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Abstract. Let the product of points A and B be the vertex C of the right
isosceles triangle for which AB is the base, and ABC is oriented anticlockwise.

This yields a quasigroup that satisfies laws (xu)(vy) = (xv)(uy), (xy)(yx) = y

and xx = x. Such quasigroups are called quadratical. Quasigroups that satisfy
only the latter two laws are equivalent to perfect Mendelsohn designs of length

four (PMD(v, 4)). This paper examines various algebraic identities induced by
PMD(v, 4), classifies finite quadratical quasigroups, and shows how the square

structure of quadratical quasigroups is associated with toroidal grids.

Introduction

Define a binary operation upon the points of a Euclidean plane by setting A·A =
A, and A · B = C if A 6= B and ABC is the anticlockwise oriented right isosceles
triangle for which AB is the base. This operation satisfies the law (xy)x = (zx)(yz),
see Fig. 1. Volenec proved in 1994 [11] that any left quasigroup that satisfies this
law is necessarily a (both sided) quasigroup, and that this quasigroup is idempotent
(xx = x), medial ((xu)(vy) = (xv)(uy)), see Fig. 2, and fulfils the Third Stein’s
law (xy)(yx) = y, see Fig. 3. Quasigroups satisfying (xy)x = (zx)(yz) are called
quadratical.

The law (xy)(yx) = y is essential for this paper. Its naming is due to Sade [7].
An alternative name is the bookend law. Another possible name for this law [8]
is discussed at the end of Section 1. Here it will be called S3. An idempotent
quasigroup that fulfils this law will be called an S3-quasigroup.

Perfect cyclic designs (now perfect Mendelsohn designs, PMD) were defined in
1977 by N. S. Mendelsohn [6]. The PMDs that are of concern here are of length
four. A PMD(v, 4) is a partition of an oriented complete graph on v elements into
oriented 4-cycles (called blocks) such that diagonals of these 4-cycles partition the
unoriented complete graph. A simple example over integers modulo 5 are the five
4-cycles (i, i+ 1, i+ 3, i+ 2).

There are two ways how to describe a PMD(v, 4) algebraically as a quasigroup.
One option [6] is to set ab = c whenever (a, b, c, d) is a block. Proceeding along
edges of the block yields the identity (xy)(y(xy)) = x. This law will be called M4,
and an idempotent quasigroup satisfying this law will be called an M4-quasigroup.
Each such quasigroup uniquely determines blocks of a PMD(v, 4).

Another option [1] is to set ac = b, for any block (a, b, c, d). This yields an
S3-quasigroup, and each S3-quasigroup also describes a PMD(v, 4).

Dudek and Monzo [3] recently observed that any idempotent medial binary op-
eration that satisfies the S3 law has to be a quadratical quasigroup. The present

2010 Mathematics Subject Classification. 05B05, 20N10.
Key words and phrases. Perfect Mendelsohn design; quadratical quasigroup; Third Stein’s law;

toroidal grid; Second Schoöder’s law.
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Figure 1. An illustration of the quadratical law (xy)x = (zx)(yz)
for the operation in the Euclidean plane.
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Figure 2. An illustration of the medial law (xu)(vy) = (xv)(uy)
for the operation in the Euclidean plane.

paper puts their results into a broader context of PMD(v, 4)s, shows how a cer-
tain class of PMD(v, 4)s is connected to toroidal grids, and uses this connection to
answer some of the open questions posed by Dudek and Monzo [3, 4]. Main ingre-
dients are the complete classification of finite quadratical quasigroups and concepts
induced by the notion of centred PMD(v, 4) that was defined in [5].
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Figure 3. An illustration of the Third Stein’s law (xy)(yx) = y
for the operation in the Euclidean plane (left) and an illustration
of the geometrical center of the square (A,C,B,D) being equal to
(AB)A = A(BA) = B(AB) = (BA)B (right).

The operation of the initial example yields a quadratical quasigroup. Hence it
is an S3-quasigroup, and so it induces a PMD(v, 4). If AB = C and BA = D,
then (A,C,B,D) is a block. This block is a square in the euclidean plane. In fact,
blocks of the PMD(v, 4) are exactly all clockwise oriented squares of the plane.
The geometrical centre of the square (A,C,B,D) is equal to (AB)A = A(BA) =
B(AB) = (BA)B, see Fig. 3.

Volenec [12] defined a square as an oriented 4-cycle (a, ab, b, ba) for any a, b ∈
Q, a 6= b, Q a quadratical quasigroup. In this way he obtained the associated
PMD(v, 4) of Q without making an explicit reference to PMDs. He also noted [12]
that the centre of (a, ab, b, ba) may be defined without introducing a geometrical
context as (ab)a since the quadratical law implies (ab)a = a(ba) = b(ab) = (ba)b.
As we shall observe, this definition may be used for all S3-quasigroups that fulfil
the flexible law x(yx) = (xy)x. (This identity is also known as the elastic law.
Another ambiguity in nomenclature concerns the medial law (xy)(uv) = (xu)(yv),
which is often called entropic.)

Volenec and his collaborators have focused upon algebraic proofs of theorems
from planar geometry [13, 14], and have not investigated finite models of quadratical
quasigroups. That seems to be one of reasons why the connection to PMD(v, 4)s
was not utilized earlier. This paper seems to be the first in which this connection
is stated explicitly.

The investigation of finite models was initiated by Dudek [2], and continued
in [3, 4]. Those papers show how finite quadratical quasigroups can be constructed,
but fall short of complete classification. Such a classification appears in Section 3.

Section 1 describes how Law S3 interacts with Law M4, and with the Second
Schröder’s Law xy · yx = x. Section 2 investigates properties of flexible S3 op-
erations and connections between the medial and the quadratical law. Amongst
others it shows that an idempotent quadratical operation is always a quasigroup.
Section 3 classifies finite quadratical quasigroups and explains that some of the
finite quadratical quasigroups discussed in [2] and [3] as separate examples are in
fact isomorphic.
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A quadratical quasigroup is isomorphic to its mirror image if and only if the
associated PMD design is isomorphic to its converse. Section 3 finishes by describing
finite quadratical quasigroups that possess this quality.

Section 4 establishes the notion of a k-regular PMD(v, 4) and shows that the
centred PMD(v, 4)s (those that can be obtained from a flexible S3-quasigroup) are
4-regular and satisfy an additional condition. It also explains how 4-regular PMDs
are connected to toroidal grids, and shows that every such PMD may be seen as a
union of components, each of which is a toroidal grid.

Section 5 describes the structure of a toroidal grid that appears as a component
of the PMD induced by a quadratical quasigroup. Section 6 starts by showing that
each component may be transformed into another component by a process called
skew expansion. This is then used to answer several problems formulated by Dudek
and Monzo [4].

1. Laws

Let · be a binary operation upon a set Q. For a ∈ Q denote by La the left
translation x 7→ ax, and by Ra the right translation x 7→ xa. Say that (Q, ·) is a
left quasigroup if each La permutes Q. Similarly, (Q, ·) is a right quasigroup if all
right translations are permutations. Call (Q, ·) a quasigroup if it is both a left and
right quasigroup.

In a left quasigroup define the left division x\y = L−1
x (y). Then x(x\y) =

y and x\(xy) = y, and these identities can be used to define left quasigroups
alternatively as algebras with two operations in which these two identities hold.
Right quasigroups satisfy (y/x)x = y = (yx)/x, where y/x = R−1

x (y).
Our first aim is to show that Q has to be a quasigroup if it is (a) a left or

right quasigroup which satisfies the S3 law (xy)(yx) = y or (b) a left quasigroup
which satisfies the M4 law (xy)(y(xy)) = x. We shall also observe that if Q is a
left quasigroup, then it satisfies S3 if and only if the left division satisfies M4, and
reversely.

In the following an explicit occurrence of the operation symbol · will be used to
indicate the precedence. Thus (x · yz)(xy · z) is the same as (x(yz))((xy)z).

Proposition 1.1. Let · be a binary operation upon a set Q.

(i) If · satisfies M4, then (Q, ·) is a right quasigroup and (Q, /) satisfies M4
too.

(ii) The operation · satisfies M4 if and only if it satisfies

(y · xy)x = y. (M4’)

Proof. If M4 holds, then (y · xy)x = (y · xy)(xy · (y · xy)). Set z = xy. By M4,
(y · xy)x = yz · (z · yz) = y. Hence M4 ⇒ M4’.

Let · satisfy M4’. The law implies that each Rx is an onto mapping. To prove
that Ry is a permutation assume that x1y = x2y. Set a = y · x1y = y · x2y.
By M4’, ax1 = y = ax2. Furthermore, x1 · ax1 = x1y = x2y = x2 · ax2. Thus
x1 = (x1 ·ax1)a = (x2 ·ax2)a = x2. We have proved that (Q, ·) is a right quasigroup.
Now we shall show that this right quasigroup fulfils M4. Choose x, y ∈ Q and put
a = y · xy and b = xy. By M4’, (a · ba)b = a. This expands to

((y · xy)((xy) · (y · xy))) · xy = y · xy.
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By right cancellation y = (y · xy)(xy · (y · xy)). This gives M4 since for all y, z ∈ Q
there exists x ∈ Q such that z = xy.

Write (y · xy)x = y as y = (y/x)/(xy). Replacing x by x/y yields y =
(y/(x/y))/x. Thus (Q, ·) satisfies M4’ if and only if (Q, /) satisfies M4’. �

Corollary 1.2. Left quasigroups that fulfil M4 are quasigroups.

Proposition 1.3. If a left quasigroup (Q, ·) satisfies one of the laws S3 and M4,
then the left quasigroup (Q, \) satisfies the other law, and vice versa.

Proof. Let us first prove that (Q, ·) fulfils S3 if and only if (Q, \) fulfils M4. Now,
xy · yx = y is equivalent to yx = (xy)\y, and thus to x = y\((xy)\y). Replacing y
by x\y yields x = (x\y)\(y\(x\y)). Thus (Q, \) really fulfils M4. Nothing more is
needed since in each left quasigroup (Q, ·) the multiplication can be interpreted as
the left division of the left quasigroup (Q, \). Hence (Q, \) satisfies S3 if and only
if (Q, ·) satisfies M4. �

Proposition 1.4. Let · be a binary operation upon a set Q. If · satisfies S3, then
(Q, ·) is a left quasigroup if and only if it is a right quasigroup. If this is true, then
x\(y\x) = (y\x)y = y/x and (x/y)/x = y(x/y) = x\y for all x, y ∈ Q.

Proof. Suppose that (Q, ·) is a left quasigroup that satisfies S3. If xa = b, then
a = b · ax, and x = a\(b\a). Therefore the equation xa = b possesses at most one
solution. On the other hand, such a solution always exists and is equal to (b\a)b
since ((b\a)b)(b(b\a)) = b, by the S3 law. Hence a\(b\a) = (b\a)b for all a, b ∈ Q.
The rest can be obtained by a mirror argument. �

It seems necessary to point out that in [11] Volenec has claimed to study right
quasigroups that satisfy the quadratical law xy ·x = zx ·yz. However, his definition
of a right quasigroup coincides with the prevailing definition of a left quasigroup.
The following statement explains why this could not have caused a confusion:

Lemma 1.5. Suppose that a binary operation · upon Q fulfils the quadratical law
xy · x = zx · yz. If · is idempotent, then it satisfies the law S3. Furthermore, (Q, ·)
is a left quasigroup if and only if it is a right quasigroup. If (Q, ·) is a quasigroup,
then xx = x for all x ∈ Q.

