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Abstract. We define the product of admissible abstract kernels of the form

Φ: M → End(G)
Inn(G)

, where M is a monoid, G is a group, and Φ is a monoid

homomorphism. Identifying C-equivalent abstract kernels, where C is the
center of G, we obtain that the set M(M,C) of C-equivalence classes of ad-

missible abstract kernels inducing the same action of M on C is a commu-

tative monoid. Considering the submonoid L(M,C) of abstract kernels that
are induced by special Schreier extensions, we prove that the factor monoid

A(M,C) =
M(M,C)
L(M,C)

is an abelian group. Moreover, we show that this abelian

group is isomorphic to the third cohomology group H3(M,C).

1. Introduction

It is well known that every group extension 0 // G // // B // // Π // 1
induces, via the conjugation action of B on the normal subgroup G, a group ho-

momorphism Φ: Π → Aut(G)
Inn(G) , which is called the abstract kernel of the extension.

A classical problem in group theory [20, 21] consists in determining what are the

abstract kernels Φ: Π → Aut(G)
Inn(G) that are induced by a group extension. A cohomo-

logical answer to this question was given by Eilenberg and Mac Lane in [7]: they
associated to any abstract kernel Φ an element Obs(Φ) of the third cohomology
group H3(Π, Z(G)), where Z(G) is the center of G and the left Π-module structure
on Z(G) is induced by Φ. The element Obs(Φ) is called obstruction of the abstract
kernel. They showed that an abstract kernel Φ is induced by an extension if and
only if Obs(Φ) is the zero element of H3(Π, Z(G)). Moreover, if there is an exten-
sion inducing Φ, then the set of isomorphism classes of the extensions inducing Φ is
in bijection with the second cohomology group H2(Π, Z(G)). The same fact holds
in many other contexts, as shown by several authors. Examples of such contexts
are associative algebras [9] and Lie algebras [10] over a field, rings [11], categories
of interest [16], categorical groups [8, 4], semi-abelian action accessible categories
[3, 1, 6, 5].

The situation is more complicated for abstract kernels of the form Φ: M →
End(G)
Inn(G) , where M is a monoid, G is a group, and Φ is a monoid homomorphism.

Every Schreier extension of a monoid M by a group G induces a monoid homomor-

phism Φ: M → End(G)
Inn(G) [12]. Here, similarly to the classical case, arises the problem

of describing the abstract kernels Φ: M → End(G)
Inn(G) that are induced by a Schreier

extension. Since Φ need not induce an action of M on Z(G), a cohomological solu-
tion of this problem, similar to the one described above, can be obtained only for
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particular subclasses of abstract kernels [22, 23, 12].

Actually, in [7] Eilenberg and Mac Lane proved something more. They showed
that the third cohomology group H3(Π, Z(G)) is isomorphic to the group whose
elements are equivalence classes (w.r.t. a suitable equivalence relation) of abstract
kernels inducing the same Π-action on Z(G), modulo those abstract kernels that
are induced by a group extension. This gives a complete interpretation of the third
cohomology group in terms of abstract kernels.

The aim of the present paper is to get an interpretation of the third Eilen-
berg–Mac Lane cohomology group of a monoid M in terms of abstract kernels of

the form Φ: M → End(G)
Inn(G) . In [22, 23], the monoid homomorphisms Φ were required

to satisfy the following condition: for all x ∈M and all φ(x) ∈ Φ(x), the centralizer
of φ(x)(G) in G coincides with Z(G). This gives an action ofM on Z(G) and allows
the author of [22, 23] to involve cohomology groups of M with coefficients in Z(G)
in the study of Schreier type extensions of M by G. The abstract kernels restricted
in this way, which we call admissible abstract kernels, are used in this paper to
get the desired interpretation. We define a product of admissible abstract kernels

Φ1 : M → End(G1)
Inn(G1)

and Φ2 : M → End(G2)
Inn(G2)

with Z(G1) = Z(G2) = C, inducing the

same action of M on C. Identifying abstract kernels that are C-equivalent (see
Section 3 for the definition of this equivalence relation), we obtain a commutative
monoid M(M,C). The subset L(M,C) of extendable abstract kernels, namely of
those abstract kernels that are induced by a special Schreier extension, is a sub-

monoid of M(M,C) and we show that the factor monoid A(M,C) = M(M,C)
L(M,C) is an

abelian group. Moreover, we prove that the abelian group A(M,C) is isomorphic
to the third cohomology groupH3(M,C) ofM with coefficients in theM -module C.

2. Notation and terminology

We begin by fixing some notations we will use throughout the paper. Given
a group G, we will denote by Z(G) its center. More generally, if H is a sub-
group of G, we will denote by CG(H) the centralizer of H in G. The monoid
End(G) is the monoid of endomorphisms of G, while Inn(G) is the subgroup of
inner automorphisms, namely automorphisms of G of the form µg, where g ∈ G
and µg(g

′) = g + g′ − g (we will use the additive notation for G, although G will
be not necessarily abelian). The identity automorphism of G will be indicated by
idG.

Let M be a monoid (with the operation written multiplicatively). A subgroup
H of M (i.e. a subgroup H of the group U(M) of invertible elements of M) is right
normal if, for all m ∈M , mH ⊆ Hm, where

mH = {mh | h ∈ H}, Hm = {hm | h ∈ H}.

If H is a right normal subgroup of a monoid M , the relation on M defined by

m1 ∼ m2 ⇔ m1 = hm2 for some h ∈ H

is a congruence on M , called the right coset relation. The equivalence class of an
element m is cl(m) = Hm. Hence the operation

Hm1 ·Hm2 = Hm1m2

is well defined. We denote by M
H the quotient monoid. For every group G, Inn(G) is

right normal in End(G) (indeed, φµg = µφ(g)
φ, g ∈ G, φ ∈ End(G)), so we always
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have the factor monoid End(G)
Inn(G) . Given α ∈ End(G), we denote the corresponding

element in the quotient by cl(α).

Definition 2.1. Given a monoid M (written multiplicatively) and a group G (writ-

ten additively), an abstract kernel is a monoid homomorphism Φ: M → End(G)
Inn(G) ,

also written as (M,G,Φ).

We will be interested, in particular, in a specific kind of abstract kernels, the
admissible ones:

Definition 2.2. An abstract kernel Φ: M → End(G)
Inn(G) is admissible if, for all x ∈M

and all φ(x) ∈ Φ(x), one has that CG(φ(x)(G)) = Z(G).

The notion of admissible abstract kernel first appeared in [22]. In the original
definition, another condition was required, namely that, for all x ∈M , there exists
φ(x) ∈ Φ(x) such that φ(x)(C) ⊆ C, where C = Z(G). But this condition actually
follows from the previous one. Furthermore, it follows that φ(x)(C) ⊆ C for all
φ(x) ∈ Φ(x). Indeed, if φ(x) ∈ Φ(x) and c ∈ C, then for all g ∈ G

φ(x)(g) + φ(x)(c) = φ(x)(g + c) = φ(x)(c+ g) = φ(x)(c) + φ(x)(g),

and so φ(x)(c) ∈ CG(φ(x)(G)) = Z(G) = C.

Admissible abstract kernels can be characterized also in the following, simpler
way:

Proposition 2.3. An abstract kernel Φ: M → End(G)
Inn(G) is admissible if and only if

for all x ∈M there exists φ(x) ∈ Φ(x) such that CG(φ(x)(G)) = Z(G).

Proof. This is a corollary of the following lemma. □

Lemma 2.4. If α ∈ End(G) is such that CG(α(G)) = Z(G), then for all inner
automorphisms µg one has that CG(µgα(G)) = Z(G).

