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DECIDING STABILITY OF SHEAVES ON CURVES

HOLGER BRENNER AND JONATHAN STEINBUCH

Abstract. We give an algorithm to determine whether a kernel
sheaf over a smooth projective curve over an algebraically closed
field is semistable. The algorithm uses symmetric powers to make
destabilizing subbundles visible as global sections.

Introduction

Among the vector bundles (locally free sheaves) in algebraic geome-
try the semistable vector bundles are of particular interest, as they form
suitable moduli spaces (see [14], [11]). So in some sense the generic bun-
dle is semistable. However, for a concretely given vector bundle it is in
general quite difficult to decide whether it is semistable or not.
In this paper we provide an algorithm to decide semistability for

vector bundles on smooth projective curves over an algebraically closed
field of characteristic 0. Related work on determing the semistability
of bundles has been done in [4, Proposition 5.1, Corollary 6.4], [12] for
sheaves over Pn and in [5, Section 2] for curves in positive characteristic.
Recall that the slope of a vector bundle F is µ(F) = degF

rankF
, the

quotient between the degree and the rank of the bundle, and that
F is called semistable if for all subbundles E ⊆ F the inequality
µ(E) ≤ µ(F) holds. The basic problem in deciding semistability is
to control all subbundles at once. Either we have to find a destabi-
lizing subbundle or we have to exclude its existence. If the bundle
has negative degree and a global section 6= 0, when the bundle is not
semistable. Moreover, global sections can be computed with methods
from computer algebra, at least if the bundle is given by a graded mod-
ule of a homogeneous coordinate ring of the curve. The problematic
case is when a bundle of negative degree has a subbundle of nonnega-
tive degree but without global sections. Our main observation is here
that destabilizing subbundles are visible as global sections of suitable
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symmetric powers and twists of the bundle. For the precise statements
see Theorem 4.1 and Theorem 4.2.
As we want to decide semistability of a vector bundle F computa-

tionally by looking at global sections of symmetric powers, the curve
and the bundle have to be given in a computationally accessible way.
We fix a normal standard graded ring S of dimension 2 and consider
X = ProjS with its very ample invertible sheaf OX(1). In this setting
we look at syzygy sheaves (kernel sheaves) given as

0 −→ F −→
⊕

OX(−di)
A

−→ OX ,

where A is a matrix with one row and homogeneous elements of degrees
di as entries. This representation for a vector bundle is not a big
restriction as we elaborate in Remark 5.1.
In Lemma 5.4 we describe how to compute symmetric powers of a

kernel bundle itself as a kernel bundle, thus making Theorem 4.1 work-
ing as an algorithm. The algorithm is demonstrated in the examples
in Section 6. It turns out that even for quite simple examples the stan-
dard computer algebra programs are not strong enough to deal with
global sections of very high symmetric powers. We describe our imple-
mentation details using linear algebra methods in the last Section.
We thank Jan-Luca Spellmann and Alexandre Tchernev for valuable

comments.

1. Degree and global sections

We recall some basic notions for bundles on smooth projective curves.
All torsion-free sheaves on a smooth curve are locally free, see [15,
Theorem II.1.1.6]. We use the words vector bundles and locally free
sheaf interchangeably, and we always assume that they have finite rank.

Lemma 1.1. Let F be a locally free sheaf of rank r on a curve. There
exists an invertible sheaf L, a locally free sheaf F ′ of rank r− 1 and an
exact sequence:

0 −→ L −→ F −→ F ′ −→ 0.

Proof. See [18, Lemma 1.15]. �

For a noetherian, smooth scheme X , we have a natural isomorphism
between the divisor class group and the Picard group: ClX ∼= PicX .
As such we have a divisor class for every isomorphism class of invertible
sheaves on X and in particular if X is a smooth projective curve over
an algebraically closed field we can define the degree of an invertible
sheaf L = L(D) by the degree of the corresponding divisor.
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The degree of a locally free sheaf of rank r over a smooth projective
curve X is defined as

degF := deg
r
∧

F .

Hence the degree of a bundle is given as the degree of an invertible
sheaf.
The slope of a locally free sheaf F on X is µ(F) := degF

r
. A sheaf is

called stable if its slope is larger than the slope of any proper subsheaf
and semistable if its slope is at least as big as that of any subsheaf. We
call a subsheaf destabilizing if it violates the stability condition.
The theorem of Riemann-Roch for sheaves relates the degree and

rank to global sections and the genus g of the curve:

degF = χ(F) + r(g − 1).

Here χ(F) denotes the Euler-Poincaré characteristic, which on a smooth
projective curve of genus g is

χ(F) = dimH0(X,F)− dimH1(X,F)

and H0(X,F) is the vector space of global sections of F . With the
theorem of Riemann-Roch we get the following inequality:

dimH0(X,F) ≥ degF − r(g − 1).

From this follows immediately:

Lemma 1.2. Let F be a sheaf on a smooth projective curve X. If
µ(F) > g − 1 then F must have a nontrivial global section.

We will also use the following fact.

Lemma 1.3. Let F be a sheaf on a smooth projective curve X. If
µ(F) < 0 and F has a nontrivial global section, then F is not semistable.

Proof. Every nontrivial global section generates via OX → F a sub-
sheaf of nonnegative slope, which can not exist in a semistable sheaf of
negative slope. �

We call such a nontrivial global section which shows that F is not
semistable a destabilizing global section of F .

2. Symmetric and exterior powers

In this section we describe the multilinear operations we use. We
will use the sheaf versions of the tensor product, the symmetric power
Symn and the exterior power

∧n. These are each the sheafifications of
their respective module versions. We want to apply these operations
to short exact sequences. Some versions of the following sequences are
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known, see [16, Proposition 3], [13], [2], but it is difficult to find an
explicite source for what we need.

Lemma 2.1. Let 0 → E
ψ
→ F

ϕ
→ G → 0 be a short exact sequence of

locally free sheaves over a scheme of characteristic 0. This induces for
every n ∈ N>0 exact sequences

0 −→
n
∧

E −→
n
∧

F −→

(

n−1
∧

F

)

⊗ Sym1 G −→

(

n−2
∧

F

)

⊗ Sym2 G −→

· · · −→
(

2
∧

F

)

⊗ Symn−2 G −→

(

1
∧

F

)

⊗ Symn−1 G −→ Symn G −→ 0.

The leftmost map in this sequence is
∧n ψ. The maps in the middle of

the sequence
(

k
∧

F

)

⊗ Symn−k G −→

(

k−1
∧

F

)

⊗ Symn−k+1 G,

are given by

f1 ∧ . . . ∧ fk ⊗ gk+1 · · · gn 7→

k
∑

i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi) · gk+1 · · · gn.