Proof. Let · be quadratical. If it is idempotent, then zx · xz = xx · x = x for all
x, z ∈ Q. If · satisfies S3, then (Q, ·) is a left quasigroup if and only if it is a right
quasigroup, by Proposition 1.4. If (Q, ·) is a left quasigroup, then xx · x = xx · xx
yields xx = x, for all x ∈ Q. Hence left quadratical quasigroups satisfy S3, and it
remains to show that right quadratical quasigroups satisfy S3 as well. For that it
suffices to show that they are idempotent.

Let (Q, ·) be a right quadratical quasigroup. Then zx·xz = xx·x for all x, z ∈ Q.
Thus xx · xx = xx · x = (xx · x)(x · xx) = (xx · xx) · (x · xx) = (xx · x) · xx. By
cancellation, xx = xx · x and x = xx. �

Proposition 1.3 has the following immediate consequence:

Corollary 1.6. A quasigroup (Q, ·) is an S3-quasigroup if and only if (Q, \) is an
M4-quasigroup. Similarly, (Q, ·) is an M4-quasigroup if and only if (Q, \) is an
S3-quasigroup.
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PMD(v, 4)s thus correspond to both M4- and S3-quasigroups. Of course, a
decomposition of a complete oriented graph into 4-cycles may be associated with
an idempotent binary operation that satisfies law M4 even when the decomposition
is not perfect. Without giving details let it be remarked that this connection can
be made one-to-one if the M4 operation is assumed to be strongly idempotent, i.e. if
x ∈ {xy, yx} ⇔ x = y, for all x, y ∈ Q.

The rest of this section describes a combinatorial interpretation of strongly idem-
potent S3 operations. This may be regarded as a digression from the main line of
the paper. It explains the relationship of idempotent S3 operations to quasigroups.
There are conditions, like mediality, that force an idempotent S3 operation to be
a quasigroup. However, non-quasigroup idempotent S3 operations exist. The con-
struction described below shows how to interpret strongly idempotent S3 operations
combinatorially, and establishes a connection between the S3 Law (xy)(yx) = y and
the Second Schröder’s Law (xy)(yx) = x.

Define a 2,2-partition upon a set Q as a collection C of unordered pairs {A,B},
where A and B are 2-element subsets of Q, A∩B = ∅, such that for each 2-element
subset X ⊆ Q there exists exactly one {A,B} ∈ C for which X ∈ {A,B}. The
simplest example is upon four elements, with two pairs formed by parallel sides of
a square, and one pair by the diagonals.

An ordering of {A,B} is any pair (α, β), where α = (α1, α2) ∈ Q2, β = (β1, β2) ∈
Q2, and either A = {α1, α2}, B = {β1, β2}, or A = {β1, β2}, B = {α1, α2}. Put
αop = (α2, α1). Let ∼ be the least equivalence upon the orderings of {A,B}
such that (α, β) ∼ (βop, α). This splits the orderings into two classes, one of
which consists of (α, β), (αop, βop), (β, αop) and (βop, α). Choosing one of the two
classes will be regarded as a choice of orientation of {A,B}. An orientation is fully
determined by any of its representatives. An oriented 2,2-partition is a 2,2-partition
in which an orientation is chosen for each of its elements. An oriented 2,2-partition
can be presented by a collection of pairs ((a1, a2), (a3, a4)) such that the collection
of sets {{a1, a2}, {a3, a4}} is the 2,2-partition, and ((a1, a2), (a3, a4)) represents the
orientation chosen for {{a1, a2}, {a3, a4}}.

Suppose that O is an oriented 2,2-partition upon a set Q. Define an idempotent
binary operation upon Q in such a way that if {{x, y}, {u, v}} is a partition element
and ((x, y), (u, v)) is a representative of its ordering, then

xy = u, yx = v, uv = y and vu = x.

The definition does not depend upon the choice of a representative since the same
values are obtained if ((v, u), (x, y)) is chosen. The operation is said to be induced
by O. It satisfies law S3 since (xy)(yx) = uv = y. It is also clear that x ∈ {xy, yx}
⇔ x = y, for all x, y ∈ Q.

Proposition 1.7. Let · be a binary idempotent operation upon Q that fulfils law
S3. If xy = x implies x = y for all x, y ∈ Q, then the operation is induced by a
(unique) oriented 2,2-partition upon Q.

Proof. Suppose that xy = x implies x = y for all x, y ∈ Q. Let x, y ∈ Q be such
that yx = x. Then x = yx · xy = x · xy. Hence x = xy and x = y. It can be
thus assumed that · is strongly idempotent. The set of all {{x, y}, {xy, yx}} is a
2,2-partition since y = xy · yx and x = yx · xy. Each element of the partition
may be oriented as ((x, y), (xy, yx)) since all other representatives of the same
orientation, i.e. ((y, x), (yx, xy)), ((yx, xy), (x, y)) and ((xy, yx), (y, x)), are of the
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form ((a, b), (ab, ba)) too. The operation induced by such an orientation coincides
with ·, the given operation. �

The smallest nontrivial S3-quasigroup is upon a set of 5 elements. Neverthe-
less, upon a 4-element set there exists a strongly idempotent S3 operation since
{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}} is a 2,2-partition of {1, 2, 3, 4}.

If Q is a nontrivial S3-quasigroup, O is the induced oriented 2,2-partition, and
O′ is obtained from O by a change of orientation in exactly one element of the
partition, then O′ induces an S3 operation that cannot be a quasigroup as in each
row of the multiplication table a change occurs in at most one cell.

For some 2,2-partitions there exists no orientation that yields an S3-quasigroup.
This is because in the quasigroup case for all a, b ∈ Q, a 6= b, there has to exist a
partition element {{x, y}, {u, v}} such that a ∈ {x, y} and b ∈ {u, v}. Constructing
2,2-partitions that do not satisfy such a property is easy. For example, consider a
cube with sides A = (A1, A2, A3, A4) and B = (B1, B2, B3, B4), and edges {Ai, Bi},
1 ≤ i ≤ 4. Define a 2,2-partition so that it contains (1) parallel edges and diagonals
of both A and B, (2) diagonals of the four remaining sides, and (3) diagonals and
parallel edges connecting A and B in (A1, B1, B3, A3) and (A2, B2, B4, A4). Then,
say, for a = A1 and b = B2 there exists no partition element {{x, y}, {u, v}} such
that a ∈ {x, y} and b ∈ {u, v}.

A symmetric orientation of a 2,2-partition element is defined by an equivalence
≈ such that (α, β) ≈ (β, α) and (α, β) ≈ (αop, βop). The class of ((x, y), (u, v)) thus
consists of ((x, y), (u, v)), ((u, v), (x, y)), ((y, x), (v, u)) and ((v, u), (y, x)). Suppose
that S is a 2,2-partition in which for every element there has been chosen a sym-
metric orientation. Define an operation · by

xy = u, yx = v, uv = x and vu = y.

It is clear that the definition does not depend upon the choice of the representative,
that the operation fulfils the identity (xy)(yx) = x and that it is strongly idempo-
tent. The operation is said to be induced by symmetrically oriented 2,2-partition
S.

Proposition 1.8. Let Q be a set. Each strongly idempotent binary operation upon
Q that fulfils the Second Schröder’s Law xy · yx = x is induced by a (unique)
symmetrically oriented 2,2-partition upon Q.

Proof. Define the 2,2-partition as the set of all {{x, y}, {xy, yx}} and choose the
symmetric orientation ((x, y), (xy, yx)), for all x, y ∈ Q. �

Smith [8] has been concerned with similarities between Third Stein’s Law and
Second Schröder’s Law as well. However, his viewpoint is different. He has sug-
gested to call the Third Stein’s Law outer palindromic and the Second Schröder’s
Law inner palindromic.

2. Flexibility

Lemma 2.1. Let · be an S3 operation upon Q. For all (a, b) ∈ Q2 there exists a
unique (x, y) ∈ Q2 such that a = xy and b = yx.

Proof. If a = xy and b = yx, then x = ba and y = ab. �

Lemma 2.2. Let · be an S3 operation upon Q. Let a, b, x, y ∈ Q be such that
a = xy and b = yx. Then a · ba = ab · a if and only if xy · x = y · xy.
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Proof. Indeed, a · ba = a · x = xy · x and ab · a = y · xy. �

An operation · upon Q is called strongly flexible (strongly elastic) if x · yx =
xy · x = y · xy for all x, y ∈ Q. Of course, then also yx · y = x · yx.

Lemmas 2.1 and 2.2 directly imply the following fact.

Corollary 2.3. An S3 operation is flexible if and only if it is strongly flexible.

Lemma 2.4. Let Q be an M4-quasigroup. Then x · yx = xy · x if and only if
(a\b)\a = b\(a\b), where a = xy and b = xy · x.

Proof. Clearly, (a\b)\a = y. Hence (a\b)\a = b\(a\b) if and only if by = x. This is
the same as x/y = xy · x. By Proposition 1.1, x/y = x · yx. �

By coupling Lemmas 2.1, 2.2 and 2.4 with Proposition 1.3 it is immediately clear
that if there are considered pairs (x, y) that satisfy the flexible law, then there is
a bijection between such pairs in an M4-quasigroup (Q, ·) and the S3-quasigroup
(Q, \). In particular:

Corollary 2.5. An M4-quasigroup (Q, ·) is flexible if and only if the S3-quasigroup
(Q, \) is flexible.

Lemma 2.6. Let (Q, ·) be a strongly flexible quasigroup. Put x • y = xyx for all
x, y ∈ Q. Then (Q, •) is a commutative flexible quasigroup.

Proof. If x • y = z, then y = (x\z)/x. The operation • is commutative since · is
strongly flexible. �

Let (x1, x2, x3, x4) be a block of a PMD(v, 4). Say that z is the centre of the
block if there exist yi such that (xi+1, z, xi, yi) is a block for each i, 1 ≤ i ≤ 4
(indices are counted modulo 4). A PMD(v, 4) is said to be centred if each block
possesses a centre.

Proposition 2.7. Suppose that a PMD(v, 4) is determined by an S3-quasigroup or
an M4-quasigroup. The PMD is centred if and only if the quasigroup is flexible.

Proof. By Corollaries 1.6 and 2.5 it may be assumed that the PMD is determined
by an S3-quasigroup. Consider a block (x, xy, y, yx). The block is centred if and
only if there exists z such that z = xy · x = y · xy = yx · y = x · yx. The result thus
follows from Corollary 2.3. �

If a PMD(v, 4) is given by a flexible S3-quasigroup (Q, ·), then the centre of a
block (x, xy, y, yx) can be expressed as x•y. Thus, by Lemma 2.6, for each x, z ∈ Q,
x 6= z, there exists exactly one block with centre z that carries x.

Proposition 2.7 appears in [5] as Theorem 3.3. In centred PMDs the squares
possess a structure that locally agrees with the structure of squares induced by a
quadratical quasigroup, cf. Corollary 4.13.

The rest of this section is concerned with the connection of the S3 law to the
medial law and the quadratical law.

Theorem 2.8. Let · be a binary operation upon Q that satisfies the quadratical law
xy · x = zx · yz. The following are equivalent:

(i) (Q, ·) is a left quasigroup;
(ii) (Q, ·) is a right quasigroup;
(iii) xx = x for all x ∈ Q; and



QUADRATICAL QUASIGROUPS AND MENDELSOHN DESIGNS 9

(iv) xy · yx = y for all x, y ∈ Q.

If these conditions hold, then (Q, ·) is a flexible quasigroup in which

y/x = (x · xy)(xy · y) · (xy · y) and x\y = (y · yx) · (y · yx)(yx · x),

for all x, y ∈ Q.

Proof. By Lemma 1.5, (i) ⇔ (ii), (ii) ⇒ (iii) and (iii) ⇒ (iv). It remains to prove
(iv) ⇒ (i) and to verify the division formulas. The first step is a proof of (iv) ⇒
(iii).