Proof. Let r ∈ CG(µgα(G)). Then, for all g
′ ∈ G, we have that

r + µgα(g
′) = µgα(g

′) + r,

or, in other terms,

r + g + α(g′)− g = g + α(g′)− g + r.

From this equality we get

−g + r + g + α(g′) = α(g′)− g + r + g,

and hence

−g + r + g ∈ CG(α(G)).

Since, by assumption, CG(α(G)) = Z(G), we get that −g + r + g = c ∈ Z(G).
Then, from r + g = g + c = c + g we obtain r = c ∈ Z(G) by canceling g on the
right. □

Any action of a monoid M on an abelian group, i.e. a monoid homomorphism
φ : M → End(C), where C is an abelian group, is clearly an admissible abstract

kernel. It is also clear that any abstract kernel Φ: M → End(G)
Inn(G) which factors

through Epi(G)
Inn(G) , where Epi(G) is the monoid of epimorphisms of G on itself, is

admissible. Less trivial examples are provided, for instance, by using the fact that,
for a non-trivial subgroup of a free group F , the centralizer CF (H) is different
from the trivial group if and only if H is a cyclic subgroup of F . As for concrete
examples, let us consider the following:
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Example 2.5. Let F = F (x, y, z) be the free group on three elements. Define
α ∈ End(F ) by putting α(x) = x, α(y) = α(z) = y, and consider the monoid

homomorphism Φ: N → End(F )
Inn(F ) defined by Φ(n) = cl(αn), where N is the monoid

of natural numbers with the usual sum. Since the subgroups αn(F ) are not cyclic,
CF (α

n(F )) = {1} = Z(F ). Hence Φ is an admissible abstract kernel.

Example 2.6. Let F(a, b) be the free monoid on two generators a and b, and let
F and α be as in the previous example. Define β ∈ End(F ) by putting β(x) = x,

β(y) = β(z) = z, and consider the monoid homomorphism Φ: F(a, b) → End(F )
Inn(F )

defined by Φ(a) = cl(α) and Φ(b) = cl(β). It is straightforward to check that αn =
α, βn = β (for n ≥ 1), and that αβ = α, βα = β. Hence, for any w ∈ F(a, b)\{1},
we have Φ(w) = cl(α) or Φ(w) = cl(β). Since the subgroups α(F ) and β(F ) are not
cyclic, CF (α(F )) = CF (β(F )) = {1} = Z(F ). Hence Φ is an admissible abstract
kernel.

Remark 2.7. Note that, if CG(α(G)) = CG(β(G)) = Z(G) for α, β ∈ End(G),
it is not true in general that CG(αβ(G)) = Z(G) or CG(βα(G)) = Z(G). As
a counterexample, consider F and α as in Example 2.5, and β defined by β(x) =
β(y) = y, β(z) = z. Then CF (α(F )) = CF (β(F )) = {1} = Z(F ), while CF (αβ(F ))
and CF (βα(F )) coincide with the cyclic subgroup of F generated by y.

Proposition 2.8. Let α ∈ End(G). Then CG(α(G)) = Z(G) if and only if the
following condition is satisfied for any g ∈ G: if µgα = α, then µg = idG.

Proof. Suppose that CG(α(G)) = Z(G) and that µgα = α. Then µgα(g
′) = α(g′)

for all g′ ∈ G; that is

g + α(g′)− g = α(g′) for all g′ ∈ G.

This means that g ∈ CG(α(G)) = Z(G), and so µg = idG.
Conversely, suppose that, for all g ∈ G, if µgα = α, then µg = idG. If r ∈

CG(α(G)), then for all g′ ∈ G:

r + α(g′)− r = α(g′).

This means that µrα = α; by assumption, we get µr = idG, and hence r ∈ Z(G).
□

Corollary 2.9. Given g1, g2 ∈ G and α ∈ End(G) such that CG(α(G)) = Z(G),
if µg1α = µg2α, then µg1 = µg2 .

We complete this section with the following simple but crucial consequence of
Definition 2.2.

Proposition 2.10. Let Φ: M → End(G)
Inn(G) be an admissible abstract kernel. Then

M acts on Z(G) as follows:

x · c = φ(x)(c) for x ∈M, c ∈ Z(G) and φ(x) ∈ Φ(x).

Proof. We have already seen that φ(x)(c) ∈ Z(G) for all x ∈ M and c ∈ Z(G)
(see the paragraph after Definition 2.2). Now we show that the definition of the
action given above does not depend on the choice of φ(x) ∈ Φ(x). If ψ(x) ∈ Φ(x)
is another representative, then ψ(x) = µhφ(x) for some h ∈ G. Then

ψ(x)(c) = µhφ(x)(c) = h+ φ(x)(c)− h = φ(x)(c),

where the last equality holds since φ(x)(c) ∈ Z(G). The fact that in this way an
action of the monoid M on the abelian group Z(G) is defined is a straightforward
verification. □
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3. The product of admissible abstract kernels

Let Φ1 : M → End(G1)
Inn(G1)

and Φ2 : M → End(G2)
Inn(G2)

be admissible abstract kernels

such that Z(G1) = Z(G2) = C, inducing a fixed action Φ0 : M → End(C) of M on
C. We want to define a product of Φ1 and Φ2, i.e. an admissible abstract kernel

Φ: M → End(G)
Inn(G) such that Z(G) = C and inducing the same action Φ0 of M on C.

In order to do that, consider, as in [7], the following subgroup of G1 ×G2:

S = { (c,−c) | c ∈ C }.
It is immediate to check that S is a normal subgroup of G1 ×G2. We then define
G = G1×G2

S . There is a monomorphism j : C → G defined by j(c) = cl(c, 0) =
cl(0, c). Moreover, for all cl(u1, u2) ∈ Z(G) and all g1 ∈ G1 we have

cl(u1, u2) + cl(g1, 0) = cl(g1, 0) + cl(u1, u2),

hence
cl(u1 + g1, u2) = cl(g1 + u1, u2).

This means that
(u1 + g1, u2)− (g1 + u1, u2) ∈ S,

i.e. there exists c ∈ C such that

(u1 + g1, u2)− (g1 + u1, u2) = (c,−c).
From this we obtain

u1 + g1 − (g1 + u1) = c and u2 − u2 = −c,
and so c = 0 and u1 ∈ Z(G1) = C. Similarly one can prove that u2 ∈ Z(G2) = C.
Hence

j(u1 + u2) = cl(u1 + u2, 0) = cl(u1, u2),

and this shows that j(C) = Z(G), so the center of G can be identified with C.

Now we can define Φ: M → End(G)
Inn(G) . For x ∈ M , consider any representatives

φ1(x) ∈ Φ1(x), φ2(x) ∈ Φ2(x). We obtain an endomorphism φ1(x)× φ2(x) : G1 ×
G2 → G1 × G2. For all c ∈ C, (φ1(x) × φ2(x))(c,−c) = (φ1(x)(c),−φ2(x)(c)) =
(x·c,−x·c) ∈ S since Φ1 and Φ2 are admissible (see Proposition 2.10 and its proof).
Hence we have (φ1(x) × φ2(x))(S) ⊆ S, giving an endomorphism φ(x) : G → G
defined by

φ(x)(cl(g1, g2)) = cl(φ1(x)(g1), φ2(x)(g2)).

If we choose different representatives ψ1(x) ∈ Φ1(x), ψ2(x) ∈ Φ2(x), we get another
endomorphism ψ(x) : G→ G given by

ψ(x)(cl(g1, g2)) = cl(ψ1(x)(g1), ψ2(x)(g2)).