It also induces short exact sequences

0 −→ Symn E −→ SymnF −→
(

Symn−1F
)

⊗
1
∧

G −→

(

Symn−2F
)

⊗

2
∧

G −→

· · · −→

(

Sym2F
)

⊗
n−2
∧

G −→

(

Sym1F
)

⊗

n−1
∧

G −→

n
∧

G −→ 0.
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The leftmost map in this sequence is Symn ψ. The maps in the middle
of the sequence

(

Symk F
)

⊗

n−k
∧

G −→
(

Symk−1F
)

⊗

n−k+1
∧

G,

are given by

f1 · · · fk ⊗ gk+1 ∧ . . . ∧ gn 7→

k
∑

i=1

f1 · · · fi−1 · fi+1 · · · fk ⊗ ϕ(fi) ∧ gk+1 ∧ . . . ∧ gn.

Proof. Since exactness is a local property we can assume we are working
with free modules over a ring and that the original sequence is splitting,
i.e. F ∼= E ⊕ G.
We prove the exactness of the first sequence by induction over the

rank r of E . For r = 0 we have F ∼= G and the sequence is a well-known
sequence of multilinear algebra (see for example [17, Aufgabe 86.20]),
where the maps are as stated as in our Lemma.
For r ≥ 1 we fix an element v in a basis of E . Because F ∼= E ⊕ G it

is also an element of a basis of F . We write E = 〈v〉 ⊕ U , where U is a
free module of rank r − 1. Similarly we get F = 〈v〉 ⊕ U ′.

We have
∧k F ∼=

∧k U ′⊕
(

∧k−1 U ′
)

⊗〈v〉 by the map which concen-

trates every contribution of v to the last component. Because taking
the tensor product with a free rank 1 module is an isomorphism we
even have

∧k F ∼=
∧k U ′ ⊕

∧k−1 U ′. Similarly for
∧k E .

This allows us to write the sequence as the direct sum of two se-
quences we know are exact by induction:

0 −→
n
∧

U −→
n
∧

U ′ −→

(

n−1
∧

U ′

)

⊗ Sym1 G −→

· · · −→

(

1
∧

U ′

)

⊗ Symn−1 G −→ Symn G −→ 0

and
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0 −→
n−1
∧

U −→
n−1
∧

U ′ −→

(

n−2
∧

U ′

)

⊗ Sym1 G −→

· · · −→

(

1
∧

U ′

)

⊗ Symn−2 G

−→ Symn−1 G −→ 0 −→ 0.

Thus the sum sequence is exact as well. We want to prove that the
map of the sum sequence is correct. Take a look at the diagram.

(

∧k F
)

⊗ Symn−k G
(

∧k−1F
)

⊗ Symn−k+1 G

(

∧k U ′
)

⊗ Symn−k G

⊕
(

∧k−1 U ′
)

⊗ Symn−k G

(

∧k−1 U ′
)

⊗ Symn−k+1 G

⊕
(

∧k−1 U ′
)

⊗ Symn−k+1 G

If we map an element f1 ∧ . . . ∧ fk ⊗ g + f ′
1 ∧ . . . ∧ f

′
k−1 ⊗ g′ via the

lower right route we get

k
∑

i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi) · g

+
k−1
∑

i=1

(−1)i−1f ′
1 ∧ . . . ∧ f

′
i−1 ∧ f

′
i+1 ∧ . . . ∧ f

′
k−1 ∧ v ⊗ ϕ(f ′

i) · g
′.

If we map via the upper left route we get

k
∑

i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi) · g

+
k−1
∑

i=1

(−1)i−1f ′
1 ∧ . . . ∧ f

′
i−1 ∧ f

′
i+1 ∧ . . . ∧ f

′
k−1 ∧ v ⊗ ϕ(f ′

i) · g
′

+(−1)k−1f ′
1 ∧ . . . ∧ f

′
k−1 ⊗ ϕ(v) · g′,

but since v ∈ E we have ϕ(v) = 0, so the diagram commutes.
The second sequence works similarly. Again we start with a locally

free sheaf E of rank 0, where the dual of the exterior power case gives us
the sequence. For the dual sheaves we have the canonical isomorphisms
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(
∧k F)∨ ∼=

∧k(F∨) and as we work over a ring of characteristic 0 we
also have (Symk F)∨ ∼= Symk(F∨) [17, Satz 83.7 and Satz 86.12].
We can also write the symmetric product of F ∼= U ′⊕〈v〉 as a direct

sum as follows:

Symk F ∼= Symk U ′ ⊕ Symk−1F ⊗ 〈v〉 ∼= Symk U ′ ⊕ Symk−1F .

Notice how this time we have F itself in the second summand, so we
have to do a double induction over the exponent k and the rank. �

For us the most important part of these sequences are the maps
∧nF →

(
∧n−1F

)

⊗ Sym1 G and SymnF →
(

Symn−1F
)

⊗
∧1 G, as

they allow us to explicitly describe the exterior and symmetric powers
of a kernel bundle as another kernel bundle, see Lemma 5.4.
Because we will first take the exterior power and afterwards the

symmetric power we will need the following two lemmas which show
that we can in the same way describe the kernel of a sequence which is
only left exact. The two lemmas generalize [12, Proposition 4.1].

Lemma 2.2. Let 0 → E → F → G → . . .→ 0 be an exact sequence of
locally free sheaves over a scheme over a field of characteristic 0, where
ϕ : F → G is the second map. Then

∧n E is the kernel of the map

n
∧

F −→

(

n−1
∧

F

)

⊗ G,

f1 ∧ . . . ∧ fn 7→

n
∑

i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi).

Also, Symn E is the kernel of the map

SymnF −→
(

Symn−1F
)

⊗ G,

f1 · · · fn 7→

n
∑

i=1

f1 · · ·fi−1 · fi+1 · · · fk ⊗ ϕ(fi).

Proof. Because all sheaves in the sequence are locally free so are the
kernels by induction starting from the right. We take the short exact
sequence 0 → E → F → imϕ → 0 and construct the sequences of
Lemma 2.1.
Let’s look at the sequence for the exterior power. The kernel of the

map
∧nF →

(
∧n−1F

)

⊗ imϕ is
∧n E . Because of the local freeness

of the involved modules the map
(
∧n−1F

)

⊗ imϕ →
(
∧n−1F

)

⊗ G
is injective, so the kernel does not change if we concatenate with this
map. The same is true for Symn. �
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Lemma 2.3. Let 0 → E → F → G be an exact sequence of locally
free sheaves over a smooth curve over a field of characteristic 0, where
ϕ : F → G is the second map. Then

∧n E and Symn E have the same
description as in Lemma 2.2.

Proof. The image imϕ ⊆ G is torsion free as a subsheaf of G, thus
imϕ is locally free. We take the short exact sequence 0 → E → F →
imϕ→ 0 and construct the sequences of Lemma 2.1.
The rest of the proof is the same as for Lemma 2.2. �

3. Rank, degree and slope for symmetric powers

To work more easily with the degree and slope of the sheaves and
their symmetric and exterior powers involved we present some rank
and degree computations. First note that the degree and the rank are
additive.

Lemma 3.1. Let E and F be locally free sheaves over a smooth pro-
jective curve. We have deg(F ⊗ E) = rank E · degF + rankF · deg E
and rankF ⊗ E = rankF · rank E .

