that

(a\b) ∨ (a\c) ≤ a\(b ∨ c).

To establish the reverse inequality, we show that

[a\(b ∨ c)]\[(a\b) ∨ (a\c)] ≥ e.

Let u = (a\b) ∨ (a\c). We have

[a\(b ∨ c)]\u ≥(1) [a\(b ∨ c)]\(a\b)

=(2) [a(a\(b ∨ c))]\b

≥(3) (b ∨ c)\b

=(4) (b\b) ∧ (c\b)

≥(5) (c\b) ∧ e

where (1), (3), (4), and (5) follow by (2.1) – (2.2), and by Proposition 2.1, while (2) follows

by Proposition 2.2. Likewise,

[a\(b ∨ c)]\u ≥ (b\c) ∧ e.

Consequently,

[a\(b ∨ c)]\u ≥ [(c\b) ∧ e] ∨ [(b\c) ∧ e] = e,

and thence, the conclusion.
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For (b), assume L satisfies (LPL2), and let a, b, c ∈ L. Then,

[(a\b) ∧ e] ∨ [(b\a) ∧ e] =(1) [a\(a ∧ b) ∧ e] ∨ [b\(a ∧ b) ∧ e]

=(2) [(a\(a ∧ b)) ∨ (b\(a ∧ b))] ∧ e

=(3) [(a ∧ b)\(a ∧ b)] ∧ e

≥(4) e ∧ e = e,

where (1) and (4) follow by (2.1) – (2.2), and by Proposition 2.1, the equality (2) follows

by the assumption, and (3) is a consequence of (LPL2).
Finally, assume L satisfies (LPL3), and let a, b, c ∈ L. Then

[(a\b) ∧ e] ∨ [(b\a) ∧ e] =(1) [(a ∨ b)\b) ∧ e] ∨ [(a ∨ b)\a) ∧ e]

=(2) [((a ∨ b)\b) ∨ ((a ∨ b)\a)] ∧ e

=(3) [(a ∨ b)\(a ∨ b)] ∧ e

≥(4) e ∧ e = e,

where (1) and (4) follow by (2.1) – (2.2), and by Proposition 2.1, the equality (2) follows

by the assumption, and (3) is a consequence of (LPL3).
For (c), assume that (LPL3) and x\x ≈ e hold in L. For any a ≤ b ∈ L, define

f : L → L, f(x) = a(b\x).

Then, that f is a join-endomorphism follows from

a(b\(x ∨ y)) =(1) a((b\x) ∨ (b\y))

=(2) a(b\x) ∨ a(b\y),

where (1) follows by (LPL3), and (2) by Proposition 2.1. Further, we have

f(b) = a(b\b) = a

by assumption, and f(x) ≤ x since

a ≤ b =⇒(3) b\x ≤ a\x =⇒(4) a(b\x) ≤ x,

where we get (3) by Proposition 2.1, and (4) by (2.1). We conclude by Lemma 4.1. �

Even though Theorem 4.2 is presented here only for (LPL), (LPL2), (LPL3), the dual

arguments show the analogous results for the equations (RPL), (RPL2), (RPL3). More

precisely, the equations (RPL), (RPL2), (RPL3) are equivalent under the hypothesis of

Theorem 4.2(b). Further, (RPL3) and x/x ≈ e entail distributivity of the lattice reduct.

Following the proof of Theorem 4.2(c), it is easy to see that every prelinear integral

residuated lattice has a distributive lattice reduct, as it satisfies (LPL3) and x\x ≈ e.

Finally, in the case of cancellative (resp. integral) residuated lattices, prelinearity is equiv-

alent to (LPL3) and (RPL3). The left-to-right direction is immediate from Theorem 4.2(a).

For the converse, observe that (LPL3) and cancellativity (resp. integrality) together entail

distributivity of the lattice reduct. Therefore, by Theorem 4.2(b), (LPL) must hold.



12 ALMUDENA COLACITO AND CONSTANTINE TSINAKIS

5. PRELINEARITY AND CANCELLATIVITY: THE HAMILTONIAN CASE

This section is devoted to residuated lattices whose convex subuniverses are normal. A

residuated lattice L is said to be Hamiltonian if every convex subuniverse H of L is nor-

mal, and semilinear if L is the subdirect product of totally ordered residuated lattices (we

sometimes use the term ‘(residuated) chain’ to denote a totally ordered residuated lattice).

