
ar
X

iv
:2

10
5.

07
81

9v
3 

 [
m

at
h.

C
O

] 
 1

1 
M

ay
 2

02
2

Super jeu de taqin and combinatorics
of super tableaux of type A
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Abstract – This paper presents a combinatorial study of the super plactic monoid of type A, which
is related to the representations of the general linear Lie superalgebra. We introduce the analogue
of the Schützenberger’s jeu de taquin on the structure of super tableaux over a signed alphabet.
We show that this procedure which transforms super skew tableaux into super Young tableaux is
compatible with the super plactic congruence and it is confluent. We deduce properties relating the
super jeu de taquin to insertion algorithms on super tableaux. Moreover, we introduce the super
evacuation procedure as an involution on super tableaux and we show its compatibility with the
super plactic congruence. Finally, we describe the super jeu de taquin in terms of Fomin’s growth
diagrams in order to give a combinatorial version of the super Littlewood–Richardson rule.
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1. Introduction

The structure of plactic monoids has its origins in the works of Schensted [26] and Knuth [17]
in the combinatorial study of Young tableaux [30], and it has became a ubiquitous tool in alge-
braic combinatorics, representation theory and probabilistic combinatorics, [8, 10, 24]. Schen-
sted introduced an insertion algorithm on Young tableaux in order to compute the length of the
longest decreasing and increasing subsequences of a given word over the totally ordered alpha-
bet [=] := {1 < . . . < =}. Knuth showed that two words over [=] have the same Young tableau
after applying Schensted’s insertion if, and only, if they are related by a sequence of the following
Knuth relations:

IG~ = GI~ for 1 6 G 6 ~ < I 6 = and ~IG = ~GI for 1 6 G < ~ 6 I 6 =. (1)

Lascoux and Schützenberger introduced in [20] the plactic monoid as the quotient of the free
monoid over [=] by the congruence generated by the family of Knuth relations (1), and they in-
vestigated its algebraic and combinatorial properties. Using Kashiwara’s theory of crystal bases,

http://arxiv.org/abs/2105.07819v3


1. Introduction

the plactic monoid is also related to the representations of the special linear Lie algebra sl= of
type �=+1 and it is known as the plactic monoid of type A, [19]. In this way, the plactic monoid

of rank =, denoted by P([=]), is the quotient of the free monoid over [=] by the congruence
relation ∼P( [=]) defined in the following equivalent three ways:

D1) Insertion and tableaux: ∼P( [=]) relates those words that yield the same Young tableau as the
result of Schensted’s insertion algorithm.

D2) Defining relations: ∼P( [=]) is defined to be the congruence generated by the family of Knuth
relations (1).

D3) Crystal: ∼P( [=]) is defined byD ∼P( [=]) E if and only if there is a crystal isomorphism between
connected components of the crystal graph of the vector representation of sl= , that maps D
to E .

Plactic monoids are also defined for other finite-dimensional semisimple Lie algebras of classical
types and exceptional ones using Kashiwara’s theory of crystal bases, [21], or Littelmann’s path
model, [22]. Schützenberger introduced in [28] the jeu de taquin procedure on the structure of
tableaux in order to give one of the first correct proofs of the Littlewood–Richardson rule using
properties of the plactic monoid. This rule describes in a combinatorial way the multiplicity of a
Schur polynomial in a product of Schur polynomials, that is, the multiplicity of an irreducible rep-
resentation of the general Lie algebra in a tensor product of two irreducible representations. The
jeu de taquin has found many applications in algebraic combinatorics and probabilistic combina-
torics, [10, 25, 29]. Recently, plactic monoids and other similar monoids are studied by rewriting
methods, [5, 6, 13–15]. Note finally that structural properties for plactic algebras are obtained
in [7], and tropical representations for finite-rank plactic monoids are constructed in [16], which
implies that every plactic monoid of finite rank satisfies a non-trivial identity.

In this paper, we study the super version of the plactic monoid of type A over a signed
alphabet. A signed alphabet is a finite or countable totally ordered set S which is the disjoint
union of two subsets S0 and S1. Suppose S0 < S1, that is every element of S0 is less than every
element of S1. In this case, the super plactic monoid over a signed alphabet S, denoted by P(S),
is the quotient of the free monoid S∗ over S by the congruence relation ∼P(S) defined in the
following equivalent three ways:

D1) Insertion and tableaux: ∼P(S) relates those words that yield the same super tableau as the
result of the Schensted-like insertion algorithm introduced in [18].

D2) Defining relations: ∼P(S) is defined to be the congruence generated by the following family
of super Knuth-like relations, [1, 18]:

GI~ = IG~, with G = ~ only if ~ ∈ S0 and ~ = I only if ~ ∈ S1,

~GI = ~IG, with G = ~ only if ~ ∈ S1 and ~ = I only if ~ ∈ S0,
(2)

for any G 6 ~ 6 I of elements of S.

D3) Crystal: ∼P(S) is defined by D ∼P(S) E if and only if there is a crystal isomorphism between
connected components of the crystal graph of the vector representation of the general linear
Lie superalgebra gl<,= , that maps D to E , [1].
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1. Introduction

It is worth noting that the relations (2) are the reverse of the ones presented in [1], because the
readingmaps in [1] read super tableaux column-wise or row-rise from right to left and from top to
bottomwhereas the reading maps used in this paper read super tableaux in the reverse direction.
We will follow the definition of the super plactic monoid introduced in [18] that does not take
into account the condition S0 < S1, and we will show all the results for any ordering of S. Note
that whenS = S0 = [=], we recover the definition of the plactic monoid of type A. Note also that
the super plactic monoid appeared in [23] as a deformation of the parastatistics algebra which
is is a superalgebra with even parafermi and odd parabose creation and annihilation operators.
Moreover, super algebraic structures have found many applications as combinatorial tools in the
study of the invariant theory of superalgebras, the representation theory of general Lie super
algebras, and algebras satisfying identities, [2–4, 12].

Let S be a signed alphabet and let _ = (_1, . . . , _: ) ∈ N
: be a partition of a positive integer =,

that is a weakly decreasing sequence such that
∑
_8 = =. A super tableau of shape _ over S is

a collection of boxes in a left-justified row where the 8-th row contains _8 boxes, for 1 6 8 6 : ,
and filled by elements of S such that the entries in each row are weakly increasing from left to
right allowing the repetition only of elements in S0 and the entries in each column are weakly
increasing from top to bottom allowing the repetition only of elements in S1. We will denote
by Yt(S) the set of all super tableaux over S, and by 'A>F : Yt(S) → S∗ the map that reads
the entries of a super tableau row-wise from bottom to top and from left to right. Consider two
partitions _ and ` such that `8 6 _8 , for any 8. A super skew tableau of shape _/` over S is
obtained by removing the super tableau of shape ` from the super tableau of shape _, and filled
by elements of S such that the entries in each row are weakly increasing from left to right with
respect to S0 and the entries in each column are weakly increasing from top to bottom with
respect to S1. Schensted-like left and right insertion algorithms, denoted respectively by  
and

 

, are introduced in [18], and consist in inserting elements of S into super tableaux by
rows and columns respectively. The cross-section property of super tableaux with respect to the
super plactic congruence generated by the relations (2), is proved in [18], namely twowords overS
are super plactic congruent if and only if they lead to the same super tableau after applying the
super analogue of Schensted’s insertion algorithm. As a consequence, we deduce that the internal
product★Yt(S) defined on Yt(S) by setting C ★Yt(S) C

′ := (C

 

'A>F (C
′)) for all C and C ′ in Yt(S),

is associative. Hence, the set Yt(S) equipped with the product ★Yt(S) forms a monoid that is
isomorphic to the super plactic monoid.