Proof. [18, Lemma 1.16]. �

Lemma 3.2. Let F be a locally free sheaf of finite rankF ≥ 1 on a
smooth projective curve over an algebraically closed field K and n ∈
N>0. We have rank SymnF =

(

n+rankF−1
n

)

and for the degree we have

deg SymnF =
(

n+rankF−1
n−1

)

degF .

Also rank
∧nF =

(

rankF
n

)

and deg
∧nF =

(

rankF−1
n−1

)

degF .

Proof. We want to compute this via induction over n + rankF . For
n = 1 the assertions are clear. For Symn of a line bundle L use that
SymnL = L⊗n. So the assertions are also true for every sheaf of rank
1.
We apply Lemma 1.1 to the dual of F and dualize again to get a

short exact sequence 0 → U → F → L → 0, where U has one rank less
than F and L is a line bundle. Note that degL = degF − deg U .
We apply Lemma 2.1 to the sequence 0 → U → F → L → 0.

Because of
∧2 L = 0 we get the short exact sequence

0 −→ Symn U −→ SymnF −→
(

Symn−1F
)

⊗ L −→ 0.
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First we compute the rank of the symmetric powers by induction
over n + rankF .

rank SymnF = rank Symn U + rank
(

L⊗ Symn−1F
)

= rank Symn U + rank Symn−1F

=

(

n + rankF − 2

n

)

+

(

n+ rankF − 2

n− 1

)

=

(

n + rankF − 1

n

)

.

Now we do induction over n+ rankF for the degree.

deg SymnF = deg Symn U + deg
(

L ⊗ Symn−1F
)

= deg Symn U + deg Symn−1F + rank
(

Symn−1F
)

· degL

=

(

n + rankF − 2

n− 1

)

deg(U) +

(

n+ rankF − 2

n− 2

)

degF

+

(

n + rankF − 2

n− 1

)

· (degF − degU)

=

(

n + rankF − 2

n− 2

)

degF +

(

n+ rank(F)− 2

n− 1

)

· degF

=

(

n + rankF − 1

n− 1

)

degF .

For
∧nF we consider the short exact sequence

0 −→
n
∧

U −→
n
∧

F −→

(

n−1
∧

Un−1

)

⊗L −→ 0.

The right map is on affine subsets given by concentration of the con-
tributions of L on the last factor. For n ≥ 2 we do induction over
rankF .

rank

n
∧

F = rank

n
∧

U + rank

(

L ⊗

n−1
∧

U

)

= rank

n
∧

U + rank

n−1
∧

U

=

(

rankU

n

)

+

(

rankU

n− 1

)

=

(

rankF

n

)

.
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And similarly for the degree.

deg
n
∧

F = deg
n
∧

U + deg

(

L ⊗
n−1
∧

U

)

= deg

n
∧

U + deg

n−1
∧

U + rank

(

n−1
∧

U

)

· degL

=

(

rankU − 1

n− 1

)

degU +

(

rank(U)− 1

n− 2

)

degU

+

(

rankU

n− 1

)

· (degF − degU)

=

(

rankU

n− 1

)

degU +

(

rankU

n− 1

)

· (degF − degU)

=

(

rankF − 1

n− 1

)

degF .

�

Note that the rank of Symn(F) of a rank 1 sheaf stays 1 as we have
used in the proof.

Corollary 3.3. Let F and E be locally free sheaves on X and s ∈ N>0.
We have µ(

∧sF) = µ(SymsF) = s·µ(F) and µ(F⊗E) = µ(F)+µ(E).

Proof. This follows from Lemma 3.1 and Lemma 3.2. �

Lemma 3.4. Let F be a locally free sheaf over a smooth projective
curve over an algebraically closed field of characteristic 0. Fix n ∈
N>0, k ∈ Z. The following are equivalent:

(1) F is semistable.
(2) SymnF is semistable.
(3) F ⊗O(k) is semistable.

Also the following is true: If F is semistable so is
∧nF .

Proof. Let first F be not semistable. Then a destabilizing subsheaf E ⊂
F gives a destabilizing subsheaf Symn E ⊂ SymnF and a destabilizing
subsheaf E ⊗ O(k) ⊂ F ⊗O(k) (as O(k) is flat).
If however F is semistable, then it is shown (even for bundles over a

normal projective variety in characteristic 0) in [11, Corollary 3.2.10]
that the symmetric and exterior powers are also semistable. �
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4. Destabilizing subbundles and destabilizing sections

We want to determine if F is semistable only by looking at global
sections of twists of symmetric powers of F . The following theorem is
the main reason why our algorithm works.

Theorem 4.1. Let F be a locally free sheaf on a smooth projective
curve X of genus g over an algebraically closed field of characteristic
0 and r := rankF . Then F is semistable if and only if there does
not exist a nontrivial global section of (Symq F) ⊗ O(k), where q =

(g − 1 + degX)n+ 1, n = r(r−1)
gcd(r,degF)

and k =
⌈

−qµ(F)
degX

⌉

− 1.

Proof. First assume that F is not semistable. Take a destabilizing
subbundle E ⊆ F of rank s < r. Then

deg E

s
= µ(E) > µ(F) =

degF

r

and thus

µ(E)− µ(F) =

(

r · deg E − s · degF

r · s

)

≥
gcd(r, degF)

r(r − 1)
=

1

n
> 0.

0 g − 1

µ(F) µ(E)

≥ 1
n

0 g − 1

µ(Symq F) µ(Symq E)

0 g − 1

µ(Symq F(k)) µ(Symq E(k))

With this we calculate

µ ((Symq E)⊗O(k)) = qµ(E) + k degX

= qµ(E) +

(⌈

−qµ(F)

degX

⌉

− 1

)

degX

≥ q(µ(E)− µ(F))− degX

≥
q

n
− degX

=
(g − 1 + degX)n+ 1

n
− degX

= g − 1 +
1

n
> g − 1.
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Thus (Symq E) ⊗ O(k) has a global section by Lemma 1.2 and this is
also a global section of (Symq F)⊗O(k).
Now let us assume that F is semistable. Then so is (Symq F)⊗O(k)

by Lemma 3.4. We calculate its slope

µ ((Symq F)⊗O(k)) = qµ(F) + k degX

= qµ(F) +

(⌈

−qµ(F)

degX

⌉

− 1

)

degX

< qµ(F) +
−qµ(F)

degX
degX

= 0.

Being semistable with negative slope it can’t have any nontrivial global
sections by Lemma 1.3, so we are done. �

We will also prove the following variant of this theorem, which allows
for a smaller q (by at least a factor r − 1), but requires to compute
the global sections of several exterior powers. In general it is unclear
which of these is easier to compute. While Theorem 4.1 seems simpler,
there are cases where a (parallelized) implementation of Theorem 4.2
is much faster and easier (see Example 6.4 below). Note also that for
rank r = 2 the theorems are identical.