A variety V of residuated lattices is Hamiltonian if every member of V is Hamiltonian and

semilinear if each subdirectly irreducible member of V is totally ordered2.

The result that Hamiltonian ℓ-groups are representable is extended here to prelinear

e-cyclic residuated lattices. More precisely, Theorem 5.2 shows that (LPL) and (RPL)
provide an axiomatization for semilinearity relative to any variety of Hamiltonian e-cyclic

residuated lattices. Later, this is used to show that a largest variety of Hamiltonian prelinear

cancellative residuated lattices exists, thereby extending the analogous result for ℓ-groups.

Proposition 5.1 ([5], Theorem 5.6). For any residuated lattice L, the following are equiv-

alent:

(1) L is semilinear.

(2) L is prelinear, and it satisfies the quasiequation:

(5.1) x ∨ y ≈ e =⇒ λu(x) ∨ ρv(y) ≈ e.

The laws (LPL) and (RPL) hold in all totally ordered residuated lattices and hence in all

semilinear residuated lattices. For Hamiltonian e-cyclic residuated lattices, the converse

also holds.

Theorem 5.2. Any Hamiltonian prelinear e-cyclic residuated lattice is semilinear.

Proof. Let L be a Hamiltonian e-cyclic residuated lattice satisfying the prelinearity laws,

and suppose a ∨ b = e, for a, b ∈ L. Then,

e = C[a ∨ b] = C[a] ∩C[b]

by Lemma 2.5. Since L is Hamiltonian, for any c, d ∈ L, we have λc(a) ∈ C[a], and

ρd(b) ∈ C[b]. Therefore, again by Lemma 2.5,

C[λc(a) ∨ ρd(b)] = C[λc(a)] ∩C[ρd(b)]

⊆ C[a] ∩ C[b]

= e,

and hence, λc(a) ∨ ρd(b) = e. �

Theorem 5.2 implies the result in [26] that a prelinear commutative residuated lattice is

semilinear.

Corollary 5.3. Any commutative prelinear residuated lattice is semilinear.

Moreover, by Theorem 5.2 we also conclude the following.

Corollary 5.4. Any Hamiltonian prelinear cancellative residuated lattice is semilinear.

Proof. The conclusion follows by Proposition 2.4 and Theorem 5.2. �

2It is standard to call representable those ℓ-groups that are semilinear.
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The class of Hamiltonian ℓ-groups is not itself an equational class. The variety of weakly

Abelian ℓ-groups, introduced in [35], is the largest variety of Hamiltonian ℓ-groups [40,

Corollary 2.3]. It is defined relative to LG by the equation

(5.2) (x ∧ e)2 ≤ y−1(x ∧ e)y.

We extend this result to the context of prelinear cancellative residuated lattices. Note that

the analogous result fails for e-cyclic residuated lattices (see [5, Theorem 6.3]), as there is

no largest variety of Hamiltonian e-cyclic residuated lattices.

Theorem 5.5. There exists a largest variety of Hamiltonian prelinear cancellative resid-

uated lattices. More precisely, a variety V of prelinear cancellative residuated lattices is

Hamiltonian if and only if V satisfies the equation

(5.3) (x ∧ e)2 ≤ λy(x) ∧ ρz(x),

where λy and ρz are defined as in (2.5).

Proof. Suppose that V is a variety of prelinear cancellative residuated lattices that satisfies

equation (5.3). Let L ∈ V , H ∈ C(L), a ∈ H , and b ∈ L. We have (a ∧ e)2 ∈ H and

(a∧e)2 ≤ λb(a)∧ρb(a) ≤ (b\ab)∧e ≤ e , (a∧e)2 ≤ λb(a)∧ρb(a) ≤ (ba/b)∧e ≤ e.

Hence the convexity of H implies that λb(a), ρb(a) ∈ H . We have shown that H is normal

and hence V is a Hamiltonian variety.