Suppose that · fulfils both the quadratical law and the S3 law. Then xx · x =
xx · xx = x, and so xx = (x · xx)(xx · x) = (x · xx)x = xx · (xx · x) = xx · x = x.
Thus (iii) ⇔ (iv). Hence · may be assumed to be both idempotent and fulfilling
S3. Therefore it is also flexible, as xy · x = xx · yx = x · yx. By Corollary 2.3,
zx · yz = x · yx = yx · y = zy · xz for all x, y, z ∈ Q. That makes the assumptions
mirror symmetric. If zx = zy, then y = zy · yz = zx · yz = xyx = yxy = zy · xz =
zx · xz = x. The operation · is thus cancellative.

Consider x, y ∈ Q and put a = (x · xy)(xy · y) · (xy · y). We first show that
it suffices to prove that yay = xy · y. Let the latter be true. Then ya = xy,
y · ya = yxy = ax · ya, and so y = ax, by cancellation.

To prove yay = xy · y it thus suffices to find z such that za · yz = xy · y. Set
z = xy·y. Then za = (xy·y)(x·xy)(xy·y)·(xy·y) = (y·xy)(xy·y)·(xy·y) = xy·(xy·y),
and za · yz = (xy · (xy · y))((xy · y) · xy) = xy · y. �

Formulas for y/x and x\y occurring in Theorem 2.8 are not new. They are taken
from [11]. What is new is the fact that the quadratical law plus idempotency forces
the quasigroup property.

Lemma 2.9. Let (Q, ·) be a strongly flexible quasigroup. Then xy = (y\x)x =
y(y/x), for all x, y ∈ Q.

Proof. Indeed, xy = y(y\x)y = (y\x)y(y\x) = (y\x)x. The other case is mirror
symmetric. �

The next two statements are proved for the sake of completeness. The first of
them coincides with [11, Theorems 2 and 3] and the second with [3, Theorem 2.14].

Theorem 2.10. Each quadratical quasigroup is idempotent medial. It also fulfils
the law x\(yz) = (zx)/y.

Proof. Let (Q, ·) be a quadratical quasigroup. By Theorem 2.8, (Q, ·) is a flexible
S3-quasigroup, and thus strongly flexible. The first step is to prove left distribu-
tivity. By Lemma 2.9, xy · xz = xy · ((z\x)x) = z(z\x) · yz = x · yz. Thus
x · yz = z(z\(xy)) · xz = x(z\(xy))x. Hence yz = (z\(xy))x and (yz)/x = z\(xy).
Now, xy · uv = v(v\(xy)) · uv = xu · (v\(xy))x = xu · ((yv)/x)x = xu · yv. �

Theorem 2.11. Let · be an idempotent medial operation upon Q that satisfies the
Third Stein’s Law xy · yx = y. Then (Q, ·) is a quadratical quasigroup.

Proof. By Theorem 2.8 it is enough to prove that the operation satisfies the quadrat-
ical law. An idempotent medial operation is both left distributive and flexible. Thus
zx · yz = (zx · y)(zx · z) = (zx · y)(xz · x) = (zx · xz) · yx = x · yx = xy · x, by
Corollary 2.3. �
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Corollary 2.12. A quasigroup is quadratical if and only if it is a medial S3-
quasigroup.

Proof. If it is quadratical, use Theorems 2.8 and 2.10. The converse follows from
Theorem 2.11. �

3. Classification of finite quadratical quasigroups

Lemma 3.1. A quasigroup (Q, ·) is medial if and only if (Q, \) is medial.

Proof. Let x, y, u, v be elements of Q. To prove (x\y)\(u\v) = (x\u)\(y\v) means
to show that v = u((x\y)((x\u)\(y\v)). Define b, c, d ∈ Q by u = xd, y = xc and
v = (xc)(db). We thus want to prove that (xc)(db) = (xd)(c · (d\(db)) = (xd)(cb).
That is an instance of the medial law, and thus true. �

Another proof of Lemma 3.1 may be obtained by Toyoda’s theorem which couples
medial quasigroups with abelian groups.

In the rest of this section quasigroup operations will be denoted by ∗ or ? to
avoid confusion with structures that are used in their definition.

By Toyoda’s theorem [10] each medial quasigroup operation ∗ can be obtained
from an abelian group (G,+), commuting automorphisms α, β ∈ Aut(G) and an
element c ∈ G so that x∗y = α(x)+β(y)+c. Clearly, the operation ∗ is idempotent
if and only if c = 0 and α+ β = idG.

The latter condition can be expressed by saying that α is a fixed-point free
automorphism of G (i.e. α − idG permutes G). If ∗ is idempotent, then x ∗ y =
α(x−y) + y, and x ∗ y ∗ x = (x ∗ y) ∗ x = x ∗ (y ∗ x) = α(α(x−y) + y−x) + x =
α(α− idG)(x−y) + x.

Theorem 3.2. Let α be a fixed point free automorphism of an abelian group (G,+).
Set x ∗ y = α(x− y) + y for all x, y ∈ G. The following are true:

(i) If G contains an involution (i.e., an element of order 2), then (G, ∗) is
neither an M4-quasigroup nor an S3-quasigroup.

(ii) (G, ∗) is an M4-quasigroup if and only if α2 = − idG. All medial M4-
quasigroups can be expressed in this way.

(iii) (G, ∗) is an S3-quasigroup if and only if (α−1−idG)2 = − idG (equivalently,
2α2 − 2α + idG = 0). All medial S3-quasigroups can be expressed in this
way.

Proof. Let us first discuss the structure of medial M4-quasigroups. By Proposi-
tion 1.1 it is enough to decide when (x ∗ y ∗ x) ∗ y = x holds for all x, y ∈ G. Since
(x∗y∗x)∗y = α(α(α−idG)(x−y)+x−y)+y = α2(α−idG)(x−y)+α(x−y)+y, there is
(x∗y∗x)∗y = x if and only if (α−idG)(α2+idG) = 0. This is the same as α2 = − idG
since α − idG is a permutation. If α2 = − idG and 2x = 0, then α2(x) = x and
x = 0 because (α− idG)2(x) = (α− idG)(α(x)− x) = 2x− α(2x) = 0. Let us now
turn to S3-quasigroups. By direct computation, (x ∗ y) ∗ (y ∗ x) = y if and only if
α(2α(x−y)+(y−x))+α(y−x)+x = y, and that is the same as 2α2−2α+idG = 0.
Hence 2x = 0 implies x = 0. To finish, note that 2α2 − 2α+ idG = 0 if and only if
(α−1 − idG)2 = − idG. �

Abelian groups with no involution are often called uniquely 2-divisible since they
satisfy the implication 2x = 2y ⇒ x = y. A stronger condition is that x 7→ 2x is a
permutation of G. As we shall see this condition has to hold if G can give rise to
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a medial M4- or S3-quasigroup. If this condition holds and x, y ∈ G, then 2x = y
will be often written as y = x/2.

Lemma 3.3. Let α be a fixed point free automorphism of an abelian group (G,+).
Let \ be the left division of the quasigroup x ∗ y = α(x − y) + y. Then x\y =
β(x− y) + y, where β = (α− idG)−1 + idG.

Proof. Express x ∗ y as (α− idG)(x− y) + x. Now,

x ∗ (β(x− y) + y) = x ∗ ((α− idG)−1(x− y) + x)

= (α− idG)(−(α− idG)−1(x− y)) + x = (y − x) + x = y.

�

By Corollary 1.6, Lemma 3.3 may be used to pass between medial S3-quasigroups
and medial M4-quasigroups.

Idempotent medial S3-quasigroups are exactly the quadratical quasigroups, by
Theorems 2.10 and 2.11. The S3 part of Theorem 3.2 appeared in an equivalent
form in [2], and, essentially, already in [11]. Nevertheless, a complete classification
of finite quadratical quasigroups does not seem to have been published (while [2]
and [3] contain many examples). As we shall see such a classification is easy to
provide when the multiplication is replaced by the left division, i.e., when the law
S3 is replaced by the law M4. This is because the condition α2 = − idG is easier to
handle than the condition 2α2 − 2α+ idG = 0.

Suppose that (Gi,+) is an abelian group, i ∈ {1, 2}, and that (Gi, ∗) is a medial
quasigroup with operation αi(x) + βi(x) + ci, where αi and βi are commuting
automorphisms of (Gi,+), and ci is an element of Gi. If (G1, ∗) ∼= (G2, ∗), then
(G1,+) is isotopic to (G2,+), and hence (G1,+) ∼= (G2,+), by Albert’s theorem.
The existence of an isomorphism (G1, ∗) ∼= (G2, ∗) can be thus reduced to the
situations in which (G1,+) = (G2,+).

The ensuing classification is based upon the following consequence of a result
obtained by Stanovský and Vojtěchovský [9].

Proposition 3.4. Let (G,+) be an abelian group and let αi be fixed point free
automorphisms of (G,+), i ∈ {1, 2}. Quasigroups (G, ∗i), x∗i y = αi(x−y) +y for
all x, y ∈ G, are isomorphic if and only if α1 and α2 are conjugate in Aut(G,+).

Proof. Let αi, βi ∈ Aut(G,+) be such that αiβi = βiαi, i ∈ {1, 2}. Let Qi be the
medial quasigroup with operation αi(x) + βi(y). By [9, Theorem 2.4], Q1

∼= Q2 if

and only if there exists ψ ∈ Aut(G,+) such that αψ1 = α2 and βψ1 = β2. Thus if
βi = idG−αi, i ∈ {1, 2}, then Q1

∼= Q2 if and only if α1 and α2 are conjugate in
Aut(G). �

An abelian group G may be regarded as a Z-module. A pair (G,ϕ), ϕ ∈ End(G)
may be identified with a Z[x]-module in which xg = ϕ(g) for every g ∈ G. Let us
denote such a Z[x] module by G[ϕ]. If a =

∑
aix

i ∈ Z[x], then ag =
∑
aiϕ

i(g).

Proposition 3.5. For i = 1, 2 let αi be a fixed point free automorphism of an
abelian group Gi, and Qi = (Gi, ∗i) the quasigroup in which x ∗i y = αi(x−y) + y
for all x, y ∈ Gi. Then Q1

∼= Q2 if and only if G1[α1] ∼= G2[α2].

Proof. First note that G1[α1] ∼= G2[α2] if and only if there exists ψ : G1
∼= G2 such

that α2ψ = ψα1. If G1 = G2, then the existence of such ψ is equivalent to Q1
∼= Q2,

by Proposition 3.4.
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In the general case both Q1
∼= Q2 and G1[α1] ∼= G2[α2] imply the existence of

a group isomorphism γ : G1
∼= G2. Clearly, γ : G2[α2] ∼= G1[γα2γ

−1] and γ : Q2
∼=

(G1, ∗), where ∗ is defined by x ∗ y = γ−1α2γ(x − y), for all x, y ∈ G. Thus
G1[α1] ∼= G2[α2] ⇔ G1[α1] ∼= G1[γα2γ

−1] and Q1
∼= Q2 ⇔ Q1

∼= (G1, ∗), and the
first part of the proof may be used. �

Let M be a module over a ring R. Say that r ∈ R acts invertibly on M if
m 7→ rm is a permutation of M (and thus an automorphism of the abelian group
(M,+)). Note that r acts invertibly if and only if r2 acts invertibly, and that if
s ∈ R acts invertibly, then rs acts invertibly if and only if r does. Therefore, if R
is the ring of Gaussian integers Z[i], then i always acts invertibly as i2 = −1, while
i−1 acts invertibly if and only if 2 does since (i−1)2 = −2i.

Theorem 3.6. Let M be a Z[i]-module such that 2 acts invertibly on M . Then
x ∗ y = ix + (1−i)y defines upon M a medial M4-quasigroup, and all medial M4-
quasigroups can be obtained in this way. Furthermore, x ? y =

(
(1−i)x+ (1+i)y

)
/2

defines upon M a quadratical quasigroup, and all quadratical quasigroups can be
obtained in this way.