Observe that φi(x) and ψi(x) differ by inner automorphisms, i.e. there are hi ∈ Gi

(i = 1, 2) such that φi(x) = µhiψi(x). Now we show that φ(x) = µcl(h1,h2)ψ(x):

µcl(h1,h2)ψ(x)(cl(g1, g2)) = cl(h1, h2) + cl(ψ1(x)(g1), ψ2(x)(g2))− cl(h1, h2) =

= cl(h1 + ψ1(x)(g1)− h1, h2 + ψ2(x)(g2)− h2) = cl(µh1
ψ1(x)(g1), µh2

ψ2(x)(g2)) =

= cl(φ1(x)(g1), φ2(x)(g2)) = φ(x)(cl(g1, g2)).

Thus we obtain a well-defined map Φ: M → End(G)
Inn(G) , given by Φ(x) = cl(φ(x)). We

have that Φ is a monoid homomorphism. Indeed, for x, y ∈ M , consider represen-
tatives φi(x) ∈ Φi(x), φi(y) ∈ Φi(y); we have

φi(x)φi(y) = µhiφi(xy) for some hi ∈ Gi.

Then
φ(x)φ(y)(cl(g1, g2)) = φ(x)(cl(φ1(y)(g1), φ2(y)(g2))) =

= cl(φ1(x)φ1(y)(g1), φ2(x)φ2(y)(g2)) = cl(µh1
φ1(xy)(g1), µh2

φ2(xy)(g2)) =
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= cl(h1 + φ1(xy)(g1)− h1, h2 + φ2(xy)(g2)− h2) =

= cl(h1, h2) + cl(φ1(xy)(g1), φ2(xy)(g2))− cl(h1, h2) = µcl(h1,h2)φ(xy)(cl(g1, g2)).

Hence φ(x)φ(y) = µcl(h1,h2)φ(xy), and so

Φ(xy) = cl(φ(xy)) = cl(φ(x)φ(y)) = cl(φ(x))cl(φ(y)) ∈ Φ(x)Φ(y),

and clearly Φ(1) = cl(φ(1)) = cl(idG) = idEnd(G)
Inn(G)

.

It remains to show that Φ is admissible. Let cl(r1, r2) ∈ CG(φ(x)(G)); for every
g1 ∈ G1 we have

cl(r1, r2) + φ(x)(cl(g1, 0)) = φ(x)(cl(g1, 0)) + cl(r1, r2),

hence

cl(r1, r2) + cl(φ1(x)(g1), 0) = cl(φ1(x)(g1), 0) + cl(r1, r2),

which means that

cl(r1 + φ1(x)(g1), r2) = cl(φ1(x)(g1) + r1, r2),

or, in other terms,

(r1 + φ1(x)(g1), r2)− (φ1(x)(g1) + r1, r2) = (c,−c)

for some c ∈ C. Then c = 0 and hence

r1 + φ1(x)(g1) = φ1(x)(g1) + r1,

from which we get that r1 ∈ CG1
(φ1(x)(G1)) = C. Similarly one proves that

r2 ∈ C. Hence

cl(r1, r2) = cl(r1 + r2, 0) = j(r1 + r2) ∈ j(C) = C

and Φ is admissible. Finally, the action of M on C induced by Φ is the same as the
one induced by Φ1 and Φ2, i.e Φ0 : M → End(C). Indeed:

x · j(c) = φ(x)(cl(c, 0)) = cl(φ1(x)(c), φ2(x)(0)) = cl(x · c, 0) = j(x · c)

for all x ∈M and c ∈ C.
Then, on the class of admissible abstract kernels inducing the action Φ0 of M

on C, we have a well-defined binary operation ⊗, given by

(M,G1,Φ1)⊗ (M,G2,Φ2) = (M,G,Φ).

We want this operation to give a monoid structure. In order to have this, we need to
identify admissible abstract kernels by means of the following equivalence relation:

Definition 3.1. Two admissible abstract kernels Φ1 : M → End(G1)
Inn(G1)

and Φ2 : M →
End(G2)
Inn(G2)

inducing the same M -action on C = Z(G1) = Z(G2) are C-equivalent if

there exists a group isomorphism ξ : G1 → G2 satisfying the following two condi-
tions:

(i) for all c ∈ C, ξ(c) = c;
(ii) for all x ∈M and all φ1(x) ∈ Φ1(x), ξφ1(x)ξ

−1 ∈ Φ2(x).

Condition (ii) can be expressed by the commutativity of the following triangle:

M
Φ1 //

Φ2 ""

End(G1)
Inn(G1)

ξ

��
End(G2)
Inn(G2)

,

where ξ(cl(α)) = cl(ξαξ−1).
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We will write (M,G1,Φ1)
C∼= (M,G2,Φ2) to denote that Φ1 and Φ2 are C-

equivalent. It is clear that
C∼= is an equivalence relation.

The proofs of the following facts are analogous to the corresponding ones in [7]
for the case of the classical abstract kernels, that is, for the case of abstract kernels

of the form Φ: Π → Aut(G)
Inn(G) , where Π and G are groups. We give them in details

for the sake of completeness.

Proposition 3.2. The definition of the binary operation ⊗ is compatible with the
C-equivalence.

Proof. Suppose that (M,G1,Φ1) ⊗ (M,G2,Φ2) = (M,G,Φ) and (M,G′
1,Φ

′
1) ⊗

(M,G′
2,Φ

′
2) = (M,G′,Φ′) and that Φi

C∼= Φ′
i. Then there are isomorphisms ξi : Gi →

G′
i satisfying the conditions (i) and (ii) above. They induce an isomorphism ξ1 ×

ξ2 : G1×G2 → G′
1×G′

2, and since (ξ1×ξ2)(c,−c) = (c,−c), we get an isomorphism

ξ : G =
G1 ×G2

S
→ G′ =

G′
1 ×G′

2

S
given by ξ(cl(g1, g2)) = cl(ξ1(g1), ξ2(g2)),

and clearly ξ(c) = ξ(cl(c, 0)) = cl(ξ1(c), 0) = cl(c, 0) = c. It remains to show that
the triangle

M
Φ //

Φ′
!!

End(G)
Inn(G)

ξ

��
End(G′)
Inn(G′)

commutes, where ξ is defined as in Definition 3.1. For x ∈M and φ(x) ∈ Φ(x), we
have

φ(x)(cl(g1, g2)) = cl(φ1(x)(g1), φ2(x)(g2)) with φi(x) ∈ Φi(x),

and, by assumption, φ′
i(x) = ξiφi(x)ξ

−1
i ∈ Φ′

i(x). Hence, defining φ′(x) ∈ Φ′(x) by

φ′(x)(cl(g′1, g
′
2)) = cl(φ′

1(x)(g
′
1), φ

′
2(x)(g

′
2)),

we have that

ξφ(x)ξ−1(cl(g′1, g
′
2)) = cl(ξ1φ1(x)ξ

−1
1 (g′1), ξ2φ2(x)ξ

−1
2 (g′2)) =

= cl(φ′
1(x)(g

′
1), φ

′
2(x)(g

′
2)) = φ′(x)(cl(g′1, g

′
2)),

and so ξφ(x)ξ−1 = φ′(x) ∈ Φ′(x). □

Proposition 3.3. The neutral element of ⊗ is Φ0 : M → End(C), the fixed M -
action on C.