To prove the converse direction, we use logical contrapositive. Suppose that V is a

variety of prelinear cancellative residuated lattices that fails the equation (5.3), that is, in V
either (x ∧ e)2 6≤ λy(x) or (x ∧ e)2 6≤ ρz(x). We may assume without loss of generality

that (x ∧ e)2 6≤ λy(x). Then, by Corollary 5.4, there exists a residuated chain T ∈ V and

an element a ∈ T− such that a2 6≤ b\ab ∧ e for some b ∈ T or, by cancellativity,

(5.4) ab < ba2 for some b ∈ T.

Condition (5.4) can be used to construct a non-Hamiltonian member L ∈ V . Note first the

following:

Claim. For any n ∈ N, anb < ba2n.

Indeed, we proceed by induction on n ∈ N. The base case follows from (5.4). For the

induction step, observe that

an+1b = aanb

<(1) aba2n

<(2) ba2a2n

= ba2(n+1),

where (1) follows by the induction hypothesis, and (2) from (5.4).

Claim. For any n ∈ N, abn < bna2
n

.

Again, we proceed by induction on n ∈ N. The base case follows from (5.4). For the
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induction step, observe that

abn+1 = abnb

<(1) bna2
n

b

<(2) bnba2·2
n

= bn+1a2
(n+1)

,

where (1) follows by the induction hypothesis, and (2) from the previous claim.

In view of the cancellativity of T, the inequality abn < bna2n may be written as bn\abn <
a2n, which implies that

(5.5) bn\abn < an, for all n ∈ N.

To conclude the argument, consider now

L =
∏

i∈Z+

Ti,

where Ti is a copy of T for every i ∈ Z
+. Let ā, b̄ ∈ L be the elements ā(i) = a and

b̄(i) = bi, for all i ∈ Z
+. It is now clear, in view of (5.5), that (ā)n 6≤ λb̄(ā) for all n ∈ N,

as λb̄(ā)(i) = bi\abi for all i ∈ Z
+. Then, λb̄(ā) 6∈ C[ā], and λb̄(ā) witnesses the failure

of the Hamiltonian property for L. �

6. PRELINEARITY AND CANCELLATIVITY: THE NILPOTENT CASE

The preceding section demonstrates that Hamiltonian prelinear cancellative residuated

lattices bear striking similarities with Hamiltonian ℓ-groups. We now move into the study

of nilpotent prelinear cancellative residuated lattices. It is known that nilpotent ℓ-groups

are representable ([31]; see [28, Theorem 4]), and even Hamiltonian ([40, Theorem 2.4];

see [31, Corollary 2]). The main result of this section is Theorem 6.1, where nilpotent

cancellative residuated lattices are proved to be Hamiltonian. As a consequence, we obtain

that nilpotent prelinear cancellative residuated lattices are semilinear.

Theorem 6.1. Every nilpotent cancellative residuated lattice is Hamiltonian.

Proof. Let L be a nilpotent cancellative residuated lattice. By Theorem 5.5, it suffices

to show that L satisfies the equation (5.3). For this, pick c, d ∈ L, with c ≤ e. Then,

both dc2 � cd and c2d � dc hold in G(L), since the latter is a nilpotent, and hence

Hamiltonian, ℓ-group. Since L is a submonoid of G(L), and the restriction of the order

� to L is the order ≤ of L, then dc2 ≤ cd and c2d ≤ dc hold in L. Therefore, using the

equations (2.4) we can conclude that L satisfies c2 ≤ d\cd and c2 ≤ dc/d, for c, d ∈ L
with c ≤ e. Thus, for all a, b1, b2 ∈ L,

(a ∧ e)2 ≤ b1\(a ∧ e)b1 ≤ (b1\ab1) ∧ e and (a ∧ e)2 ≤ b2(a ∧ e)/b2 ≤ (b2a/b2) ∧ e,

that is, (a ∧ e)2 ≤ λb1(a) ∧ ρb2(a), as was to be shown. �

Remark 6.2. For the variety N 2CanRL, we can also provide a direct argument, without

going through Theorem 3.6. Pick any L ∈ N 2CanRL. Then, for a, b ∈ L,

b(a ∧ e)e(a ∧ e)b =(1) (a ∧ e)beb(a ∧ e)

≤(2) b2(a ∧ e)

≤(3) b2a,
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where (1) follows by the equation L2, and (2) and (3) follow from (a∧e) ≤ a, e. Therefore,

(a ∧ e)2b =(4) b\b(a ∧ e)2b

≤(5) b\b2a

=(6) ba,

where (4) and (6) follow by (2.4), and (5) follows by what we showed above, together with

Proposition 2.1. That b(a ∧ e)2 ≤ ab can be proved symmetrically.