We introduce in Section 3 the super jeu taquin as an algorithm on the structure of super
tableaux consisting in applying successively forward sliding operations on a super skew tableau
that move an inner corner into an outer position by keeping the rows and the columns weakly
increasing until no more inner corners remain in the initial super skew tableau. We prove that
the rectification of a super skew tableau ( by the super jeu de taquin is the unique super tableau
whose reading is equivalent to the reading of ( with respect to the super plactic congruence.
As a consequence, we show in Theorem 3.3.3 that the super jeu de taquin is confluent, that is,
the resulting super tableau does not depend on the order in which we choose inner corners in
the forward sliding procedure. Explicitly, if there are two sequences of sliding operations that
transform a super skew tableau ( into two different super tableaux (1 and (2, then we continue
applying sliding operations until we reach two super tableaux (̃1 and (̃2 without inner corners.
Since the readings of (̃1 and (̃2 are super plactic congruent, we deduce that (̃1 = (̃2, by the cross-
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1. Introduction

section property. Moreover, we relate in Subsection 3.4 the super jeu de taquin to the insertion
algorithms and we show how we can insert a super tableau into another one by taquin.

Using the super jeu de taquin, we introduce in Section 4 the super analogue of the Schützen-
berger’s evacuation procedure which transforms a super tableau C over a signed alphabet S into
an opposite tableau, denoted by Cop, over the opposite alphabet S>? obtained from S by revers-
ing its order. We show in Theorem 4.2.3 that the super tableaux C and Cop have the same shape
and that the map C ↦→ Cop is an involution on Yt(S) that is compatible with the super plactic
congruence.

Following Fomin’s construction of growth diagrams [9], we give in Section 5 an interpre-
tation of the super jeu de taquin in terms of super growth diagrams. Using this diagrammatic
interpretation, we deduce that the super jeu de taquin is symmetric, that is, the corresponding
super growth diagram can be constructed either starting from its topmost row and leftmost col-
umn or starting from its rightmost column and bottom-most row using Fomin’s local rule. As a
consequence, we show in Theorem 5.1.1 that the number of super skew tableaux of shape _/`
that rectify to a given super tableau C of shape a , denoted by 2a

_,`
, does not depend on C , and

depends only on the partitions _, ` and a . Moreover, we show that the following identity

(_/` =
∑

a

2a_,`(a

holds in the tableau Z-algebra rising from the super plactic monoid, where (_/` and (a denote
respectively the formal sum of all super tableaux of shape _/` and a over a finite signed alphabet.

Notation. Let A be a totally ordered alphabet. We will denote by A∗ the free monoid of
words overA, the product being concatenation of words, and the identity being the empty word.
When A is finite, we will denote by #A its cardinal number. We will denote by F = G1 . . . G:
a word in A∗ of length : , where G1, . . . , G: belong to A. The length of a word F will be de-
noted by |F |. Let F = G1 . . . G: be a word in A∗. The mirror word of F is the word G: . . . G1
obtained by reversing its elements. We denote by ℓ (F ) the leftmost letter of F and by Rem(F )

the subword ofF such thatF = ℓ (F ) Rem(F ). A wordF ′ is a subsequence ofF ifF ′ = G81 . . . G8;
with 1 6 81 < . . . < 8; < : . We will denote by [=] the ordered set {1 < 2 < . . . < =} for = in Z>0.
LetS be a finite or countable totally ordered set and | |. | | : S → Z2 be any map, where Z2 = {0, 1}
denotes the additive cyclic group of order 2. The ordered pair (S, | |. | |) is called a signed alphabet
and we denote S0 = {0 ∈ S

�� | |0 | | = 0} and S1 = {0 ∈ S
�� | |0 | | = 1}. A monoid M is said a

Z2-graded monoid or a supermonoid if a map | |. | | : M → Z2 is given such that | |D.E | | = | |D | | + | |E | |,
for all D and E in M. We call | |D | | the Z2-degree of the element D. The free monoid S∗ over S is
Z2-graded by considering | |F | | := | |G1 | | + . . . + ||G: | |, for any wordF = G1 . . . G: in S∗. In the rest
of this article, and if there is no possible confusion, S denotes a signed alphabet.
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2. The super plactic monoid

2. The super plactic monoid

In this section, we recall from [18] the structure of super Young tableaux and insertion algorithms
on super tableaux. We also recall the notion of super plactic monoid and the cross-section prop-
erty for this monoid and we deduce properties of the insertion product on super tableaux.

2.1. Super Young tableaux. A partition of a positive integer =, denoted by _ ⊢ =, is a weakly

decreasing sequence _ = (_1, . . . , _: ) ∈ N
: such that

∑
_8 = =. The integer : is called number of

parts or height of _. Denote by P= the set of partitions of a positive integer =, and set P =
⋃

P=
=∈N

.

The (Ferrers)–Young diagram of a partition _ = (_1, . . . , _: ) is the set

Y(_) :=
{
(8, 9)

�� 1 6 8 6 :, 1 6 9 6 _8
}
,

that can be represented by a diagram by drawing a box for each pair (8, 9). For instance, the
Young diagram for _ = (3, 3, 1, 1) is the following

. (3)

The transposed diagram {( 9, 8)
�� (8, 9) ∈ Y(_)} defines another partition _̃ ⊢ =, called the conju-

gate partition of _, whose parts are the lengths of the columns of Y(_). Let _ ⊢ = be a partition.
A super semistandard Young tableau, or super tableau for short, over S is a pair C := (_,T) where
T : Y(_) → S is a map satisfying the following two conditions:

i) T(8, 9) 6 T(8, 9 + 1), with T(8, 9) = T(8, 9 + 1) only if | |T(8, 9) | | = 0,

ii) T(8, 9) 6 T(8 + 1, 9), with T(8, 9) = T(8 + 1, 9) only if | |T(8, 9) | | = 1.

We will callY(_), T and _, the frame, the filing and the shape of the super tableau C respectively.
When the map T is injective, we say that C is a standard Young tableau, or standard tableau for
short, over S. Denote by ∅ the empty super tableau over S. Denote by Yt(S) the set of all
super tableaux over S and by Yt(S, _) the set of all super tableaux of shape _ over S. Note that
the usual notion of semistandard tableaux of type A, [10], is recovered when | |. | | has a constant
value. More precisely, when S = S0 (resp. S = S1), we obtain row-strict (resp. column-strict)
semistandard tableaux.