Proof. Given an admissible abstract kernel Φ: M → End(G)
Inn(G) inducing the action

Φ0 of M on C, we want to show that (M,G,Φ) ⊗ (M,C,Φ0) is C-equivalent to
(M,G,Φ). Let us consider the map ξ : G → G×C

S defined by ξ(g) = cl(g, 0). It is
clearly a group homomorphism, and moreover ξ(c) = cl(c, 0) = c (identifying j(C)
with C). Its inverse ξ−1 given by ξ−1(cl(g, c)) = g + c is well defined. Indeed,
cl(g, c) = cl(g′, c′) if and only if

(g, c)− (g′, c′) = (c1,−c1) for some c1 ∈ C,

i.e. if and only if

g − g′ = c1, c− c′ = −c1 ⇔ g − g′ = c′ − c ⇔ g + c = g′ + c′.

The fact that ξ−1ξ is the identity is obvious. Concerning the other composition:

ξξ−1(cl(g, c)) = ξ(g + c) = cl(g + c, 0) = cl(g, c).
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It remains to show that the following triangle commutes:

M
Φ //

Ψ ""

End(G)
Inn(G)

ξ
��

End(G×C
S )

Inn(G×C
S )

,

where ξ is defined as in Definition 3.1 and Ψ is given, for x ∈M and φ(x) ∈ Φ(x),
by

ψ(x)(cl(g, c)) = cl(φ(x)(g), x · c).
We have to show that, if φ(x) ∈ Φ(x), then ξφ(x)ξ−1 ∈ Ψ(x). We have that

ψ(x)(cl(g, c)) = cl(φ(x)(g), x · c) = cl(φ(x)(g) + x · c, 0) =

= ξ(φ(x)(g) + x · c) = ξ(φ(x)(g) + φ(x)(c)) = ξφ(x)(g + c) = ξφ(x)ξ−1(cl(g, c)),

and so ξφ(x)ξ−1 = ψ(x) ∈ Ψ(x). □

So we proved that the set M(M,C) of C-equivalence classes [M,G,Φ] of admis-
sible abstract kernels, inducing the fixed M -action Φ0 : M → End(C) on the group
C, is a unitary magma w.r.t. the product defined above. Our aim now is to show
that it is actually a commutative monoid. In order to prove associativity, we start
with some preliminary lemmas.

Lemma 3.4. Given two admissible abstract kernels Φ1 : M → End(G1)
Inn(G1)

and Φ2 : M →
End(G2)
Inn(G2)

, inducing the same M -action on C = Z(G1) = Z(G2), and their product

Φ: M → End(G)
Inn(G) , in G we have that

cl(g1, g2) = c ∈ C if and only if gi = ci for some c1, c2 ∈ C with c1 + c2 = c.

Proof. If cl(g1, g2) = cl(c, 0) = c, then there exists c′ ∈ C such that

(g1, g2)− (c, 0) = (c′,−c′);
then

g1 − c = c′, g2 = −c′,
so, putting c1 = c+ c′ and c2 = −c′ we get the thesis. Conversely,

cl(g1, g2) = cl(c1, c2) = cl(c1 + c2, 0) = cl(c, 0) = c.

□

Lemma 3.5. Given three admissible abstract kernels Φi : M → End(Gi)
Inn(Gi)

, i = 1, 2, 3,

inducing the same M -action on C = Z(Gi), consider the product Φ: M → End(G)
Inn(G)

of Φ1 and Φ2 and the product Φ♯ : M → End(G♯)
Inn(G♯)

of Φ and Φ3, so that

(M,G♯,Φ♯) = ((M,G1,Φ1)⊗ (M,G2,Φ2))⊗ (M,G3,Φ3).

Then, in G♯ = ((G1×G2)/S)×G3

S , we have that cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3) if

and only if

g1 − g′1 = c1, g2 − g′2 = c2, g3 − g′3 = −(c1 + c2), with c1, c2 ∈ C.

Proof. If cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3), then there exists c ∈ C such that

(cl(g1, g2), g3)− (cl(g′1, g
′
2), g

′
3) = (c,−c),

hence

cl(g1 − g′1, g2 − g′2) = c, g3 − g′3 = −c.
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Thanks to the previous lemma, we know that there exist c1, c2 ∈ C such that

g1 − g′1 = c1, g2 − g′2 = c2, c1 + c2 = c,

and so

g1 − g′1 = c1, g2 − g′2 = c2, g3 − g′3 = −c = −(c1 + c2).

Conversely,

(cl(g1, g2), g3)− (cl(g′1, g
′
2), g

′
3) = (cl(g1, g2)− cl(g′1, g

′
2), g3 − g′3) =

= (cl(g1 − g′1, g2 − g′2), g3 − g′3) = (cl(c1, c2),−(c1 + c2)) =

= (cl(c1 + c2, 0),−(c1 + c2)) = (c1 + c2,−(c1 + c2)),

and so cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3). □

In the same way one can prove the following

Lemma 3.6. Given three admissible abstract kernels Φi : M → End(Gi)
Inn(Gi)

, i = 1, 2, 3,

inducing the same M -action on C = Z(Gi), consider the product Ψ: M → End(H)
Inn(H)

of Φ2 and Φ3 and the product Ψ♯ : M → End(H♯)
Inn(H♯)

of Φ1 and Ψ, so that

(M,H♯,Ψ♯) = (M,G1,Φ1)⊗ ((M,G2,Φ2)⊗ (M,G3,Φ3)).

Then, in H♯ = G1×((G2×G3)/S)
S , we have that cl(g1, cl(g2, g3)) = cl(g′1, cl(g

′
2, g

′
3)) if

and only if

g2 − g′2 = c2, g3 − g′3 = c3, g1 − g′1 = −(c2 + c3), with c2, c3 ∈ C.

Proposition 3.7. The unitary magma M(M,C) is a monoid.

Proof. Using the notation of the previous lemmas, we have to show that Φ♯ : M →
End(G♯)
Inn(G♯)

and Ψ♯ : M → End(H♯)
Inn(H♯)

are C-equivalent. To do that, first we have to build

a group isomorphism

ξ :
((G1 ×G2)/S)×G3

S
→ G1 × ((G2 ×G3)/S)

S
.

Define ξ by ξ(cl(cl(g1, g2), g3)) = cl(g1, cl(g2, g3)). It is well defined, indeed, if

cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3),

then, thanks to Lemma 3.5, there exist c1, c2 ∈ C such that

g1 − g′1 = c1, g2 − g′2 = c2, g3 − g′3 = −(c1 + c2).

Putting c′2 = c2 and c′3 = −(c1 + c2), we get that

g2 − g′2 = c′2, g3 − g′3 = c′3, g1 − g′1 = c1 = −(c2 − (c1 + c2)) = −(c′2 + c′3),

and then, by Lemma 3.6, we conclude that

cl(g1, cl(g2, g3)) = cl(g′1, cl(g
′
2, g

′
3)).

The fact that ξ is a group homomorphism is obvious. Its inverse ξ−1 is defined by

ξ−1(cl(g1, cl(g2, g3))) = (cl(cl(g1, g2), g3)).

The proof that ξ−1 is a well-defined map is similar to the one for ξ, and it is obvious
that these two maps are inverse to each other. Moreover, for all c ∈ C:

ξ(c) = ξ(cl(c, 0)) = cl(c, cl(0, 0)) = cl(c, 0) = c.
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It remains to show that the following triangle commutes:

M
Φ♯
//

Ψ♮ !!