We can conclude from Theorem 5.2 and Theorem 6.1 that nilpotent prelinear cancella-

tive residuated lattices are semilinear. For the convenience of the reader, we also present

an alternative argument, making use of Theorem 3.6.

Theorem 6.3. Every nilpotent prelinear cancellative residuated lattice is semilinear.

Proof. Let L be a nilpotent prelinear cancellative residuated lattice and let G(L) be its

ℓ-group of quotients. We show that L satisfies (5.1) of Proposition 5.1. Let a, b, c ∈ L,

and assume a ∨ b = e. By Theorem 3.6, a ∨ b = e holds in the nilpotent ℓ-group G(L).
This implies that c−1ac∨b = e by Proposition 5.1, as nilpotent ℓ-groups are representable.

Hence, also ac ∨ cb = c in L, and therefore,

c\(ac ∨ cb) = c\c = e.

Now, by Theorem 4.2(a), we get c\ac∨ c\cb = e, that is, λc(a) ∨ b = e. Similarly, and by

the comment after Theorem 4.2, we can conclude λc(a) ∨ ρd(b) = e. �

This article focuses on cancellative varieties of residuated lattices, as one of the main

tools used here is the categorical equivalence between cancellative (Ore) residuated lat-

tices and ℓ-groups with a conucleus. However, it is reasonable to ask whether some of

the results presented here remain true in the absence of cancellativity. E.g., can we ex-

tend Corollary 5.4 to the nilpotent case, thereby concluding that prelinearity axiomatizes

semilinearity in all nilpotent varieties? A positive answer to this question would require

proof-techniques beyond the ones used in this paper.

7. ORDERING INTEGRAL RESIDUATED LATTICES

The results of the preceding sections provide strong evidence of the importance of the

notion of semilinearity in the study of Hamiltonian and nilpotent prelinear cancellative

varieties. The present section is concerned with varieties of semilinear cancellative integral

residuated lattices. It follows from standard facts in the theory of ℓ-groups that a group

embeds into a nilpotent ℓ-group if and only if it admits a total order or, equivalently, if and

only if it is nilpotent and torsion-free (cf. [4, Theorem 2.2.4]). In view of Theorem 3.8,

it is natural to ask whether every nilpotent cancellative monoid with unique roots admits

a residuated total order. We provide a partial answer to this question, and show that any

finitely generated free object in the quasivariety of nilpotent cancellative monoids with

unique roots admits an integral total order (Theorem 7.4).

We call a total order ≤ on a monoid (not necessarily residuated) integral if the monoid

identity is the greatest element with respect to ≤. We say that a poset P = 〈P,≤〉 satisfies

the ascending chain condition (ACC) if P does not contain any infinite ascending chains.

Note that by (2.2), any total order on a monoid M that satisfies the ACC is a residuated.

Lemma 7.1. Every integral total order on a finitely generated monoid is residuated.
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Proof. Let M be a monoid generated by n elements, and set ≤ to be an integral total order

on M. Then, there exists a surjective monoid homomorphism ϕ from the free monoid

M(x1, . . . , xn) = M(n) to M. We show that 〈M,≤〉 satisfies the ACC. Suppose that

m0 < m1 < m2 < . . . < mi < . . . ,

is an infinite ascending chain in 〈M,≤〉. As ϕ is onto, ϕ−1[{mi}] 6= ∅, for all i ∈ Z
+.

Consider

{ti = f(ϕ−1[{mi}]) | i ∈ Z
+},

where f : Z+ →
⋃

i∈Z+ ϕ−1[{mi}] is a choice function. Then, {ti} is an infinite sequence

of words over the finite alphabet {x1, . . . , xn}. By Higman’s Lemma [27], there must exist

indices i < j such that ti can be obtained from tj by deleting some symbols: e.g.,

ti = x1 · · · xk and tj = sj0x1sj1 · · · xksjk ,

where sj0 , sj1 , . . . , sjk are arbitrary words in M(n). Then, ϕ(ti) = mi < mj = ϕ(tj),
which entails

ϕ(x1) · · ·ϕ(xk) < ϕ(sj0 )ϕ(x1)ϕ(sj1 ) · · · ϕ(xk)ϕ(sjk).