Let _ and ` be inP with heights: and ; respectively such that ; 6 : . We write ` ⊆ _ if `8 6 _8 ,
for any 8, that is the Young diagram of ` is contained in that of _. In this case, the set

Y(_/`) :=
{
(8, 9)

�� 1 6 8 6 :, `8 < 9 6 _8
}

is called a skew diagram _/` or a skew shape. We denote _/0 := _ the skew shape corresponding
to the Young diagram Y(_). For instance, the following diagram

5



2. The super plactic monoid

corresponds to the skew shape (5, 4, 4, 3, 1)/(3, 3, 1). The super Young lattice is a partially ordered
set, denoted by (P, ⊆), formed by all integer partitions ordered by inclusion of their Young di-
agrams. Let _/` be a skew shape. A super semistandard skew tableau, or super skew tableau for
short, of shape _/` and frame Y(_/`) over S is a pair ( := (_/`,U) whereU : Y(_/`) → S is
a map satisfying the following two conditions:

i) U(8, 9) 6 U(8, 9 + 1), withU(8, 9) = U(8, 9 + 1) only if | | U(8, 9) | | = 0,

ii) U(8, 9) 6 U(8 + 1, 9), withU(8, 9) = U(8 + 1, 9) only if | | U(8, 9) | | = 1.

Denote by St(S) the set of all super skew tableaux over S and by St(S, _/`) the set of all super
skew tableaux of shape _/` overS. Note that we will identify the set of super tableaux of shape _
with the set of super skew tableaux of shape _/0.

Denote by
'A>F : St(S) → S∗

the reading map that reads a super tableau row-wise from bottom to top and from left to right. For
instance, consider the alphabet S = {1, 2, 3, 4, 5} with signature given by S0 = {1, 2, 4} and S1

defined consequently. The following diagram is a super tableau over S corresponding to the
frame (3):

C =

1 1 2
3 4 4
5
5

with 'A>F (C) = 55344112.
(4)

A row (resp. column) is a wordG1 . . . G: inS
∗ such thatG8 6 G8+1 (resp. G8+1 6 G8 ) withG8 = G8+1

only if | |G8 | | = 0 (resp. | |G8 | | = 1). In other words, a row (resp. column) is the 'A>F-reading of a
super tableau whose shape is a row (resp. column).

2.2. Insertion on super tableaux. Recall from [18] the right and left insertion algorithms
on Yt(S) that insert an element G inS into a super tableau C of Yt(S). The right (or row) insertion,
denoted by

 

, computes a super tableau C

 

G as follows. If G ∈ S> (resp. G ∈ S1) is at least
as large as (resp. larger than) the last element of the top row of C , then put G in a box to the
right of this row. Otherwise, let ~ be the smallest element of the top row of C such that ~ > G

(resp. ~ > G). Then G replaces ~ in this row and ~ is bumped into the next row where the process
is repeated. The algorithm terminates when the element which is bumped is at least as large as
(resp. larger than) the last element of the next row. Then it is placed in a box at the right of that
row. For instance, consider S = N with signature given by S0 the set of even numbers and S1

defined consequently. The four steps to compute
( 1 2 2 3

1 3 4
3

 

2
)
are:

1 2 2 3

 

2
1 3 4
3

→
1 2 2 2
1 3 4

 

3
3

→
1 2 2 2
1 3 4
3

 

3
→

1 2 2 2
1 3 4
3  

3

→
1 2 2 2
1 3 4
3
3

(5)

The left (or column) insertion, denoted by , computes a super tableau G  C as follows.
If G ∈ S> (resp. G ∈ S1) is larger than (resp. at least as large as) the bottom element of the
leftmost column of C , then put G in a box to the bottom of this column. Otherwise, let ~ be the

6



2.3. The super plactic monoid

smallest element of the leftmost column of C such that ~ > G (resp. ~ > G). Then G replaces ~ in
this column and ~ is bumped into the next column where the process is repeated. The algorithm
terminates when the element which is bumped is greater than (resp. at least as large as) all the
elements of the next column. Then it is placed in a box at the bottom of that column. For instance,
considerS = Nwith signature given byS0 the set of even numbers andS1 defined consequently.

The five steps to compute
(
1 1 2 5 6

1 4 5
2

)
are:

1 2 5 6
1 4 5
2
↑
1

→
1 2 5 6
1 4 5
1
↑
2

→
1 2 5 6
1 4 5
1

↑
2

→
1 2 2 6
1 4 5
1

↑
5

→
1 2 2 5
1 4 5
1

↑
6

→
1 2 2 5 6
1 4 5
1

(6)

Note that whenS = S0 = [=], the right (resp. left) insertion corresponds to Schensted’s right
(resp. left) insertion introduced in [26] on row-strict semistandard tableaux over [=]. For any
word F = G1 . . . G: over S, denote by �Yt(S) (F ) the super tableau obtained from F by inserting
its letters iteratively from left to right using the right insertion starting from the empty super
tableau:

�Yt(S) (F ) := (∅

 

F ) = ((. . . (∅

 

G1)

 

. . .)

 

G: ).

Note that for any super tableau C in Yt(S), the equality�Yt(S) ('A>F (C)) = C holds in Yt(S), [18].
Define now an internal product★Yt (S) on Yt(S) by setting

C ★Yt (S) C
′ := (C

 

'A>F (C
′))

for all C, C ′ in Yt(S). By definition the relations C ★Yt(S) ∅ = C and ∅ ★Yt(S) C = C hold, showing
that the product ★Yt(S) is unitary with respect to ∅.

2.3. The super plactic monoid. The super plactic monoid over S, denoted by P(S), is the
quotient of the free monoid S∗ by the congruence generated by the family of super Knuth-like
relations (2), [18]. This congruence, denoted by ∼P(S) , is called the super plactic congruence. We
say that two words over S are super plactic equivalent if one can be transformed into the other
under the relations (2). Since the relations (2) are Z2-homogeneous, we have that P(S) is a
supermonoid. Moreover, for any F in S∗, the words F and 'A>F (�Yt(S) (F )) are super plactic
equivalent, [18]. Note finally that the set Yt(S) satisfies the cross-section property for ∼P(S) , that
is, for allF and F ′ in S∗, [18]:

F ∼P(S) F
′ if and only if �Yt(S) (F ) = �Yt(S) (F

′). (7)

As a consequence of the cross-section property, we deduce that the product★Yt(S) is associa-
tive and the following equality

~ (C

 

G) = (~ C)

 

G

holds in Yt(S), for all C in Yt(S) and G, ~ in S. In particular, for any wordF = G1 . . . G: in S∗ the
super tableau�Yt(S) (F ) can be also computed by inserting its elements iteratively from right to
left using the left insertion starting from the empty super tableau:

�Yt(S) (F ) = (F  ∅) := (G1 (. . . (G:  ∅) . . .)).

7



3. The super Jeu de taquin

Note that the associativity of the product★Yt(S) is deduced in Corollary 3.4.2 using the properties
of the super jeu de taquin introduced in the next section.

