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FAILURE OF THE FINITELY GENERATED INTERSECTION

PROPERTY FOR ASCENDING HNN EXTENSIONS OF FREE

GROUPS

JACOB BAMBERGER AND DANIEL T. WISE

1. Abstract

The main result in this paper is the failure of the finitely generated intersection
property (FGIP) of ascending HNN extensions of non-cyclic finite rank free groups.
This class of group consists of free-by-cyclic groups and properly ascending HNN
extensions of free groups. We also give a sufficient condition for the failure of the
FGIP in the context of relative hyperbolicity, we apply this to free-by-cyclic groups
of exponential growth.

2. Introduction

Definition 2.1. A group has the finitely generated intersection property (FGIP) if
the intersection of any two finitely generated subgroups is also finitely generated.

The most famous class of groups having the FGIP are locally quasiconvex word-
hyperbolic groups [13]. This generalizes the fact that free groups have the FGIP
which was proven by Howson [10], and indeed the FGIP is sometimes referred to as
the Howson property.

The purpose of this paper is to examine the FGIP for ascending HNN extensions
of finitely generated free groups. We show the failure of the FGIP for ascending
HNN extensions of non-cyclic finite rank free groups.

Definition 2.2 (Ascending HNN extension of a free group). Let φ : F → F be a
monomorphism from a free group to itself. Its associated ascending HNN extension

is the group G = 〈F, t | tft−1 = φ(f) : ∀f ∈ F 〉. If φ is surjective then G is
free-by-cyclic and we denote G by F ⋊φ Z. If φ is not surjective then G is a proper

ascending HNN extension.

Our main goal is the following result which is new for proper HNN extensions:

Theorem 2.3. Any ascending HNN extension G of a finitely generated free group

F of rank ≥ 2 fails to have the FGIP.

The proof of Theorem 2.3 is partitioned into Theorem 3.1, Theorem 5.3, and
Corollary 6.5. This generalizes the following result of Berns and Brunner [1] who
generalized Moldavanskii’s observation that the FGIP fails for F × Z [12].

Theorem 2.4 (Berns-Brunner). Let G = F ⋊Z where F is a finitely generated free

group of rank ≥ 2. Then G does not have the FGIP.
1
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Finitely generated subgroups of ascending HNN extensions of rank 1 free groups
are easily shown to be either trivial, cyclic or of finite index (see e.g. [11]). Inter-
secting a subgroup H with a finite index subgroup K yields a finite index subgroup
of H. Hence if H is finitely generated so is H ∩K. We therefore focus on ascending
HNN extensions of a free group F with rank(F ) ≥ 2.

The main principle here is that a nontrivial infinite index normal subgroup of
a free group cannot be finitely generated (see Corollary 3.8). Thus if G contains
a finitely generated free group K and a finitely generated normal subgroup N , the
intersection K∩N provides an opportunity for the failure of the FGIP. Theorem 2.3
exploits a generalization of the principle to subgroups that are conjugated into
themselves as explained in Lemma 3.7.

When G = N ⋊Z is a hyperbolic group and N is finitely generated, the failure of
the FGIP for G has a crisp explanation using the ping pong lemma (see Section 6.1).
The idea is that for any w ∈ N−{1G}, the ping pong lemma provides a free subgroup
K = 〈wm, tm〉 and K ∩N is not finitely generated. We develop this idea further in
Section 6 to obtain the following sufficient condition for the failure of the FGIP in
the relative hyperbolic framework:

Theorem 6.2. Let G be hyperbolic relative to a collection of subgroups. Let
N ⊆ G be a finitely generated subgroup containing a loxodromic element w. Suppose
tNt−1 ⊆ N for some infinite order t with 〈t〉 ∩N = {1G}. Then G fails to have the
FGIP. In particular, there exists m such that 〈tm, wm〉∩N is not finitely generated.

This applies to a non-elementary hyperbolic group G arising as an ascending
HNN extension of a group N . Hence Theorem 6.2 generalizes the hyperbolic case
of Theorems 2.3 and 2.4.

We combine Theorem 6.2 with recent results about relative hyperbolicity of free-
by-cyclic groups [5, 6, 7] to prove the failure of the FGIP for exponentially growing
free-by-cyclic groups in Section 6.3. This explanation is complex since it depends
upon a constellation of deep results, but it is interesting to see how the exponen-
tial case fits into the relative hyperbolic framework via Theorem 6.2. We expect
this unity to prevail as relatively hyperbolic structures are constructed for general
ascending HNN extensions.