This is a contradiction, since for all a, b ∈ M , ab ≤ a, b due to the integrality of the order

≤. Therefore, 〈M,≤〉 satisfies the ACC, and hence it is residuated. �

Let Sem Can IRL denote the variety of semilinear cancellative integral residuated lat-

tices, and V be any monoid-subvariety of Sem Can IRL. Observe that, as the variety V
is defined relative to Sem Can IRL by a set Σ of monoid equations, every member of the

quasivariety M(V) satisfies Σ.

Lemma 7.2. For any monoid-subvariety V of Sem Can IRL, every finitely generated

monoid in the quasivariety M(V) is the monoid reduct of a totally ordered member of V .

Proof. Let M be a finitely generated member of M(V) and a submonoid of a member L

of V . Since V is semilinear, L is the subdirect product of cancellative integral residuated

chains Ti, i ∈ I . Let ≤ be a well-order on I , and for a = (ai)i∈I , b = (bi)i∈I ∈ L, set

a E b iff a = b or (aj < bj , where j = min{i ∈ I | ai 6= bi}).

We claim that E is an integral total order on L extending its lattice order. Indeed, let

a, b, c be elements of L such that a ⊳ b. Then aj < bj for j = min{i ∈ I | ai 6=
bi}. By cancellativity, ajcj < bjcj (resp. cjaj < cjbj), and hence, ac ⊳ bc (resp. ca ⊳
cb). The restriction of the total order E to the finitely generated monoid M is residuated

by Lemma 7.1. Moreover, as V is a monoid-subvariety of Sem Can IRL and M is a

submonoid of L, 〈M,≤〉 is a member of V . �

Every variety of semilinear residuated lattices is generated by its finitely generated to-

tally ordered members. In the case of monoid-subvarieties of Sem Can IRL, we have the

following stronger result.

Theorem 7.3. Every monoid-subvariety of Sem Can IRL is generated by the class of

residuated chains whose monoid reducts are finitely generated monoids.

Proof. For any monoid-subvariety V of Sem Can IRL, we show that an equation t1 ≈ t2
that fails in V necessarily fails in a V-chain whose monoid reduct is a finitely generated

monoid. Let t1 and t2 be two residuated lattice terms such that

ν(t1) 6= ν(t2),
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under the evaluation ν from the term algebra into the finitely generated residuated chain

T. Let s(t1) and s(t2) denote, respectively, the set of all subterms of t1 and the set of all

subterms of t2. Let M be the submonoid of T generated by the finite set:

{ν(u) | u ∈ s(t1) ∪ s(t2)},

and consider the restriction ≤↾M of the order ≤ from T to M. By Lemma 7.1, 〈M,≤↾M 〉
is an integral residuated lattice, which is a submonoid and a sublattice of T—although it

need not be a substructure, since residuals might not be preserved. Consider the evaluation

µ from the term algebra into M, defined by µ(x) = ν(x) for each variable x. We show

that µ(u) = ν(u), for every u ∈ s(t1)∪ s(t2), by induction on the structure of u. The base

case is trivial, since it follows by the definition of µ. The cases involving monoid operation

(u = u1 · u2), and the lattice operations (u = u1 ∧ u2 or u = u1 ∨ u2) follows from the

fact that M is a submonoid and a sublattice of T. Suppose u = u1\u2. It suffices to show

µ(u1)\M µ(u2) = µ(u1)\T µ(u2).

By induction hypothesis, µ(u1) = ν(u1) and µ(u2) = ν(u2). Therefore,

µ(u1)\T µ(u2) = ν(u1)\T ν(u2) = ν(u1\u2) ∈ M.

Hence, we can conclude that

µ(u) = µ(u1)\M µ(u2) = µ(u1)\T µ(u2) = ν(u1)\T ν(u2) = ν(u),

as was to be shown. Therefore, µ(t1) 6= µ(t2) in M, and t1 ≈ t2 fails in 〈M,≤↾M 〉. �

The class of c-nilpotent semilinear cancellative integral residuated lattices is a monoid-sub-

variety of Sem Can IRL, which we denote by N c Sem Can IRL. Thus, Theorem 7.3

can be applied to N c Sem Can IRL as a particular case.