Theorem 4.2. Let F be a locally free sheaf on a smooth projective
curve X of genus g over an algebraically closed field of characteristic
0 and r := rankF . Then F is semistable if and only if for every s < r
there does not exist a nontrivial global section of Symq(

∧sF)⊗O(k),

where q = (g− 1+degX)n+1, n = r
gcd(r,s·degF)

and k =
⌈

−qsµ(F)
degX

⌉

− 1

Proof. First assume that F is not semistable. Take a destabilizing
subbundle E ⊆ F of rank s < r. By taking the s-th exterior power we
get

∧s E ⊆
∧sF , where

∧s E is the determinant bundle of E and is
invertible. Then

deg E

s
= µ(E) > µ(F) =

degF

r

and thus

s(µ(E)− µ(F)) =

(

deg E −
s degF

r

)

≥
gcd(r, s degF)

r
=

1

n
> 0.
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With this we calculate

µ

(

Symq

(

s
∧

E

)

⊗O(k)

)

= qsµ(E) + k degX

= qsµ(E) +

(⌈

−qsµ(F)

degX

⌉

− 1

)

degX

≥ qs(µ(E)− µ(F))− degX

≥
q

n
− degX

=
(g − 1 + degX)n+ 1

n
− degX

= g − 1 +
1

n
> g − 1.

Thus by Lemma 1.2 the invertible sheaf Symq(
∧s E)⊗O(k) has a global

section and this is also a global section of Symq(
∧sF)⊗O(k).

Now let us assume F is semistable. Then so is Symq(
∧sF)⊗O(k)

by Lemma 3.4. We calculate its slope

µ

(

Symq

(

s
∧

F

)

⊗O(k)

)

= qsµ(F) + k degX

= qsµ(F) +

(⌈

−qsµ(F)

degX

⌉

− 1

)

degX

< qsµ(F) +

(

−qsµ(F)

degX

)

degX

= 0.

Being semistable with negative slope it can not have any nontrivial
global sections, so we are done. �

5. Syzygy sheaves

We want to describe the algorithm deciding semistability for kernel
(or syzygy) sheaves. Let F be a kernel sheaf over a smooth projective
curve X = ProjS, where S is a normal 2-dimensional standard graded
domain, given by

0 −→ F −→

n
⊕

i=1

OX(−ei)
A

−→

m
⊕

j=1

OX(−dj).

As F is a subsheaf of a free sheaf it is torsion free and thus, because
X is a smooth curve, already locally free. Mainly we deal with syzygy
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sheaves for ideals, i.e. the case where m = 1 and A is a single row
matrix A = (f1, . . . , fn). Then we denote the kernel as Syz(f1, . . . , fn).

Remark 5.1. All vector bundles on a smooth projective curve X =
ProjS are isomorphic to bundles described in this way, at least after
twisting and change of coordinate ring. Let F be of rank r and OX(1)
be given. Then there exists ℓ such that det(F ⊗OX(l)) is very ample.
We work with G = F ⊗ OX(l) instead and use its determinant as the
new OX(1). We have a presentation (see [3, Lemma 2.3]) Or+1

X →
G∨(m) → 0 for m large enough, the kernel is a line bundle, which is
some OX(d) by the determinant property. Dualizing back and twisting
gives a syzygy representation for G.

Remark 5.2. For our method it is important to determine the rank

and the degree of F in an exact sequence 0 → F →
⊕n

i=1OX(−ei)
A
→

OX . Let X = ProjS, S = K[x1, . . . , xn]/I normal and J ⊆ S the ideal
generated by the entries of A 6= 0. Because of the additivity the rank
we have rankF = n− 1. The degree can be harder to compute:
Let L = imA ⊆ OX . The degree of

⊕n
i=1OX(−ei) is − degX ·

∑n

i=1 ei. Because of the additivity of degrees we have degF = − degX ·
∑n

i=1 ei− degL. If A is surjective (which is true if and only if J is S+-
primary), computing the degree is easy, as then degL = degOX = 0.
Otherwise we compute degL with the Hilbert polynomial as follows.

Observe that for large n ∈ N we have

dimH0(X,L ⊗OX(n)) = χ(L ⊗OX(n))

= deg(L ⊗OX(n)) + 1− g

= deg(L) + n · degX + 1− g.

Now dimH0(X,L⊗OX(n)) is exactly the number of degree n elements
of J , i.e. the Hilbert polynomial of the module J with indeterminate
n: HP(J). We have

HP(J) = HP(S)−HP(S/J)

= n · degX + (1− g)−HP(S/J).

Thus we deduce degL = −HP(S/J) = − dimK(S/J) and

degF = − degX ·
n
∑

i=1

ei +HP(S/J).
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Lemma 5.3. Let X be a scheme, q, n,m ∈ N>0 e1, . . . , en, d1, . . . , dm ∈
Z. We have

(

n
⊕

i=1

OX(−ei)

)

⊗

(

m
⊕

j=1

OX(−dj)

)

=
n
⊕

i=1

m
⊕

j=1

OX(−dj − ei).

Symq

(

n
⊕

i=1

OX(−ei)

)

=
⊕

(a1,...,an)∈Nn,
∑n

i=1
ai=q

OX

(

−

n
∑

i=1

ai · ei

)

,

q
∧

(

n
⊕

i=1

OX(−ei)

)

=
⊕

I⊆{1,...,n},#I=q

OX

(

−
∑

i∈I

ei

)

.

Proof. These are special cases of the multilinear behavior of direct
sums. �

Lemma 5.4. Let F = kerA be a kernel sheaf over a smooth projective
curve X = ProjS, where A :

⊕n

i=1OX(−ei) →
⊕m

j=1OX(−dj) sits in
an exact sequence as in Lemma 2.3. Then Symq F = kerAq, where

Aq : Sym
q

(

n
⊕

i=1

OX(−ei)

)

=
⊕

a∈I

OX(−a · e) −→

(

Symq−1

(

n
⊕

i=1

OX(−ei)

))

⊗

m
⊕

j=1

OX(−dj) =
⊕

(b,j)∈J

OX(−b · e− dj)

is given in the following way. We index the columns of Aq by the set
I = {a = (a1, . . . , an) ∈ Nn :

∑n
i=1 ai = q} and the rows by the set

J = {(b, j) = (b1, . . . , bn, j) ∈ Nn+1 :
∑n

i=1 bi = q − 1, 1 ≤ j ≤ m}. The
entries are

Aq,(b1,...,bn,j),(a1,...,an) =

{

0, if ∃i ∈ {1, . . . , n} : bi > ai
ai∗ ·Aj,i∗ , otherwise; i∗ unique s.t. ai∗ > bi∗ .

Also,
∧q F = kerA∧q , where

A∧q :

q
∧

(

n
⊕

i=1

OX(−ei)

)

−→

(

q−1
∧

(

n
⊕

i=1

OX(−ei)

))

⊗
m
⊕

j=1

OX(−dj).

We index the columns of A∧q by the subsets I ⊆ {1, . . . , n},#I = q and
the rows by the set of tuples (J, j), where J ⊆ {1, . . . , n},#J = q − 1
and 1 ≤ j ≤ m. The entries are

A∧q ,(J,j),I =

{

0, if J 6⊂ I

sign(i∗, I) · Aj,i∗, otherwise; i∗ unique s.t. i∗ ∈ I \ J.
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Here sign(i∗, I) = (−1)pos(i
∗), where pos(i∗) gives the position of i∗ in

I, induced by the order of {1, . . . , n}.