In Section 3 we prove the failure of the FGIP for proper ascending HNN extensions
of finite rank free groups. In Section 4 we introduce train track maps. The theory of
relative train track maps explains that automorphisms of free groups are divided into
polynomially growing and exponentially growing cases [2, 3]. In Section 5 we use
relative train track maps to explain the FGIP failure for F ⋊Z in the polynomially
growing case. This exploits their structure as multiple cyclic HNN extensions. In
Section 6.3 we apply Theorem 6.2 to prove that the FGIP fails for F ⋊ Z in the
exponentially growing case. Note that the exponentially growing case is the main
case since failure in the polynomially growing case is a simple consequence of the
failure for F × Z. While our argument is more complex than Theorem 2.4 (which
we were originally oblivious to), we hope it will appeal to the contemporary reader
for whom train tracks and relative hyperbolicity are established tools.
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3. Proper ascending HNN extension

In this section we prove the following theorem:

Theorem 3.1. Any proper ascending HNN extension of a non-cyclic finitely gen-

erated free group fails to have the FGIP.

We begin by recalling a Theorem about free groups first proved by Hall [8]:

Theorem 3.2. If F is a free group and H is a finitely generated subgroup then H
is a free factor in a finite-index subgroup of F .

Corollary 3.3. Let H ( F be a finitely generated infinite index subgroup of a free

group. There exists a non-trivial f such that 〈f,H〉 = 〈f〉 ∗H.

Proof. Theorem 3.2 says that some finite index subgroup G ⊆ F satisfies G = H∗K,
so taking any non-trivial f ∈ K concludes the proof. �

We now state and prove results that will be useful throughout the paper.

Lemma 3.4. Let φ : G → G be group automorphism. The following are equivalent

for w ∈ G.

(1) {φi(w), i ∈ Z} form a basis for a free subgroup.

(2) {φi(w), i ∈ N} form a basis for a free subgroup.

Proof. (1) ⇒ (2) is clear, so we focus on (2) ⇒ (1). If a product
∏k

i=1 φ
ni(w) where

ni ∈ Z represents the identity then φmax(|ni|)(
∏k

i=1 φ
ni(w)) = e, so

∏k
i=1 φ

mi(w)
where mi = max(|ni|) + ni ∈ N represents the identity. �

Corollary 3.5. Let G be a group and t, w ∈ G. The following are equivalent:

(1) {tiwt−i, i ∈ Z} form a basis for a free subgroup.

(2) {tiwt−i, i ∈ N} form a basis for a free subgroup.

Proof. Apply Lemma 3.4 to the inner automorphism consisting of conjugation by
the element t. �

Lemma 3.6. Let H be a group generated by elements w and t, and let ρ : H → Z be a

homomorphism with ρ(t) = 1 and ρ(w) = 0. Then ker(ρ) = 〈〈w〉〉 = 〈tiwt−i : i ∈ Z〉.
In particular, if {tiwt−i, i ∈ Z} forms a basis for a free subgroup then H is free of

rank 2.

We use the notation 〈〈w〉〉 for the normal closure of w.

Proof. Let J be the free group on w and t. We get a homomorphism J → Z by
composing J → H → Z. Its kernel is the normal closure of w ∈ J , since w is mapped
to 0 and J/〈〈w〉〉 ∼= Z. Realizing J as the fundamental group of a bouquet of circles
on w and t and considering the associated cyclic covering space one sees that the
normal closure of w in J is generated by conjugates of w by ti for i ∈ Z.

The kernel of J → Z maps surjectively on the kernel of H → Z. The image
under J → H of the normal closure of w in J is the normal closure of w in H
and the image of conjugates of w by ti in J are conjugates of w by ti in H, so
ker(ρ) = 〈〈w〉〉 = 〈tiwt−i : i ∈ Z〉.

We have constructed the following communtative diagram:
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1 ker(ρ ◦ τ) J Z 1

1 ker(ρ) H Z 1

ρ◦τ

τ id

ρ

If {tiwt−i, i ∈ Z} form a basis for a free subgroup of H, then τ : J → H
restricts to an injection on the kernel of the homomorphisms to Z and is therefore
an isomorphism between the kernels. Conclude by applying the five lemma to the
two short exact sequences. �

Lemma 3.7. Let H ( F be a nontrivial subgroup of a free group and let f ∈ F be

such that fHf−1 ⊆ H but fn /∈ H for any n > 0. Then H is not finitely generated.

