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Abstract

Suppose G is a finitely presented group that is hyperbolic relative
to P a finite collection of finitely generated proper subgroups of G.
Our main theorem states that if each P ∈ P has semistable fundamen-
tal group at ∞, then G has semistable fundamental group at ∞. The
problem reduces to the case when G and the members of P are all one
ended and finitely presented. In that case, if the boundary ∂(G,P)
has no cut point, then G was already known to have semistable fun-
damental group at ∞. We consider the more general situation when
∂(G,P) contains cut points.

1 Introduction

We are interested in the asymptotic behavior of relatively hyperbolic groups.
We consider a property of finitely presented groups that has been well studied
for over 40 years called semistable fundamental group at ∞. A locally finite
complex Y has semistable fundamental group at ∞ if any two proper rays
r, s : [0,∞)→ Y that converge to the same end of Y are properly homotopic
in Y . A finitely presented group G has semistable fundamental group at∞ if
for some (equivalently any) finite complex X with π1(X) = G, the universal
cover of X has semistable fundamental group at∞. (See section 3 for several
equivalent notions of semistability.) It is unknown at this time, whether or
not all finitely presented groups have semistable fundamental group at∞, but
in [Mih87] the problem is reduced to considering 1-ended groups. The finitely
presented group G satisfies a weaker geometric condition called semistable
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first homology at ∞ if and only if H2(G : ZG) is free abelian (see [GM85]).
The question of whether or not H2(G : ZG) is free abelian for all finitely
presented groups G goes back to H. Hopf. Our main interest is in showing
certain relatively hyperbolic groups have semistable fundamental group at∞.
The work of B. Bowditch [Bow99] and G. Swarup [Swa96] shows that if G is a
1-ended word hyperbolic group then ∂G, the Gromov boundary of G, has no
(global) cut point. M. Bestvina and G. Mess [BM91] (Propositions 3.2 and
3.3) show the absence of cut points in ∂G implies ∂G is locally connected. It
was pointed out by R. Geoghegan that G has semistable fundamental group
at ∞ if and only if ∂G has the shape of a locally connected continuum (see
[DS78] for a proof of this fact). In particular, all 1-ended word hyperbolic
groups have semistable fundamental group at ∞.

Relatively hyperbolic groups are a much studied generalization of hyper-
bolic groups. Semistability only makes sense for finitely generated groups.
We only consider finitely presented groups G in our main result. Later in this
section and again in §5, we say what it means for a finitely generated group
to be hyperbolic relative to a finite collection of finitely generated subgroups.
If a finitely generated group G is hyperbolic relative to a collection of finitely
generated subgroups P the pair (G,P) has a well-defined compact metric
boundary (see §5), denoted ∂(G,P). While all 1-ended hyperbolic groups
have locally connected boundary without cut points, the space ∂(G,P) may
contain cut points. When ∂(G,P) is connected, it is locally connected (see
Theorem 2.3) and the Hahn-Mazurkiewicz Theorem (see Theorem 31.5 of
[Wil70]) implies it is the continuous image of the interval [0, 1]. This implies
∂(G,P) is path connected and locally path connected, these facts are impor-
tant in our approach to showing the relatively hyperbolic groups we consider
have semistable fundamental group at∞. The main theorem of [MSb] solves
a semistability problem when ∂(G,P) has no cut point. Note that there is
no semistability hypothesis on the peripheral subgroups.

Theorem 1.1 (Theorem 1.1, [MSb]) Suppose G is a 1-ended finitely gener-
ated group that is hyperbolic relative to a collection of 1-ended finitely gen-
erated proper subgroups P = {P1, . . . , Pn}. If ∂(G,P) has no cut point, then
G has semistable fundamental group at ∞.

The primary semistability question for relatively hyperbolic groups fol-
lowing Theorem 1.1 is:
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Conjecture 1.2 (Conjecture 2.1, [MSb]) Suppose G is a finitely generated
group that is hyperbolic relative to a finite collection {P1, . . . , Pn} of proper
finitely generated subgroups. If each Pi has semistable fundamental group at
∞, then G has semistable fundamental group at ∞.

Some support for this conjecture appeared in the form of a result of C.
Hruska and K. Ruane:

Theorem 1.3 ([HR], Theorem 1.1) Let (G,P) be relatively hyperbolic with
no non-central element of order two. Assume each peripheral subgroup P ∈ P
is slender and coherent and all subgroups of P have semistable fundamental
group at ∞. Then G has semistable fundamental group at ∞.

When G is finitely presented, the homology version of the conjecture is
resolved by the main theorem of [MSa].

Theorem 1.4 (Theorem 1.1, [MSa]) Suppose G is a finitely presented group
that is hyperbolic relative to a collection of finitely presented subgroups P =
{P1, . . . , Pn}. If each group H2(Pi,ZPi) is free abelian then H2(G,ZG) is
free abelian.

While several results in [MSa] are useful to us, the techniques of that paper
are insufficient to resolve the conjecture. A new idea of nearly geodesic
homotopies in a cusped space is developed here and it is fundamental in
proving our results. The main theorem of our paper resolves the conjecture
when G is finitely presented.

Theorem 1.5 (Main) Suppose G is a finitely presented group that is hyper-
bolic relative to a collection of finitely generated subgroups P = {P1, . . . , Pn}.
If each Pi has semistable fundamental group at ∞ then G has semistable
fundamental group at ∞.

All of our work is done in a “cusped” space X for (G,P) (see §5). When X
is Gromov hyperbolic then the pair (G,P) is said to be relatively hyperbolic
or that G is hyperbolic relative to P. This cusped space is a locally finite
2-complex on which G acts by isometries, but not co-compactly (see §5). It
follows from ([Bow12], §6 and §9) that the Bowditch boundary for a relatively
hyperbolic pair (G,P) agrees with the Gromov boundary of X. Throughout
the paper this boundary is denoted ∂(G,P) and is called the boundary of the
relatively hyperbolic pair (G,P).
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The base space Y in X is a universal cover of a finite complex with
fundamental group G. There are closed neighborhoods Xm of Y in X which
are also universal covers of finite complexes with fundamental group G so
G has semistable fundamental group at ∞ if and only if some (equivalently
any) Xm has semistable fundamental group at ∞. The proof of Theorem
9.3 shows that for some m, the space Xm (and hence G) has semistable
fundamental group at ∞.

Any proper ray in Xm is properly homotopic to a proper ray in Y . We
show two nearly geodesic rays in Y are properly homotopic in X by nearly
geodesic homotopies. Using Theorem 8.3, we cut out disks in the domains of
our homotopies on which these homotopies stray out of Xm (for some large
fixed integer m). The geodesic nature of our homotopies allows us to show
that the disks can only occur in a locally finite way (see Claims 1 and 2 of
the proof of Theorem 9.1) and hence we can properly fill in our homotopies
on these disks by homotopies with image in Xm. This is where we use
the hypothesis that the peripheral subgroups are 1-ended and semistable.
The resulting homotopies are then combined in a standard way to finish the
proof of the theorem. Our nearly geodesic homotopies and the local finiteness
arguments of the Claims are the key insights that drive our proofs.

The remainder of the paper is organized as follows. The first order of
business is to reduce our problem to the case where G is 1-ended and the
peripheral subgroups are 1-ended and have semistable fundamental group at
∞. This is accomplished in Section 2. Once the reduction is accomplished
we need to know boundaries of the resulting relatively hyperbolic groups
are path connected and locally path connected. This is accomplished in
Section 2. Finally, groups covered by our Main Theorem and not covered
by earlier results are described is Section 2. We develop basic semistability
background in Section 3. Section 4 is a short section on hyperbolicity and
thin triangles. In Section 5 we review the construction of cusped spaces
for a relatively hyperbolic group and discuss some of its properties. We
develop the idea of a filter and a filter map in Section 6. Filters are graphs in
[0, 1]× [0,∞) that are geodesically mapped into our cusped space and allow
us to produce nearly geodesic homotopies (filter maps). Theorem 6.3 is the
main result of this section and all of our initial homotopies are built using this
result. Triangulations of our cusped space and [0, 1] × [0,∞) are developed
in Section 7. Filters maps are turned into our first simplicial homotopies in
this section. Section 8 contains several tracking results. For each vertex v
of Y we construction a geodesic ray rv in X that stays close to Y . If sv is a
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geodesic ray at the base point ∗ in Y converging to the same boundary point
as does rv, then we show that each point of rv is within δ (the hyperbolicity
constant for X) of sv. The rays rv are important in the construction of filters
and filter maps. Theorem 6.1 of [MSa] is introduced in order to cut out the
parts of our simplicial homotopies that leave Xm. Finally, our Main Theorem
is proved in Section 9.

2 A Reduction to the One-Ended Case

We begin with a finitely presented group G and a finite collection P of
finitely generated subgroups of G such that G is hyperbolic relative to P.
The members of P are finitely presented by the following result (proved in
[DG13]). For a more general result see [DGO17], Theorem 2.11.

Theorem 2.1 ([DG13]) If the group G is finitely presented and hyperbolic
relative to a finite collection of proper finitely generated subgroups Pi, then
the Pi are finitely presented as well.

The reduction we want comes directly from:

Theorem 2.2 (Theorem 2.9, [MSb]) If Conjecture 1.2 holds true for the
case when G and each Pi is finitely presented and 1-ended (and each Pi has
semistable fundamental group at ∞), then the conjecture holds true in the
more general setting where G and each Pi is finitely presented (with possibly
more than 1-end), as long as the Pi have semistable fundamental group at
∞.

In his thesis [Das20] A. Dasgupta proves that the only cut points in a
connected boundary of a finitely generated relatively hyperbolic group are
parabolic. Dasgupta combines this result with a result of Bowditch to prove:

Theorem 2.3 ([Das20]) When the Bowditch boundary of a finitely generated
relatively hyperbolic group is connected, then it is locally connected.

As noted in the introduction, the Hahn-Mazurkiewicz Theorem combines
with Theorem 2.3 to show:

Theorem 2.4 If G is finitely generated, 1-ended and hyperbolic relative to
a finite collection P of finitely generated subgroups then ∂(G,P) is path con-
nected and locally path connected.
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Results of B. Bowditch (see Theorem 2.13 of [MSb]) determine that cut
points appear in ∂(G,P) precisely when (G,P) admits a non-trivial graph
of groups decomposition that is a ‘proper peripheral splitting’. Notice that
in the following combination result of M. Mihalik and S. Tschantz, there is
no restriction on the number of ends of any of the groups involved.