End(G♯)
Inn(G♯)

ξ

��
End(H♯)
Inn(H♯)

,

where ξ(cl(α)) = cl(ξαξ−1). Consider the representatives φ♯(x) ∈ Φ♯(x), ψ♯(x) ∈
Ψ♯(x), where

φ♯(x)(cl(cl(g1, g2), g3)) = (cl(cl(φ1(x)(g1), φ2(x)(g2)), φ3(x)(g3))),

ψ♯(x)(cl(g1, cl(g2, g3))) = cl(φ1(x)(g1), cl(φ2(x)(g2), φ3(x)(g3))),

with φi(x) ∈ Φi(x). Then

ξφ♯(x)ξ−1(cl(g1, cl(g2, g3))) = ξφ♯(x)(cl(cl(g1, g2), g3)) =

= ξ((cl(cl(φ1(x)(g1), φ2(x)(g2)), φ3(x)(g3)))) =

= cl(φ1(x)(g1), cl(φ2(x)(g2), φ3(x)(g3))) = ψ♯(x)(cl(g1, cl(g2, g3))),

and hence ξφ♯(x)ξ−1 = ψ♯(x) ∈ Ψ♯(x). □

Proposition 3.8. The monoid M(M,C) is commutative.

Proof. Given two admissible abstract kernels Φi : M → End(Gi)
Inn(Gi)

, i = 1, 2, in-

ducing the same M -action on C = Z(Gi), consider the products (M,G1,Φ1) ⊗
(M,G2,Φ2) = (M,G,Φ) and (M,G2,Φ2) ⊗ (M,G1,Φ1) = (M,G′,Ψ), where G =
G1×G2

S and G′ = G2×G1

S . It is clear that the twisting isomorphism G1 × G2 →
G2×G1 gives an isomorphism ξ : G→ G′, defined by ξ(cl(g1, g2)) = cl(g2, g1), such
that ξ(c) = c for all c ∈ C. To conclude the proof, consider the representatives
φ(x) ∈ Φ(x), ψ(x) ∈ Ψ(x), where

φ(x)(cl(g1, g2)) = cl(φ1(x)(g1), φ2(x)(g2)), ψ(x)(cl(g2, g1)) = cl(φ2(x)(g2), φ1(x)(g1)),

with φi(x) ∈ Φi(x). Then

ξφ(x)ξ−1(cl(g2, g1)) = ξφ(x)(cl(g1, g2)) = ξ(cl(φ1(x)(g1), φ2(x)(g2))) =

= cl(φ2(x)(g2), φ1(x)(g1)) = ψ(x)(cl(g2, g1)),

hence ξφ(x)ξ−1 = ψ(x) ∈ Ψ(x). □

Our aim, now, is to introduce a suitable submonoid L(M,C) of M(M,C) such
that the quotient monoid becomes an abelian group. In order to do that, in the
next section we will consider the notion of an extendable admissible abstract kernel.

4. Extendable admissible abstract kernels

We recall from [2, 13, 14] the following

Definition 4.1. Let

(1) E : 0 // G // κ // B
σ // // M // 1

be a sequence of monoids and monoid homomorphisms such that σ is a surjection,
κ is an injection and κ(G) = {b ∈ B |σ(b) = 1} (i.e. κ is the kernel of σ). The
sequence E is a special Schreier extension of M by G (some authors would say “G
by M” ) if, for every b1, b2 ∈ B such that σ(b1) = σ(b2), there exists a unique g ∈ G
such that

b2 = g + b1,

where we treat κ just as an inclusion (again, we use the multiplicative notation for
M and the additive one for the other monoids involved).
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The word “special” is motivated by the fact that these extensions are special
cases of the Schreier extensions in the sense of [19] (see also [17, 18]). It is eas-
ily seen that, in a special Schreier extension (1), the monoid G is necessarily a group.

Let us now show how to associate an abstract kernel to a special Schreier exten-
sion (1). First note that σ is the cokernel of κ. Indeed, suppose that f : B →M ′ is
a monoid homomorphism such that f(g) = 1M ′ for all g ∈ G. Define f ′ : M →M ′

by putting f ′(x) = f(b), b ∈ σ−1(x). If σ(b1) = x = σ(b2), then b2 = g+b1, whence
f(b2) = f(b1). Hence f ′ is well defined. Clearly, f ′ is a monoid homomorphism and
f ′σ = f . The uniqueness of such a homomorphism f ′ is also clear. Furthermore,
for every b ∈ B and every g ∈ G, there is a unique g′ ∈ G such that b+ g = g′ + b.
This defines an endomorphism θ(b) : G → G sending g to g′ (b + g1 + g2 =
θ(b)(g1)+b+g2 = θ(b)(g1)+θ(b)(g2)+b, whence θ(b)(g1+g2) = θ(b)(g1)+θ(b)(g2)).
Moreover, we get a monoid homomorphism θ : B → End(G), which sends b to θ(b)
(θ(0) = 1G and b1 + b2 + g = b1 + θ(b2)(g) + b2 = θ(b1)(θ(b2)(g)) + b1 + b2,
whence θ(b1 + b2)(g) = (θ(b1)θ(b2))(g)). For g ∈ G, it is immediate to see that
θ(g) = µg ∈ Inn(G). Hence, since σ is the cokernel of κ, we get the abstract kernel
Φ via the universal property of the cokernel, as in the following diagram:

(2) G // κ // B

θ

��

σ // // M

Φ
��

End(G)
p
// End(G)
Inn(G) .

More explicitly, Φ(x) = pθ(b) = cl(θ(b)) for any b such that σ(b) = x.

Given a special Schreier extension (1), for every b ∈ B one always has that
b+G ⊆ G+ b (and so G is right normal in B), but the other inclusion is false, in
general. The set

Gb = { g ∈ G | ḡ + b = b+ g for some g ∈ G }

measures the difference between the two cosets (in other words, the sets Gb measure
how far G is from being a normal subgroup of B).

Lemma 4.2. Gb is a subgroup of G.

Proof. If g1, g2 ∈ Gb, then

g1 + b = b+ g1, g2 + b = b+ g2 for some g1, g2 ∈ G.

Then

g1 + g2 + b = g1 + b+ g2 = b+ g1 + g2,

and so g1 + g2 ∈ Gb. Furthermore, if g ∈ Gb, then g + b = b + g for some g ∈ G.
Hence −g + b = b+ (−g), and −g ∈ Gb. □

Definition 4.3. A special Schreier extension (1) is admissible if, for all b ∈ B,
CG(Gb) = Z(G).

Lemma 4.4. In the notation of diagram (2), for all b ∈ B one has θ(b)(G) = Gb.

Proof. If g ∈ θ(b)(G), then g = θ(b)(g1) for some g1 ∈ G. Hence

b+ g1 = θ(b)(g1) + b = g + b

and g ∈ Gb. Conversely, if g ∈ Gb, then there exists g1 ∈ G such that g+b = b+g1.
Thus, we have

b+ g1 = g + b and b+ g1 = θ(b)(g1) + b,
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whence, by the uniqueness in the Schreier condition, we get that g = θ(b)(g1), and
so g ∈ θ(b)(G). □

Proposition 4.5. If an abstract kernel Φ: M → End(G)
Inn(G) is induced by a special

Schreier extension E, then Φ is admissible if and only if E is admissible.

Proof. Suppose E is admissible. Then, for all b ∈ B, CG(Gb) = Z(G). By the
previous lemma, this means that CG(θ(b)(G)) = Z(G). Let x = σ(b). Then
θ(b) ∈ Φ(x), and hence Φ is admissible (see Proposition 2.3). Conversely, suppose
Φ is admissible. If b ∈ B, then Φ(σ(b)) = cl(θ(b)). By admissibility of Φ, we know
that CG(θ(b)(G)) = Z(G). Since θ(b)(G) = Gb, thanks to the previous lemma, we
get that E is admissible. □

Definition 4.6. We say that an admissible abstract kernel Φ: M → End(G)
Inn(G) is

extendable if it is induced by a special Schreier extension (which is necessarily
admissible because of the previous proposition).