LetF be inS∗. For any: > 0, denote by ;: (F ) (resp. ;̃: (F )) themaximal numberwhich can be
obtained as the sum of the lengths of : rows (resp. columns) that are disjoint subsequences ofF .
The integers ;: (F ) and ;̃: (F ) are the super analogues ofGreene’s row and columns invariants, [11].
For anyF ′ inS∗, ifF ∼P(S) F

′ then ;: (F ) = ;: (F
′) for any : , [18]. Moreover, let _ = (_1, . . . , _: )

be the shape of �Yt(S) (F ) and _̃ = (_̃1, . . . , _̃; ) be the conjugate partition of _. For any : > 0, we

have ;: (F ) = _1 + . . . + _: and ;̃: (F ) = _̃1 + . . . + _̃: , [18]. Then, the equality _: = ;: (F ) − ;:−1 (F )

holds, for any : . Hence, we obtain the following result.

Lemma 2.3.1. Let F and F ′ be two words over S. If the equality ;: (F ) = ;: (F
′) holds for any : ,

then the super tableaux �Yt(S) (F ) and �Yt(S) (F
′) have the same shape.

3. The super Jeu de taqin

Following the approach given in [10] for the non-signed case, we introduce the super jeu de
taquin procedure which transforms super skew tableaux into super tableaux and we show that
it is confluent. We relate this procedure to insertion algorithms and we show how insertion on
super tableaux can be performed by taquin.

3.1. The forward sliding. Let _/` be a skew shape. A super skew tableau of shape _/` which
is not a super tableau has at least one inner corner. An inner corner is a box in the diagramY(`)

such that the boxes below and to the right do not belong to Y(`). An outer corner is a box
such that neither box below or to the right is in Y(_/`). Note that in some cases inner corners
can be also outer corners. For instance, consider S = N with signature given by S0 the set of
even numbers and S1 defined consequently. The red box in the following super skew tableau of
shape (6, 5, 5, 3, 1)/(4, 4, 4, 3) is an inner corner, the blue one is an inner and outer corner, and the
green one is an outer corner that is not an inner corner:

2 2
3
3

5

A sliding operation belongs to one of the following operations:

i) vertical sliding: ~
G

→ G ~ , for any G 6 ~ with G = ~ only if | |G | | = 0,

ii) horizontal sliding: G
~

→ G
~

, for any G 6 ~ with G = ~ only if | |G | | = 1.

Note that if G or ~ in i) and ii) are empty, the following operations are performed:

G
→ G , G → G , → for any G.

A forward sliding is a sequence of sliding operations starting from a super skew tableau and one
of its inner corners, and moving the empty box until it becomes an outer corner. The super jeu de

8



3.1. The forward sliding

taquin on a super skew tableau ( consists in applying successively the forward sliding algorithm
starting from ( until we get a diagram without inner corners. The resulted diagram, denoted by
Rect((), is called the rectification of ( . Two super skew tableaux ( and ( ′ are super jeu de taquin

equivalent if and only if ( can be obtained from ( ′ by a sequence of sliding operations.

3.1.1. Example. ConsiderS = N=>0 with signature given byS0 the set of even numbers andS1

defined consequently. The super jeu de taquin on the following super skew tableau ( applies six
occurrences of forward sliding:

( =

2 2
3
3

1 2
5

→

2 2
3

2 3
1
5

;

2 2
3

2 3
1
5

→

2 2
3

1 2 3

5

→

2 2
3

1 2 3
5

;

2 2
3

1 2 3
5

→

2 2
2 3

1 3
5

→

2 2
2 3

1 3
5

;

2 2
2 3

1 3
5

→

2 2 2
3

1 3
5

→

2 2 2
3

1 3
5

;

2 2 2
3

1 3
5

→

2 2 2
1 3

3
5

→

2 2 2
1 3
3
5

;

2 2 2
1 3
3
5

→

1 2 2 2
3

3
5

→

1 2 2 2
3
3
5

.

Hence we obtain

Rect(() =

1 2 2 2
3
3
5

Lemma 3.1.2. Let ( be in St(S). The rectification Rect(() of ( is a super tableau.

Proof. It is sufficient to prove that after each sliding operation the rows (resp. columns) in the
super skew tableau remain increasing from left to right (resp. top to bottom) with respect to S0

(resp. S1). Suppose that the inner corner has the following position:

A1 A2
A3 ~
A4 G

where A1 6 A2 6 ~ with A1 = A2 only if | |A1 | | = 0 and A2 = ~ only if | |~ | | = 1, and A3 6 A4 6 G
with A3 = A4 only if | |A3 | | = 1 and A4 = G only if | |G | | = 0. Suppose first that G 6 ~ with G = ~ only
if | |~ | | = 0. Then we perform the following sliding operation:

A1 A2
A3 ~
A4 G

→ A1 A2
A3 G ~
A4

(8)

with A3 < G 6 ~ and G = ~ only if | |~ | | = 0 showing that the row containing A3, G and ~
is increasing from left to right with respect to S0. We proceed in the same way for the case
where ~ is empty. Suppose now that ~ 6 G with G = ~ only if | |~ | | = 1. Then we perform the
following sliding operation:

A1 A2
A3 ~
A4 G

→ A1 A2
A3 ~
A4 G

(9)

9



3. The super Jeu de taquin

with A1 < ~ 6 G and G = ~ only if | |~ | | = 1 showing that the column containing A1, ~ and G
is increasing from top to bottom with respect to S1. We proceed in the same way for the case
where G is empty. Note finally that when G and ~ are both empty, the rows (resp. columns) in the
initial super skew tableau are not changed by the sliding operation and remain increasing from
left to right (resp. top to bottom) with respect to S0 (resp. S1), showing the claim. �

3.2. The reverse sliding. A reverse sliding operation belongs to one of the following operations:

i) vertical reverse sliding: ~
G

→
G ~

, for any G 6 ~ with G = ~ only if | |G | | = 0,

ii) horizontal reverse sliding: G
~

→ G
~
, for any G 6 ~ with G = ~ only if | |G | | = 1.

A reverse sliding is a sequence of reverse sliding operations starting from a skew tableau and one
of its empty outer corners, and moving this box until it becomes an inner corner.

Note that if we apply the reverse sliding operations on the right sides of the forward transfor-
mations in (8) and (9), we obtain their left sides. Indeed, in the first transformation when G 6 ~
with G = ~ only if | |~ | | = 0, we have A4 6 G with A4 = G only if | |G | | = 0, so we choose the vertical
reverse sliding, which leads us back to the left side of (8). In the second case, we have A2 6 ~
with A2 = ~ only if | |~ | | = 1, so the horizontal reverse sliding leads us back to the left side
of (9). Hence, starting from the resulting super skew tableau of a forward sliding, together with
the outer corner that was removed, and if we apply the reverse sliding, then we will obtain the
initial super skew tableau with the chosen inner corner.

3.3. Compatibility with the super plactic congruence. The sliding operations are compat-
ible with the super plactic congruence. Indeed, for any G 6 ~ 6 I with G = ~ only if | |~ | | = 0
and ~ = I only if | |~ | | = 1, we have

( =
~

G I
→ ~

G I
→ G ~

I
= Rect((),

with 'A>F (() = GI~ ∼P(S) IG~ = 'A>F (Rect(()). Moreover, for any G 6 ~ 6 I with G = ~ only
if | |~ | | = 1 and ~ = I only if | |~ | | = 0, we have

( =
G

~ I
→ G

~ I
→ G I

~
= Rect((),

with 'A>F (() = ~IG ∼P(S) ~GI = 'A>F (Rect(()). More generally, we show the following result.