Theorem 2.5 [MT92] Suppose G is a finite graph of groups decomposition
of the finitely presented group G where each edge group is finitely generated
and each vertex group is finitely presented with semistable fundamental group
at ∞. Then G has semistable fundamental group at ∞.

Combining Theorems 1.1 and 2.5 with the splitting result of Bowditch
shows many relatively hyperbolic groups (with boundary cut points) have
semistable fundamental group at ∞, but a broad collection of examples are
described near the end of Section 2 of [MSb] that are covered by the Main
Theorem of this paper and not by previous results. In particular, for any
finitely generated (but not finitely presented) recursively presented group Q
and finitely presented group P containing a subgroup isomorphic to Q, a
finitely presented group G = A ∗Q P is described that is hyperbolic relative
to P . Here A is finitely generated but not finitely presented. If P has
semistable fundamental group at ∞ then our Main Theorem 1.5 implies G
has semistable fundamental group at ∞. The techniques of [MSb] break
down for such groups.

3 Semistability Background

The best reference for the notion of semistable fundamental group at ∞ is
[Geo08] and we use this book as a general reference throughout this sec-
tion. While semistability makes sense for multiple ended spaces, we are only
interested in 1-ended spaces in this article. Suppose K is a locally finite
connected CW complex. A ray in K is a continuous map r : [0,∞)→ K. A
continuous map f : X → Y is proper if for each compact set C in Y , f−1(C)
is compact in X. Proper rays r, s : [0,∞) → K converge to the same end
if for any compact set C in K, there is an integer k(C) such that r([k,∞))
and s([k,∞)) belong to the same component of K − C. The space K has
semistable fundamental group at ∞ if any two proper rays r, s : [0,∞)→ K
that converge to the same end are properly homotopic (there is a proper
map H : [0, 1] × [0,∞) → X such that H(0, t) = r(t) and H(1, t) = s(t)).
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Note that when K is 1-ended, this means that K has semistable fundamental
group at ∞ if any two proper rays in K are properly homotopic. Suppose
C0, C1, . . . is a collection of compact subsets of a locally finite 1-ended com-
plex K such that Ci is a subset of the interior of Ci+1 and ∪∞i=0Ci = K, and
r : [0,∞) → K is proper, then π∞1 (K, r) is the inverse limit of the inverse
system of groups:

π1(K − C0, r)← π1(K − C1, r)← · · ·

This inverse system is pro-isomorphic to an inverse system of groups with
epimorphic bonding maps if and only if K has semistable fundamental group
at ∞ (see Theorem 2.1 of [Mih83] or Theorem 16.1.2 of [Geo08]). It is an
elementary exercise to see that semistable fundamental group at ∞ is an
invariant of proper homotopy type and S. Brick [Bri93] proved that semista-
bility is a quasi-isometry invariant. When K is 1-ended with semistable
fundamental group at ∞, π∞1 (K, r) is independent of proper base ray r (in
direct analogy with the fundamental group of a path connected space being
independent of base point). Theorem 2.1 of [Mih83] and Lemma 9 of [Mih86],
provide several equivalent notions of semistability. Conditions 2 and 3 are
the semistability criterion used in the proof of our main theorem.

Theorem 3.1 Suppose K is a connected 1-ended locally finite and simply
connected CW-complex. Then the following are equivalent:

1. Any two proper rays in K are properly homotopic.

2. If r and s are proper rays based at v, then r and s are properly homo-
topic rel{v}.

3. Given a compact set C in K there is a compact set D in K such that
if r and s are proper rays based at v and with image in K −D, then r
and s are properly homotopic rel{v} in K − C.

If G is a finitely presented group and X is a finite connected complex with
π1(X) = G then G has semistable fundamental group at ∞ if the universal
cover of X has semistable fundamental group at ∞. This definition only
depends on G (see the proof of Theorem 3 of [LR75] or the opening paragraph
of section 16.5 of [Geo08]) and it is unknown if all finitely presented groups
have semistable fundamental group at ∞.
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Figure 1: Internal points

4 Hyperbolicity

There are a number of equivalent forms of hyperbolicity for geodesic metric
spaces. In this paper we use the following thin triangles definition.

Definition 1. Suppose (X, d) is a geodesic metric space. If 4(x, y, z) is a
geodesic triangle in X, let 4′(x′, y′, z′) be a Euclidean comparison triangle
(i.e. d′(x′, y′) = d(x, y) etc., where d′ is the Euclidean metric.) There is
a surjection f : 4′ → 4 which is an isometry on each side of 4′. The
maximum inscribed circle in 4′ meets the side [x′, y′] (respectively [x′, z′],
[y′, z′]) in a point c′z (resp. c′y, c

′
x) such that

d(x′, c′z) = d(x′, c′y), d(y′, c′x) = d(y′, c′z), d(z′, c′y) = d(z′, c′x).

Let cx = f(c′x), cy = f(c′y) and cz = f(c′z). We call the points cx, cy, cz the
internal points of 4. There is a unique continuous function t4 : 4′ → T4
of 4′ onto a tripod T4, where t4 is an isometry on the edges of 4′, and T4
is a tree with one vertex w of degree 3, and vertices x′′, y′′, z′′ each of degree
one, such that d(w, z′′) = d(z′, c′y) = d(z′, c′x) etc. (See Figure 1.)

Let f4 be the composite map f4 ≡ t4 ◦ f−1 : 4 → T4. We say that
4(x, y, z) is δ − thin if fibers of f4 have diameter at most δ in X. In other
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words, for all p, q in 4,

f4(p) = f4(q) implies dX(p, q) ≤ δ.

The space X is (δ) hyperbolic if there is a constant δ such that all geodesic
triangles in X are δ thin.

In a hyperbolic geodesic metric space X the boundary ∂X can be defined
in a number of ways. In Section III.H.3 of [BH99] ∂X is defined as the set
of equivalence classes [r] of geodesic rays r, where r and s are equivalent if
there is a number K ≥ 0 such that d(r(k), s(k)) ≤ K for all k ≥ 0. We say r
converges to [r]. Note that if such a K exists for r, s based at p, then our thin
triangle condition forces d(r(k), s(k)) ≤ δ for all k ≥ 0. (Simply consider the
geodesic triangle formed by r([0, k + K]), s([0, k + K]) and a geodesic (of
length ≤ K) connecting r(k+K) to s(k+K). The internal points on r and
s are beyond r(k) and s(k) respectively.)

If X is a δ hyperbolic geodesic metric space then there is a metric d on
∂X (induced from an inner product on X) such that (∂X, d) is compact (see
Proposition 3.7 [BH99]). Intuitively, if r(0) = s(0) then [r] is ‘close’ to [s] if
r and s fellow travel for a ‘long’ time.

5 Cusped Spaces and Relatively Hyperbolic

Groups

Given a finitely generated group G and a collection of finitely generated
subgroups P of G there are a number of equivalent definitions of what it
means for the pair (G,P) to be relatively hyperbolic or G to be relatively
hyperbolic with respect to P. Theorem 5.2 enables us to say the pair (G,P)
is relatively hyperbolic if a certain cusped space is Gromov hyperbolic, so we
take this as our definition. The Gromov boundary of this cusped space is the
boundary of the pair (G,P) and is denoted ∂(G,P). This boundary agrees
with the Bowditch boundary of the pair (G,P).

D. Groves and J. Manning [GM08] investigate a locally finite space X
derived from a finitely generated group G and a collection P of finitely gen-
erated subgroups. The following definitions are directly from [GM08]

Definition 2. Let Γ be any 1-complex. The combinatorial horoball based
on Γ, denoted H(Γ), is the 2-complex formed as follows:
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A) H(0) = Γ(0)× ({0} ∪ N)
B) H(1) contains the following three types of edges. The first two types

are called horizontal, and the last type is called vertical.
(B1) If e is an edge of Γ joining v to w then there is a corresponding edge

ē connecting (v, 0) to (w, 0).
(B2) If k > 0 and 0 < dΓ(v, w) ≤ 2k, then there is a single edge connecting

(v, k) to (w, k).
(B3) If k ≥ 0 and v ∈ Γ(0), there is an edge joining (v, k) to (v, k + 1).
C) H(2) contains three kinds of 2-cells:
(C1) If γ ⊂ H(1) is a circuit composed of three horizontal edges, then

there is a 2-cell (a horizontal triangle) attached along γ.
(C2) If γ ⊂ H(1) is a circuit composed of two horizontal edges and two

vertical edges, then there is a 2-cell (a vertical square) attached along γ.
(C3) If γ ⊂ H(1) is a circuit composed of three horizontal edges and two

vertical ones, then there is a 2-cell (a vertical pentagon) attached along γ,
unless γ is the boundary of the union of a vertical square and a horizontal
triangle.

Definition 3. Let Γ be a graph and H(Γ) the associated combinatorial
horoball. Define a depth function

D : H(Γ)→ [0,∞)

which satisfies:
(1) D(x) = 0 if x ∈ Γ,
(2) D(x) = k if x is a vertex (v, k), and
(3) D restricts to an affine function on each 1-cell and on each 2-cell.

Definition 4. Let Γ be a graph and H = H(Γ) the associated combinatorial
horoball. For n ≥ 0, let Hn ⊂ H be the full sub-graph with vertex set
Γ(0)×{0, . . . , N}, so that Hn = D−1[0, n]. Let Hn = D−1[n,∞) and H(n) =
D−1(n). The set H(n) is often called a horosphere or nth level horosphere.

Lemma 5.1 (Lemma 3.10, [GM08]) Let H(Γ) be a combinatorial horoball.
Suppose that x, y ∈ H(Γ) are distinct vertices. Then there is a geodesic
γ(x, y) = γ(y, x) between x and y which consists of at most two vertical
segments and a single horizontal segment of length at most 3.

Moreover, any other geodesic between x and y is Hausdorff distance at
most 4 from this geodesic.
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Definition 5. Let G be a finitely generated group, let P = {P1, . . . , Pn} be a
(finite) family of finitely generated subgroups of G, and let S be a generating
set for G containing generators for each of the Pi. For each i ∈ {1, . . . , n},
let Ti be a left transversal for Pi (i.e. a collection of representatives for left
cosets of Pi in G which contains exactly one element of each left coset).

For each i, and each t ∈ Ti, let Γi,t be the full subgraph of the Cayley
graph Γ(G,S) which contains tPi. Each Γi,t is isomorphic to the Cayley
graph of Pi with respect to the generators Pi ∩ S. Then define

X(G,P, S) = Γ(G,S) ∪ (∪{H(Γi,t)
(1)|1 ≤ i ≤ n, t ∈ Ti}),

where the graphs Γi,t ⊂ Γ(G,S) and Γi,t ⊂ H(Γi,t) are identified in the
obvious way.