If N is another Z[i]-module upon which 2 acts invertibly, then (M, ∗) ∼= (N, ∗)
⇔ M ∼= N ⇔ (M,?) ∼= (N, ?).

Proof. Consider a pair (G,α) from point (ii) of Theorem 3.2. This pair can be
treated as a Z[x]-module G[α]. Because of the condition α2 = − idG, G[α] can
be regarded as a Z[i]-module in which ig = α(g) for all g ∈ G. If M is a Z[i]
module, then α : m 7→ im is always an automorphism of the underlying abelian
group. This automorphism is fixed point free if and only if i−1 acts invertibly,
i.e., if and only if 2 acts invertibly. The connection to quadratical quasigroups
follows from Corollary 1.6 and Lemma 3.3. The statement about isomorphisms is
a consequence of Proposition 3.5. �

If M is a Z[i]-module such that 2 acts invertibly on M , then (M, ∗) will be called
the M4-quasigroup induced by M , and (M,?) the quadratical quasigroup induced by
M . Note that M 7→ (M, ∗) is a functor from the variety of Z[i]-modules in which 2
acts invertibly to the variety of medial M4-quasigroups. In terms of category theory
the functor is essentially surjective and conservative. It is clear that it preserves
products. That will be of certain importance below. Similar comments apply to
the functor M 7→ (M,?).

Proposition 3.7. Let n > 1 be an odd integer. The M4-quasigroup induced by
Z[i]/(n) is isomorphic to a quasigroup upon Zn × Zn with operation

(x1, x2) ∗ (y1, y2) = (y1 + y2 − x2, x1 + y2 − y1). (3.1)

The quadratical quasigroup induced by Z[i]/(n) is isomorphic to a quasigroup upon
Zn × Zn with operation

(x1, x2) ? (y1, y2) =
1

2

(
x1 + x2 + y1 − y2, x2 − x1 + y1 + y2

)
. (3.2)

Proof. Indeed, i(x1 + ix2) + (1−i)(y1 + iy2) = (y1 + y2 − x2) + i(x1 + y2 − y1) and
(1−i)(x1 + ix2) + (1+i)(y1 + iy2) = (x1 + x2 + y1 − y2) + i(x2 − x1 + y1 + y2). �

Proposition 3.8. Let n > 1 be an odd integer, and let κ ∈ Zn be such that
n | κ2+1. Then there exists a (unique) Z[i]-module M upon Zn such that ix = κx
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for each x ∈ Zn. If a, b ∈ Z are such that a2 + b2 = n and gcd(a, n) = 1, then κ
may be chosen in such a way that aκ ≡ b (mod n). In that case M ∼= Z[i]/(a+ ib).

The module M induces an M4-quasigroup with operation x ∗ y = κx + (1−κ)y.
The operation of the induced quadratical quasigroup is x?y =

(
(1−κ)x+(1+κ)y

)
/2.

Proof. Since κ2 + 1 = 0 is assumed to hold in Zn, (κ2+1)x = 0 for all x ∈ Zn and
M is a Z[i]-module. Formulas for x ∗ y and x ? y directly follow from Theorem 3.6.

Suppose that n = a2 +b2 and that gcd(a, n) = 1. The condition aκ ≡ b (mod n)
determines κ uniquely modulo n, and such a κ satisfies κ2 + 1 ≡ 0 (mod n). The
mapping x+ iy 7→ x+ yκ is a surjective homomorphism Z[i]→M of Z[i]-modules.
Denote its kernel by I. Then x + iy ∈ I ⇔ n | (ax+yb). Hence a + ib ∈ I and
n ∈ I. To see that I = (a + ib) it thus suffices to show that Z[i]/(a + ib) contains
at most n elements. That is clear since gcd(n, b) = 1 and n ∈ (a + ib) imply that
each x+ iy is modulo a+ ib equivalent to some z ∈ Zn. �

Denote by Mn and Sn the M4- and S3-quasigroups defined in Proposition 3.7,
and by Mn,κ and Sn,κ the quasigroups of Proposition 3.8. Let n be odd. An integer
κ such that κ2 + 1 ≡ 0 (mod n) exists if and only if all prime divisors of n are ≡ 1
(mod 4). If n = pk, k ≥ 1 and p a prime ≡ 1 (mod 4), then there are exactly two
such κ. In Zn they are mutually inverse. Let us assume that for each n = pk one
such κ is chosen, and write Mn,+ and Sn,+ in these cases. Similarly, write Mn,−
and Sn,− when κ−1 is used.

Theorem 3.9. Each finitely generated medial M4-quasigroup is finite, and is a
product of quasigroups Mpr , p ≡ 3 (mod 4) a prime, r ≥ 1, and quasigroups Mpr,+

and Mpr,− where p ≡ 1 (mod 4) is a prime and r ≥ 1.
Each finitely generated quadratical quasigroup is finite, and is a product of quasi-

groups Spr , p ≡ 3 (mod 4) a prime, r ≥ 1, and quasigroups Spr,+ and Spr,− where
p ≡ 1 (mod 4) is a prime and r ≥ 1.

In both cases the components of the product determine, up to order, the isomor-
phism type of the quasigroup.

Proof. Because Z[i] is a principal ideal domain, each finitely generated Z[i]-module
can be expressed as U ⊕ T , where U is a sum of finitely many copies of Z[i], and
T is the torsion part. The torsion part can be uniquely expressed as

⊕
T(π) where

π runs through a list of representatives of irreducible elements (“primes”). Each
T(π) is isomorphic to a direct sum Z[i]/(πr1) ⊕ · · · ⊕ Z/(πrk), where k ≥ 0 and
r1 ≥ · · · ≥ rk ≥ 1 are uniquely determined. Of course, k = kπ > 0 for only
finitely many irreducible elements π. By Theorem 3.6 only modules in which 2 acts
invertibly can be used. This means that U = 0 and that π 6= 1+i. Hence either
π = p is a prime ≡ 3 (mod 4), or π = ap ± ibp, where p ≡ 1 (mod 4) is a prime
and ap and bp are the uniquely determined integers such that ap > bp > 0 and
a2
p + b2p = p. If n = pr, r ≥ 1, and (ap + ibp)

r = c + id, then c2 + d2 = pr. Hence
Propositions 3.7 and 3.8 really yield the structure of all M4- and S3-quasigroups
induced by Z[i]/(πr). The rest follows from Theorem 3.6 since both constructions
preserve products. �

For a finite abelian group G denote by µG the number of isomorphism classes of
quadratical quasigroups (equivalently, medial M4-quasigroups) that are isotopic to
G.

Corollary 3.10. Let G be a nontrivial finite abelian group.
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(i) If G = H ×K, H and K of coprime orders, then µG = µHµK .
(ii) If G is a 2-group, then µG = 0.

(iii) Let G be a p-group, p ≡ 3 (mod 4). If there exists H ≤ G such that
G = H ×H, then µG = 1. Otherwise µG = 0.

(iv) Let G = Cm1
1 × · · · × Cmr

r , where Ci is a cyclic group of order pki , p
a prime, p ≡ 1 (mod 4), 1 ≤ i ≤ r and k1 > · · · > kr ≥ 1. Then
µG = (m1+1) · · · (mr+1).

Proof. The structure of G is determined by the structure of a given medial M4- or
S3-quasigroup, by Theorem 3.9. If p ≡ 3 (mod 4), then the p-component of G has
to be a square upon which the quasigroup operation is determined by (3.1) or (3.2),
by Theorem 3.9 and Proposition 3.7. On the other hand, if p ≡ 1 (mod 4), then
each cyclic group in the decomposition of the p-component has two possibilities of
choosing

√
−1, by Theorem 3.9 and Proposition 3.8. �

In [2, 3] the number of quadratical quasigroups isotopic to G = Z3 × Z3 is said
to be six. This is based on representing automorphisms of G by matrices and on
enumeration of all regular matrices that correspond to the condition given in point
(iii) of Theorem 3.2. However, all of the six matrices obtained yield isomorphic
quasigroups.

Lists of quadratical quasigroups of certain order that appear in [2, 3, 4] should
not be considered as classifications up to isomorphism, despite a suggestive wording.

The remaining part of this section is concerned with selfconverse PMD(v, 4)s in
the setting of medial quasigroups.

Proposition 3.11. Let H be an abelian group in which x 7→ 2x is a permutation
of H. Let Q be the quasigroup defined upon H ×H by formula (3.2). Then Q is a
quadratical quasigroup, and (x, y) 7→ (y, x) is an isomorphism Q ∼= Qop.

Proof. This can be proved in many ways. To couple the proof with Theorem 3.6
consider two Z[i]-modules upon H × H, one with i(x1, x2) = (−x2, x1) and the
other with i(x1, x2) = (x2,−x1). Then the switch (x, y) 7→ (y, x) is an isomorphism
of these modules, and thus also an isomorphism of the induced quadratical quasi-
groups. The former module yields the quasigroup Q, by Theorem 3.6. Hence the
product of (x1, x2) with (y1, y2) in the quadratical quasigroup induced by the latter
module is equal to the switch of (x2, x1)?(y2, y1), where ? is the operation described
by (3.2) (the operation of Q). That gives (x1−x2 + y1 + y2, x1 +x2 + y2− y1), and
that is the same as (y1, y2) ? (x1, x2). The product induced by the latter module
thus coincides with the product of Qop. �

If two PMD(v, 4)s are determined by S3-quasigroups Q1 and Q2, then the designs
are isomorphic if and only if Q1

∼= Q2. This is also true if the designs are determined
by M4-quasigroups.

A converse design is obtained from a PMD by considering each block in the
reverse orientation. The relationship between quasigroups and the PMD(v, 4) is
clear enough to state the following facts without a proof.

Proposition 3.12. If a PMD(v, 4) is given by an M4-quasigroup (Q, ·), then the
converse design is given by the M4-quasigroup (Q, /). If a PMD(v, 4) is given by
an S3-quasigroup Q, then the converse design is given by the S3-quasigroup Qop.

Lemma 3.13. Let n > 1 be odd, and let κ ∈ Zn be such that κ2 + 1 ≡ 0 (mod n).
Then Sopn,κ ∼= Sn,κ−1 and Sn ∼= Sn,κ × Sn,κ−1 .
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Proof. The mapping x 7→ κx is an isomorphism Sopn,κ ∼= Sn,κ−1 since in Zn both (1−
κ)κ = κ(1+κ−1) and (1+κ)κ = κ(1−κ−1) are true. To get the other isomorphism it
suffices, by Theorem 3.6, to prove that the following two Z[i]-modules upon Zn×Zn
are isomorphic. In one of them, say M1, i(x, y) = (−y, x). In the other module,
say M2, i(x, y) = (κx, κ−1y). The mapping f : (x, y) 7→ (κx − y, x + κ−1y) is an
automorphism of the abelian group Zn × Zn. Furthermore, f maps (−y, x) upon
(−x− κy, κ−1x− y) = (κ(κx− y), κ−1(x+ κ−1y)). Thus f : M1

∼= M2. �

Call a PMD(v, 4) selfconverse if it is isomorphic to the converse PMD(v, 4). By
Proposition 3.12 this is equivalent to the existence of an isomorphism Q ∼= Qop

where Q is the S3-quasigroup that determines the design.

Proposition 3.14. Let Q be a finite quadratical quasigroup that is isotopic to an
abelian group G. Then Q ∼= Qop if and only if Q is isomorphic to a quasigroup
defined upon H ×H by (3.2), where H is an abelian group of odd order.