Lemma 3.3.1. Let ( and ( ′ be in St(S). If ( and ( ′ are super jeu de taquin equivalent, then the

words 'A>F (() and 'A>F ((
′) are super plactic equivalent.

Proof. If ( and ( ′ are related by a sequence of horizontal sliding operations, then by definition of
the reading map 'A>F , the words 'A>F (() and 'A>F (( ′) are equal. For a vertical sliding, suppose
that the overlapping part of the two rows where the sliding operation occurs has the following

10



3.3. Compatibility with the super plactic congruence

form:

t

 B1 · · · B: G I1 · · · I;

A1 · · · A: ~1 · · · ~; !

C ′

→

t

 B1 · · · B:

G

I1 · · · I;

A1 · · · A: ~1 · · · ~; !

C ′

such that ' = A1 . . . A: , ) = B1 . . . B: , . = ~1 . . . ~; , / = I1 . . . I; ,  and ! are rows, C and C ′ are
in Yt(S), and A8 6 B8 (resp. ~8 6 I8 ) with A8 = B8 (resp. ~8 = I8 ) only if | |A8 | | = 1 (resp. | |~8 | | = 1) for
all 1 6 8 6 : (resp. 1 6 8 6 ;). Wewill show that thewords'A>F (C)'A>F ( ))G/'.'A>F (!)'A>F (C ′)
and'A>F (C)'A>F ( ))/'G.'A>F (!)'A>F (C ′) are super plactic equivalent. Since ∼P(S) is a congru-
ence, it is sufficient to show that

)G/'. ∼P(S) )/'G. . (10)

We will show (10) by induction on : . Suppose that : = 0. The equality �Yt(S) (G/'. ) =

�Yt(S) (/'G. ) holds in Yt(S) showing by the cross-section property (7) that the words G/'.
and /'G. are super plactic equivalent. Suppose that (10) holds for : − 1 and consider ' =

A1 Rem(') and ) = C1 Rem() ) with | Rem(') | = | Rem() ) | = : − 1. By the induction hypothesis,
we have

Rem() )G/ Rem('). ∼P(S) Rem() )/ Rem(')G. . (11)

The equality �Yt(S) (C1 Rem() )G/A1) = �Yt(S) (C1A1 Rem() )G/ ) holds in Yt(S) showing by (7)
that

C1 Rem() )G/A1 ∼P(S) C1A1 Rem() )G/ . (12)

Similarly, since the equality �Yt(S) (C1A1 Rem() )/ ) = �Yt(S) (C1 Rem() )/A1) holds in Yt(S), we
have:

C1A1 Rem() )/ ∼P(S) C1 Rem() )/A1. (13)

Hence, we obtain the following equivalence

)G/'. = C1 Rem() )G/A1 Rem(').

∼P(S) C1A1 Rem() )G/ Rem('). [by (12)]
∼P(S) C1A1 Rem() )/ Rem(')G. [by (11)]
∼P(S) C1 Rem() )/A1 Rem(')G. [by (13)]
= )/'G.

showing the claim. �

Lemma 3.3.2. The rectification tableau Rect(() of a given super skew tableau ( is the unique super

tableau such that 'A>F (() ∼P(S) 'A>F (Rect(()). Moreover, the following property

Rect(() = Rect(( ′) if and only if 'A>F (() ∼P(S) 'A>F ((
′)

holds, for all (, ( ′ in St(S).

11



3. The super Jeu de taquin

Proof. By Lemmata 3.1.2 and 3.3.1 the rectification Rect(() of a given super skew tableau ( is a
super tableau such that 'A>F (() ∼P(S) 'A>F (Rect(()). Suppose that there exists a super tableau C
that is also the rectification of ( . We obtain that 'A>F (C) ∼P(S) 'A>F (Rect(()), showing by (7)
that C = Rect(().

Consider now two super skew tableaux ( and ( ′. Suppose that Rect(() = Rect(( ′). We
have by Lemma 3.3.1 that 'A>F (() ∼P(S) 'A>F (Rect(()) and 'A>F (( ′) ∼P(S) 'A>F (Rect(( ′))
showing that the words 'A>F (() and 'A>F (( ′) are super plactic equivalent. Suppose finally
that'A>F (() ∼P(S) 'A>F ((

′). We obtain by Lemma 3.3.1 that'A>F (Rect(()) ∼P(S) 'A>F (Rect(( ′))
showing by (7) that Rect(() = Rect(( ′). �

As a consequence, we obtain the following result.

Theorem 3.3.3 (Confluence of the super jeu de taquin). Starting with a given super skew tableau,

all choices of inner corners lead to the same rectified super tableau.

3.4. Super jeu de taquin and insertion. Given two super skew tableaux ( and ( ′ in St(S) of
shape (_1, . . . , _: )/(_′1, . . . , _

′
:′
) and (`1, . . . , `; )/(` ′1, . . . , `

′
;′
) respectively. Wewill denote by [(, ( ′]

the super skew tableau of shape

(`1 + _1, . . . , `; + _1, _1, . . . , _: )/(`
′
1 + _1, . . . , `

′
;′ + _1, _1, . . . , _1, _

′
1, . . . , _

′
:′),

obtained by concatenating ( ′ over the rightmost column of ( as illustrated in the following dia-
grams:

( =

· · · · · ·

· · ·
...
...
... ; ( ′ =

· · · · · ·

· · ·
...
...
... ; [(, ( ′] =

· · · · · ·

· · ·
...
...
...

· · · · · ·

· · ·
...
...
...

In particular, if C and C ′ are super tableaux in Yt(S) of shapes _ = (_1, . . . , _: ) and ` = (`1, . . . , `; )

respectively, then the super skew tableau [C, C ′] is of shape

(`1 + _1, . . . , `; + _1, _1, . . . , _: )/(_1, . . . , _1).

Define the insertion product ★St(S) : St(S) × St(S) → Yt(S) by setting

( ★St(S) (
′ := (∅

 

'A>F (()'A>F ((
′))

for all (, ( ′ in St(S).

Proposition 3.4.1. For all ( and ( ′ in St(S), the following equality

( ★St(S) (
′ = Rect([(, ( ′]) (14)

holds in Yt(S). In particular, the insertion product ★St(S) is associative.
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3.5. Column reading on super tableaux

Proof. By definition of★St(S) , the following equivalence'A>F (()'A>F (( ′) ∼P(S) 'A>F ((★St(S) (
′)

holds. Moreover, by Lemma 3.3.1, thewords'A>F ([(, ( ′]) = 'A>F (()'A>F (( ′) and'A>F (Rect([(, ( ′]))
are super plactic equivalent, showing that'A>F ((★St(S)(

′) and'A>F (Rect([(, ( ′])) are so. Hence,
the equality (14) holds by the cross-section property (7). In particular, by Theorem 3.3.3, the fol-
lowing equality

(( ★St(S) (
′) ★St(S) (

′′ = Rect([[(, ( ′], ( ′′]) = ( ★St(S) ((
′
★St(S) (

′′)

holds in Yt(S), for all (, ( ′, ( ′′ ∈ St(S), showing that★St (S) is associative. �

By restriction of the insertion product on the set Yt(S) × Yt(S), we deduce the following
result.