Proof. The matrices Aq and A∧q are the explicit descriptions of the
maps in Lemma 2.3 when the symmetric and exterior powers of direct
sums of invertible sheaves are expressed as in Lemma 5.3. �

Example 5.5. Take a plane smooth curve and over it the mapO(−3)⊕2⊕
O(−2) → O which is given by the matrix A =

(

x3 y3 z2
)

. We look
at the matrix for the second symmetric power as given by Lemma 5.4:

A2 : O(−6)⊕3 ⊕O(−5)⊕2 ⊕O(−6) −→ O(−3)⊕2 ⊕O(−2).

It has the following entries (above and to the left we have written the
summands to which the respective columns and rows correspond):

O(−6) O(−6) O(−5) O(−6) O(−5) O(−4)
( )

O(−3) 2x3 y3 z2 0 0 0
O(−3) 0 x3 0 2y3 z2 0
O(−2) 0 0 x3 0 y3 2z2

.

With this background we can formulate the steps we have to follow.

Algorithm 5.6. This algorithm decides semistability following the me-
thod of Theorem 4.1.

(1) Start with a smooth projective curve X = ProjS given by a
normal domain S and a map

⊕n
i=1OX(−ei) → OX described

by a matrix A 6= 0.
(2) Compute the genus g and the degree of X (with the Hilbert

polynomial of X), rank(kerA) = n−1 and the slope µ(kerA) =
−deg kerA

n−1
. From this compute q and k as in Theorem 4.1.

(3) Compute Aq as in Lemma 5.4. It’s a map
⊕

a∈I OX(−e
′
a) →

⊕

b∈J OX(−d
′
b) for some finite index sets I, J and some degrees

as computed in the Lemma.
(4) Compute the dimension d of the vector space of global sections

of the kernel of the k-th twist of Aq.
(5) kerA is semistable if and only if d = 0.

Because in practice computing the dimension of the kernel becomes
a lot more resource-intensive for larger q and the corresponding k it is
advisable to first try some lower powers q′ and the corresponding k′.
If we are lucky the dimension of the kernel will already be nonzero in
which case we would already know that the sheaf is not semistable.
If one wants to decide semistability with Theorem 4.2 instead of

Theorem 4.1 the only difference in the algorithm is to compute (A∧
,s)q
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instead of just Aq, where q, s and k have the values given in Theorem
4.2.
Note that the computations take place over the coordinate ring S,

since we have Se = Γ(X,OX(e)), and can be made with any computer
algebra system.

6. Examples and Computations

In this section we will give several examples. In some of these exam-
ples we relate the outcome of our algorithm with more specific methods.

Example 6.1. Let X = ProjS, S = C[x, y, z]/(f), where f is a ho-
mogeneous polynomial such that S is normal and X smooth. In this
example we will consider syzygy sheaves of the form Syz(xn, yn, zn),
which have rank 2 and degree −3n · degX . For n = 1 this is the
restriction of the cotangent sheaf of P2 to the curve.
We first look at f = x4+y3z+z4, for which X has genus 3. Theorem

4.1 tells us to look at the symmetric power for q = 7. For n = 1 we
have to look at k =

⌈

3qn
2

⌉

− 1 = 10. There are no global sections of

Sym7(Syz(x, y, z))(10), thus Syz(x, y, z) is semistable. For n = 2, we
get k = 20 and again semistability. If we look further at n ≤ 10, for
n = 3, 4, 8, 9 we find destabilizing sections, but for n = 5, 6, 7, 10 the
syzygy sheaves are again semistable as we do not find global sections
of the seventh symmetric power in the twists given by Theorem 4.1.
We can also look at higher degree curves, for example for f = x10 +

y9z+z10 and find that the syzygy sheaves Syz(xn, yn, zn) for n = 1, 2, 3
are semistable. For this curve we have to look at the symmetric power
for q = 46 and for n = 3 the deciding twist is already 206. This means
that the resulting matrices become quite large and the computations
take a while.

Example 6.2. We look at S := C[x, y, z]/(x4 + y3z + z4), the corre-
sponding smooth projective curve X ⊆ P2 of genus 3 and the kernel
sheaf F := Syz(x3, y3, z2) of the surjective map

A : OX(−3)⊕2 ⊕OX(−2) ։ OX , (a1, a2, a3) 7→ (a1x
3 + a2y

3 + a3z
2).

OX(−3)⊕2⊕OX(−2) has degree (−3−3−2) ·deg(X) = −8 ·4 = −32
and rank 3, and OX has degree 0 and rank 1. Because the map is
surjective we see that F has degree −32, rank 2 and slope −16.
For the first three symmetric powers there are no destabilizing global

sections, i.e. Γ(X, Symq F(k)) is empty in the twist given by k = q·4−1
(the twist coming from Theorem 4.1) and lower. For q = 4 and the
corresponding k = 15 we find destabilizing sections (by Theorem 4.1
we have to go up to q = 7 and k = q · 4− 1 = 27).
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The destabilizing section for q = 4 can also be detected by the fol-
lowing consideration. We see immediately from the curve equation that
for q = 1 we have the global section (x, z, z2) of F(4). The sheaf has
slope 0, thus the proper subsheaf generated by the section shows that
F is not stable. Since the section has a common zero in the point
(0, 1, 0), we may also conclude that it is not semistable.
The relation with global destabilizing sections of the 4th symmetric

power is as follows. For every global section of F(4) we get a global
section of Sym4(F(4)) by taking all possible products of 4 factors (rep-
etitions allowed) out of x, z and z2. Consider Lemma 5.3.
Explicitly for the global section (x, z, z2) we get the global section v =

(x4, x3z, x3z2, x2z2, x2z3, x2z4, xz3, xz4, xz5, xz6, z4, z5, z6, z7, z8). Again
Sym4(F)(16) has slope 0. But we have x4 = −y3z − z4, so all entries
contain the factor z, which we can divide out. This way we get a new
global section

v′ = (−y3−z3, x3, x3z, x2z, x2z2, x2z3, xz2, xz3, xz4, xz5, z3, z4, z5, z6, z7)

of Sym4(F)(15). But Sym4(F)(15) has negative slope, so we have
shown that F is not semistable.

By Grothendieck’s splitting principle every vector bundle on the pro-
jective line is a direct sum of twists OP1(n), and such a bundle is only
semistable if all twists agree. But even if P1 is given as a smooth
quadric it is not clear how to find global sections by only looking at
the homogeneous coordinate ring. The restriction of Syz(x, y, z) to any
smooth quadric X ⊂ P2 is isomorphic to L−3 ⊗L−3, hence semistable,
where L ∼= OP1(1) under an isomorphism P1 ∼= X , but L can not be
seen by looking at the global sections of Syz(x, y, z) alone.