The space X(G,P, S) is called the cusped space for G, P and S. If G and
the Pi have finite presentations, let A = 〈S;R〉 be such a presentation that
includes sub-presentations of the Pi. We add 2-cells to Γ(G,S) to form the
Cayley 2-complex of this presentation. The resulting expansion of X(G,P, S)
is called the cusped space for G, P and A and is denoted X(G,P,A). The
next result shows cusped spaces are fundamentally important spaces. We
prove our results in cusped spaces.

Theorem 5.2 (Theorem 3.25, [GM08]) Suppose that G is a finitely gener-
ated group and P = {P1, . . . , Pn} is a finite collection of finitely generated
subgroups of G. Let S be a finite generating set for G containing generating
sets for the Pi. A cusped space X(G,P, S) is hyperbolic if and only if G is
hyperbolic with respect to P.

Assume G is finitely presented and hyperbolic with respect to the sub-
groups P = {P1, . . . , Pn} and S is a finite generating set for G containing
generating sets for the Pi. The Pi and their conjugates are called peripheral
subgroups of G. For a finite presentation A of G with respect to S, let Y (A)
be the Cayley 2-complex for A. So Y is simply connected with 1-skeleton
Γ(G,S), and the quotient space G/Y has fundamental group G. The cusped
space X(G,P, S) is quasi-isometric to the cusped space X(G,P,A) and so
one is hyperbolic if and only if the other is hyperbolic, and these two spaces
have the same boundary. For g ∈ G and i ∈ {1, . . . , n} we call gPi a periph-
eral coset in a cusped space. The depth functions on the horoballs over the
peripheral cosets extend to X(G,P,A). So that

D : X(G,P,A)→ [0,∞)
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where D−1(0) = Y and for each horoball H (over a peripheral coset) we have
H ∩ D−1(m) = H(m), H ∩ D−1[0,m] = Hm and H ∩ D−1[m,∞) = Hm. We
call each Hm an m-horoball.

Lemma 5.3 (Lemma 3.26, [GM08]) If a cusped space X is δ-hyperbolic,
then the m-horoballs of X are convex for all m ≥ δ.

Given two points x and y in a horoball H, there is a shortest path in H
from x to y of the form (α, τ, β) where α and β are vertical and τ is horizontal
of length ≤ 3. Note that if α is non-trivial and ascending and β is non-trivial
and descending, then τ has length either 2 or 3.

If Y (A) is the Cayley 2-complex for the finite presentation A of the group
G, then the isometric action of G on Y extends to an isometric action of G
on X(G,P,A). This action is height preserving. In the following lemmas,
X = X(G,P,A).

Lemma 5.4 (Lemma 5.1, [MSb]) Suppose t1 and t2 are vertices of depth
d̄ ≥ δ in a horoball H of X. Then for each i ∈ {1, 2}, there is a geodesic
γi from ∗ to ti such that γi has the form (ηi, αi, τi, βi), where the end point
xi of ηi is the first point of γi in the horosphere H(d̄), αi and βi are vertical
and of the same length in H d̄ and τi is horizontal of length ≤ 3. Furthermore
d(x1, x2) ≤ 2δ + 1.

Lemma 5.5 (Lemma 2.28, [HM]) Let P be an element of P, g be an element
of G and q be a closest point of gP to ∗ (the identity vertix of Y ). If ψ is
a geodesic from ∗ to gP that meets gP only in its terminal point, then the
terminal point of ψ is within 6δ + 4 of q.

Lemma 5.6 (Lemma 4.4, [MSa]) Given an integer K, there is an integer
A5.6(K) such that if γ is an edge path loop in X of length ≤ K, then γ is
homotopically trivial in BA5.6(K)(v) for any vertex v of γ.

Lemma 5.7 (Lemma 3.3, [HM]) Suppose λ̃ = (λ, ψ, λ̄) is a cusp geodesic
from x ∈ qP to y ∈ qP and d(x, y) ≥ 2δ. Let ν be a geodesic in X from x
to y. Then |λ̃| ≤ |ν|+ δ and the ith vertex of ν is within 2δ of the ith vertex
of λ̃. If |ν| ≤ n ≤ |λ̃| then the nth vertex of λ̃ is within 2δ of y. Finally, the
mid point of ν is an interior point of the geodesic triangle with sides ν, the
first half of λ̃ and the second half of λ̃.
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6 Filters, Filter Maps and Metrics

Our reductions imply the group G is 1-ended as is each Pi ∈ P. Let A be a
finite presentation for G that contains finite sub-presentations for the Pi. Let
X be the cusped space X(G,P,A). The compact metric space ∂(G,P) is
path connected and locally path connected (Theorem 2.4). The space Y ⊂ X
is the Cayley 2-complex of A. For a peripheral coset gPi, let Γ(gPi) be the
copy of the Cayley 2-complex of Pi in Y containing g. We use d̂ for our
metric on ∂X = ∂(G,P). Any proper ray in X is properly homotopic to a
proper edge path ray in the 1-skeleton of X. Hence when we show a space has
semistable fundamental group at ∞ it suffices to show all proper edge path
rays are properly homotopic. Since X is quasi-isomorphic to the 1-skeleton
of X, one is hyperbolic if and only if the other is hyperbolic. Let d be the
edge path metric on X(1), the 1-skeleton of X. If A is a subcomplex of X(1)

let Bn(A) be the neighborhood of radius n about A. For any subcomplex
A of X, define St(A) to be A, union all vertices connected by an edge to
a vertex of A, union all 2-cells of X all of whose vertices belong to St(A).
Define Stn(A) inductively as St(Stn−1(A)). Note that if A(1) is the 1-skeleton
of A, then Bn(A(1)) is the 1-skeleton of Stn(A). In particular, if for n ≥ 1,
the 1-skeleton of Stn(v) is Bn(v) for all vertices v of X.

Definition 6. A filter F is the realization of a connected graph in [0, 1] ×
[0,∞) with the following properties:

(1) Each vertex is of the form (t, n) for some integer n ≥ 0 and some
t ∈ [0, 1]. The points (0, 0) and (0, 1) are vertices of F .

(2) Each edge of F is either vertical or horizontal. A vertical edge is the
convex hull of vertices (t, n) and (t, n+1). If (t, n) is a vertex of F , then (t, n)
and (t, n+ 1) are the vertices of a vertical edge (so every vertex is connected
by an edge to exactly one vertex directly above it).

(3) A horizontal edge is the convex hull of the vertices (t, n) and (s, n)
for some integer n ≥ 0 and numbers 0 ≤ t < s ≤ 1. The horizontal edges
at height n form an edge path from (0, n) to (1, n) with consecutive vertices
(0, n), (t1, n), (t2, n), . . . , (1, n) where ti < ti+1 for all i. (Note that the first
coordinates of vertices at height n are a subset of the first coordinates of
vertices at height n+ 1.)

Note that each component of [0, 1] × [0,∞) − F is a rectangle that is
bounded by an edge path loop with exactly two vertical edges, one horizontal
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edge at height n and all other edges horizontal at height n+ 1.
The idea is to build filters and proper homotopies that map any vertical

edge path in the filter to a geodesic edge path in the 1-skeleton ofX. Infinitely
many of these homotopies will then be combined in a proper way to show that
every proper ray in Y is properly homotopic to a certain (nearly geodesic)
ray in Y by a proper homotopy in XM for some fixed integer M .

Let δ ≥ 1 be the hyperbolicity constant for X. Given ε > 0 there is
N(ε) > 0 such that if x, y ∈ ∂X and rx, ry are geodesic edge path rays at
∗ converging to x and y respectively with d(rx(N(ε)), ry(N(ε))) ≤ 2δ + 1

then d̂(x, y) ≤ ε. Given N > 0 there is ε1(N) such that if x, y ∈ ∂X and
d̂(x, y) < ε1(N) then for any geodesics rx and ry at ∗ converging to x and y
respectively, d(r(N), s(N)) ≤ 2δ + 1.

Since ∂X is compact, connected and locally path connected we have:
Given ε > 0 there is ρ(ε) > 0 such that if x, y ∈ ∂X and d̂(x, y) ≤ ρ(ε) then
there is a path connecting x and y in ∂X of diameter ≤ ε. Combining these
results we have:

Lemma 6.1 Given an integer N there is an integer M6.1(N) > N such that
if r and s are geodesic edge path rays at ∗ ∈ X (converging to x, y ∈ ∂X
respectively) and d(r(M6.1(N)), s(M6.1(N))) ≤ 2δ + 1, then there is a path
γ in ∂X from x to y such that for any two points w1 and w2 in the image
of γ and any geodesic edge paths q1 and q2 at ∗ converging to w1 and w2

respectively, d(q1(n), q2(n)) ≤ δ for all n ≤ N .

Remark 6.2 The next result provides the primary technical tool to proving
our main theorem. It gives an analogue to a geodesic homotopy between two
geodesic rays in a CAT(0) space. Suppose X is CAT(0). If s0 and s1 are
geodesic rays at ∗ ∈ X and γ is a path in ∂X from s0 = γ(0) to s1 = γ(1),
then there is a “geodesic” homotopy H : [0, 1] × [0,∞) → X from s0 to s1

defined by H(a, t) = γ(a)(t).

For technical reasons, we need the following result to apply to edge path
rays s′1 and s′2 that are only “nearly” geodesic. In applications s′i will be the
concatenation of a finite edge path and a geodesic edge path ray. The edge
path ray s′i will synchronously track a geodesic edge path ray.

Theorem 6.3 Suppose K ≥ δ is an integer, s1 and s2 are geodesic edge path
rays at ∗ in X such that [s1] 6= [s2], and for i ∈ {1, 2}, s′i is an edge path ray
such that d(si(t), s

′
i(t)) ≤ K for all t ∈ [0,∞). Let γ be a path in ∂X from
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[s1] = [s′1] to [s2] = [s′2]. There is a filter F (s′1, s
′
2, γ,K) for [0, 1] × [0,∞)

and a proper homotopy f : [0, 1]× [0,∞)→ X (called a filter map for F ) of
s′1 to s′2 rel {∗}, such that:

(1) If (t, n) is a vertex of F with t 6∈ {0, 1} then f restricted to {t}×[n,∞)
is the tail of a geodesic edge path at ∗ ∈ X representing an element of the
path γ (in ∂X).