Corollary 3.4.2. For all C and C ′ in Yt(S), the following equality

C ★Yt (S) C
′ = Rect([C, C ′])

holds in Yt(S), and the insertion product ★Yt(S) is associative.

3.4.3. Example. The insertion
( 1 2 2 3

1 3 4
3

 

2
)
computed in (5) is obtained as follows:

2
1 2 2 3
1 3 4
3

→

2
1 2 2 3
1 3 4
3

→

2 2
1 2 3
1 3 4
3

→

2 2 2
1 3 4
1 3
3

→

1 2 2 2
1 3 4
3
3

The insertion
(
1 1 2 5 6

1 4 5
2

)
computed in (6) is also recovered as follows by taquin:

1 2 5 6
1 4 5
2

1
→

1 2 5 6
1 4 5

1 2 →

1 2 5 6
1 2 4 5
1 →

1 2 2 5 6
1 4 5
1

3.5. Column reading on super tableaux. Denote by '2>; : St(S) → S∗ the map that reads
a super tableau column-wise from bottom to top and from left to right. For instance, the '2>; -
reading of the super tableau C presented in (4) is '2>; (C) = 55314142.

Proposition 3.5.1. Let ( be in St(S). The words '2>; (() and 'A>F (() are super plactic equivalent.

Proof. Suppose that the super skew tableau ( consists of : columns 21, . . . , 2: . By Theorem 3.3.3,
this super skew tableau can be obtained from [[. . . [[21, 22], 23], . . .], 2: ] by applying a sequence
of forward sliding that moves the columns to the top starting from 2:−1 and ending by 21. Hence,
we obtain by Lemma 3.3.1 the following equivalence:

'A>F (() ∼P(S) 'A>F ([[. . . [[21, 22], 23], . . .], 2: ])

= 'A>F (21) . . . 'A>F (2: )

= '2>; (21) . . . '2>; (2: )

= '2>; (()

showing the claim. �
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4. The super evacuation procedure

4. The super evacuation procedure

We introduce in this section the super evacuation procedure using the super jeu de taquin andwe
show its compatibility with the super plactic congruence. We follow for this aim, the approach
given in [10] for the non-signed case.

4.1. Super opposite alphabet. Denote by Sop the opposite alphabet obtained from S by re-
versing its order. Denote by G∗ the letter in Sop corresponding to G in S where | |G∗ | | = 0
(resp. | |G∗ | | = 1) if | |G | | = 0 (resp. | |G | | = 1). For all G, ~ in S, we have G < ~ if and only
if G∗ > ~∗. For any word F = G1 . . . G: over S, denote by F ∗ = G∗

:
. . . G∗1 the corresponding

word over Sop. Then, for all E and F in S∗, the equality (EF )∗ = F ∗E∗ holds, inducing an anti-
isomorphism between the freemonoids overSop andS. Moreover, by identifying (Sop)op withS,
the equality (F ∗)∗ = F holds, for anyF in S∗.

Lemma 4.1.1. Let E andF be words in S∗. The following properties hold:

i) E ∼P(S) F if, and only, if E∗ ∼P(Sop) F
∗.

ii) ;: (E) = ;: (E
∗), for any : > 0.

Proof. Consider two words E and F in S∗ such that E ∼P(S) F . Suppose that E = ?GI~@ and F =

?IG~@ for all ?, @ ∈ S∗ such that G 6 ~ 6 I in S with G = ~ only if | |~ | | = 0 and ~ = I only
if | |~ | | = 1. We have E∗ = @∗~∗I∗G∗?∗ andF ∗ = @∗~∗G∗I∗?∗ with I∗ 6 ~∗ 6 G∗ and G∗ = ~∗ only if
| |~∗ | | = 0 and ~∗ = I∗ only if | |~∗ | | = 1, showing that E∗ ∼P(Sop) F

∗. Suppose now that E = ?~GI@
and F = ?~IG@ for all ?, @ ∈ S∗ such that G 6 ~ 6 I in S with G = ~ only if | |~ | | = 1 and ~ = I

only if | |~ | | = 0. We have E∗ = @∗I∗G∗~∗?∗ and F ∗ = @∗G∗I∗~∗?∗ with I∗ 6 ~∗ 6 G∗ and G∗ = ~∗

only if | |~∗ | | = 1 and ~∗ = I∗ only if | |~∗ | | = 0, showing that E∗ ∼P(Sop) F
∗. Similarly, we show

that if E∗ ∼P(Sop) F
∗, then E ∼P(S) F . Finally, for any : > 0, any disjoint family of : rows that

are subsequences of a word E over S gives by considering the mirror words of the rows in Sop,
a family of : rows that are subsequences of E∗, showing that ;: (E) = ;: (E∗). �

4.2. Involution on super tableaux. Let C be in Yt(S). An opposite tableau in Yt(Sop) is con-
structed from C using the super jeu de taquin as follows. Consider an empty Young diagram with
the same frame as C . Remove the box containing the top-leftmost element G in C , and perform
a forward sliding on the resulted super skew tableau. We obtain a super tableau, denoted by C∗,
whose frame has one box removed from the frame of C . Put the letter G∗ in the initial empty
Young diagram at the same place of the box that was removed from the frame of C . Repeat the
algorithm on C∗ and continue until all the elements of C have been removed and the initial empty
Young diagram has been filled by their corresponding letters in Sop. The result is denoted by Cop,
and the procedure of construction Cop from C is called the super evacuation. This is the super
analogue of the Schützenberger’s evacuation procedure, [27]. For instance, consider the super
tableau C presented in (4) and compute Cop.

C =

1 1 2
3 4 4
5
5

;
( 1 2

3 4 4
5
5

, C∗ =

1 2 4
3 4
5
5

,
1∗ )

;
( 2 4

3 4
5
5

,

2 4 4
3
5
5

,
1∗ 1∗ ) ;

14



4.2. Involution on super tableaux

( 4 4
3
5
5

,

3 4 4
5
5 ,

1∗ 1∗

2∗

)
;

( 4 4
5
5

,
4 4
5
5

,
3∗

1∗ 1∗

2∗

)
;

( 4
5
5

,
4
5
5
,

4∗ 3∗

1∗ 1∗

2∗

)
;

(
5
5
,

5
5 ,

4∗ 3∗

1∗ 1∗

4∗

2∗

)
;

(
5
, 5 ,

4∗ 3∗

5∗ 1∗ 1∗

4∗

2∗

)
;

(
5 , ∅ ,

5∗ 4∗ 3∗

5∗ 1∗ 1∗

4∗

2∗

= Cop
)
.

Let C be in Yt(S). Define C∧ to be the unique super tableau in Yt(Sop) such that the words
('A>F (C))

∗ and 'A>F (C∧) are congruent with respect to ∼P(Sop) .

Lemma 4.2.1. Let C be in Yt(S). The following properties hold:

i) The map C ↦→ C∧ is an involution on Yt(S).

ii) The super tableau C∧ has the same shape as C .