Proof. Let Q be equal to one of the quasigroups described in Theorem 3.9. If p ≡ 1
(mod 4) and r ≥ 1 is such that the Spr,+ yields a different number of components
than Spr,−, then the quasigroup cannot be isomorphic to the mirror quasigroup by
Lemma 3.13. If the numbers never differ, then Q ∼= Qop by Proposition 3.11 and
Lemma 3.13. �

4. Components and permutations

Let D be a PMD(v, 4) upon a set Q, |Q| = v. Say that blocks B1, B2 neighbour
each other if there exist x, y ∈ Q such that B1 = (x, y, . . . ) and B2 = (y, x, . . . ).
Let ∼ be the equivalence closure upon D of the relation “to be a neighbour”. A
class of ∼ will be called a component.

Note that a neighbour to a block B is fully determined by any pair {x, y} of ver-
tices, where x and y occur in B next to one another. Such a pair is called a common
edge of the neighbouring blocks. A cyclic sequence of blocks C = (B1, . . . , Bk) is
called a block cycle if

(1) blocks B1, . . . , Bk are pairwise distinct;
(2) there exist x1, . . . , xk ∈ Q and z ∈ Q such that {xi, z} is a common edge of

Bi and Bi+1, and Bi = (z, xi, . . . ), 1 ≤ i ≤ k. (Indices are counted modulo
k).

The element z is called the centre of C.
We are mainly interested in finite PMD(v, 4). However, because of algebraic

connections, some infinite PMD(v, 4) will still be allowed at this point. Say that a
PMD(v, 4) is of finite degree if it contains no infinite sequence of blocks (z, x0, . . . ),
(z, x1, . . . ), . . . such that xi 6= xj whenever 0 ≤ i < j.

An M4- or S3-quasigroup Q is said to be of finite degree if the induced PMD(v, 4)
is of finite degree too. If Q is an M4-quasigroup, then this clearly means that for
all x, y ∈ Q there exists k = k(x, y) ≥ 1 such that Rkx(y) = y.

The following two statements assume that D is of finite degree. They have a
common proof.

Lemma 4.1. Let C = (B1, . . . , Bk) be a block cycle, and let xi and z be as above.
Then k ≥ 3, z is the only centre of C and elements x1, . . . , xk are pairwise distinct.

Lemma 4.2. Let B be a block of D and let z ∈ Q be incident to B. Then there
exists exactly one block cycle C that carries B and for which z is the centre.
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Proof. Let C = (B1, . . . , Bk) be a block cycle, where Bi = (z, xi, . . . ). By the
definition, Bi+1 = (xi, z, xi+1, yi+1) for some yi+1 ∈ Q. Thus Bi = (z, xi, yi, xi−1),
1 ≤ i ≤ k. Any (z, xi) determines C completely, since it determines Bi, Bi deter-
mines xi+1 etc. If xi = xj , then Bi = Bj and i = j. Hence x1, . . . , xk are pairwise
distinct. If k = 2, then both {x1, z} and {x2, z} are common edges of B1 and B2.
That cannot be since in such a case {x1, x2} would be a common diagonal of B1

and B2.
If y1 = y2 = y, then {y, z} is a common diagonal of B1 and B2. Thus y1 6= y2.

If z′ = x1 is another centre of C, then B1 = (z′, y1, . . . ), B2 = (y2, z
′, . . . ) and

y1 = y2 = y. Hence no xi is a centre. However, y1 is also not a centre. Indeed, we
have proved that y1 6= y2. Therefore if y1 occurs in B2 then y1 = x2. That cannot
be since x2 is not a centre. Thus no yi is a centre of C. The centre z is determined
uniquely.

We have proved that if a block B is incident to z, then B occurs in at most
one block cycle C for which z is a centre. Denote B as B1 and assume that
B1 = (z, x1, . . . ). Build a sequence of blocks B1, B2, . . . such that Bi = (z, xi, . . . )
and {z, xi} is a common edge of Bi and Bi+1. Let k ≥ 1 be the least such that
Bk+1 = Bj , 1 ≤ j ≤ k. If j > 1, then Bk = Bj−1, since Bi+1 determines Bi
completely. Hence j = 1 and (B1, . . . , Bk) is a block cycle. �

The centre of a block cycle C = (B1, . . . , Bk) will be denoted by z(C). If z = z(C)
and Bi = (z, xi, . . . ), then the cyclic sequence (x1, . . . , xk) will be denoted by s(C)
and called the star of C. The integer k ≥ 3 is called the valency of C. Note
that z(C) and s(C) determine C completely—in fact z(C) and any element of s(C)
determine C completely.

Lemma 4.3. Let D be the design given by a finite-degree M4-quasigroup Q. Let
C be a block cycle, z = z(C) and (x1, . . . , xk) = s(C). Then Riz(xj) = xi+j for all
integers i and j (indices counted modulo k).

Proof. Proceed by induction on i ≥ 0. Assume Riz(xj) = xi+j and note that
(z, xi+j+1, y, xi+j) is a block, for some y ∈ Q. Hence Rz(xi+j) = xi+j+1. �

Say that a PMD(v, 4) is k-regular if each block cycle is of valency k.

Corollary 4.4. Let k ≥ 3 be a prime or let k = 4. Then the class of M4-quasigroups
that give a k-regular PMD is the quasigroup variety determined by yy = (y·xy)x = y
and ( ((xy)y) . . . )y = x, y occurring k times.

Proof. Consider x 6= y. If the PMD(v, 4) is k-regular, then Rky(x) = x, by Lem-
mas 4.2 and 4.3. When Q is assumed to fulfil the identities of the statement, then
Lemmas 4.2 and 4.3 imply that R`y(x) = x for some ` > 1 dividing k. Furthermore,
` 6= 2, by Lemma 4.1. �

Consider a component C of a PMD(v, 4). If a block B belongs both to C and to a
block cycle C, then all blocks of C belong to C. Denote by V (C) the set of all block
cycles the elements of which belong to C. Define E(C) as the set of edges {C,D}
such that C,D ∈ V (C), C 6= D, and C and D share a block (z(C), z(D), . . . ). The
pair (V (C), E(C)) will be known as the graph of C.

To avoid a misunderstanding let us give an informal description of the graph
(V,E) that is defined as a disjoint union of all graphs (V (C), E(C)), where C runs
through all components of a given PMD(v, 4). A point of the design, say a, is blown
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up into as many vertices as many there are block cycles of which a is the centre.
The number of edges |E| is equal to

(
v
2

)
since each pair of distinct points, say

{a, b}, induces exactly one edge. This edge connects those two block cycles that
simultaneously carry blocks (a, b, . . . ) and (b, a, . . . ). The centre of one of these
block cycles is a, and the centre of this other is b. All blocks in these two block
cycles belong to the same component since from block to another there exists a
sequence of neigbouring blocks. This implies that the connectivity components of
(V,E) are exactly the graphs (V (C), E(C)).

Proposition 4.5. Let C be a component of a finite-degree PMD(v, 4). The graph
of C is an ordinary graph (i.e., no loops, no multiple edges) and is connected. The
degree of D ∈ V (C) is equal to the valency k of D. There exists a unique cyclic
ordering (C1, . . . , Ck) of vertices adjacent to D such that s(D) = (z(C1), . . . , z(Ck)).

Furthermore, there exist unique vertices D1, . . . , Dk ∈ V (C) such that {Di, Ci}
and {Di, Ci−1} belong to E(C), and D 6= Di, for each i ∈ {1, . . . , k} (with indices
counted modulo k). For i ∈ {1, . . . , k} set Bi = (z(D), z(Ci), z(Di), z(Ci−1)). Then
C = (B1, . . . , Bk).

Proof. First note that if a block (z(C), z(D), . . . ) occurs in both C,D ∈ V (C),
then (z(D), z(C), . . . ) also occurs in both C and D, by the definition of block
cycles. For C,D ∈ V (C) there exists at most one block (z(C), z(D), . . . ). Hence
the graph of C is really an ordinary graph. Fix now D ∈ V (C) and suppose that
s(D) = (x1, . . . , xn). Let Ci be the block cycle with z(Ci) = xi that contains
the block Bi = (z(D), xi, . . . ). If {C,D} ∈ E(C), then (z(D), z(C), . . . ) ∈ D,
and therefore z(C) = xi for some i ∈ {1, . . . , k}. Hence C = Ci. The cyclic
ordering (C1, . . . , Ck) is unique since the star s(D) is defined uniquely. Block cycles
C1, . . . , Ck are pairwise distinct as their centres are pairwise distinct.

Consider again blocks Bi that have been defined above. By the definition of
s(D) there have to exist points yi such that Bi = (z(D), xi, yi, xi−1). Recall that
xi = z(Ci). Thus Bi ∈ Ci ∩ Ci−1 ∩D. Choose Di as the block cycle that carries
Bi and has yi as its centre. �

An oriented quadrangulation means here a triple (V,E, F ) such that

(1) (V,E) is a connected ordinary graph;
(2) F consists of oriented 4-cycles (x0, x1, x2, x3) such that {xi, xi+1} ∈ E if

0 ≤ i ≤ 3 (indices computed modulo 4) and xi 6= xj if 0 ≤ i < j ≤ 3;
(3) for each {a, b} ∈ E there exist unique (x0, x1, . . . ), (y0, y1, . . . ) ∈ F such

that x0 = a = y1 and x1 = b = y0; and
(4) for each a ∈ V there exist b1, . . . , bk ∈ V and c1, . . . , ck ∈ V such that

(a, bi, ci, bi−1) ∈ F (with indices computed modulo k), bi 6= bj if 1 ≤ i <
j ≤ k, k ≥ 3, and b = bi for some i ∈ {1, . . . , k} whenever {a, b} ∈ E.

Elements of V are the vertices, elements of E are the edges, and elements of F are
the (oriented) faces.

Theorem 4.6. Let C be a component of finite-degree PMD(v, 4). For each B =
(x0, x1, x2, x3) ∈ C and i ∈ {0, 1, 2, 3} there exists a unique block cycle Ci such that

xi = z(Ci) and B is incident to Ci. Put B̂ = (C0, C1, C2, C3) and F (C) = {B̂;
B ∈ C}. The triple (V (C), E(C), F (C)) forms an oriented quadrangulation.
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Proof. The existence and uniqueness of Ci directly follows from Lemma 4.2. Let us
consider the definition of oriented quadrangulation. Point (1) follows from Propo-
sition 4.5. Each {Ci, Ci+1} belongs to E(C), by the definition of the latter. This
yields (2). Consider a vertex D ∈ V (C). By Proposition 4.5, the vertices con-
nected to D can be cyclically ordered as (C1, . . . , Ck), k ≥ 3, in such a way that
s(C) = (z(C1), . . . , z(Ck)), and, consequently, all blocks from C that are incident
to z(D) are the blocks Bi (as described in Proposition 4.5). Therefore all elements

of F (C) incident to D are the blocks B̂i. Hence both (3) and (4) are true. �

The definition of (V (C), E(C), F (C)) follows the usual process of splitting pinch
points of an oriented pseudosurface to form an oriented surface.

By an oriented grid we shall understand an oriented quadrangulation such that
each vertex is of degree 4. Note that in the finite case this will be toroidal.

Proposition 4.7. Let λ and ρ permute a set X in such a way that 〈λ, ρ〉 is a finite
transitive abelian group. Assume |λ| ≥ 3, |ρ| ≥ 3 and λ 6= ρ±1. Then the set of all
cyclic sequences (x, λ(x), ρλ(x), ρ(x)), x ∈ X, provides faces of an oriented grid.
The edges of this grid are all of the pairs {x, λ(x)} and {x, ρ(x)}, x ∈ X.