Suppose that admissible abstract kernels (M,G,Φ) and (M,G′,Φ′) inducing
the same M -action on C = Z(G) = Z(G′) are C-equivalent. Then, (M,G,Φ) is
extendable if and only if so is (M,G′,Φ′). Indeed, if (M,G,Φ) is induced by a special
Schreier extension (1), then (M,G′,Φ′) is induced by a special Schreier extension

E′ : 0 // G′ // κξ
−1

// B
σ // // M // 1 , where ξ : G → G′ is an isomorphism

realizing the C-equivalence (M,G,Φ)
C∼= (M,G′,Φ′) (see Definition 3.1). The set of

C-equivalence classes of extendable admissible abstract kernels inducing the same
M -action on C will be denoted by L(M,C).

Proposition 4.7. If (M,G1,Φ1) and (M,G2,Φ2) are extendable admissible ab-
stract kernels inducing the same action on C, then their product

(M,G,Φ) = (M,G1,Φ1)⊗ (M,G2,Φ2)

is extendable as well.

Proof. If Φ1 and Φ2 are extendable, then they are induced by admissible special
Schreier extensions E1 and E2, as in the following diagrams:

E1 : G1
// κ1 // B1

θ1

��

σ1 // // M

Φ1

��
End(G1) p1

// End(G1)
Inn(G1)

,

E2 : G2
// κ2 // B2

θ2

��

σ2 // // M

Φ2

��
End(G2) p2

// End(G2)
Inn(G2)

.

Consider the pullback

R

π1

��

π2 // B2

σ2

��
B1 σ1

// M,

i.e. the monoid R = {(b1, b2) ∈ B1 × B2 | σ1(b1) = σ2(b2)}. Clearly S =
{(c,−c) | c ∈ C} is a submonoid of R. Moreover, S is right normal in R, i.e.
(b1, b2)+S ⊆ S+(b1, b2) for all (b1, b2) ∈ R. Indeed, if (b1, b2) ∈ R and (c,−c) ∈ S,
using the admissibility of Φ1 and Φ2 we get that

θ1(b1)(c) = θ2(b2)(c) = x · c,
where x = σ1(b1) = σ2(b2). Then we have

(b1, b2) + (c,−c) = (b1 + c, b2 − c) = (θ1(b1)(c) + b1, θ2(b2)(−c) + b2) =



THE THIRD COHOMOLOGY GROUP OF A MONOID AND ADMISSIBLE . . . 13

= (x · c+ b1,−x · c+ b2) = (x · c,−x · c) + (b1, b2),

and (x · c,−x · c) ∈ S. Let us then put B = R
S and consider the following sequence:

E : 0 // G // κ // B
σ // // M // 1,

where

G =
G1 ×G2

S
, κ(cl(g1, g2)) = cl(g1, g2), and σ(cl(b1, b2)) = σ1(b1) = σ2(b2).

We want to show that E is a special Schreier extension which induces the product
Φ of Φ1 and Φ2. It is immediate to see that κ is a well-defined injective homo-
morphism. σ is well defined, too. Indeed, if cl(b1, b2) = cl(b′1, b

′
2), then there exists

c ∈ C such that

(b′1, b
′
2) = (c,−c) + (b1, b2).

Then b′1 = c + b1, b
′
2 = −c + b2, and so σi(b

′
i) = σi(bi), i = 1, 2. Clearly σ is

a monoid homomorphism. It is surjective, since for all x ∈ M there exist bi ∈
Bi, i = 1, 2, with σi(bi) = x; then σ(cl(b1, b2)) = x. Moreover σκ = 0, indeed
σκ(cl(g1, g2)) = σ1(g1) = 1. So, κ(G) ⊆ Ker(σ). To show the other inclusion,
suppose that σ(cl(b1, b2)) = 1. Then σ1(b1) = σ2(b2) = 1. Since κi is the kernel of
σi, we know that bi = κi(gi) for some gi ∈ Gi. Hence κ(cl(g1, g2)) = cl(b1, b2).

Let us now check the Schreier condition. Suppose that σ(cl(b′1, b
′
2)) = σ(cl(b1, b2)).

Then

σ1(b
′
1) = σ1(b1) = σ2(b2) = σ2(b

′
2).

E1 and E2 are special Schreier extensions, so there are unique gi ∈ Gi such that
b′i = gi + bi. Hence

cl(b′1, b
′
2) = cl(g1, g2) + cl(b1, b2).

To prove the uniqueness of the element cl(g1, g2) satisfying the last equality, it
suffices to show that, if cl(g1, g2) + cl(b1, b2) = cl(b1, b2), then cl(g1, g2) = 0. So,
suppose that cl(g1, g2) + cl(b1, b2) = cl(b1, b2). Then

(g1 + b1, g2 + b2) = (c,−c) + (b1, b2) for some c ∈ C.

Then g1+b1 = c+b1, g2+b2 = −c+b2. Being E1 and E2 special Schreier extensions,
this gives that (g1, g2) = (c,−c), and so cl(g1, g2) = 0.

It remains to show that E induces the admissible abstract kernel Φ. Let us call
Ψ the abstract kernel induced by E, as in the following diagram:

G // κ // B

θ

��

σ // // M

Ψ
��

End(G)
p
// End(G)
Inn(G) .

Then, for x ∈ M , Ψ(x) = cl(θ(cl(b1, b2))), where σ(cl(b1, b2)) = σ1(b1) = σ2(b2) =
x. By construction of θ1 and θ2, we have that

b1 + g1 = θ1(b1)(g1) + b1, b2 + g2 = θ2(b2)(g2) + b2.

Hence, on one hand

cl(b1, b2) + cl(g1, g2) = cl(θ1(b1)(g1), θ2(b2)(g2)) + cl(b1, b2);

on the other hand, since E is a special Schreier extension, we have that

cl(b1, b2) + cl(g1, g2) = θ(cl(b1, b2))(cl(g1, g2)) + cl(b1, b2),

by construction of θ. Thanks to the uniqueness in the Schreier condition, we obtain
that

θ(cl(b1, b2))(cl(g1, g2)) = cl(θ1(b1)(g1), θ2(b2)(g2)).
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Moreover, we know that Φ is defined by Φ(x) = cl(φ(x)), where

φ(x)(cl(g1, g2)) = cl(θ1(b1)(g1), θ2(b2)(g2)).

Hence θ(cl(b1, b2)) = φ(x), and consequently Ψ(x) = Φ(x) for all x ∈M . □

Since the “zero” abstract kernel Φ0 : M → End(C) is clearly extendable (it is
induced by the special Schreier extension given by the semidirect product ofM and
C), we get the following

Corollary 4.8. The set L(M,C) of C-equivalence classes of extendable admissible
abstract kernels inducing the same action of M on C is a submonoid of the monoid
M(M,C).

Using the fact that the monoid M(M,C) is commutative, in the next section

we will observe that we can consider a suitable factor monoid A(M,C) = M(M,C)
L(M,C) ,

and we will prove that this factor monoid is actually an abelian group, following
essentially the same idea of [7] for the case of abstract kernels of the form Φ: Π →
Aut(G)
Inn(G) with Π and G being groups.