Proof. Realize F as π1 of a bouquet of circles (B, p). Let (B̂, p̂) be a based covering
space corresponding to H. Consider the covering transformation action of F on the

vertices of B̂. If fmp̂ = fnp̂ then fm−np̂ = p̂ which implies fm−n ∈ H, which implies
m = n by assumption, therefore {fnp̂, n ∈ Z} is infinite. By non-triviality of H, let
σ be a nontrivial cycle. Using that fn /∈ H for any n > 0, we can find a sequence of
elements {fni p̂} such that the lifts of σ starting at fni p̂ are pairwise disjoint. Hence

H1(B̂) is not finitely generated so H = π1(B̂) is not finitely generated. �

The following corollary is used in the free-by-cyclic case:

Corollary 3.8. Let F be a free group and H ( F a normal subgroup of infinite

index, then H is not finitely generated.

Proof. Suppose towards a contradiction that H is finitely generated. By Corol-
lary 3.3 there is an element f ∈ F −H such that fn /∈ H for any n > 0. Since H is
normal, fHf−1 ⊆ H so H is not finitely generated by Lemma 3.7. �

Finally, we prove the main result of this Section:

Proof of Theorem 3.1. We first observe that [F : φ∗(F )] = ∞. Indeed, if (B̂, b̂) is a

degree d cover of a bouquet of r ≥ 2 circles, then χ(B̂) = dχ(B) = d(1 − r). Thus
χ(H) < χ(F ) for any proper finite index subgroup H of F . So F is not isomorphic
to a proper finite index subgroup of itself, and therefore φ∗(F ) is of infinite index.

We inductively show that there exists f such that 〈φi(f), i ∈ N〉 = ∗i∈N〈φ
i(f)〉.

By Corollary 3.3 there exists an f ∈ F −φ(F ) such that 〈f, φ(F )〉 = 〈f〉 ∗φ(F ). As-
suming by induction that for n ∈ N, 〈f, φi(f), i ∈ {1, . . . , n}〉 = 〈f〉∗i∈{1,...,n}〈φ

i(f)〉.

Since φ is an isomorphism we have 〈φi(f), i ∈ {1, . . . , n+1}〉 = ∗i∈{1,...,n+1}〈φ
i(f)〉,

and since the latter subgroup is included in φ(F ) we get 〈f, φi(f), i ∈ {1, . . . , n +
1}〉 = 〈f〉 ∗i∈{1,...,n+1} 〈φ

i(f)〉, concluding the induction.

In particular Lemma 3.4 tells us that {tift−i, i ∈ Z} forms a basis for a free
subgroup. By Corollary 3.6 where H = 〈f, t〉 and ρ from the HNN structure, H is
free of rank 2. To conclude, H ∩F is conjugated into itself by t, and tn /∈ F for any
n > 0, so H ∩ F is not finitely generated by Lemma 3.7. �
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4. Improved relative train track maps for polynomially growing

automorphism

Let φ : F → F be an automorphism of a finitely generated free group. Identifying
F with π1(V, v) for some finite based graph V , the map φ is induced by a basepoint
preserving map Φ : V → V . Similarly, outer automorphisms are induced by maps
that do not preserve the basepoint.

When |φn(w)| is bounded by a polynomial for each word w in F , the map φ is
polynomially growing, otherwise it is exponentially growing. This is independent of
the choice of basis, and could have been expressed using Φ and closed paths w in V .

Bestvina, Feighn and Handel prove that there exists n ≥ 1 such that φn is induced
by an improved relative train track map Ψ [2, Thm 5.1.5.]. Passing to a power φn

corresponds to passing to a finite index subgroup, and thus does not change the FGIP
discussion. We now describe the structure of Ψ in the case where the automorphism
is polynomially growing and rank(F ) ≥ 1.