(2) Each horizontal edge of F is mapped to an edge path of length ≤
K + 2δ.

(3) If R (an open rectangle) is a component of [0, 1] × [0,∞) − F and
α is the edge path loop bounding the rectangle R, then f(α) has image in
B2K+δ+1(f(v)) ⊂ X where v is the upper left vertex of R. Furthermore f(R)
has image in StA5.6(2K+δ+1)(f(v)).

(4) If v = (a, b) is a vertex of F and τ is the vertical segment of [0, 1]×
[0,∞) from (a, 0) to (a, b), then f(τ) and any geodesic from ∗ to f(v) will
(2δ + A5.6(2K + δ + 1))-track one another.

Proof: By Lemma 5.6 (and adapting to our notation) there is an integer
A(2K + δ + 1) such that if α is an edge path loop in X with image in
B2K+δ+1(v) for some vertex v of α, then α is homotopically trivial in StA(v).

We construct the filter F (s′1, s
′
2, γ,K). Choose an integer N0 ≥ 0 as large

as possible such that for any two points w1 and w2 in the image of γ and
any geodesic edge paths q1 and q2 at ∗ converging to w1 and w2 respectively,
d(q1(N), q2(N)) ≤ δ for all integers 0 ≤ N ≤ N0. (Note that N0 ≥ δ

2
.) For j

an integer between 0 and N0− 1, the only vertices of [0, 1]× [0,∞) are (0, j)
and (1, j). The vertical edges are between (0, j − 1) and (0, j), and (1, j − 1)
and (1, j). There is a horizontal edge between (0, j) and (1, j).

Next we define f on [0, 1] × [0, N0] (and on every vertical line above a
vertex of [0, 1]× {N0}). This process is iterated to define f and the filter F .

(i) f(t, 0) = ∗ for all t ∈ [0, 1].
(ii) f(0, t) = s′1(t) and f(1, t) = s′2(t) for all t ∈ [0,∞).
(iii) For n an integer in {1, 2, . . . , N0 − 1} let f restricted to the edge

[0, 1]×{n} be an edge path of length ≤ 2K + δ from s′1(n) to s′2(n). (Such a
path exists since there is an edge path of length ≤ δ from s1(n) to s2(n) and
for i ∈ {1, 2}, edge paths of length ≤ K from s′i(n) to si(n)).

(iv) For n ∈ {1, 2, . . . , N0 − 1}, let f restricted to the rectangle [0, 1] ×
[n − 1, n] be a homotopy in StA(s′1(n)) (given by Lemma 5.6) that kills the
loop determined by f restricted to the boundary of the rectangle.

(v) For k ≥ 0, let Nk = N0+kδ. Choose points 0 = t00 < t01 < · · · < t0k(0) =
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1 such that for any i and two points u1 and u2 in [t0i , t
0
i+1] and any ∗ based

geodesic edge paths q1 ∈ γ(u1) and q2 ∈ γ(u2), we have d(q1(n), q2(n)) ≤ δ
for all n ∈ [0, N1]. There are k(0) + 1 vertices (t00, N0), (t01, N0), . . . (t0k(0), N0)

at level N0 in F and a horizontal edge between (t0j , N0) and (t0j+1, N0) for each
j. For each n ∈ {1, . . . , k0 − 1} add a vertical edge path ray {t0n} × [n0,∞)
to F (with vertices (t0n, n) for each integer n ≥ n0.) Let r0

n be a geodesic
edge path at ∗ converging to γ(t0n). Let r0

0 = s′1 and r0
k(0) = s′2. For n ∈

{0, . . . , k(0)} and a ∈ [N0,∞) define f(t0n, a) = r0
n(a). (This agrees with our

earlier definition of f on {0, 1} × [N0,∞).
Note that for n ∈ {1, . . . , k(0)− 2}, d(f(t0n, N0), f(t0n+1, N0)) ≤ δ and for

n ∈ {0, k(0)−1}, d(f(t0n, N0), f(t0n+1, N0)) ≤ K+δ. For n ∈ {1, . . . , k(0)−2}
define f restricted to the edge between (t0n, N0) and (t0n+1, N0) to be an edge
path of length ≤ δ. For n ∈ {0, k(0) − 1} define f restricted to the edge
between (t0n, N0) and (t0n+1, N0) to be an edge path of length ≤ K + δ. (see
Figure 2).

Recall that d(s1(N0), s′1(N0)) ≤ K, f(0, N0) = s′1(N0), and for all n ∈
{0, 1, . . . k(0) − 1}, d(s1(N0), f(t0n, N0)) ≤ δ. Hence d(f(0, N0), f(t0n, N0)) ≤
K+δ for all n. The edge path loop bounding the rectangle [0, 1]×[N0−1, N0]
is mapped by f to an edge path loop in St2K+δ+1(f(0, N0)) (recall K ≥ δ).
This loop is homotopically trivial in StA(f(0, N0)). Extend f to the rectangle
by this homotopy.

Iterate this process on each of the regions [t0n, t
0
n+1] × [N0, N1] for n ∈

{0, 1, . . . , k0 − 1}. This extends f to [0, 1] × [0, N1] and each vertical ray
above a vertex of [0, 1]× {N1}. Repeated iterations defines a filter F and a
proper homotopy/filter map on [0, 1]× [0,∞).

(proof of part (4)): Again, let A = A5.6(2K+δ+1). Say b = Ni−j where
i ≥ 1 and 1 ≤ j ≤ δ (if j = δ then b = Ni−1). A terminal segment of τ (see
(4)) is the vertical segment of F from (a,Ni−1) to (a, b). There are integers
i and k such that a = ti−1

k (and (ti−1
k , Ni−1) is a vertex of the subdivision of

the horizontal segment [0, 1] × {Ni−1}). The geodesic edge path ray ri−1
k at

∗ in X is such that ri−1
k (t) = f((ti−1

k , t)) (where again a = ti−1
k ) for t ≥ Ni−1.

(See Figure 3)

We will show that f(τ) and ri−1
k |[0,b] will (2δ +A)-track one another. We

already have that f(τ(t)) = f(ti−1
k , t) = ri−1

k (t) for t ∈ [Ni−1, b] (a terminal
segment of f(τ)). Choose n such that ti−1

k ∈ [ti−2
n , ti−2

n+1]. By construction, the
rays ri−2

n and ri−1
k will δ fellow travel on [0, Ni−1]. By (3), for any rectangle

R = [ti−2
n , ti−2

n+1] × [j, j + 1] (for j an integer in [Ni−2, Ni−1 − 1]), we have
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Figure 2: A Filter Homotopy
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(ti−2n , Ni−2) (ti−2n+1, Ni−2)(ti−1k , 0) = (a, 0)
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(ti−1k , Ni−1)

(ti−2n , j)

(ti−2n , j + 1)

Ni−1

•(a, b) = v

γ

Figure 3: Tracking Geodesics
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f(R) ⊂ StA(ri−2
n (j+1)). In particular, f(τ) and ri−2

n will A-track one another
on [Ni−2, Ni−1]. Since ri−2

n and ri−1
k will δ-track one another on [0, Ni−1], f(τ)

and ri−1
k will (δ+A)-track one another on [Ni−2, Ni−1]. Next find p such that

ti−1
k is between ti−3

p and ti−3
p+1 and repeat the argument on [Ni−3, Ni−2] and

subsequent intervals to obtain f(τ) and ri−1
k will (δ + A)-track one another

on [0, b]. Now ri−1
k |[0,b] and any other geodesic from ∗ to f(v) will δ-track one

another, completing the proof of (4). 2

7 Triangulations and Simplicial Homotopies

In this section we define a triangulation of X that respects the action of
G. Given a filter F and filter map f1 : [0, 1] × [0,∞) → X, we produce
a triangulation for [0, 1] × [0,∞) and a proper simplicial map f : [0, 1] ×
[0,∞)→ X that agrees with f1 on F .

Our primary tool is E. C. Zeeman’s relative simplicial approximation
theorem. We follow Zeeman’s notation.

If K is a simplicial complex, let |K| denote the polyhedron underlying K
(also called the realization of K). If L is a subcomplex of K, let (K mod L)′

denote the barycentric derived complex of K modulo L which is obtained
from K by subdividing barycentrically all simplexes of K − L in some or-
der of decreasing dimension. Note that L is a subcomplex of (K mod L)′.
Inductively define

K0 = K,

Kr = (Kr−1 mod L)′.

In 1964, E. C. Zeeman proved The Relative Simplicial Approximation The-
orem.

Theorem 7.1 (Main Theorem, [Zee64]) Let K, M be finite simplicial com-
plexes and L a subcomplex of K. Let f : |K| → |M | be a continuous map
such that the restriction f |L is a simplicial map from L to M . Then there
exists an integer r, and a simplicial map g : Kr → M such that g|L = f |L
and g is homotopic to f keeping L fixed.

First a we construct a triangulation of X. Recall that A is a finite pre-
sentation for G and A contains a finite presentation for each P ∈ P, as a
subpresentation. Each 2-cell of Y is bounded by an edge path (corresponding
to a relation of our presentation A of G). In each 2-cell E add a vertex v
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(G-equivariantly) and an edge from v to each vertex of the boundary of e.
Triangles are formed (in the usual way) from the two vertices of an edge in
the boundary of E and v. This triangulates E unless its boundary has length
2 (there may be a generator of order 2). In this case, add a vertex to each
edge of E, a vertex v to E and add an edge from v to each vertex in the
boundary of E. This is done respecting the action of G on Y and gives a
triangulation of Y . If E is a 2-cell of a horoball H and E has three horizontal
edges in its boundary, then E is a triangle of our triangulation. If E has two
vertical edges and two horizontal edges, then add a single diagonal edge to E.
For each translate gE add a diagonal edge that respects the action of G. If
E has two vertical edges and 3 horizontal edges, let v be the common vertex
of the two lower horizontal edges. Add edges from v to the two vertices of E
that are one level above v. In this way no additional vertices are added to
any horoball of X and we have a triangulation of X that respects the action
of G.