5. The group structure of admissible abstract kernels

We begin this section by recalling a general fact. If A is a commutative monoid,
and B ⊆ A is a submonoid, the relation ∼ on A defined by

a1 ∼ a2 ⇐⇒ ∃ b1, b2 ∈ B such that a1 + b1 = a2 + b2

is a congruence on A. We denote the factor monoid A
∼ by A

B . It is easy to check

that A
B is a group as soon as the following condition is satisfied: for all a ∈ A there

exists a′ ∈ A such that a+ a′ ∈ B. We will use this fact, together with the results

of the previous sections, to show that the factor monoid A(M,C) = M(M,C)
L(M,C) is an

abelian group.

Given an admissible abstract kernel Φ: M → End(G)
Inn(G) , let us denote by G∗ the

opposite group of G: as a set, G∗ = G, but we will denote the elements of G∗ with
g∗, for g ∈ G. Then the group operation in G∗ is defined by g∗+h∗ = (h+g)∗, and
so the inverse of an element g∗ is (−g)∗. We will simply write c for the elements
c∗ of C∗ = Z(G∗) = Z(G) = C. Given an endomorphism α : G → G, we get an
endomorphism α∗ : G∗ → G∗ simply by putting α∗(g∗) = (α(g))∗. In this way, it
is obvious that (βα)∗ = β∗α∗ and that (µg)

∗ = µ−g∗ for g ∈ G.

Hence we can define an abstract kernel Φ∗ : M → End(G∗)
Inn(G∗) by putting, for x ∈M ,

Φ∗(x) = cl(φ∗(x)), where φ∗(x) = (φ(x))∗, with φ(x) ∈ Φ(x).

Lemma 5.1. The abstract kernel Φ∗ is admissible.

Proof. Let r∗ ∈ CG∗(φ∗(x)(G∗)). Then, for all g ∈ G,

r∗ + φ∗(x)(g∗) = φ∗(x)(g∗) + r∗.

This means that
r∗ + (φ(x)(g))∗ = (φ(x)(g))∗ + r∗,

hence
(φ(x)(g) + r)∗ = (r + φ(x)(g))∗,

i.e.
φ(x)(g) + r = r + φ(x)(g).

But the abstract kernel Φ is admissible, so r = r∗ ∈ C, giving that Φ∗ is admissible,
too. □
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We also observe that the action of M on C induced by Φ∗ is the same that Φ
induces, since

φ∗(x)(c) = (φ(x)(c))∗ = (x · c)∗ = x · c
for all x ∈M and all c ∈ C.

Our goal now is to show that, for any admissible abstract kernel (M,G,Φ), the
product (M,G,Φ) ⊗ (M,G∗,Φ∗) is extendable. In order to do that, we first build
an admissible special Schreier extension, and then we will show that the abstract
kernel induced by it is C-equivalent to (M,G,Φ)⊗ (M,G∗,Φ∗).

Let B be the set

B = {(g, α, x) | g ∈ G, x ∈M,α ∈ Φ(x)}.
We define on B the following binary operation:

(g, α, x) + (h, β, y) = (g + α(h), αβ, xy).

It is easy to see that (B,+) is a monoid, with neutral element (0, idG, 1). Consider
then the following sequence:

E : 0 // K // κ // B
σ // // M // 1,

where σ(g, α, x) = x, K is the kernel of σ and κ is the canonical inclusion. Explicitly

K = {(g, α, 1) | g ∈ G,α ∈ Φ(1)} = {(g, µh, 1) | g, h ∈ G}.
Moreover, K is a group. Indeed, for all g, h ∈ G we have that

(g, µh, 1) + (−h− g + h, µ−h, 1) = (g + µh(−h− g + h), µhµ−h, 1) =

= (g + h− h− g + h− h, µh−h, 1) = (0, µ0, 1) = (0, idG, 1) = 1K .

Lemma 5.2. Z(K) = {(c, idG, 1) | c ∈ C} and so can be identified with C.

Proof. If (s, µh, 1) ∈ Z(K), then for all r ∈ G we have

(s, µh, 1) + (0, µr, 1) = (0, µr, 1) + (s, µh, 1);

hence
(s, µh+r, 1) = (µr(s), µr+h, 1),

and from this we get that s+ r = r + s for all r ∈ G, i.e. s ∈ C. Furthermore, for
all g ∈ G we have that

(s, µh, 1) + (g, idG, 1) = (g, idG, 1) + (s, µh, 1),

and so
(s+ µh(g), µh, 1) = (g + s, µh, 1).

From this, using that C = Z(G) is a group, we get that, for all g ∈ G

s+ µh(g) = g + s =⇒ s+ µh(g) = s+ g =⇒ µh(g) = g,

so that µh = idG and (s, µh, 1) ∈ { (c, idG, 1) | c ∈ C }. The converse inclusion is
obvious. □

Lemma 5.3. E is a special Schreier extension.

Proof. Given x ∈ M and (g, α, x), (h, β, x) ∈ σ−1(x), we have that there exists
s ∈ G such that α = µsβ (because α and β both belong to Φ(x)). Hence

(g + s− h− s, µs, 1) + (h, β, x) = (g + s− h− s+ µs(h), µsβ, x) =

= (g + s− h− s+ s+ h− s, α, x) = (g, α, x).

As for uniqueness, if
(g, µs, 1) + (h, α, x) = (h, α, x),
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then
(g + µs(h), µsα, x) = (h, α, x),

and so
g + µs(h) = h and µsα = α.

From the first equality we get g + s + h − s = h, while from the second, using
the admissibility of Φ, we obtain that µs = idG (see Proposition 2.8). Hence
s ∈ C, and consequently g + h = h. But h is cancellable, so we get g = 0, whence
(g, µs, 1) = (0, idG, 1) = 1B . □

Consider now the abstract kernel Ψ induced by the special Schreier extension E:

K // κ // B

θ

��

σ // // M

Ψ
��

End(K)
p
// End(K)
Inn(K) .

Given x ∈ M and choosing (0, α, x) ∈ σ−1(x), we know that Ψ is defined by
Ψ(x) = cl(θ(0, α, x)). Given (g, µh, 1) ∈ K, on one hand, since E is a special
Schreier extension, we have

(0, α, x) + (g, µh, 1) = θ(0, α, x)(g, µh, 1) + (0, α, x)

by construction of θ, and on the other hand

(0, α, x) + (g, µh, 1) = (α(g), αµh, x) = (α(g), µα(h)α, x) =

= (α(g), µα(h), 1) + (0, α, x).

Thanks to the uniqueness in the Schreier condition, we get that θ(0, α, x)(g, µh, 1) =
(α(g), µα(h), 1).

Lemma 5.4. The abstract kernel Ψ is admissible.

Proof. We have to show that, for (0, α, x) ∈ B, CK(θ(0, α, x)(K)) = C. If (r, µh, 1) ∈
CK(θ(0, α, x)(K)) and g ∈ G, then

(r, µh, 1) + θ(0, α, x)(0, µg, 1) = θ(0, α, x)(0, µg, 1) + (r, µh, 1).

Using the previous expression for θ, this is the same as

(r, µh, 1) + (0, µα(g), 1) = (0, µα(g), 1) + (r, µh, 1),

i.e.
(r, µhµα(g), 1) = (µα(g)(r), µα(g)µh, 1).

Hence, for all g ∈ G:

r = µα(g)(r) =⇒ r = α(g) + r − α(g),

which means that r ∈ CG(α(G)) = C (because Φ was admissible). Moreover, for
all g ∈ G

(r, µh, 1) + θ(0, α, x)(g, µ0, 1) = θ(0, α, x)(g, µ0, 1) + (r, µh, 1),

which is the same as

(r, µh, 1) + (α(g), µ0, 1) = (α(g), µ0, 1) + (r, µh, 1),

i.e.
(r + µh(α(g)), µh, 1) = (α(g) + r, µh, 1).