Definition 4.1. Let ∅ = V 0 ( V 1 ( · · · ( V k = V be a filtration of V by subgraphs
and let Sr = Cl(V r − V r−1) be the r-th stratum for r ≥ 1. A polynomial growth

improved relative train track map Ψ : V → V sends vertices to vertices and edges
to combinatorial paths, and the following hold:

(1) Each V r is Ψ-invariant.
(2) Each Sr consists of a single edge er, and Ψ(er) = erPr, where Pr is a closed

path in V r−1 whose initial point is fixed by Ψ.

Remark 4.2. By passing to a power, we may assume that Ψ maps some vertex v
to itself, and we regard v as the basepoint of V .

Remark 4.3. If two free group automorphisms φ and φ′ belong to the same outer
class (they differ by composition by an inner automorphism of F ), then F ⋊φ Z ∼=
F ⋊φ′ Z. Therefore Theorem 5.3, and Corollary 6.5 partition Theorem 2.4.

5. Polynomially growing case

In this section we study free-by-cyclic groups that are ascending HNN extensions
over polynomially growing improved relative train track maps. To do so we find a
F ×Z subgroup which fails the FGIP. We start by recalling the failure of the FGIP
for F × Z, which was first proved in [12]:

Theorem 5.1. F × Z fails to have the FGIP, when F is a non-cyclic finitely gen-

erated free group.

Proof. Let H = 〈(f0, 0), (f1, 1)〉 and suppose J = 〈f0, f1〉 is not a cyclic subgroup
of F . Since J is non-cyclic, [f0, f1] 6= id. Hence H ∩ (F × {0}) is nontrivial, since
[(f0, 0), (f1, 1)] ∈ F × {0}.

However [H : H ∩ F ] = ∞ because (f1, 1) has image 1 under the homomorphism
to Z. The result follows from Corollary 3.8. �

Definition 5.2 (Mapping tori). Let Φ : V → V be a map from a connected graph
to itself. The mapping torus MΦ of Φ is the 2-complex: MΦ = V × [0, 1]/{(v, 0) ∼
(Φ(v), 1) : ∀v ∈ V }. When Φ is basepoint preserving, Φ induces a homomorphism
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φ : π1V → π1V , otherwise we identify π1(V, p) with π1(V,Φ(p)) in the usual way to
get a homomorphism φ : π1V → π1V .

A hierarchy for the group is obtained by means of Definition 4.1.(2). This gives
an increasing sequence of mapping tori MΨi

where Ψi = Ψ|V i and each stage is
obtained from the previous by an HNN extension whose stable letter ei conjugates
Pit to t, as described in Definition 4.1.(2). Each inclusionMΨi

→֒ MΨ is π1-injective,
so it suffices to show that Mi fails to have the FGIP for some i.

We conclude this section with the proof of:

Theorem 5.3. Any ascending HNN extension of a non-cyclic finite rank free group

over an improved relative train track map with no exponential stratum fails to have

the FGIP.

Proof. Following Definition 4.1.(2), the graph V is formed by adding a sequence of
edges e1, e2, . . . , ek. Consider the smallest r where some component J of V r has
χ(J) < 0. We show that π1(MΨr

) fails to have the FGIP. The proof splits into cases
according to whether J − er is disconnected or connected. In each case we show
that there is a subgroup isomorphic to F2 × Z which fails the FGIP by Lemma 5.1.

When J − er is disconnected, J − er = J1 ⊔ J2 and each Ji deformation retracts
to a cycle ci. Note that since Ψ(Ji) intersects Ji by Definition 4.1.(2), and since
Ji does not map onto er by Definition 4.1.(1), each component Ji is mapped to
itself. Since Ψ induces an isomorphism, it induces automorphisms of each π1(ci).
Therefore, π1(MΨr

) splits as A ∗Z B where A and B are isomorphic to Z ⋉ Z, and
the amalgamated Z corresponds to the stable 〈t〉 on each side. In particular, we get
a Z2 ∗Z Z2 subgroup isomorphic to F2 × Z (e.g. use MΨ2

r
).