Proof. Since 〈λ, ρ〉 is a transitive abelian group, it is regular. Hence all of its
nonidentity elements are fixed point free. The quadruples (x, λ(x), ρλ(x), ρ(x)) thus
consist of four different elements, since λ 6= ρ±1. Together with |λ|, |ρ| ≥ 3 this
also implies that the elements λ(x), λ−1(x), ρ(x) and ρ−1(x) are pairwise distinct,
for every x ∈ X. It remains to observe that faces incident to x can be listed
as (x, λ(x), ρλ(x), ρ(x)), (x, ρ−1(x), ρ−1λ(x), λ(x)), (x, λ−1(x), λ−1ρ−1(x), ρ−1(x))
and (x, ρ(x), ρλ−1(x), λ−1(x)). �

The oriented grid induced by λ and ρ will be denoted by G(λ, ρ). Note that
if permutations λ and ρ do not satisfy the conditions of Proposition 4.7, then the
construction of the statement does not yield an oriented grid in the sense of the
definition above.

Proposition 4.8. Oriented grids G(α, β) and G(λ, ρ) coincide if and only if (α, β)
is one of (λ, ρ), (ρ, λ−1), (λ−1, ρ−1) and (ρ−1, λ). Furthermore, G(ρ, λ) is the grid
of an opposite orientation.

Proof. There must be α ∈ {λ±1, ρ±1} since {α−1(x), x} and {x, α(x)} are opposite
edges, and 〈λ, ρ〉 is abelian transitive. The rest is easy. �

We now turn our attention to the (classical) fact that each oriented grid can be
expressed as G(λ, ρ). Let us assume that G = (V (G), E(G), F (G)) is an oriented
grid. Edges {x, y} and {u, v} are called opposite if there exist
z, xi, yi ∈ V (G), i ∈ {1, 2, 3, 4}, such that {x, y} = {xi, z} and {u, v} = {xi+2, z},
where (z, xi, yi, xi−1) are all the faces incident to z. Note that an edge is never
opposite to itself.

Lemma 4.9. Let x0, x1, . . . , xk ∈ V (G), k ≥ 2, be such that x0 = xk, xi 6= xj
if 1 ≤ i < j ≤ k and {xi, xi+1} ∈ E(G), 0 ≤ i < k. If every edge {xi−1, xi} is
opposite to {xi, xi+1}, 1 ≤ i < k, then k ≥ 3 and {x0, x1} is opposite to {xk−1, xk}.

Proof. The graph (V (G), E(G)) is assumed to be ordinary. Hence no edge is oppo-
site to itself. Therefore k ≥ 3. Start from the contrary and choose a counterexam-
ple such that k is the least possible. It can be assumed that there exists y1 such
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that (x0, x1, y1, xk−1) is an oriented face since the orientation may be reversed if
needed. This face possesses a neighbour (x1, x2, y2, y1). Proceeding further estab-
lishes the existence of faces (xi, xi+1, yi+1, yi), 1 ≤ i ≤ k−2. Edges {xk−2, xk−1}
and {xk−1, x0} are assumed to be opposite. Hence blocks (xk−2, xk−1, yk−1, yk−2)
and (xk−1, x0, x1, y1) share edges {xk−1, yk−1} and {xk−1, y1}. Therefore y1 = yk−1

and yk−2 6= x1. The block (x1.x2, y2, y1) thus differs from the preceding two blocks.
This implies yk−2 6= y2 and k ≥ 4. The elements y1, y2, . . . , yk−1 have been con-
structed in such a way that {yi, yi+1} is opposite to {yi+1, yi+2}, 1 ≤ i ≤ k−3.
Blocks (x1.x2, y2, y1) and (xk−2, xk−1, y1, yk−2) share no edge. Hence {yk−1, y1} is
not opposite to {y1, y2}. That contradicts the choice of k. �

Proposition 4.10. Each oriented grid G is equal to G(λ, ρ) for some permutations
λ and ρ.

Proof. Consider a sequence x0, x1, x2, . . . by choosing opposite edges. Suppose
first that there exists n > 0 such that xn is equal to some xi, 0 ≤ i < n. Let n
be the least possible. Note that n ≥ 3. There must be i = 0 since if i ≥ 1 then
xn−1 = xi−1 as both {xn−1, xn} and {xi−1, xi} are opposite edges to {xi, xi+1}.
Choose an orientation (x1, . . . , xn) and consider faces (xi, xi+1, yi+1, yi), 1 ≤ i ≤ n.
This yields a cyclic sequence (y1, . . . , yn). Elements y1, . . . , yn are pairwise distinct
since x1, . . . , xn are pairwise distinct. Clearly, yi 6= xj if j ≡ i, i ± 1 (mod k).
Suppose that yi = xj for some other j. Now, xj is connected to xj−1, xj+1 and
yj . Since yj is not equal to yi±1, there must be {xj−1, xj+1} = {yi−1, yi+1}. If
xj−1 = yi+1, then

(xi, xi+1, yi+1, yi) = (yj , yj−1, xj−1, xj),

implying thus xi = yj and xi+1 = yj−1. Proceeding further we get xi+2 = yj−2 etc.
There exists s such that i + s ≡ j − s (mod k) or i + s ≡ j − s + 1 (mod k), and
that means the existence of h such that xh ∈ {yh, yh+1}, which is a contradiction.
Therefore xj−1 = yi−1, and thus xj−s = yi−s for every integer s. Therefore there
exist d ∈ {2, . . . , k−2} such that yi = xi+d. Defining λ as the cyclic permutation
xi 7→ xi+1 yields G = G(λ, λd).

If the starting sequence x0, x1, . . . is infinite, then by the preceding part of
the proof there exists an infinite sequence . . . , x−1, x0, x1 . . . in which all ver-
tices xi are pairwise different. This yields a sequence . . . , y−1, y0, y1, . . . and faces
(xi, xi+1, yi+1, yi). The points yi have to be pairwise distinct as well. If there exist
i and j such that xi = yj , then proceeding like above yields an expression in the
form G(λ, λd), where d ≥ 2 and λ(xi) = xi+1.

Suppose now that the method above never yields (x1, . . . , xk) and (y1, . . . , yk)
that share a vertex. (A similar assumption may also be made in the infinite case.)
In the finite case there exist k ≥ 3 and h ≥ 2 and vertices xi,j , 1 ≤ i ≤ h and
1 ≤ j ≤ k with faces (xi,j , xi,j+1, xi+1,j+1, xi+1,j), 1 ≤ i < h and 1 ≤ j ≤ k, where
j is computed modulo k. Suppose that h is maximal possible. Then it may be
assumed that xh,1 is connected to x1,d for some d ∈ {1, . . . , k}. Hence there exists an
oriented face (x1,d−1, x1,d, xh,1, . . . ) or an oriented face (x1,d+1, x1,d, xh,1, . . . ). The
existence of the face (x1,d−1, x1,d, x2,d, x2,d+1) excludes the latter possibility. Thus
the face in question has to be equal to (x1,d+1, x1,d, xh,1, xh,2) and, by induction,
xh,j is connected to x1,j+d−1. It remains to define λ by xi,j 7→ xi,j+1 and ρ by
xh,j 7→ x1,j+d−1 and xi,j 7→ xi+1,j , 1 ≤ i < h.
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In the infinite case let it first be assumed that there exists a cyclic sequence
(x1, . . . , xk) induced by a sequence of opposite edges. Then the vertices can be
labelled xi,j , with i counted modulo k and j ∈ Z in such a way that every face
is equal to (xi,j , xi,j+1, xi+1,j+1, xi+1,j) for some i and j. If no (x1, . . . , xk) exists,
then the grid can be expressed as G(λ, ρ), where 〈λ, ρ〉 is a free abelian group of
rank two. �

Lemma 4.11. Let Q be a flexible quasigroup that satisfies the law M4. Then
xyx = x/y = y(x\y) and ((xy · y)y)y = x, for all x, y ∈ Q.

Proof. The identity xyx = x/y follows immediately from the law M4’ (cf. Propo-
sition 1.1). Thus y(x\y)y = y/(x\y) = x, for all x, y ∈ Q. Hence y(x\y) = x/y.
Plugging y = xz yields xz · z = x/(xz) = x · xzx. By M4’ this is equal to
(xzx)z(xzx) = (xzx)/z = (x/z)/z. Thus ((xz · z)z)z = x. �

Theorem 4.12. Each centred PMD(v, 4) is 4-regular. A 4-regular PMD(v, 4) is
centred if and only if (x4, x3, x2, x1) is a block of the PMD for every block cycle C,
s(C) = (x1, x2, x3, x4). If the PMD(v, 4) is centred and C is a block cycle, then the
centre of s(C)op = (x4, x3, x2, x1) is equal to z(C).

Proof. Suppose that the PMD is given by an M4-quasigroup Q. If the PMD is
centred, then Q is flexible, by Proposition 2.7, and the PMD is 4-regular, by Corol-
lary 4.4 and Lemma 4.11. Suppose that the PMD is 4-regular and consider elements
x and z, x 6= z. By Lemma 4.2 there exists a block cycle C such that z(C) = z,
s(C) = (x1, x2, x3, x4) and x1 = x. Now, x2x1 = x4 is equivalent to xz · x = x · zx
since x1z = x2 and x4 = x1 · zx1. The rest is clear. �

If C is a component of a PMD(v, 4), then the mapping C 7→ z(C) sends vertices
of C upon points and faces of C upon blocks. Theorem 4.12 thus immediately
yields the following consequence.

Corollary 4.13. Let (a, b0, c0, b1) be a block of a centred PMD(v, 4). Then there
exist blocks (a, b1, c1, b2), (a, b2, c2, b3) and (a, b3, c3, b0). These blocks are uniquely
determined. Furthermore, (b0, b1, b2, b3) is also a block, and a is the centre of this
block.

Corollary 4.14. Let C be a component of a centred PMD(v, 4). Then there exist
permutations λ and ρ of V (C), i.e. of the vertex set of C, such that C = G(λ, ρ).

Proof. A centred PMD(v, 4) is 4-regular, by Theorem 4.12. By Theorem 4.6 the
component C yields an oriented quadrangulation. By Proposition 4.5 vertices of
this quadrangulation have degree 4. Hence C yields an oriented grid. The rest
follows from Proposition 4.10. �

To conclude this section we summarize the hierarchy of some quasigroups dis-
cussed in this paper. By Proposition 2.7, centred PMD(v, 4)s correspond to flexible
S3-quasigroups, and also to flexible M4-quasigroups. From Theorem 4.12, every
centred PMD(v, 4) is 4-regular. Thus v ≡ 1 (mod 4), by Lemma 4.3.

Centred PMD(v, 4)s, i.e. flexible S3-quasigroups are enumerated in [5] for v ≤ 13.
Comparing these results with Corollary 3.10 shows that all these quasigroups are
medial, i.e. quadratical.

However, by [5] there exist flexible S3-quasigroups of order 21. There is no
quadratical quasigroup of order 21. The variety of quadratical quasigroups is thus
strictly smaller than the variety of flexible S3-quasigroups.
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On the other hand, the variety of flexible S3-quasigroups is strictly smaller than
the variety of S3-quasigroups that yield 4-regular PMDs (cf. Corollary 4.4). This
can be deduced from the existence of the so called reverse centred PMD(v, 4) [5].

5. Grids induced by quadratical quasigroups

A PMD(v, 4) uniquely determines the operation of the associated M4-quasigroup,
and an M4-quasigroup uniquely determines a PMD(v, 4). Two PMD(v, 4)s are
isomorphic if and only if the associated M4-quasigroups are isomorphic. The same
is true for the associated S3-quasigroups.