Example 6.3. The ring S := C[x, y, z]/(x2 + y2 + z2) describes a
quadric curve. It is isomorphic to P1 and thus has genus 0. On it
Syz(x2, y2, xz, yz) is locally free of rank 3.
If we twist by 3 we find global sections, for example (z, 0,−x, 0).

This does not give a destabilizing subsheaf however, because the degree
of Syz(x2, y2, xz, yz)(3) is (9 − 8) · 2 > 0. The twist by 2 does not
have global sections. Global sections in that twist would directly give
destabilizing subsheaves. The algorithm tells us that higher symmetric
powers have destabilizing sections and that this sheaf is not semistable.
Let’s look at the situation from a different angle. As a sheaf on P1

the syzygy sheaf Syz(x2, y2, xz, yz)(2) is a direct sum of three invertible
sheaves and it has degree −4. So the only possibility without global
sections is

Syz(x2, y2, xz, yz)(2) = L−1 ⊕ L−1 ⊕L−2,
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where L is the invertible sheaf of degree one on the quadric when seen
as a P1. Note that L2 = OX(1).
From this direct sum decomposition we can already see that the sec-

ond symmetric power Sym2(Syz(x2, y2, xz, yz)) will have three invert-
ible summands of highest degree namely (L−1(−2))2 = OX(−5) and
the second exterior power

∧2(Syz(x2, y2, xz, yz)) will have one such
summand. The twist of interest k in these powers becomes 5 and in-
deed, if we twist by 5 the global section space of the symmetric power
turns out to be 3-dimensional and of the exterior power 1-dimensional.
These correspond - in accordance with the theorem - to destabilizing
subsheaves.

Example 6.4. We have seen that any destabilizing subsheaf will be
made visible by destabilizing global sections of high enough symmetric
powers. But computing exterior powers can be very useful if there are
destabilizing subsheaves of rank 2 or higher. For a concrete example
consider S := C[x, y, z]/(xn+yn+zn) and F = Syz(x4+y2z2, y4, z4, x7)
(almost any combination of polynomials of degree 4,4,4 and 7 would
do). The sheaf F is not semistable, in fact the subsheaf E = Syz(x4 +
y2z2, y4, z4) is a destabilizing subsheaf of rank 2:

µ(E) =
−12n

2
>

−19n

3
= µ(F).

Because of E ’s shape as a rank 2 syzygy sheaf its second exterior power
becomes OX(−12) and has a global section if twisted by 12. However
even for n = 5 the fourth symmetric power Sym4(F) is the lowest
symmetric power with a destabilizing global section. For n = 9 the
lowest symmetric power with a destabilizing global section is Sym10(F).
Consider Table 1.

Example 6.5. Smooth curves X in the projective plane have genus

g = (degX−1)(degX−2)
2

. So with these, we only get g = 1, 3, 6, 10, . . .. But
embedded in higher dimensional projective space we can find curves to
work over of any genus.
A smooth curve of type (a, b) in P1×P1 has genus g = (a−1)(b−1).

As an explicit example look at the curve X given by the relation f =
x30y0(y0 + y1) + x31y1(y0 + 2y1) = 0 for ([x0 : x1], [y0 : y1]) ∈ P1 × P1.
We can work with this in our algorithm by using the Segre-embedding
given by C[z00, z01, z10, z11] → C[x0, x1, y0, y1], zij 7→ xiyj.
X is then given by generators of the ring-kernel of the Segre-embed-

ding z11z00 − z10z01 together with the preimage of (f), generated by
z200(z00 + z01) + z10z11(z10 +2z11) and z00z01(z00 + z01) + z211(z10 +2z11).
By the Jacobi-Criterion and looking at the Hilbert polynomial we see
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n Genus g qmin q as of Theorem 4.1
1 0 1 1
2 0 1 7
3 1 2 7
4 3 1 31
5 6 4 61
6 10 2 31
7 15 8 127
8 21 2 169
9 28 10 73
10 36 8 271

Table 1. Table detailing the situation of Example 6.4
for several n. qmin is the lowest power q = qmin for which
Symq(F) has a destabilizing section. We computed this
with our implementation of the algorithm.

that X is indeed a smooth curve of genus 2 and degree 5. We have a
curve of type (2, 3). It is smooth and thus with regard to the Segre-
embedding it is projectively normal [9, Exercise III.5.6(b)(3)], i.e. the
ring with these three relations is normal.
As example sheaves we compute: Syz(z01z11 + z200, z01 + z11, z10z00 +

z201, z10) over X is semistable, but Syz(z01z11 + z200, z11, z10z00 + z201, z10)
is not.

7. A variant in positive characteristic

We needed characteristic 0 to ensure that the symmetric and ex-
terior powers of semistable sheaves are again semistable. This is not
true in positive characteristic. However, in positive characteristic the
Frobenius pullbacks allow us to construct a very similar algorithm.
The Frobenius pullback Fe∗F of a locally free sheaf F is the pullback

ofF by the e-th power of the Frobenius homomorphism f 7→ f p
e

. There
is a surjective map from Fe∗ Syz(f1, . . . , fn) → Syz(f p

e

1 , . . . , f
pe

n ). It is
even bijective if the fi are primary to the irrelevant ideal S+. Thus
global sections of both sheaves are the same.
We mention the following immediate lemma.

Lemma 7.1. Let F be a locally free sheaf over a scheme of character-
istic p. Then deg (Fe∗F) = pe · deg(F) and µ (Fe∗F) = pe · µ(F).
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Definition 7.2. Let F be a locally free sheaf over a smooth projective
curve over an algebraically closed field of characteristic p. F is called
strongly semistable if every Frobenius pullback is semistable.

It follows directly that F is strongly semistable if and only if Fe∗(F)
is strongly semistable.
As already mentioned in the introduction, a positive characteristic

version of Theorem 4.1 was already proved in [5, Lemma 2.1]. Note
that there is a small mistake in the statement of a corollary [5, Lemma
2.2] with regards to the necessary Frobenius pullback, which we have
corrected in our statement of the theorem.

Theorem 7.3. Let F be a locally free sheaf on a smooth projective
curve X over a field of characteristic p and r := rankF .
F is strongly semistable if and only if there does not exist a nontrivial

global section of Fe∗(F)⊗O(k), for every e ∈ N and k =
⌈

−peµ(F)
deg(X)

⌉

−1.

F is semistable if there does not exist a nontrivial global section of
Fe∗(F)⊗O(k), for an exponent e ∈ N with pe ≥ (g−1+deg(X))n+1,

n = r(r−1)
gcd(r,degF)

and k =
⌈

−peµ(F)
deg(X)

⌉

− 1.

Proof. We first prove the second assertion, in the same way as in The-
orem 4.1. First assume that F is not semistable. Take a destabilizing
subbundle E ⊆ F of rank s < r. Then

deg(E)

s
= µ(E) > µ(F) =

deg(F)

r
and thus

µ(E)− µ(F) =

(

r · deg(E)− s · deg(F)

r · s

)

≥
gcd(r, deg(F))

r(r − 1)
=

1

n
> 0.