The second case is when χ(J − er) = 0, and er starts and ends on J . Note that
Ψ(J − er) = J − er and Ψ2

r induces the identity isomorphism on π1(J − er) just like
for J1 above. The space MΨ2

r
is homeomorphic to the space obtained from a torus

T by attaching a cylinder along its two boundary circles. These circles correspond
to maximal cyclic subgroups in π1T . Consequently, π1(MΨ2

r
) is isomorphic to an

HNN extension Z2∗αt=β. This contains a subgroup Z2 ∗〈α〉=〈β〉 Z
2 ∼= F2 × Z. �

6. Failure of the FGIP for certain relatively hyperbolic groups

In this section we propose a short argument explaining the failure of the FGIP for
certain relatively hyperbolic groups. We then combine this result with a powerful
result on relative hyperbolicity of free-by-cyclic groups with exponentially growing
automorphism [6, 7, 5] to give an explanation of the failure of the FGIP for these
groups.

6.1. Ping-pong. We recall the relatively hyperbolic generalization of Gromov’s ap-
plication of the ping pong lemma [9] to a hyperbolic group acting as a convergence
group on its boundary.

Lemma 6.1. Let G be a relatively hyperbolic group. Let w, t ∈ G be infinite order

elements with no common fixed point in ∂G. Then there exists m > 0 such that

〈wm, tm〉 is free of rank 2.

We use the action of G as a convergence group on its boundary ∂G. [4]
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Proof. Let {a, b} and {x, y} be the points stabilized respectively by w and t. Let
Na, Nb, Nx, Ny be pairwise disjoint open neighborhoods of a, b, x, y respectively un-
less x = y or a = b in which case Nx = Ny or Na = Nb. By compactness
we may assume that the closure of these neighborhoods are disjoint. Since G
acts as a convergence group and w, t have {a, b} and {x, y} as attracting/repelling
points respectively. There is a constant M such that tm(N̄a ∪ N̄b) ( Nx ∪Ny and
wm(N̄x ∪ N̄y) ( Na ∪ Nb whenever |m| > M . Applying the ping pong lemma on
N̄a ∪ N̄b and N̄x ∪ N̄y gives us the desired result. �

6.2. Relative hyperbolicity and the FGIP.

Theorem 6.2. Let G be hyperbolic relative to a collection of subgroups. Let N ⊆
G be a finitely generated subgroup containing a loxodromic element w. Suppose

tNt−1 ⊆ N for some infinite order t with 〈t〉 ∩N = {1G}. Then G fails to have the

FGIP. In particular, there exists m such that 〈tm, wm〉∩N is not finitely generated.

In view of the above, we propose the following definition:

Definition 6.3. A subgroup N of a group G is ascending if there exists an infinite
order element t ∈ G with 〈t〉 ∩N = {1G} and tNt−1 ⊆ N .

Proof of Theorem 6.2. We first show that t and w do not share a fixed point. Let
p be a fixed point of t. If w fixes p, then by [4, Lem 2.2] the subgroup 〈w, t〉
is either virtually cyclic or consists only of parabolic and elliptic elements. The
latter is impossible since w is loxodromic, and the former is impossible because
〈t〉 ∩N = {1G}.

By Lemma 6.1, there exists m ∈ Z such that wm, tm generate a rank 2 free
subgroup F . Observe that K = N ∩ F is nontrivial since wm ∈ N ∩ F , and
tKt−1 ⊆ K but tm /∈ N for m > 0. By Lemma 3.7, K is not finitely generated. �

The hyperbolic case simplifies to the following.

Corollary 6.4. Let G be hyperbolic, let N ⊆ G be a finitely generated infinite

subgroup, and suppose tNt−1 ⊆ N for some infinite order t with 〈t〉 ∩ N trivial.

Then G fails to have the FGIP.

6.3. Exponential growth free-by-cyclic. Combining Theorem 6.2 with recent
powerful results on relative hyperbolicity of mapping tori, we obtain an explanation
of Theorem 2.3 for exponential growth free-by-cyclic groups.

Corollary 6.5. If φ : F → F is an exponentially growing automorphism of a finitely

generated free group. Then the free-by-cyclic group F ⋊φ Z fails to have the FGIP.

Proof. From [5, Thm 3.5] , F ⋊φZ is hyperbolic relative to mapping tori of maximal
polynomially growing subgroups. These are the conjugacy classes of finitely many
subgroups of form 〈H, gt〉 where H < F is polynomially growing, g ∈ F and t is the
stable letter of the decomposition.

Let w ∈ F be an exponentially growing element. Observe that w is loxodromic in
the above relatively hyperbolic structure. Note that the semidirect structure ensures
that 〈t〉 ∩ F = {1G}. Hence the criterion Theorem 6.2 applies with N = F . �
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