Next suppose F (s′1, s
′
2, γ,K) is a filter and f1 : [0, 1] × [0,∞) → X is a

filter map for F . The vertices of F are called filter vertices. If e is a horizontal
edge of F and f1(e) is an edge path (of length ≤ 2K + δ), then add vertices
to e (and replace e by the corresponding edges) so that f1 is simplicial on e.
These new vertices are not called filter vertices. At this point, f1 is simplicial
on our triangulation of F , but we have not dealt with 2-cells yet. Suppose R
is a rectangle of [0, 1]× [0,∞)−F . Add a vertex w to R and an edge from w
to each vertex of the boundary of R in order to triangulate R̄ (the closure of
R). Recall that f1 restricted to R̄ is a homotopy that kills the boundary loop
of R in StA5.6(2K+δ+1)(f1(v)) where v is the upper left (filter) vertex of R.
Let f |R̄ be a simplicial approximation to f1 with image in (our triangulated)
StA5.6(2K+δ+1)(f1(v)) such that f agrees with f1 on the boundary of R. We
have shown:

Lemma 7.2 Suppose F (s′1, s
′
2, , γ,K) is a filter and f1 : [0, 1]× [0,∞)→ X

is a filter map for F . There are triangulations of X and [0, 1]× [0,∞) and a
simplicial map f : [0, 1]×[0,∞)→ X that agrees with f1 on F . Furthermore,
for any rectangle R of [0, 1]× [0,∞)−F , f(R̄) ⊂ StA5.6(2K+δ+1)(f(v)) where
v is the upper left (filter) vertex of R̄. In particular, if w is a vertex of R̄,
(in our triangulation of [0, 1]× [0,∞) and φ is an edge path in R̄ from w to
the upper left (filter) vertex v of R̄, then

d(f(v), f(w)) ≤ A5.6(2K + δ + 1)
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and f(φ) is an edge path from f(w) to f(v) such that

im(f(φ)) ⊂ BA5.6(2K+δ+1)(f(v)) ⊂ B2A5.6(2K+δ+1)(f(w)).

Hence if E ≥ 0 and D(f(w)) > 2A5.6(2K + δ + 1) + E then the image of φ
is in the horoball containing f(w) and D(f(v)) > A5.6(2K + δ + 1) + E.

While more general projections are considered in [MSb] we are only inter-
ested in projecting proper edge path rays of XK into Y . In fact, we need only
consider special projections obtained by projecting the individual horizontal
edges of a ray into Y .

Suppose K ≥ 0 and e = (v, w) is an edge in X(K). Say τ is the vertical
edge path from Y to v and τ̄ is the vertical edge path from Y to w. Then γ
is a projection of e (or (τ, e, τ̄−1)) to Y if γ is a shortest edge path in Y from
the initial point τ to the initial point of τ̄ . If r is an edge path in XK with
initial and end point in Y or an edge path ray in XK with initial point in
Y , then r̂ is a projection of r to Y if r̂ is obtained from r by replacing each
horizontal edge e of r by a projection of e to Y . Suppose K > 0 is an integer
and r is a proper edge path ray in XK with initial point in Y . We construct
a proper simplicial homotopy H from r to a projection of r into Y such that
the image of H is in StK+1(im(r)). The following is a special case of Lemma
5.6 of [MSb]

Lemma 7.3 Suppose e is an edge of H̄(K) for some integer K > 0. If γ is
a projection of e into Y then each vertical line at a vertex of γ passes within
1 horizontal unit of a vertex of e.

Lemma 7.4 Suppose that r is a proper edge path ray at v ∈ Y . Also assume
that r has image in XK for some integer K ≥ 0. Then a projection of r to Y
is properly homotopic rel{v} to r by a proper simplicial homotopy with image
in StK+1(im(r)).

Proof: If e is a horizontal edge e of r then consider (τ, e, τ̄−1) where τ
(respectively τ̄) is vertical from Y to the initial (respectively terminal) point
of e. It suffices to show that (τ, e, τ̄−1) is homotopic to a projection Qe of
e by a simplicial homotopy in StK+1(e). Suppose e = (a, b) where a and b
are vertices of height ≤ K. Let γ0 be a shortest path in Y from the initial
point of τ to the initial point of τ̄ . If γ0 is the edge path (e1, e2, . . . , en)
then there is a vertical pentagon with base (e1, e2), two vertical sides and
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a horizontal edge e1
1 at level 1. Let H1

1 be the obvious simplicial homotopy
of (e1, e2) to (b1, e

1
1, b
−1
3 ) where the bi are vertical edges. Construct H2

1 a
simplicial homotopy of (e3, e4) to (b3, e

1
2, b
−1
5 ). Continuing, the last homotopy

may have base (en−1, en) (if n is even) or just en (if n is odd). Combining
these homotopies gives a simplicial homotopy H1 of γ0 = (e1, . . . , en) to
(b1, γ1, b

−1
n+1) where γ1 = (e1

1, e
1
2, . . .) is horizontal of length ≤ n

2
+ 1. Similarly

define H2 a simplicial homotopy of γ1 to a vertical edge followed by the
horizontal edge path γ2 followed by another vertical edge. Continuing this
process, we find that the last homotopy is one with base of length one or
two. Hence the top edge is e. Combining these simplicial homotopies gives
a simplicial homotopy of γ0 to (τ, e, τ̄−1). Lemma 7.3 implies that the image
of this homotopy is in StK+1(e). 2

8 Preliminary Results

In order to build certain ideal triangles, we need a geodesic line in X19δ.

Theorem 8.1 There is an infinite order element g ∈ G so that if ρ is a
geodesic in X from ∗ to g∗, then the line l = (. . . , g−1ρ, ρ, gρ, g2ρ, . . .) is a
bi-infinite geodesic that has image in D−1([0, 19δ]).

Proof: By Theorem 3.33 [GM08] there is a geodesic line ` in D−1([0, 19δ])
and an infinite order element g1 ∈ G such that g1` = `. Certainly the
image of ` is not a subset of a horoball and so ` must contain a vertex
v = h∗ (for h ∈ G) of Y . The element g = h−1g1h stabilizes the geodesic
line h−1` (containing ∗). If ρ is the subgeodesic of h−1` from ∗ to g∗, then
h−1` = (. . . , g−1ρ, ρ, gρ, g2ρ, . . .). Since G is height preserving, h−1` has
image in D−1([0, 19δ]). 2

Let `+ be the geodesic ray (ρ, gρ, g2ρ, . . .) at ∗ and let `− be the geodesic
ray (g−1ρ−1, g−2ρ−1, g−3ρ−1, . . .) at ∗ (so that `+ and `− determine the two
ends of `). Let v be a vertex of Y (so that v ∈ G) and consider an ideal
geodesic triangle determined by the geodesic line v` and two geodesic rays
s+
v and s−v at ∗, where s+

v (respectively s−v ) converges to the same point of
∂(G,P) as does v`+ (respectively v`−). This implies that v is within δ of
either s+

v or s−v . In the former case let rv be v`+, otherwise let rv be v`−. We
have:
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Lemma 8.2 The geodesic rv at v is either v`+ or v`−. If αv is a geodesic
from ∗ to v and sv is the geodesic ray at ∗ such that [rv] = [sv] ∈ ∂X, then for
each integer n ≥ 0 the vertex sv(n) is within δ of the nth vertex of (αv, rv).

The following definition and theorem were critical components in the
proof of the homology version of our main theorem. They play an important
role in this paper.

Definition 7. We call the pair (E,α) a disk pair in the simplicial complex
[0,∞) × [0, 1] if E is an open subset of [0,∞) × [0, 1] homeomorphic to R2,
E is a union of (open) cells, α is an embedded edge path bounding E and E
union α is a closed subspace of [0,∞)× [0, 1] homeomorphic to a closed ball
or a closed half space in [0,∞)× [0, 1]. When α is finite, we say the disk pair
is finite, otherwise we say it is unbounded.

We will apply the next result with X equal to the cusped space for (G,P),
Y equal to the Cayley 2-complex of (G,A) in X and the Zi being the G-
translates of the Γ(Pi) in X. The set X − Y will be the union of the open
horoballs above the Zi. This result will allow us to start with a proper
simplicial homotopy M : ([0, 1] × [0,∞), [0, 1] × {0}) → (X, ∗) of proper
edge path rays r and s (with images in Y ) and “excise” certain parts of
[0, 1] × [0,∞) not mapped into Y . When the homotopy is built primarily
from a filter, we will be able to replace it by a proper homotopy between r
and s with image completely in XN for some integer N .

Theorem 8.3 (Theorem 6.1, [MSa]) Suppose

M : ([0, 1]× [0,∞), [0, 1]× {0})→ (X, ∗)

is a proper simplicial homotopy rel{∗} of proper edge path rays r and s into
a connected locally finite simplicial 2-complex X, where r and s have image
in a subcomplex Y of X. Say Z = {Zi}∞i=1 is a collection of connected
subcomplexes of Y such that only finitely many Zi intersect any compact
subset of X. Assume that each vertex of X − Y is separated from Y by
exactly one Zi.

Then there is an index set J such that for each j ∈ J , there is a disk pair
(Ej, αj) in [0, 1]× [0,∞) where the Ej are disjoint, M maps αj to Zi(j) (for
some i(j) ∈ {1, 2, . . .}) and M([0, 1]× [0,∞)− ∪j∈JEj) ⊂ Y .
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9 The Proof of the Main Theorem

In this section we prove there is an integer M0 such that XM0 has semistable
fundamental group at ∞. Since XM0 is simply connected and G/XM0 is a
finite complex. By definition (see §3) G has semistable fundamental group
at ∞ if and only if XM0 has semistable fundamental group at ∞.

Recall that for each vertex v in Y we have defined the geodesic edge path
ray rv at v. If v ∈ gPi let Qrv be some projection of rv into Y . The next
lemma is the key technical fact of the paper. All homotopies that appear
following this lemma are derived from homotopies guaranteed by this lemma.

Lemma 9.1 Let M0 = 2A5.6(7δ + 1) + 2δ + 1. If e = (v, w) is an edge of a
peripheral coset gPi and d = (w, q) is an edge of Y then:
(1) The edge path ray Qrv is properly homotopic rel{v} to both the edge path
ray (e,Qrw) and to the edge path ray (e, d,Qrq), by homotopies in XM0.

(2) For N > 0 there is M9.1(N) > N such that if {v, w} ∩ BM9.1(N)(∗) = ∅
then there is an edge path ψ in gPi from v to w such that Qrv is properly
homotopic rel{v} to (ψ,Qrw) in XM0 −BN(∗).

If q 6∈ BM9.1(N)(∗) then there is an edge path ψ′ in gPi from v to w such
that Qrv is properly homotopic rel{v} to (ψ′, d,Qrq) in XM0 −BN(∗).

Furthermore, if gPi ∩BN(∗) = ∅ then we may take ψ = ψ′ = e.

Proof: We prove Qrv is properly homotopic to (e,Qrw) and (ψ,Qrw) in
parts ( 1) and (2) of the Lemma. The proof that Qrv is properly homotopic
to (e, d,Qrq) and (ψ′, d,Qrq) is completely analogous to that argument, with
Qrw simply replaced by (d,Qrq).