We mention a result that relates free objects in M(N c CanRL) to free objects in

M(N c Sem Can IRL).

Theorem 7.4. For any c ∈ N, every finitely generated free object in the quasivariety

M(N c CanRL) admits an integral residuated total order.

Proof. LetFc(n) be the free c-nilpotent group generated by the finite set X = {x1, . . . , xn}.

We consider a total order ≤ on Fc(n). This is possible since Fc(n) is torsion-free. Let

Sc(X
δ) be the submonoid of Fc(n) generated byXδ = {xδ1

1 , . . . , xδn
n }, with δi ∈ {−1, 1}

and xδi
i < e for each i ∈ {1, . . . , n}. The restriction of the total order ≤ to Sc(X

δ) in-

duces an integral residuated total order on Sc(X
δ), by Lemma 7.1. Now, we conclude by

observing that Sc(X
δ) is isomorphic to Sc(X), and hence to Mc(n) by Proposition 3.9.

For this, it suffices to consider the unique group homomorphism

α : Fc(n) → Fc(n),

extending the map xi 7→ xδi
i . This is an automorphism of Fc(n), whose restriction to

Sc(X) is a monoid isomorphism onto Sc(X
δ). �

By Theorem 7.4, the free object over a finite set X in M(N c Sem Can IRL) coincides

with the free object Mc(X) in the quasivariety M(N c CanRL).

Example 7.5. For any 2 ≤ c ∈ N, we can find a negative cone of a c-nilpotent ℓ-group

G that separates the variety of c-nilpotent cancellative integral residuated lattices from the

variety of (c − 1)-nilpotent cancellative integral residuated lattices. It suffices to take a

c-nilpotent ℓ-group G that separates the variety of c-nilpotent ℓ-groups from the variety of

(c− 1)-nilpotent ℓ-groups. Given that any Lc is a monoid equation, the negative cone of G
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is a c-nilpotent residuated lattice. Moreover, given that G is not (c− 1)-nilpotent, its neg-

ative cone does not satisfy L(c−1) either. This follows from Proposition 3.5, Theorem 3.6,

and from the fact that an ℓ-group is the group of quotients of its negative cone (see, e.g.,

[15, Proposition 4.1]). For a related result, see [1, Corollary 6.3], where an isomorphism

between varieties of ℓ-groups and varieties of negative cones is exhibited.

We conclude by mentioning an interesting question that is left open in this paper: Is it

possible to obtain, analogously to Theorem 3.8, a characterization of the submonoids of

the negative cones of c-nilpotent ℓ-groups? Note that a monoid M can be embedded into

the negative cone of an Abelian ℓ-group if and only if M is commutative, cancellative, has

unique roots, and (*) does not contain any (non-trivial) invertible element. It is clear that (*)

is necessary. To see that it suffices, letM be a submonoid of a torsion-free Abelian groupG

such that M ∩M−1 = {e}, where M−1 = {a−1 | a ∈ M}. Then, M is the negative cone

of a partial order on G (see, e.g., [20, Ch. II, Theorem 2]). Since every partial order on a

torsion-free Abelian group G extends to a total order (see, e.g., [20, Ch. III, Corollary 13]),

M can be extended to the negative cone of a total order on G, and hence can be embedded

into the negative cone of an Abelian totally ordered group. For non-commutative ℓ-groups

the condition (*) does not suffice. For instance for c ≥ 2, a submonoid of a torsion-free

c-nilpotent group G satisfying (*) is, in general, the negative cone of a partial order on

G compatible only with right multiplication (for all a, b, c ∈ G, whenever a ≤ b, also

ac ≤ bc), and it is not true that any such partial ‘right-invariant’ order can be extended

to a total order on G [16]. Therefore, it remains open to characterize those submonoids

that can be embedded into the negative cone of a c-nilpotent ℓ-group—equivalently, the

submonoids of c-nilpotent cancellative integral residuated lattices (cf. Theorem 3.8).
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