With this we calculate

µ (Fe∗ (E)⊗O(k)) = peµ(E) + k deg(X)

= peµ(E) +

(⌈

−peµ(F)

deg(X)

⌉

− 1

)

deg(X)

≥ pe(µ(E)− µ(F))− deg(X)

≥
pe

n
− deg(X)

≥
(g − 1 + deg(X))n+ 1

n
− deg(X)

= g − 1 +
1

n
> g − 1.
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Thus Fe∗(E)⊗O(k) has a global section by Lemma 1.2 and this is also
a global section of Fe∗(F)⊗O(k).
Now to the first assertion. If F is not strongly semistable, some

pullback will not be semistable. So for some (higher) power e the
Frobenius pullback Fe∗(F) will have a destabilizing global section.
Now let us assume F is strongly semistable. Then so is Fe∗(F) ⊗

O(k). We calculate its slope

µ (Fe∗ (F)⊗O(k)) = peµ(F) + k deg(X)

= peµ(F) +

(⌈

−peµ(F)

deg(X)

⌉

− 1

)

deg(X)

< peµ(F) +
−peµ(F)

deg(X)
deg(X)

= 0.

Being semistable with negative slope it can have no nontrivial global
sections, so we are done. �

For finite fields it is possible to give a bound on the necessary ex-
ponent to ascertain strong semistability. This is because the family
of semistable vector bundles of fixed rank and bounded degree is a
bounded family, which is itself the basic result for the existence of
moduli spaces for vector bundles. Over a finite field there are thus
only finitely many isomorphism types of Frobenius pullbacks with suit-
able twists for a strongly semistable vector bundle. Hence there will
be a repetition of the form Fe∗(F) ⊗ O(k) ∼= F . Thus it suffices to
check a fixed Frobenius power to determine strong semistability. For
computational purposes this is not very helpful though, because the
required Frobenius power is very high.
Using exterior powers like in the characteristic 0 case allows us to

state the following variant of the theorem.

Theorem 7.4. Let F be a locally free sheaf on a smooth projective
curve X over a field of characteristic p and r := rankF .
F is semistable if for every s < r there does not exist a nontrivial

global section of Fe∗(
∧sF)⊗O(k), where e = ⌈logp((g−1+deg(X))n+

1)⌉, n = r
gcd(r,sdeg(F))

and k =
⌈

−pesµ(F)
deg(X)

⌉

− 1.

The same is true if we substitute the Frobenius power with the sym-
metric power in this theorem.

Proof. For this direction the proof in Theorem 4.2 works fully for char-
acteristic p (for the Frobenius power as well as the symmetric power).
A destabilizing section prohibits semistability. �
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Remark 7.5. It is possible to check semistability for the characteristic
0 case by reduction modulo p. This is based on the fact that any desta-
bilizing subsheaf in characteristic 0 would also occur as a destabilizing
subsheaf in characteristic p. Thus we could try primes p until we find
one for which the sheaf over characteristic p is semistable. Then we
know that the corresponding characteristic 0 sheaf is also semistable.
This process has the potential to be a computationally faster way to
show semistability, because arithmetic modulo p is faster. This effect
is diminished by the fact that we might have to try a lot of primes and
that the degrees grow faster with Frobenius pullbacks.
Even more, if for all primes that we try the sheaves are not semistable,

then we can not draw a conclusion about the semistability of the cor-
responding characteristic 0 sheaf. In particular with this method we
can never decide semistability for a sheaf that is not semistable. Still
reduction modulo p could be a useful part in an adaptive approach to
determining semistability where you try different angles of attack at
the same time.

8. Implementation details

We need to compute the global sections of (Symq
∧sF)⊗O(k), for

some q, s ∈ N≥0, k ∈ Z over a curve X = ProjS, with S a graded
integrally closed algebra of finite type over K.

Remark 8.1. As laid out in Lemma 5.4 and Algorithm 5.6 we con-
struct a matrix Aq which sits in an exact sequence

0 −→ Symq F⊗OX(k) −→
⊕

a∈I

OX(k−a·e)
Aq

−→
⊕

(b,j)∈J

OX(k−b·e−dj).

We want to compute the dimension of the vector space of global sec-
tions of the kernel of Aq. You will find the dimension as an entry in the
Betti table of the module presented by Aq, for which there are imple-
mentations in many computer algebra systems. For very simple cases
we did this in Macaulay2[8] and CoCoA[1]. This approach proved to
be inefficient for anything but the most simple examples. It turned out
to be way faster to only compute the correct degree case as follows.
We apply the global section functor to the exact sequence and get

the exact sequence

0 −→ Γ(X, Symq F ⊗OX(k)) −→
⊕

a∈I

Sk−a·e
Aq

−→
⊕

(b,j)∈J

Sk−b·e−dj .

For a fixed d ∈ Z the elements of Sd form a finite dimensional vector
space, with a basis given by the degree d monomials of R which are
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not multiples of leading monomials of a Gröbner basis of the defining
ideal of S (fix any degree-respecting monomial order).
All we have to compute is thus the kernel of a matrix Bq(k) (com-

puted from Aq) over a field, a linear algebra problem.

Example 8.2. Look at the map OX(−4)3⊕OX(−7) → OX over X =
Proj(C[x, y, z]/(x9 + y9 + z9)) from Example 6.4 which is given by the
matrix A =

(

z2y2 + x4 y4 z4 x7
)

.
In the first power Theorem 4.1 tells us to look at the twist 6, thus

we get a map OX(2)
3 ⊕ OX(−1) → OX(6). The global sections of

OX(2)
3 ⊕OX(−1) are given by a tuple of three degree 2 elements and

one degree -1 element. The degree 2 elements have a monomial basis
z2, zy, zx, y2, yx, x2 with 6 generators. The only element in negative
degrees is 0. On the other hand, there are 28 monomials of degree 6.
Thus in the relevant twist 6 we get a 28x18-matrix B(6) with entries
in C, see Table 2.

z2 zy zx y2 yx x2 z2 zy zx y2 yx x2 z2 zy zx y2 yx x2








































































































































































































z6 1
z5y 1
z5x 1
z4y2 1 1
z4yx 1
z4x2 1
z3y3 1
z3y2x 1
z3yx2

z3x3

z2y4 1 1
z2y3x 1
z2y2x2 1
z2yx3

z2x4 1
zy5 1
zy4x 1
zy3x2

zy2x3

zyx4 1
zx5 1
y6 1
y5x 1
y4x2 1
y3x3

y2x4 1
yx5 1
x6 1

Table 2. The matrix B(6) from Example 8.2. We have
written the corresponding monomial basis elements on
the top and to the left. 0-entries have been omitted.