We begin by proving part (2) of the lemma. Part (1) has an analogous, but
more elementary proof that we include at the end. Let A = {A1, A2, . . . , Am}
be the set of peripheral cosets that intersect BN(∗). Choose K1 > N+19δ1+1
such that for j ∈ {1, . . . ,m} and vj a closest vertex of Aj to ∗, we have
B6δ+4(vj) ⊂ BK1(∗). For j ∈ {1, . . . ,m} let Hj be the horoball over Aj. Let
cj be a closest point of Hj(δ) to ∗. Let L = A5.6(7δ + 1). Assume that for
j ∈ {1, . . . ,m}

B2L+5δ+3(cj) ⊂ BK1(∗).

We fix the following constants:

L = A5.6(7δ + 1); K2 = 3K1 + 2L+ 16δ + 3; M = M6.1(K2).
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Note that M depends only on N . There are two Cases. We will show
that if gPi = Aj for some j ∈ {1, . . . ,m}, then M = M9.1(N) satisfies the
second conclusion of our lemma. If gPi 6= Aj for any j ∈ {1, . . . ,m}, then a
different value for M9.1(N) satisfies the conclusion of the lemma. We finish
our proof by choosing M9.1(N) to be the large of the two.

Recall that by Lemma 5.6, if α is an edge path loop in X with im-
age in B7δ+1(v) for some vertex v of α, then α is homotopically trivial in
StA5.6(7δ+1)(v) = StL(v).

Case 1. Assume that gPi = A1 and (v, w) is in X −BM(∗).
Say our edge path ray rv (at v) converges to x ∈ ∂X and rw converges to
y ∈ ∂X. By Lemma 8.2, the vertex of sv that is d(v, ∗) from ∗ is within δ of
v. Similarly for sw. Since these points of sv and sw are within 2δ + 1 of one
another, we have d(sv(M), sw(M)) ≤ 2δ + 1. By Lemma 6.1, there is a path
γ in ∂X from x to y such that for any two points w1 and w2 in the image
of γ and any geodesic edge paths q1 and q2 at ∗ converging to w1 and w2

respectively, we have d(q1(k), q2(k)) ≤ δ for all k ≤ K2 = 3K1 +2L+16δ+3.
(See Figure 4.)

Suppose βv is a geodesic from ∗ to v and v̄ is the first point of βv in
gPi. Since gPi = A1 and v1 is a closest point of A1 to ∗, Lemma 5.5 implies
d(v̄, v1) ≤ 6δ + 4 and so

v̄ ∈ BK1(∗).
Let β′v be the edge path from ∗ to v obtained from βv by replacing the segment
of βv from v̄ to v by a cusp geodesic and note that this cusp geodesic has
length ≥ 2K1 + 2L + 16δ + 3. Let s′v be β′v followed by rv. Similarly define
s′w. Lemma 8.2 implies the nth vertex of sv is within δ of the nth vertex of
(βv, rv) for all n. Lemma 5.7 implies that for all n ≥ 0

d(sv(n), s′v(n)) ≤ 3δ.

Similarly for sw and s′w. Let F = F (s′v, s
′
w, γ, 3δ) and f : [0, 1]× [0,∞)→ X

be the filter and filter map of Theorem 6.3 (so that the constantK of Theorem
6.3 is 3δ).

At this point the argument becomes technical. We give a brief outline of
the Case 1 argument and refer the reader to Figure 4. We construct a proper
homotopy Hv between rv and the projection Qrv. Similarly with Hw. Then
take simplicial approximations of Hv, Hw and f . Then we combine these
three proper simplicial homotopies with simplicial homotopies of β′v to Qβ′v
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and β′w to Qβ′2. This gives a proper simplicial homotopy H between Qs′v and
Qs′w. Apply Theorem 8.3 to H. We will show there is a disk pair (D,α) such
that both v and w are vertices of H(α). In order to do this, we show there
is a path τ̂ in the domain of H that is mapped by H to a path connecting
v and w into the horoball above A1 (so τ̂ belongs to the disk D of a disk
pair (D,α)). The path H(τ̂) is represented in Figure 4 by a red path from
v to w with τ as a subpath. If ψ̂ is the part of α above τ̂ then f(ψ̂) is the
path ψ of our lemma and we will only use the part of H that lies above ψ̂ to
obtain our final homotopy. Other disks of disk pairs of Theorem 8.3 are also
removed, but we will show only finitely many can have boundary path in a
given peripheral coset and none of these peripheral cosets will in A. If α′ is
such a boundary path and α′ is finite then we extend our homotopy to the
disk it bounds by an arbitrary homotopy that kills α′ in the corresponding
Cayley 2-complex of its peripheral coset. If α′ is unbounded then we extend
our homotopy to the disk (halfspace) it bounds by a proper homotopy of two
opposite rays forming α′ in the corresponding Cayley 2-complex. This gives
the proper homotopy described by part (2) of the lemma (and completes the
outline).

Recall that in the proof of Lemma 6.3, the number N0 ≥ 0 was chosen
large as possible such that for any two points w1 and w2 in the image of γ and
any geodesic edge paths q1 and q2 at ∗ converging to w1 and w2 respectively,
d(q1(n), q2(n)) ≤ δ for all integers n ∈ [0, N0]. Since M = M6.1(K2)

N0 ≥ K2 = 3K1 + 2L+ 16δ + 3.

As noted earlier, the cusp geodesic from v̄ to v has length at least 2K1 +
2L+16δ+3 and so its initial vertical segment has length at least K1 +L+8δ.

Let D1 = d(v̄, ∗) so that 0 ≤ D1 ≤ K1. Then s′v(D1 + L + K1 + 8δ) has
depth L+K1 +8δ in the horoball over gPi. In the construction of the filter in
Lemma 6.3, for each integer n < N0 there was an edge from (0, n) to (1, n).
Since D1 ≤ K1, we have D1 + L + K1 + 8δ < N0. This implies there is an
edge in our filter from (0, D1 + L+K1 + 8δ) to (1, D1 + L+K1 + 8δ). The
image under f of this edge is an edge path τ of length ≤ 2(3δ) + δ = 7δ from
s′v(D1 + L+K1 + 8δ) to s′w(D1 + L+K1 + 8δ). Since s′v(D1 + L+K1 + 8δ)
has depth L+K1 + 8δ, the path τ (of length ≤ 7δ) has image in the horoball
over gPi. This implies s′w(D1 + L+K1 + 8δ) is a point of the cusp geodesic
from w̄ to w (since w̄ is the first point of s′w in that horoball).

(A) Let Dv be the length of the subpath of s′v from ∗ to v. Similarly define
Dw. Let τ̂ be the edge path in the filter from (0, Dv) to (0, D1 +L+K1 + 8δ)
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followed by the edge from (0, D1 + L + K1 + 8δ) to (1, D1 + L + K1 + 8δ)
followed by the edge path from (1, D1 + L + K1 + 8δ) to (1, Dw). The path
f(τ̂) follows our cusp geodesic from v to the initial point of τ , then follows τ
and then follows our cusp geodesic from the end point of τ to w (see Figure
4). Hence f(τ̂) has image in the horoball over gPi.

Note that it may be case that v1 = v̄ = ∗ and D1 = 0. Recall that
d(s′v(n), sv(n) ≤ 3δ for all n (and similarly for s′w and sw). If t ∈ (0, 1)
and (t, n) is a vertex of F then d(f(t, n), ∗) = n. Hence each vertex of
[0, 1] × [D1 + L + K1 + 8δ,∞) is mapped by f to X − BD1+L+K1+5δ(∗). By
Lemma 6.3(2), f maps the 1-skeleton of [0, 1] × [D1 + L + K1 + 8δ,∞) to
X−BD1+K1+L+2δ(∗). By Lemma 6.3(3) the boundary of each open rectangle
in [0, 1] × [D1 + L + K1 + 8δ,∞) − F is mapped by f to B7δ+1(f(z)) for z
the upper left vertex of the rectangle. The extension of f to this rectangle
has image in StL(f(z)) (by our choice of L and the definition of f in Lemma
6.3). Since f(z) ∈ X −BD1+L+K1+5δ(∗), the image of this rectangle under f
has image in X − StD1+K1+5δ(∗). Hence:

f([0, 1]× [D1 + L+K1 + 8δ,∞)) ⊂ X − StD1+K1+5δ(∗).

Let f̄ be a simplicial approximation to f that agrees with f on F . Note
that f̄ can only differ from f on the open rectangles R of [0, 1]×[0,∞)−F and
f̄ |R̄ is a simplicial approximation of f |R̄ : R̄ → StL(z) (for z the upper left
(filter) vertex of R) that agrees with f on the boundary of R. In particular,
f̄(R̄) ⊂ StL(z) and

f̄([0, 1]× [D1 + L+K1 + 8δ,∞)) ⊂ X − StD1+K1+5δ(∗) ⊂ X − StK1(∗).

By Lemma 7.4 there is a proper simplicial homotopy Hv of Qrv to rv
rel{v} with image in the 19δ + 1 neighborhood of rv (and similarly there is
Hw for rw and Qrw). Since v and w avoid BK2(∗), K1 > N+19δ+1, and K2 >
3K1, the homotopies Hv and Hw avoid StK1(∗). Now combining the proper
simplicial homotopies Hv, f̄ (from s′v to s′w) and Hw gives a proper simplicial
homotopy of (β′v, Qrv) to (β′w, Qrw). We combine this homotopy with an
arbitrary simplicial homotopy of Qβ′v to β′v and of Qβ′w to β′w to obtain a
proper simplicial homotopy H of (Qβ′v, Qrv)(= Qs′v) to (Qβ′w, Qrw)(= Qs′w).

Apply Theorem 8.3 to H. Each disk pair (Ej, αj) is mapped by H into a
horoball with H(αj) mapped into a G translate of one of the Pi and H(Ej)
mapped into the (open) horoball over that translate of Pi. By (A), one of
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these Ej, call it D, contains the path τ̂ and H(D) has v and w in its boundary.
The boundary of D is composed of two simple edge paths (separated by
τ̂) and H composed with either connects v and w. The definition of (the
domain of) τ̂ implies one of these paths (call it ψ̂) is above τ̂ and has image
in [0, 1]× [D1 +L+K + 1 + 8δ,∞) union the domains of the homotopies Hv

from Qrv to rv and Hw from Qrw to rw. Each of these last two homotopies
avoid BK1(∗). We have shown that f̄([0, 1]× [D1 + L+K1 + 8δ,∞) ⊂ X −
BD1+K1+5δ−2(∗) ⊂ X − BK1(∗). Hence H composed with ψ̂ and everything
above ψ̂ avoids BK1(∗). We are only interested in H1, the restriction of the
homotopy H to the part of its domain above ψ̂. We reparametrize the domain
of H1 and alter H1 on certain disk pairs to obtain a homotopy Ĥ, so that
H(ψ̂) = ψ = Ĥ|[0,1]×{0} (as mentioned in the statement of our Lemma 9.1).