Proof. Consider C in Yt(S). By definition, the super tableau (C∧)∧ is the unique super tableau
in Yt(S) such that ('A>F (C∧))∗ ∼P(S) 'A>F

(
(C∧)∧

)
. Since the equality (F ∗)∗ = F holds for anyF

inS∗, we obtain by Lemma 4.1.1 that'A>F (C∧) ∼P(Sop)

(
'A>F

(
(C∧)∧

) )∗
and then ('A>F (C))∗ ∼P(Sop)(

'A>F
(
(C∧)∧

) )∗
. Hence, by Lemma 4.1.1, the equivalence 'A>F (C) ∼P(S) 'A>F

(
(C∧)∧

)
holds, show-

ing by the cross-section property (7), that the map C ↦→ C∧ is an involution. Moreover, since
the words ('A>F (C))∗ and 'A>F (C∧) are congruent with respect to ∼P(Sop) , the following equal-
ity ;: ('A>F (C∧)) = ;: (('A>F (C))∗) holds, for any : . Following Lemma 4.1.1, the equality

;: ('A>F (C
∧)) = ;: ('A>F (C))

holds for any: , showing by Lemma 2.3.1 that the super tableaux C and C∧ have the same shape. �

Lemma 4.2.2. Let C be in Yt(S). The super tableaux C∧ and Cop are equal.

Proof. Consider a super tableau C in Yt(S). By construction, the super tableaux C and C>? have
the same shape. Then by Lemma 4.2.1 the super tableaux C∧ and Cop are so. We will show by
induction on the number of boxes of C that C∧ = Cop. This equality holds if C consists of one box.
Suppose that this property is true for super tableaux consisting of :−1 boxes and show it when C
contains : boxes. Suppose C has the following form:

C =
C ′

AG

Note that the super tableau C∗ contains one box less than C , and the super tableau Cop is ob-
tained from (C∗)op by putting G∗ at the same place of the box that was removed from the frame
of C . By the induction hypothesis, the super tableaux (C∗)∧ and (C∗)op are equal. Since the super
tableaux C∧ and Cop have the same shape, it is sufficient to show that the super tableau C∧ can
be obtained from (C∗)∧ by adding a box containing G∗ in some place in this super tableau. By
construction of C∗, the following equivalence 'A>F (C∗) ∼P(S) 'A>F (C

′)'A>F (A ) holds, showing
that 'A>F ((C∗)∧) ∼P(Sop) ('A>F (A ))

∗ ('A>F (C
′))∗. Moreover, the following equivalence

'A>F (C
∧) ∼P(Sop) ('A>F (A ))

∗G∗ ('A>F (C
′))∗
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5. The super Littlewood–Richardson rule

holds. Hence, following the cross-section property (7), when computing the super tableau C∧

by insertion we obtain the same super tableau as (C∗)∧ but with G∗ in some box, showing the
claim. �

As a consequence of Lemmata 4.2.1 and 4.2.2, we obtain the following result.

Theorem 4.2.3. Let C be in Yt(S). The following properties hold:

i) The super tableau Cop has the same shape as C .

ii) The words ('A>F (C))
∗ and 'A>F (C

op) are congruent with respect to ∼P(Sop) .

iii) The map C ↦→ Cop is an involution on Yt(S).

Finally, we deduce the following result.

Corollary 4.2.4. Let C be in Yt(S) and G1, . . . , G: be in S. The following equality

(G:  (. . . (G1 C) . . .)) =
(
((. . . (Cop

 

G∗1 )

 

. . .)

 

G∗: )
)op (15)

holds in Yt(S).

Proof. Consider C in Yt(S) and G1, . . . , G: in S. The following equivalence holds:

'A>F (((. . . (C
op  

G∗1 )

 

. . .)

 

G∗
:
)) ∼P(Sop) 'A>F (C

op)G∗1 . . . G
∗
:

∼P(Sop) ('A>F (C))
∗G∗1 . . . G

∗
:
=
(
G: . . . G1'A>F (C)

)∗
∼P(Sop)

(
'A>F (G:  (. . . (G1 C) . . .))

)∗
.

Hence, we deduce by Lemma 4.1.1 and Theorem 4.2.3 the following equivalence

'A>F (G:  (. . . (G1 C) . . .)) ∼P(S) 'A>F (
(
((. . . (Cop

 

G∗1 )

 

. . .)

 

G∗: )
)op

),

showing Equality (15) by the cross-section property (7). �

5. The super Littlewood–Richardson rule

We give in this section an interpretation of the super jeu de taquin in terms of Fomin’s growth
diagrams and we deduce remarkable properties of this procedure. Finally, we follow the ap-
proach given in [29] for the non-signed case in order to give a combinatorial version of the super
Littlewood–Richardson rule.

In the sequel, we will assume that S is finite.
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5.1. Super Schur functions

5.1. Super Schur functions. Starting from the super plactic monoid P(S), we can construct
a Z-algebra, denoted by 'S , whose linear generators are the monomials in the monoid P(S).
This is an associative and unitary ring that is not commutative. A generic element in 'S can
be realized by a formal sum of super plactic classes with coefficients from Z. Since every super
plactic class can be represented by a super tableau, a typical element in 'S is a formal sum of
super tableaux. There is a canonical homomorphism from 'S onto the ring of polynomials Z[- ]
that takes a super tableau C to its monomial GC , where GC is the product of the variables G8 , each
occurring as many times in GC as 8 occurs in C . Define (_ (resp. (_/` ) in 'S to be the sum of all
super tableaux (resp. super skew tableaux) of shape _ (resp. _/`) and entries in S, with _ ∈ P

(resp. _/` is a skew shape). The image of (_ (resp. (_/`) in Z[- ] gives rise to the so-called super
Schur function (resp. super skew Schur function) B_ (- ) (resp. B_/` (- )).

Let _, ` and a be in P such that _/` is a skew shape. For any C in Yt(S, a), we set

St(S, _/`, ⊣ C) :=
{
( ∈ St(S, _/`)

�� Rect(() = C
}
,

and we will call the integer
2a_,` := # St(S, _/`, ⊣ C)

the super Littlewood–Richardson coefficient.

Theorem 5.1.1 (The super Littlewood–Richardson rule). Let _, ` and a be partitions in P such

that _/` is a skew shape. Fix a super tableau C of shape a . Then the super Littlewood–Richardson

coefficient 2a
_,`

does not depend on C , and depends only on _, ` and a . Moreover, the following identity

(_/` =
∑

a

2a_,`(a (16)

holds in 'S .

The rest of this section is devoted to prove this result. First, using an interpretation of the
super jeu de taquin in terms of Fomin’s growth diagrams, Proposition 5.2.3 shows that the coef-
ficient 2a

_,`
does not depend on C , and depends only on _, ` and a . Secondly, if we combine the

inverses of bijections (18) obtained in Proposition 5.3.2 for all partition a in P, we deduce the
following bijection

St(S, _/`) →
⋃

a∈P

St(S, _/`, ⊣ C) × Yt(S, a)

for some C in Yt(S, a) chosen separately for every a , showing that Equality (16) holds in 'S .