Consider Table 3 for the sizes of the resulting matrices as q grows.
Note that q = 73 is the power from Theorem 4.1.
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q Aq k Bq(k) dim kerBq(k) ∆t
1 1× 4 6 28× 18 0 < 1ms
2 4× 10 12 156× 99 0 < 1ms
3 10× 20 18 501× 343 0 2ms
4 20× 35 25 1401× 1153 0 8ms
5 35× 56 31 2848× 2433 0 30ms
6 56× 84 37 5190× 4551 0 98ms
7 84× 120 44 9474× 8763 0 404ms
8 120× 165 50 14889× 13891 0 1s
9 165× 220 56 22339× 20985 0 4s
10 220× 286 63 34219× 32865 2 11s
11 286× 364 69 47718× 45930 0 27s
12 364× 455 75 64845× 62551 2 69s
13 455× 560 82 90234× 88066 128 169s
...

16 816× 969 101 196743× 193608 452 1743s
...

73 67525× 70300 462 very large ? ?

Table 3. This table accompanying Example 8.2 lists
the sizes of various matrices Aq, the degree k consid-
ered, and the size of the matrix Bq(k). ∆t is the time to
compute the kernel with our implementation on our com-
puter. Since the actual computation time varies between
computers and because there may be future optimiza-
tions these runtime numbers are only meant to illustrate
the general trend.

Remark 8.3. The resulting matrices from Remark 8.1 have an enor-
mous size, prohibiting dense representations in computer memory. For-
tunately only few entries are nonzero. If A is anm×nmatrix the matrix
Aq has only n nonzero entries in each row, while it has

(

q+n−1
n−1

)

columns.
The matrix Bq(k) is even more sparse assuming the polynomial entries
of A are sparse in the sense that they are made up of relatively few
monomials compared to all monomials in their degree. We can also
see this phenomenon in the matrix of Table 2. There every column
only has as many nonzero entries as the corresponding polynomial has
nonzero coefficients.
To do any useful computations it is thus very important to store the

matrices in a sparse matrix format. This means that only the nonzero
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entries and their positions are stored. This has not only the benefit of
requiring less memory, it also means that we only need to iterate over
the nonzero-entries in every reduction step. We will perform matrix
factorization - i.e. the process of factoring the matrix into triangle
matrices and unitary matrices - in order to compute the kernel. There is
a lot of potential for optimization in the factorization of sparse matrices
because naive implementations tend to introduce unnecessarily many
additional nonzero entries making the matrix less sparse in the process.
It’s important to reduce the rows in a good order and to choose good
pivot elements.
There are extremely well optimized algorithms for sparse matrix

factorization - but only for floating point values. One floating-point-
algorithm we tried out is SuiteSparseQR[7]. However, it does not seem
practical (or maybe even possible) to control the cumulative floating
point error in a way that let us with certainty distinguish a kernel of
dimension 1 from a kernel of dimension 0.
Thus for an implementation of the algorithm we need to be able to

do sparse exact value matrix triangularization. Unfortunately most
exact value matrix factorization implementations only work on dense
matrices (for example it is implemented in Normaliz[6]). We considered
using the sparse implementation in Bradford Hovinen’s LELA[10], but
it has only an optimized algorithm for matrices of the type occuring in
Faugère’s F4-algorithm and it proved difficult to use.
Because we didn’t find a suitable implementation for integer matrix

triangularization that suited our needs we implemented our own version
of the Gauss Algorithm for sparse matrices in C++.

Remark 8.4. For some of our results we need to work over an alge-
braically closed field. Of course we can’t actually represent complex
numbers or any other uncountable field in computer memory. However
if all involved coefficients in the input (which are the generators of the
defining ideal I of the base ring and the matrix A) are in Q any re-
sulting kernel sections will also just have coefficients in Q. Even more,
if the leading coefficients of a Gröbner basis of I are units in Z and
all entries of A have coefficients only in Z we can do the whole kernel
computation only with values in Z. Even though we then have to be
careful in the Gauss Algorithm this is still faster and uses less memory
than a representation in Q.
Of course it would be possible to work with Q adjoint with a finite

number of additional elements of C, but we haven’t explicitly imple-
mented this. Introducing an additional variable to the base polynomial
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ring and the necessary defining equations would be relatively easy but
very costly.

Remark 8.5. The performance of the algorithm depends a lot on the
input. We list some of the characteristics and how they affect perfor-
mance.

• Degree d and genus g of the curve X = Proj(S) are important
in two ways. Firstly, we have the symmetric power exponent
q = (g − 1 + d)n + 1 as of Theorem 4.1. The higher q is, the
larger the matrix Aq becomes, as Aq is an m ·

(

q+l−2
l−2

)

×
(

q+l−1
l−1

)

matrix, where m× l are the dimensions of A.
Additionally d and g affect the size of the matrix Bq(k): The

Hilbert Polynomial of X is HP(S)(t) = t · d + (1 − g). For
large enough t the values of HP(S)(t) are the dimensions of the
vector spaces of degree t elements of S. Thus again larger d are
very costly here, while g is only in the constant coefficient of
the Hilbert polynomial and so does not affect the size as much.

• The dimensions of the m × l matrix A affect the size of Aq
directly as seen in the previous point. But it also goes into the
rank and degree and thus the slope of F . Recall again Theorem

4.1 and look at n = r(r−1)
gcd(r,degF)

, which multiplies into q. At best

this is r−1 and at worst r(r−1). Thus r = l−m goes into the
exponent q linearly at best and quadratic in the worst case.

The twist is computed as k =
⌈

−qµ(F)
degX

⌉

− 1. Here the degree

of F enters, which is computed from the degrees of the entries
of A. High degree entries lead to a high twist. A higher twist
means higher degree of the monomials determining Bq(k), thus
there are more of them and Bq(k) has a larger size.

• The number of monomials used for the polynomials is also a
strong factor. For the entries of A this was explained in Remark
8.3.

But for the Gröbner basis elements of a, where a is the defin-
ing ideal of the curve, the same is true. If the result from a
multiplication in the matrix Aq is a leading monomial of an ele-
ment f in the reduced Gröbner basis, then it will be represented
in Bq(k) in the rows corresponding to all the other monomials
of f . If there are more monomials with nonzero coefficients then
the matrix will be less sparse. Thus we can say that the more
“general” the curve is, i.e. the more nonzero coefficients there
are in the defining polynomials, the harder it is to compute
with.
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• The coefficients of the polynomials involved also play a minor
role. Because of the way the integer Gauss algorithm works,
during the triangularization the absolute values of the entries in
Bq(k) will generally increase a lot. Because of this fixed length
integer data types do not suffice as data containers and we need
to use multiprecision integer data types, i.e. integer data types
with an arbitrary length. If we start with large values we will
need even more digits to store the entries, which also increases
the time used to handle them.

Remark 8.6. For convenience of use, helpful future improvements to
our implementation might include the following.

• An included feature to check whether the input ring is normal
and to automatically work over the normalization if it isn’t. So
far we only check smoothness, and that the scheme is a curve
at all, which are relatively easy to check.

• The ability to embed any sheaf as a kernel sheaf automatically.
• Further performance improvements to be able to check more
and more difficult sheaves for semistability.

You will find our implementations of the main algorithm and the nec-
essary subroutines together with an explanation on how to use them on-
line at https://github.com/JonathanSteinbuch/sheafstability.
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