Claim 1. Suppose hPj is a peripheral coset, H̄ is the horoball over hPj and
c is a closest vertex of H̄(δ)(= D−1(δ)∩ H̄) to ∗. Then there are only finitely
many disk pairs (D,α) for [0, 1] × [0,∞) and the homotopy H, such that
H(α) ⊂ hPj and D contains a vertex z1 = (a, b) of F such that D(f(z1)) ≥
L+ 2δ + 1. Furthermore, each such disk D contains a vertex w′1 of our filter
such that d(f(w′1), c) ≤ 2L+ 5δ + 3.

Proof: Suppose (D,α) is such a disk pair. Let αz1 be a geodesic in X from
∗ to f(z1) (as in Lemma 5.4). Say αz1(t) = x is the first point of αz1 in
H̄(δ). By Lemma 5.4, d(x, c) ≤ 2δ + 1. The segment αz1([t, t+ L+ 2δ + 1])
of αz1 (immediately following x) is vertical. Let z = αz1(t + L + 2δ + 1).
Let βz1 be the vertical segment of [0, 1] × [0,∞) from (a, 0) to z1 = (a, b)
(of length b). By Lemma 6.3(4), f(βz1) and αz1 must (L + 2δ)-track one
another. Hence if w1 = βz1(t + 2L + δ + 1), then d(f(w1), z) ≤ L + 2δ, and
f(βz1([t+ L+ 2δ + 1, b])) ⊂ H̄1. (See Figure 5.) Note that w1 belongs to an
edge of our triangulation of our filter and so within 1 unit of a vertex w′1 of
our filter such that f(w′1) ∈ H̄1.

In particular, d(f(w1), c) ≤ d(f(w1), z) + d(z, x) + d(x, c) ≤ 2L + 5δ + 2
and βz1([t + L + 2δ + 1, b]) ⊂ D so that w1, w

′
1 ∈ D. In particular, D

contains a vertex w′1, such that f(w′1) is within 2L + 5δ + 3 of c. Since f is
proper, [0, 1]× [0,∞) contains only finitely many vertices that f maps within
2L + 5δ + 3 of c. Since the disks of the disk pairs are all disjoint, the claim
follows. 2

If (D,α) is a disk pair for H, arising from Theorem 8.3 and containing a
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Figure 5: Tracking Paths in a Horoball

vertex v of the filter F such that D(f(v)) ≥ L+ 2δ+ 1, then remove D from
[0, 1] × [0,∞). Recall that the image of the homotopy H1 avoids BK1(∗),
and if we can properly extend H1 to the removed disks by a map that avoids
BN(∗) and so that the extension has image in XL+2δ+2, we will have the
desired homotopy Ĥ (with Ĥ|[0,1]×{0} = H1(ψ̂) = ψ after a reparametrization
of the domain of H1).

Claim 2. If (α,D) is a disk pair of our triangulation of [0, 1] × [0,∞) and
some vertex y of D, is such that D(f(y)) > 2L+ 2δ + 1 then there is a filter
vertex z of D with D(f(z)) > L+ 2δ + 1.

Proof: Since D(f(y) > 2L+2δ+1, Lemma 7.2 (with K = 3δ and E = 2δ+1)
implies that in our triangulation of [0, 1]× [0,∞) there is an edge path φ (of
length ≤ L = A5.6(7δ+1) from y to a filter vertex z of [0, 1]× [0,∞) such that
H(φ) is in the horoball containing f(y) (and so z is a vertex of D) and such
that D(f(z)) > L+ 2δ + 1. 2

If (D,α) is a disk pair of our triangulation of [0, 1]×[0,∞) and D does not
contain a vertex of v of F with D(f(v)) ≥ L+ 2δ + 1, then Claim 2 implies
that H(D) ⊂ X2L+2δ+1. Suppose (D,α) is a disk pair and D contains a
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vertex v of F such that D(f(v)) ≥ L + 2δ + 1. Then the disk D is removed
from the domain of H1 (the part of [0, 1]× [0,∞) above ψ̂). Say α has image
in hPj. Let H̄ be the horoball above hPj and let c be a closest vertex of
H̄(δ)(= D−1(δ) ∩ H̄) to ∗. Claim 1 implies that D contains a vertex w from
the filter F such that d(f(w), c) ≤ 2L + 5δ + 3. Since H1 avoids BK1(∗),
and B2L+5δ+3(ci) ⊂ BK1(∗) for i ∈ {1, . . . ,m} our peripheral hPj cannot
be in A = {A1, . . . , Am}. This implies that hPj avoids BN(∗). Hence if D
is bounded, then any homotopy killing α in Γ(hPj) avoids BN(∗). If D is
unbounded (and α is a line) then any proper homotopy in Γ(hPj) of two
opposing rays of this line avoids BN(∗) (such a homotopy exists since Pj is

1-ended and has semistable fundamental group at ∞). Define Ĥ on D to be
such a homotopy. It suffices to show the resulting homotopy is proper. Given
any compact set C ⊂ X only finitely many peripheral subgroups intersect
C. Hence only finitely many of the extensions of H1 intersect C so that
Ĥ−1(C) is contained in the compact set H−1(C) union the inverse image
of finitely many extensions of H1 to (finitely many) disks. Since each such
extension (on the closed disk) is proper Ĥ is a proper map with image in
X2L+2δ+1(= XM0). This concludes the proof of Case 1.

Before we consider the second case, we prove part (1) the lemma. We
build the homotopy Ĥ in a similar way, but less care is necessary. The paths
β′v and β′w are not necessary. Instead use the paths βv and βw (geodesic edge
paths in X from ∗ to v and w respectively) to define s′v = (βv, rv) and s′w =
(βw, rv). Build a filter homotopy between Qsv = (Qβv, Qrv) and Qsw and use
relative simplicial approximation to obtain a proper simplicial homotopy H
between Qsv and Qsw with image in X. (See Figure 4.) Next use Theorem
8.3, Claim 1 and Claim 2 (as before) to obtain a proper homotopy H1 of
Qsv = (Qβv, Qrv) to Qsw = (Qβw, Qrw) rel{∗}, with image in XM0 .

Since the loop (Qβ−1
v , Qβw, e

−1) is homotopically trivial in Y , we can
combine H1 with such a homotopy and replace (Qβ−1

v , Qβw) by e. We obtain
a proper homotopy Ĥ of Qrv to (e,Qrw) with image in XM0 . This finishes
part (1) of the lemma.

For the final case, we follow much of our earlier notation. Assume that
K ′ ≥ N + 19δ + 1 and for j ∈ {1, . . . ,m}

B2L+5δ+3(cj) ⊂ BK′(∗).

Let t1 = K ′ + L+ δ and M ′ = M6.1(t1).
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Case 2. Assume gPi 6∈ {A1, . . . , Am} and e is an edge of gPi in X −BM ′(∗).

Say our edge path ray rv (at v) converges to x ∈ ∂X and rw converges to
y ∈ ∂X. Let αv be a geodesic from ∗ to v. By Lemma 8.2, the vertex sv(n) is
within δ of the nth vertex of (αv, rv). Similarly for sw. The vertex of sv that
is d(v, ∗) from ∗ and the vertex of sw that is d(w, ∗) from ∗ are within 2δ+ 1
of one another. Since M ′ < d(v, ∗), we have d(sv(M

′), sw(M ′)) ≤ 2δ + 1.
By Lemma 6.1, there is a path γ in ∂X from x to y such that for any
two points w1 and w2 in the image of γ and any geodesic edge paths q1

and q2 at ∗ converging to w1 and w2 respectively, d(q1(k), q2(k)) ≤ δ for all
k ≤ t1(= K ′ + L+ δ).

Let f : [0, 1]× [0,∞)→ X be a filter homotopy for a filter F (sv, sw, γ, 0)
of Lemma 6.3. Recall that on each rectangle R of [0, 1]× [0,∞)−F we have
f(R̄) ⊂ StL(z) where z is the upper left vertex of R. Let f1 be the restriction
of f to [0, 1]×[K ′+L,∞) and let τ be f1 restricted to [0, 1]×{t1}. Let F1 be a
proper simplicial approximation to f1 that agrees with f1 on the filter F and
with image in the StL neighborhood of the part of the filter in [0, 1]× [t1,∞).
(The map F1 is obtained by combining simplicial approximations to f1 on
closed rectangles.) Since f1 restricted to the part of the filter in [0, 1]×[t1,∞)
avoids BK′+L(∗), the image of F1 is in X −BK′(∗). By Lemma 6.1, the path
τ has image in Nδ(sv(t1)). Next we define a proper simplicial homotopy H
of Q(rv) to (e,Q(rw), rel{v} in X − BN(∗) by combining F1 with six other
proper simplicial homotopies (see Figure 6).

Let α′v be the tail of αv beginning at αv(t1). Let βv be an edge path of
length≤ δ from αv(t1) to sv(t1). Form ≥ t1, consider the edges αv([m,m+1])
and sv([m,m + 1]), and paths of length ≤ δ from αv(m) to sv(m) and from
αv(m+ 1) to sv(m+ 1), forming loops. These loops are homotopically trivial
in StA5.6(δ+1)

(sv(m)) ⊂ StL(sv(m)) and so by Theorem 7.1 we may assume
these homotopies are simplicial. Combining these homotopies, there is a
proper simplicial homotopy H1 between (βv, sv|[t1,∞)) and (α′v, rv) with image
in StL(sv([t1,∞))) ⊂ X −BK′(∗). Similarly for H2 and w.