An S3-quasigroup Q is medial if and only if it is quadratical (Corollary 2.12).
Furthermore, Q is medial if and only the associated M4-quasigroup (Q, \) is also
medial (Proposition 1.3 and Lemma 3.1). Medial M4-quasigroups are in a 1-to-
1 correspondence with Z[i]-modules upon which 2 acts invertibly (Theorem 3.6).
Isomorphism types of PMD(v, 4)s given by quadratical quasigroups thus correspond
to isomorphism types of such Z[i]-modules. The formula for the operation ∗ of a
medial M4-quasigroup corresponding to a Z[i]-module M is x ∗ y = ix+ (1−i)y. As
can be easily verified, blocks of the PMD(v, 4) given by such a M4-quasigroup are

(x, y, ix+ (1−i)y, (i+1)x− iy) where x, y ∈M and x 6= y. (5.1)

This will be known as the PMD(v, 4) given by a Z[i]-module M .
To avoid an exceptional treatment of the zero Z[i]-module M = 0, let us make a

convention that it corresponds to PMD(1, 4), i.e. to the trivial design with no block
and one point.

Lemma 5.1. Let B = (x, x+z, . . . ) be a block of the PMD(v, 4) given by a Z[i]-
module M , and let C be the component that carries B. Then(

x+(r−si)z, x+((r+1)−si)z, x+((r+1)−(s+1)i)z, x+(r−(s+1)i)z
)

(5.2)

are all the blocks of the component C, with r and s running through Z.

Proof. The 4-cycles occurring in (5.2) form a block since

i(r − si) + (1− i)((r + 1)− si) = (r + 1)− (s+ 1)i and

(i + 1)(r − si)− i((r + 1)− si) = r − (s+ 1)i

imply the compatibility with (5.1). Denote this block by B(r, s) and observe that
the neighbouring blocks are equal to B(r, s−1), B(r+1, s), B(r, s+1) and B(r−1, s).

�

Corollary 5.2. Let C be a component of the PMD(v, 4) given by a Z[i]-module M ,
and let x be an element of M . Then x+C = {(x+a, x+b, x+c, x+d); (a, b, c, d) ∈ C}
is a component too.

Proof. This follows directly from Lemma 5.1. �

If C is a component of a PMD(v, 4), then C 7→ z(C) sends a vertex C ∈ V (C)
(i.e., a block cycle) upon the (only) point that that is shared by all blocks of C
(i.e., the centre of the block cycle C). Cf. Section 4.

Corollary 5.3. Let C be a component of the PMD(v, 4) given by a Z[i]-module M .
The mapping V (C)→M , C 7→ z(C), is injective.
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Proof. Let B = (x, x+z, x+(1−i)z, x−iz) be a block of C, and let this block belong
to a block cycle C ∈ V (C). Suppose that z(C) = x, and let D ∈ V (C) be such
that z(D) = x as well. By Lemma 5.1 the block cycle D contains a block given by
(5.2) for which x+(r−si)z = x. This implies that (r−si)z = 0, and that this block
coincides with the block B. Since C and D share a block, and z(C) = z(D), the
block cycles C and D coincide too. �

A module M over a ring R is said to be cyclic if there exists y ∈ M such that
Ry = M .

Proposition 5.4. Let M be a Z[i]-module upon which 2 acts invertibly. The module
M is cyclic if and only if the PMD(v, 4) given by M contains a component C such
that every element of M occurs in at least one block of C (i.e., if z(V (C)) = M).

Proof. Let y ∈M be such that Z[i]y = M . By (5.1) the PMD(v, 4) contains a block
(0, y, (1−i)y,−iy). By Lemma 5.1 the component of this block covers each element
(r+si)y, where r, s ∈ Z. The set of these elements coincides with Z[i]y. For the
converse direction first note that C covers all of M if and only if x+C covers all of
M , by Corollary 5.2, for each x ∈M . Hence it may be assumed that M is covered
by a component that contains a block (0, z, . . . ). If this is true, then M = Z[i]z,
again by Lemma 5.1. �

For an odd n > 1 denote by Zn[i] be the Z[i]-module with underlying abelian
group {x+iy; x, y ∈ Zn} in which i(x+iy) = −y+ix.

Furthermore, if κ ∈ Zn is such that κ2 + 1 = 0, denote by Zn(κ) the Z[i]-module
upon Zn for which ix = κx, for every x ∈ Zn.

Proposition 5.5. Each cyclic Z[i]-module upon which 2 acts invertibly is isomor-
phic to exactly one of the modules Zn[i], Zm(κ) and Zn[i] × Zm(κ), with n,m > 1
being odd, κ2 ≡ −1 (mod m), and gcd(n,m) = 1.

Proof. Since Z[i] is a Principal Ideal Domain, the Chinese Remainder Theorem
applies. Each proper factor of Z[i] is hence a product of factors over primary ideals
(the ideals (πr), π irreducible, r ≥ 1). Now, Z[i]/(πr) is isomorphic either to Zpr [i],
p an odd prime ≡ 3 (mod 4), or to Zpr (κ), p an odd prime ≡ 1 (mod 4), κ2 ≡ −1
(mod p)r, (cf. Section 3). A sum Z[i]/(π1)r1 ⊕ · · · ⊕ Z[i]/(πrkk ), with all r1, . . . , rk
positive integers, is a cyclic module if and only if there are no i and j such that
π = πi = πj and 1 ≤ i < j ≤ k. This is true for every principal ideal domain.
To see it directly in the present context note that if there were such πi = π = πj ,
then Z[i]/(π) ⊕ Z[i]/(π) would be cyclic, by factorization. But that is never true,
since neither Zp[i]⊕Zp[i] nor Zp(κ)⊕Zp(κ) are cyclic. Furthermore, if n and m are
coprime odd integers, then Zn[i]⊕Zm[i] ∼= Znm[i] and Zn(κ1)⊕Zm(κ2) ∼= Znm(κ),
where κ ∼= κ1 (mod n) and κ ∼= κ2 (mod m). Finally, Zn(κ) ⊕ Zn(κ−1) ∼= Zn[i],
cf. Lemma 3.13. �

If y is a nonzero element of M , then Cy will denote the component of the PMD
given by M that contains the block (0, y, . . . ). If M = 0, then C0 denotes the only
component of the PMD(1, 4) (the component consists one vertex and contains no
face).

Lemma 5.6. Let y be a nonzero element of a cyclic Z[i]-module upon which 2 acts
invertibly. Then z(V (Cy)) = Z[i]y.
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Proof. This follows directly from Lemma 5.1. (In (5.2) set x = 0 and z = y.) �

Lemma 5.7. Let M be a cyclic Z[i]-module upon which 2 acts invertibly, and let
C be a component of the PMD(v, 4) given by M . Then z(V (C)) = M if and only
if there exists y ∈M such that C = Cy and Z[i]y = M .

Proof. Suppose that z(V (C)) = M . Then C contains a vertex, say C, that is sent
by z to 0. Recall that a vertex is formed by a cycle of four blocks that share the
point that is the image of the vertex. Hence each of the four blocks contributing
to C is of the form (0, y, . . . ). For each of them C = Cy. By Lemma 5.6, Z[i]y =
z(V (Cy)) = M . Conversely, if Z[i]y = M and C = Cy, then z(V (Cy)) = M . �

For the sake of brevity assume that both Z1[i] and Z1(1) denote the zero module
0. The latter convention allows to express Proposition 5.4 in this form: Each cyclic
Z[i]-module upon which 2 acts invertibly is isomorphic to Zn[i]×Zm(κ), where n and
m are uniquely determined coprime positive odd integers and κ2 ≡ −1 (mod m).

Our next aim is to describe, up to isomorphism, those grids G(λ, ρ) that are
induced by Z[i]-modules upon which 2 acts invertibly. For n,m ≥ 1 and κ ∈ Z∗m
define λ and ρ as permutations of Zn × Zn × Zm such that

λ : (a, b, c) 7→ (a+1, b, c+1) and ρ : (a, b, c) 7→ (a, b−1, c−κ).

It is clear that λρ = ρλ, that 〈λ, ρ〉 is a transitive abelian group, and that λ 6= ρ±1

if n > 1 or κ 6= ±1. Hence, assuming that the latter condition is true, G(λ, ρ) is
a toroidal grid, by Proposition 4.7. It will be denoted by G[n,m, κ]. The faces of
G[n,m, κ] are

((a, b, c), (a+1, b, c+1), (a+1, b−1, c+1−κ) (a, b−1, c−κ)). (5.3)

Theorem 5.8. Let n and m be coprime odd positive integers, and let κ ∈ Z∗m be
such that κ2 ≡ −1 (mod m). Then M = Zn[i]⊕Zm(κ) is a cyclic Z[i]-module, and
each cyclic Z[i]-module upon which 2 acts invertibly can be expressed in this way,
up to isomorphism. If y ∈M is a generator of M , i.e. if M = Z[i]y, then

σy : (r+si)y → (r mod n, s mod n, (r+κs) mod m)

is a bijection M → Zn×Zn×Zm. The mapping C 7→ σyz(C) is an isomorphism of
the component Cy and the grid G[n,m, κ]. (A grid isomorphism bijectively sends
vertices upon vertices, and faces upon faces.)

Proof. If y, y′ ∈M are two generators, then (r+si)y = 0 ⇔ (r+si)y′ = 0. Since y′

may be chosen as (1, 1) ∈ Zn[i]⊕ Zm(κ), it is clear that

(r+si)y = 0 ⇐⇒ n | r, n | s and m | r + κs, (5.4)

for all r, s ∈ Z. Define a homomorphism of abelian groups σ : Z[i] → Zn ×
Zn × Zm by r+si 7→ (r mod n, s mod n, (r+κs) mod m). Since r+si ∈ Ker(σ)
if and only if the right hand side of (5.4) holds, σy is an isomorphism (M,+) ∼=
Zn × Zn × Zm, by the First Isomorphism Theorem. A face of Cy is mapped by
z : V (Cy) → M upon a block ((r+si)y, (r+1+si)y, (r+1+si−i)y, (r+si−i)y), by
Lemma 5.1. If σy((r+si)y) = (a, b, c), then this block is mapped by σy upon
((a, b, c), (a+1, b, c+1), (a+1, b−1, c+1−κ), (a, b−1, c−κ)), which agrees with (5.3).
The rest follows from Corollary 5.3 and Proposition 5.5. �
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Corollary 5.9. Let M be a Z[i]-module upon which 2 acts invertibly, and let C be
a component of a PMD(v, 4) given by M . Then there exist coprime odd integers
n,m ≥ 1, and κ ∈ Zm, κ2 ≡ −1 (mod m), such that C is isomorphic to G[n,m, κ],
and Zn[i]⊕ Zm(κ) is isomorphic to a cyclic submodule of M .

Proof. By Corollary 5.2 the component C is isomorphic to a component Cy, y ∈M .
Now, Cy is also a component of the PMD given by Z[i]y, a cyclic submodule of M .
That makes Theorem 5.8 applicable. �

6. Skew squares and skew expansion

Let ABCD be a square in a Euclidean plane. Interpret it as a block (A,B,C,D)
of the PMD that is induced by the quadratical operation that defines X · Y as a
point Z such that the angle XZY is right and |XZ| = |ZY |. This is the operation
that has been discussed at the beginning of this paper and that stands at the
beginning of all research on quadratical quasigroups. Note that B = A · C and
D = C ·A. Put X = A ·B, Y = B ·C, U = C ·D and V = D ·A. Then XY UV is
a square and (X,Y, U, V ) is a block, see Fig. 4. It will be called the skew expansion
of (A,B,C,D). This notion can be generalized to all quadratical quasigroups:

Lemma 6.1. Let (Q, ·) be a quadratical quasigroup and let (x1, x2, x3, x4) be a block
of the associated PMD(v, 4). Then (x1x2, x2x3, x3x4, x4x1) is also a block.

Proof. We have x2 = x1x3 and x4 = x3x1. By mediality and S3, x1x2 · x3x4 =
(x1 · x1x3)(x3 · x3x1) = (x1x3)(x1x3 · x3x1) = x1x3 · x3 = x2x3. �

X Y

UV

A

B

C

D

Figure 4. The skew expansion (X,Y, U, V ) of the block (A,B,C,D).