5.2. Super growth diagrams. The super jeu de taquin procedure can be described using the
notion of growth diagrams introduced by Fomin, [9]. Let ( be in St(S, _/`). We represent ( by
an increasing chain of partitions in the super Young lattice (P, ⊆) from ` to _, that is, a sequence
of partitions starting with ` and ending with _ such that the Young diagram of each partition is
obtained from that of its predecessor by adding exactly one box, so that the boxes are ordered by
increasing value of their entries, or in case these entries are equal and belong to distinct columns
(resp. the same column), by increasing column (resp. row) number. A super growth diagram is
a rectangular array of partitions where every row (resp. column) from left to right (resp. from
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5. The super Littlewood–Richardson rule

bottom to top) encodes a super tableau such that all super tableaux formed by the rows have the
same content, as do all super tableaux formed by the columns. After each forward sliding of the
super jeu de taquin procedure, we record the corresponding chain of partitions in a super growth
diagram so that each chain from the topmost row to the bottom-most row represents one of the
intermediate super tableaux of this procedure. In particular, the topmost row represents the
initial super skew tableau ( and the bottom-most one encodes its rectified super tableau Rect(().
For instance, the super skew tableau ( in Example 3.1.1 is represented by the following chain of
partitions:

Its rectification tableau Rect(() is represented by the following chain of partitions:

∅

The super jeu de taquin on ( is then represented by the following super growth diagram:

∅

Note that the leftmost (resp. rightmost) column of a super growth diagram encodes the recording
tableau, denoted by ' (resp. '′), filled by elements of S, that represents the change in the inner
(resp. outer) shape. Following Theorem 3.3.3, the super tableau Rect(() does not depend on the
recording tableau '. For instance, the leftmost column of the above super growth diagram can
encode the following tableau:

' =
1 3
2 4
5 6

that records the order in which the forward sliding are performed on ( . We first choose the inner
corner corresponding to the box filled by 6, then the inner corner corresponding to the one filled
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by 5, and so on. In this case, the rightmost column encodes the following super skew tableau:

'′ =
1 3
2 4
6

5

.

Consider a super skew tableau ( in St(S, _/`). We define the following partial bijection

Grw :
⋃

`∈P

Yt(S, `) × St(S, _/`)⇀
⋃

d∈P

Yt(S, d) × St(S, _/d)

(', () ↦→ (Rect((), '′)

where ' (resp. '′) denotes the super (resp. skew) tableau corresponding to the leftmost (resp.
rightmost) column of the super growth diagram of ( .

5.2.1. Super Fomin’s local rule. Starting with the topmost row and the leftmost column, the
entire super growth diagram is completed using the following Fomin’s local rule. Let `, d , a and _
be partitions in P that form the following square of a super growth diagram:

` d

a _

that is, both partitions ` and _ contain a and d contains both ` and _. Then by construction of the
super growth diagram, the partition _ is uniquely determined from d , ` and a by the following
Fomin’s local rule:

i) if ` is the only partition of its height that contains a and is contained in d , then _ = `,

ii) otherwise, there is a unique such partition different from `, that is equal to _.

It is worth noting that Fomin’s local rule is symmetric in _ and `, that is, the partition _ is
computed from a , d and ` in the same way as ` is computed from a , d and _. As a consequence,
we deduce the following symmetry property of the super jeu de taquin:

Lemma 5.2.2. Let ( be in St(S). If Grw(', () = (Rect((), '′) then Grw(Rect((), '′) = (', ().

By this diagrammatic interpretation of the super jeu de taquin, we deduce the following
result.

Proposition 5.2.3. Fix partitions _, `, and a in P, and suppose that C is a super tableau of shape a .

Then the super Littlewood–Richardson coefficient 2a
_,`

does not depend on C , and depends only on _, `

and a .

Proof. Let ' be any super tableau of shape `, and consider a super growth diagram with cor-
ners ∅, `, _ and a such that the bottom-most row correspond to C and the leftmost column
encodes '. Once we have the four corners, there are a certain number of ways to choose the
rightmost column. Once we have that, any choice for the topmost row determines the whole su-
per growth diagram by Fomin’s local rule. So the number of ways to complete the super growth
diagram, and so the number of topmost rows, is independent of the choice of the bottom-most
row corresponding to C , and depends only on _, ` and a . �
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5.3. Dual equivalence. Two super skew tableaux ( and ( ′ in Yt(S) of the same shape are dual
equivalent if for any super tableau ' of appropriate shape such that

Grw(', () = (Rect((), '′) and Grw(', ( ′) = (Rect(( ′), '′′) (17)

we have '′ = '′′. In other words, the super skew tableaux ( and ( ′ are dual equivalent if applying
the same sequence of the forward sliding to ( and to ( ′ always gives super tableaux of the same
shape.

Lemma 5.3.1. Let ( and ( ′ be in St(S, _/`). If ( and ( ′ are both super jeu de taquin equivalent

and dual equivalent, then ( = ( ′.

Proof. Since ( and ( ′ are super jeu de taquin equivalent, then the super tableaux Rect(() and
Rect(( ′) are equal by Theorem 3.3.3. Moreover, since ( and ( ′ are dual equivalent, then for any
super tableau ' of shape ` satisfying Property (17), the super skew tableaux '′ and '′′ are equal.
Finally, following Lemma 5.2.2, we have Grw(Rect((), '′) = (', () and Grw(Rect(( ′), '′′) =

(', ( ′), showing that ( = ( ′. �

Proposition 5.3.2. Let `, a and _ be partitions in P such that _/` is a skew shape. Fix a super

tableau C of shape a . Then there is a bijection

Ψ : St(S, _/`, ⊣ C) × Yt(S, a) →
⋃

C ∈Yt (S,a)

St(S, _/`, ⊣ C) (18)

that can be characterized by the conditions that Ψ((, C ′) and ( are dual equivalent and

Rect(Ψ((, C ′)) = C ′, for all ( in St(S, _/`, ⊣ C) and C ′ in Yt(S, a).

Proof. Consider C in Yt(S, a) and let ( be in St(S, _/`, ⊣ C) and C ′ in Yt(S, a). We will con-
struct Ψ((, C ′) which is uniquely determined by Lemma 5.3.1 as follows. First, choose C ′′ to be
any super tableau in Yt(S, `), then we have Grw(C ′′, () = (C, ( ′), for some ( ′ in St(S, _/a). More-
over, since Rect(( ′) = C ′′, the following equality Grw(C ′, ( ′) = (C ′′, ( ′′) holds by Theorem 3.3.3,
with ( ′′ in St(S, _/`, ⊣ C ′). We set Ψ((, C ′) = ( ′′. On one hand, we have Rect(Ψ((, C ′)) = C ′. On
the second hand, since Grw(C ′′, () = (C, ( ′) and Grw(C ′′, ( ′′) = (C ′, ( ′) with C, C ′ ∈ Yt(S, a), we
deduce that ( and ( ′′ are dual equivalent. Finally, since the super tableaux ( , ( ′ and C ′ can be
reconstructed from ( ′′, C ′′ and C , we deduce that the map Ψ is bijective. �
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