By Lemma 7.4 there is a simplicial homotopy H3 of rv to a projection
Qrv, rel{v} with image in the 19δ + 1 neighborhood of im(rv). Similarly for
H4 and rw. Consider the geodesic triangle formed by αv, αw and e = (v, w).
The mth vertex of αv is within δ of the mth vertex of αw for all m. Let ψ be an
edge path of length ≤ δ from αv(t1) to αw(t1). (For simplicity, assume that
d(∗, v) = d(∗, w).) For each integer t1 ≤ m ≤ d(∗, v) there is an edge path ψm
from αv(m) to αw(m) (with ψt1 = ψ and ψd(∗,v) = e). The loops formed by
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ψm, ψm+1 and the corresponding edge from α′v and α′w is homotopically trivial
by a simplicial homotopy in St5.6(δ+1)(α(m)). Combining these homotopies
gives the homotopy H5, a simplicial homotopy of (α′v, e) to (ψ, α′w) in the
A5.6(δ+1) star neighborhood of α′v. Hence H5 has image in X − StK′(∗). The
loop (βv, τ, β

−1
w , ψ−1) has image in B2δ(sv(t1)) and so is homotopically trivial

(by the simplicial homotopy H6) in StL(sv(t1)) ⊂ X − StK′(∗).
Combining these homotopies, we have H, a proper simplicial homotopy

rel{v} of Qrv to (e,Qrw) (see Figure 6), with image in X−StK′(∗). Now, use
Theorem 8.3 (to cut out the disks of [0, 1]× [0,∞) that H does not map into
XM0). Define Ĥ to agree with H on the compliment of the removed disks.
Suppose (D,α) is such a disk pair and H(α) has image in the peripheral hPj.
Let H̃ be the horoball over hPj in X and let c be a closest point of H̃(δ) to ∗.
Claims 1 and 2 imply D contains a filter vertex within 2L+5δ+3 of c. Since
B2L+5δ+3(ci) ⊂ BK′(∗) for i ∈ {1, . . . ,m}, we have hPj 6∈ {A1, . . . , Am}.

We proceed just as before. If D is bounded, then any homotopy killing α
in Γ(hPj) avoids BN(∗). If D is unbounded (and α is a line) then any proper
homotopy in Γ(hPj) of two opposing rays of this line avoids BN(∗). Define

Ĥ on D to be such a homotopy. Just as before, Ĥ is proper with image in
XM0 −BN(∗). This completes the proof of Case 2 and Lemma 9.1. 2

The proof of our Main Theorem will be derived from the next result by
a homotopy “stacking” argument.

Lemma 9.2 If d = (w, q) is an edge of Y then Qrw is properly homotopic
rel{w} to (d,Qrq) in XM0. Furthermore, for each integer N there is an
integer M9.2(N) such that if d has image in Y −BM9.2(N) then Qrw is properly
homotopic rel{w} to (d,Qrq) by a homotopy in XM0 −BN(∗).

Proof: If d belongs to a peripheral coset then Qrw is properly homotopic
rel{w} to (d,Qrq) in XM0 by Lemma 9.1. Otherwise, let e = (v, w) be an
edge of a peripheral coset. By Lemma 9.1, the ray Qrv is properly homotopic
rel{v} to (e,Qrw) in XM0 . Equivalently, Qrw is properly homotopic rel{w}
to (e−1, Qrv) in XM0 . Again by Lemma 9.1 Qrv is properly homotopic rel{v}
to (e, d,Qrq) in XM0 . Equivalently, (e−1, Qrv) is properly homotopic rel{w}
to (d,Qrq) in XM0 . Since both (d,Qrq) and Qrw are properly homotopic
rel{w} to (e−1, Qrv) in XM0 , the first part of the lemma is proved.

For the second part, we will show that Qrw and (d,Qrq) are properly
homotopic rel {w} to ‘far out’ proper rays at w that have image in a pe-
ripheral coset. Since peripheral subgroups are semistable, these rays are in
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turn properly homotopic rel{w} to one another in XM0 −BN(∗). Combining
homotopies will finish the proof of the lemma.

Without loss, assume the integers M9.1(k) are strictly increasing in k. We
choose P1 ∈ P (any other peripheral would do as well). Let AN be the (finite)
set of all peripheral cosets vP1 such that v ∈ BN(∗). Since P1 has semistable
fundamental group at ∞, Theorem 3.1(3) implies there is an integer M1(N)
such that if A ∈ AN and r and s are proper edge path rays in A−StM1(N)(∗),
both based at the vertex v, then r and s are properly homotopic rel{v} in
Γ(A)−StN(∗). Let M2(N) = M9.1(M1(N)). Let BN be the (finite) set of all
peripherals vP1 such that v ∈ BM2(N)(∗). Let M3(N) be such that if B ∈ BN
then the bounded components of Γ(B)−StM2(N)(∗) belong to BM3(N)(∗). We
will show that M3(N) satisfies the role of M9.2(N).

Let d = (w, q) be an edge in Y − BM3(N)(∗) and let A be the peripheral
coset wP1. The constant M3(N) has been chosen so that whether or not
A ∈ BN , there is an proper edge path ray r = (e1, e2, . . .) based at w and
with image in Γ(A) − BM2(N)(∗). Label the consecutive vertices of r as
v0 = w, v1, v2, . . ..

For k ≥ 1 let Nk be the largest integer such that ek is in Y −BM9.1(Nk)(∗).
By the definition of M2(N), we have Nk ≥ M1(N) for all k. By Lemma 9.1
there is a proper homotopy rel{vi−1} (call it Hi) of Qrvi−1

to (ψi, Qrvi) in
XM0−BNk(∗) where ψi is an edge path in A−BNk(∗) ⊂ A−BM1(N)(∗) from
vi−1 to vi.

Hi : Qrvi−1
∼vi−1

(ψi, Qrvi).

Since r is proper, the ek converge to infinity and so the Nk converge to
infinity. This means that the images of only finitely many Hi intersect any
given compact set. Hence combining the Hi as in Figure 7 gives Ĥ1, a
proper homotopy rel{w} of Qrv0 = Qrw to r1 = (ψ1, ψ2, . . .) with image in
XM0 −BM1(N)(∗).

Ĥ1 : Qrv0 = Qrw ∼w r1 = (ψ1, ψ2, . . .)→ XM0 −BM1(N)(∗).

Lemma 9.1 also gives a proper homotopy rel{v1} (call it Ĥ2) of Qrv1 to
(φ, d,Qrq) in XM0 − BM1(N)(∗), where φ is an edge path in A − BM1(N)(∗)
from v1 to v0. Equivalently Ĥ2 is a proper homotopy rel{w} of (d,Qrq) to
(φ−1, Qrv1) in XM0 −BM1(N)(∗).

Ĥ2 : (d,Qrq) ∼w (φ−1, Qrv1)→ XM0 −BM1(N)(∗).
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Figure 7: Multiple Homotopies

Combining the homotopies H2, H3, . . . gives Ĥ3, a proper homotopy Ĥ3

rel{v1} of Qrv1 to (ψ2, ψ3, . . .) in XM0 −BM1(N)(∗).

Ĥ3 : Qrv1 ∼v1 (ψ2, ψ3, . . .)→ XM0 −BM1(N)(∗).

Combining Ĥ2 and Ĥ3 gives Ĥ4 a proper homotopy rel{w} of (d,Qrq) to
(φ−1, ψ2, ψ3, . . .) in XM0 −BM1(N)(∗).

Ĥ4 : (d,Qrq) ∼w (φ−1, ψ2, ψ3, . . .)→ XM0 −BM1(N)(∗).

Whether or not A ∈ AN , the definition of M1(N), implies there is a proper
homotopy rel{w} (call it Ĥ5) of (φ−1, ψ2, ψ3, . . .) to (ψ1, ψ2, . . .) in Γ(A) −
StN(∗).

Ĥ5 : (φ−1, ψ2, ψ3, . . .) ∼w (ψ1, ψ2, . . .)→ Γ(A)− StN(∗).

Combining Ĥ1, Ĥ5 and Ĥ4 gives a proper homotopy rel{w} of Qrw to (d,Qrq)
by a homotopy in XM0 −BN(∗).

Qrw ∼w (ψ1, ψ2, . . .) ∼w (φ−1, ψ2, ψ3, . . .) ∼w (d,Qrq)

2
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Theorem 9.3 Suppose G is a 1-ended finitely presented group that is hy-
perbolic relative to P a finite collection of 1-ended finitely presented proper
subgroups of G. If each P ∈ P has semistable fundamental group at ∞, then
G has semistable fundamental group at ∞.

Proof: If r is a proper edge path ray in XM0 and based at ∗, then r is
properly homotopic to any projection Qr of r to Y . Hence we need only
consider proper edge path rays based at ∗ and with image in Y . Let r∗ = l+.
We show for any proper edge path ray s at ∗ and with image in Y , s is
properly homotopic rel{∗} to Qr∗ in XM0 . Then, if s1 and s2 are arbitrary
proper edge path rays at ∗ and with image in Y we have both are properly
homotopic rel{∗} to r∗ in XM0 and hence s1 is properly homotopic to s2

rel{∗} in XM0 . This means XM0 has semistable fundamental group at ∞.
Equivalently, G has semistable fundamental group at ∞.

Write s as the edge path (e1, e2, . . . ) and say that vi is the initial vertex
of ei. Let 0 < N1 < N2 < · · · be a sequence of integers such that M9.2(Ni) <
Ni+1 for all i ≥ 1. Since s is proper, there is an integer K2 such that for
all i ≥ K2, ei has image in Y − BN2(∗). Given an integer j > 2 there is an
integer Kj ≥ Kj−1 such that for all i ≥ Kj, ei has image in Y −BNj(∗). For
1 ≤ i < K2, Lemma 9.2 implies there is a proper homotopy Hi rel{vi} of
Qrvi to (ei, Qrvi+1

).
For j ≥ 2 and Kj ≤ i < Kj+1, the edge ei has image in Y − BNj(∗). For

such i, we use Lemma 9.2 to obtain a proper homotopy Hi rel{vi} of Qrvi to
(ei, Qrvi+1

) with image in XM0 −BNj−1
(∗). Let H be the homotopy obtained

by combining the homotopies Hi as in Figure 8.
For j ≥ 2 and Kj ≤ i < Kj+1, the edge ei has image in Y − BNj(∗). For

such i, we use Lemma 9.2 to obtain a proper homotopy Hi rel{vi} of Qrvi to
(ei, Qrvi+1

) with image in XM0 −BNj−1
(∗). Let H be the homotopy obtained

by combining the homotopies Hi as in Figure 8.
It suffices to show that H is proper. Let C be compact in XM0 and j such

that C ⊂ BNj(∗). Then for all k ≥ Kj+1, Hk has image in XM0 − BNj(∗) ⊂
XM0 − C. Then H−1(C) = ∪Kj+1

i=1 H−1
i (C) is a finite union of compact sets

and H is proper. 2
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