Let B = (x1, x2, x3, x4) be a block induced by a quadratical quasigroup. The
block (x1x2, x2x3, x3x4, x4x1) is called the skew expansion of B. It will be denoted
by e(B).

Proposition 6.2. Let C be a component of a PMD(v, 4) given by a Z[i]-module
M upon which 2 acts invertibly. Then e(C) = {e(B); B ∈ C} is also a component,
and z(e(C)) = z(C).

Proof. The quadratical operation induced by M is (x, y) 7→ ((1−i)x + (1+i)y)/2,
by Theorem 3.6. If a block B is of a form (u, u+y, u+(1−i)y, u−iy), then e(B) is
equal to (w,w+(1−i)y, w−2iy, w−(1+i)y), where w = u+(1+i)y/2. By Lemma 5.1
there exist y, z ∈ M such that the blocks B that constitute C are all the blocks
B(r, s), where r, s ∈ Z and u = u(r, s) = z+(r+si)y. Since 2 acts invertibly upon
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M , the cyclic module Z[i]y is equal to {((2r+1) + (2s+1)i)y/2; r, s ∈ Z}. Hence
the set of all e(B(r, s)) coincides with the set of all

B′(r, s) = (u(r, s), u(r, s)+(1−i)y, u(r, s)−2iy, u(r, s)−(1+i)y).

The four neighbours of B′(r, s) are B′(r+1, s+1), B′(r+1, s−1), B′(r−1, s−1) and
B′(r−1, s+1). Hence B′(r, s+2) is a neighbour of a neighbour of B′(r, s), and this
is also true for B′(r+2, s). Since 2 acts invertibly, all blocks B′(r, s) belong to the
same component. �

If B = (a, b, c, d) is a block of a PMD(v, 4) that is associated with a quadratical
quasigroup (Q, ·), then the centre of the block is equal to aba = bcb = cdc = dad.
By Theorem 3.6 the quasigroup Q may be obtained from a Z[i]-module M , with
multiplication (x, y) 7→ ((1−i)x+ (1+i)y)/2. The centre is thus equal to (a+c)/2 =
(b+d)/2. Define Ek(B), k ≥ 0, so that E0(B) = {(a+c)/2} and Ek+1(B) =
Ek(B) ∪ {x, y, u, v}, where (x, y, u, v) = ek+1(B).

In [4] Dudek and Monzo say that a quadratical quasigroup Q is of form Qn if
En(B) = Q. In Section 4 of [4] they prove that a quadratical quasigroup of order 9 is
of form Q2. In Section 6 they present operational tables of quadratical quasigroups
of order 13 and 17, and prove that they are of forms Q3 and Q4, respectively. In
Section 7 they show that there is no quadratical quasigroup of form Q6. At the
end of the paper they formulate a number of questions, some of which are answered
below.

Proposition 6.3. Let M be a Z[i]-module upon which 2 acts invertibly, and let B
be a block of the PMD(v, 4) given by M . If there exists k ≥ 0 such that Ek(B) = M ,
then the module M is cyclic.

Let y ∈M be such that M = Z[i]y. For k ≥ 0 set

Ak(y) = {2i(1+i)y, 2i(1−i)y, 2i(−1+i)y, 2i(−1−i)y; −1 ≤ i ≤ k−2} and

Bk(y) = {2iy,−2iy, 2iiy,−2iiy; 0 ≤ i ≤ k−1}.

Assume k ≥ 0. Then

M = E2k(B) ⇐⇒ M = {0} ∪ Ak(y) ∪ Bk(y), and

M = E2k+1(B) ⇐⇒ M = {0} ∪ Ak+1(y) ∪ Bk(y).

Proof. Let B belong to a component C. By Proposition 6.2 the block ei(B) is in the
component ei(C), and that component carries the same points as C, i.e. z(C) =
z(ei(C)). Hence if Ek(B) = M , then B must belong to a component C with
z(C) = M . By Proposition 5.4 this happens if and only if M is cyclic.

Suppose that M = Z[i]y. Let B a block of C, and B′ a block of C′, where
z(C) = z(C′) = M . By Corollary 5.2 and Lemma 5.7, Ek(B) = M if and only if
Ek(B′) = M . Because of that we may start from the component Cy and the block

B =

(
−1 + i

2
y,

1 + i

2
y,

1− i

2
y,
−1− i

2
y

)
.

The rest of the statement follows from the fact that if k ≥ 0, then

e2k(B) = (2kiy, 2ky, −2kiy, −2ky), and

e2k+1(B) = ((−1+i)2ky, (1+i)2ky, (1−i)2ky, (−1−i)2ky).

�
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Define the 2-exponent exp2(M) as∞ if there is no block B such that Ek(B) = M
for some k ≥ 0. If such a block exists define exp2(M) as the value of the least
possible k for which M = Ek(B). By Proposition 6.3, a quadratical quasigroup
induced by M is of form Qn, n <∞, if and only if exp2(M) = n.

Lemma 6.4. Let M and N be Z[i]-modules upon which 2 acts invertibly. Suppose
that N is a homomorphic image of M . Then exp2(N) ≤ exp2(M).

Proof. Let M = Z[i]y and N = Z[i]y′, and let ϕ : M → N be the homomorphism
that sends y upon y′. Then ϕ maps Ak(y) upon Ak(y′) and Bk(y) upon Bk(y′). �

Proposition 6.5. Let M be a nonzero Z[i]-module upon which 2 acts invertibly.
Suppose that exp2(M) < ∞. Then either M ∼= Z3[i] or there exists a prime p ≡ 1
(mod 4) such that M ∼= Zp(κ), κ2 ≡ −1 (mod p).

Proof. Let us first observe that exp2(Zn[i]) = ∞ whenever n is an odd integer
greater than 3. This is because 1+2i is equal neither to 1−i nor to any other
member of Ak(1) ∪ Bk(1), k ≥ 1. Consider now Zn(κ), κ2 ≡ 1 (mod n), where
n > 1 is odd. All integers 2i, i ≥ 0, are invertible when considered as elements
of Zn(κ). This is also true for −1, κ, κ−1 and κ+1. Therefore each element of
Ak(1) ∪ Bk(1) is invertible, for any k ≥ 1. If n is not a prime, then Zn(κ) contains
elements that are not invertible. This argument may also be used to exclude the
case M ∼= Z3[i]⊕ Zp(κ). �

We can thus answer in negative [4, Problem 3].

Corollary 6.6. There exists no quadratical quasigroup (Q, ·) of form Qn such that
Q ∼= Qop and |Q| > 9.

Proof. If Q is a quadratical quasigroup such that Q ∼= Qop, then Q cannot be
isomorphic to Zp(κ), by Proposition 3.14. �

Lemma 6.7. Let M be a Z[i]-module upon which 2 acts invertibly, and let Q be
the S3-quasigroup obtained from M by means of the operation (x, y) 7→ ((1−i)x +
(1+i)y)/2. If M ∼= Zp[i], where p is a prime ≡ 3 (mod 4), or if M ∼= Zp(κ), where
p is a prime ≡ 1 (mod 4), κ2 ≡ −1 (mod m), then any two distinct elements of Q
generate Q.

Proof. This follows straightforwardly from the fact that if M fulfils the assumptions
of the statement, then M has no proper nontrivial submodule. �

We can thus answer in positive [4, Problem 4].

Corollary 6.8. If Q is a quadratical quasigroup of form Qn, then Q is generated
by each of its 2-element subsets.

As already indicated by Propositions 6.3 and 6.5, the 2-exponent of a Z[i]-module
M , |M | > 9, depends only upon properties of a prime p ≡ 1 (mod 4):

Proposition 6.9. Let p ≡ 1 (mod 4) be a prime, and let κ ∈ Zp be such that κ2 ≡
−1 (mod p). Then exp2(Zp(κ)) = exp2(Zp(κ−1)). Furthermore, exp2(Zp(κ)) <∞
if and only if Z∗p is generated by 2 and κ+1.

Proof. The first part of the statement follows from the fact that the quadrati-
cal quasigroups induced by Zp(κ) and Zp(κ−1) are opposite each to other, by
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Lemma 3.13. The second part follows from Proposition 6.3 and from the ensu-
ing identities that are true in Z∗p:

κ2 = −1, κ−1 = −κ, (κ+1)2 = 2κ and (κ+1)−1 = (1−κ)/2. (6.1)
�

Theorem 6.10. Let p ≡ 1 (mod 4) be a prime. The value of exp2(Zp(κ)) is
independent of the choice of κ ∈ Z∗p, κ2 = −1. Denote this value by e(p). Denote
by Dp the subgroup of Z∗p generated by 2, and put dp = |Dp| = ordp(2). These are
the only cases when e(p) <∞:

(1) p = 16k + 9 and dp = 2k + 1.
(2) p = 16k + 9 and dp = 4k + 2.
(3) p = 16k + 9, dp = 8k + 4 and κ+1 is a nonsquare.
(4) p = 16k + 1 and dp = 8k.
(5) p = 8k + 5 and dp = p−1.

In all these cases e(p) = (p−1)/4.

Proof. If dp = 2h, then 2h = −1. Suppose that dp = 2k+ 1 is odd. Then −1 /∈ Dp,
and each two elements from the set

{1,−1, κ,−κ, (κ+1)/2,−(κ+1)/2, (κ−1)/2,−(κ−1)/2}
belong to a different coset of Dp in Z∗p, as follows from (6.1). By Proposition 6.3,
e(p) <∞ if and only if |Z∗p : Dp| = 8.

From here on we shall assume that −1 ∈ Dp. Let us have κ /∈ Dp. Since κ and
−κ are the only elements of Z∗p that are of order 4, there must be dp = 4k + 2, for
some k ≥ 0. The cosets Dp, κDp, (κ+1)Dp and (κ−1)Dp are pairwise different.
Hence e(p) <∞ if and only if |Z∗p : Dp| = 4.

From here on κ ∈ Dp will be assumed. Then dp = 4h, and κ may be set to be
equal to 2h. If there exists ` such that κ+1 = 2`, then 2` ≡ 1+h (mod 4)h since
(κ+1)2 = 2κ, by (6.1). This is not possible if h is even. In such a case dp = 8k,
κ+1 /∈ Dp, and e(p) <∞ if and only if p = 16k + 1.

Suppose that h is odd. If p = 8t+ 1, then there cannot be dp = p− 1 since 2 is
a square. Hence if e(p) <∞, then there must be dp = (p−1)/2 = 4t = 8k + 4, and
κ+1 has to be a nonsquare.

Let us have p = 8k + 5. Since dp has to be divisible by 4, there cannot be
dp = 4k + 2. The only possibility hence is that that Dp = Z∗p.

To see that e(p) = (p−1)/4 in cases (1)–(4) is straightforward since the underly-
ing coset structure may be used. In the last case we argue as follows. Suppose that
(κ+1)/2 = 2s. Then 22s = κ/2 = 22k+1/2. Hence s = k may be assumed. That
implies that Ak+1(1) ∩ Bk(1) = ∅. �

Theorem 6.10 thus gives a tool to decide whether there exists a quadratical
quasigroup of form Qn. This question appears as Problem 1 in [4]. We see that
4n+1 has to be equal to 9 or to a prime p. This is a necessary condition. The
sufficient conditions are formulated in Theorem 6.10. Their main feature is the
requirement that the order of 2 modulo p is big.

Tools developed in this paper may be used to answer various further questions
concerning quadratical quasigroups.

The concept of components, as described in Section 4, applies to all PMD(v, 4)s.
It seems that in particular the theory of centered PMD(v, 4)s might gain by gener-
alizing the ensuing concepts, as developed in Sections 5 and 6.
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[9] D. Stanovský and P. Vojtěchovský: Central and Medial Quasigroups of Small Order, Bul.
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