From this we get
r + µh(α(g)) = α(g) + r = r + α(g),

so that
h+ α(g)− h = α(g).
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Hence h ∈ CG(α(G)) = C since Φ is admissible. Thus µh = idG and (r, µh, 1) =
(r, idG, 1) ∈ C. □

So we conclude that the admissible abstract kernel (M,K,Ψ) is extendable.
Furthermore, the action of M on C induced by Ψ is the same as the one induced
by (M,G,Φ), indeed:

θ(0, α, x)(c) = θ(0, α, x)(c, idG, 1) = θ(0, α, x)(c, µ0, 1) =

= (α(x)(c), µα(x)(0), 1) = (x · c, idG, 1) = x · c.

Proposition 5.5. The product (M,G,Φ)⊗(M,G∗,Φ∗) is C-equivalent to (M,K,Ψ).

Proof. Let us denote by (M, G×G∗

S ,Φ′) the product (M,G,Φ) ⊗ (M,G∗,Φ∗). In

order to show that it is C-equivalent to (M,K,Ψ), we consider the map ξ : G×G∗

S →
K defined by

ξ(cl(g, h∗)) = (g + h, µ−h, 1).

This definition makes sense. Indeed, if cl(g1, h
∗
1) = cl(g2, h

∗
2), then

(g1, h
∗
1)− (g2, h

∗
2) = (c,−c) for some c ∈ C.

Hence
g1 − g2 = c, (−h2 + h1)

∗ = h∗1 − h∗2 = −c = −c∗ = (−c)∗,
and from this we get

g1 = g2 + c, h1 = h2 − c,

whence
g1 + h1 = g2 + c+ h2 − c = g2 + h2.

Moreover, from the equality −h1 = c− h2 we get that µ−h1
= µ−h2

, and so

(g1 + h1, µ−h1
, 1) = (g2 + h2, µ−h2

, 1).

The map ξ is a group homomorphism:

ξ(cl(g1, h
∗
1) + cl(g2, h

∗
2)) = ξ(cl(g1 + g2, (h2 + h1)

∗)) =

= (g1 + g2 + h2 + h1, µ−(h2+h1), 1) = (g1 + h1 + µ−h1(g2 + h2), µ−h1µ−h2 , 1) =

= (g1 + h1, µ−h1
, 1) + (g2 + h2, µ−h2

, 1) = ξ(cl(g1, h
∗
1)) + ξ(cl(g2, h

∗
2)).

The inverse of ξ is the map ξ−1 : K → G×G∗

S defined by

ξ−1(g, µh, 1) = cl(g + h,−h∗).
It is well defined. Indeed, if (g, µh1 , 1) = (g, µh2 , 1), then µh1 = µh2 , and so
h1 − h2 = c ∈ C. We need to check that

cl(g + h1,−h∗1) = cl(g + h2,−h∗2),
i.e. that

(g + h1,−h∗1)− (g + h2,−h∗2) ∈ S.

We have that

(g + h1,−h∗1)− (g + h2,−h∗2) = (g + h1 − (g + h2),−h∗1 + h∗2) =

= (g + h1 − h2 − g, (−h1)∗ + h∗2) = (g + c− g, (h2 − h1)
∗) =

= (c, (−c)∗) = (c,−c),
and so cl(g + h1,−h∗1) = cl(g + h2,−h∗2). The maps ξ and ξ−1 are inverse to each
other:

ξξ−1(g, µh, 1) = ξ(cl(g + h, (−h)∗)) = (g + h− h, µ−(−h), 1) = (g, µh, 1),

and

ξ−1ξ(cl(g, h∗)) = ξ−1(g + h, µ−h, 1) = cl(g + h− h,−(−h)∗) = cl(g, h∗).
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Moreover, for all c ∈ C:

ξ(c) = ξ(cl(c, 0∗)) = (c+ 0, µ0, 1) = (c, idG, 1) = c.

To conclude the proof, it remains to show that the following triangle commutes:

M
Φ′
//

Ψ
""

End(G×G∗
S )

Inn(G×G∗
S )

ξ

��
End(K)
Inn(K) ,

where ξ(cl(α)) = cl(ξαξ−1). If φ(x) ∈ Φ′(x), then

φ(x)(cl(g, h∗)) = cl(α(x)(g), α∗(x)(h∗)),

where α(x) ∈ Φ(x) and α∗(x) ∈ Φ∗(x) is given by α∗(x) = (α(x))∗. Then

ξφ(x)ξ−1(g, µh, 1) = ξφ(x)(cl(g + h,−h∗)) =

= ξ(cl(α(x)(g + h), α∗(x)(−h∗))) = ξ(cl(α(x)(g + h), (α(x)(−h))∗)) =
= (α(x)(g+h)+α(x)(−h), µ−α(x)(−h), 1) = (α(x)(g)+α(x)(h)+α(x)(−h), µα(x)(h), 1) =

= (α(x)(g), µα(x)(h), 1) = θ(0, α(x), 1)(g, µh, 1),

hence ξφ(x)ξ−1 = θ(0, α(x), 1) ∈ Ψ(x). □

We know that the definition of extendability of an admissible abstract kernel is
compatible with the C-equivalence (see the paragraph after Definition 4.6). Hence,
since the admissible abstract kernel (M,K,Ψ) is extendable, the previous proposi-
tion gives

Corollary 5.6. For any admissible abstract kernel (M,G,Φ), the product (M,G,Φ)⊗
(M,G∗,Φ∗) is extendable.

This corollary, Proposition 3.8 and Corollary 4.8, according to the first paragraph
of this section, imply the following

Theorem 5.7. The factor monoid A(M,C) = M(M,C)
L(M,C) is an abelian group.

6. The isomorphism of A(M,C) with the third cohomology group

The aim of this section is to prove that the abelian group A(M,C) = M(M,C)
L(M,C)

described above is isomorphic to the third cohomology group H3(M,C). In or-
der to do that, the first step is to associate with every admissible abstract kernel

Φ: M → End(G)
Inn(G) an element Obs(Φ) of H3(M,Z(G)). Due to the admissibility

condition, the construction of Obs(Φ) is, as shown in [23], analogous to the one
described in [7] for the case of the classical abstract kernels. A very detailed con-
struction of Obs(Φ) is given in [12, Section 5], in a slightly different context. Here
we just give a brief sketch of the construction, stressing the difference with the one
in [12].

Given an admissible abstract kernel Φ: M → End(G)
Inn(G) , we choose a representative

φ(x) ∈ Φ(x) for any x ∈M , with φ(1) = idG. We have that

φ(x)φ(y) = µf(x,y)φ(xy)

for some f(x, y) ∈ G, with f(x, 1) = f(1, y) = 0. Now, given x, y, z ∈ M , we have,
on the one hand

φ(x)φ(y)φ(z) = φ(x)µf(y,z)φ(yz) = µφ(x)(f(y,z))φ(x)φ(yz) =
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= µφ(x)(f(y,z))µf(x,yz)φ(xyz) = µφ(x)(f(y,z))+f(x,yz)φ(xyz),

and, on the other hand

φ(x)φ(y)φ(z) = µf(x,y)φ(xy)φ(z) = µf(x,y)µf(xy,z)φ(xyz) = µf(x,y)+f(xy,z)φ(xyz).

Comparing the two expressions, and using Corollary 2.9, we get the equality

µφ(x)(f(y,z))+f(x,yz) = µf(x,y)+f(xy,z),

namely

µφ(x)(f(y,z))+f(x,yz)−(f(x,y)+f(xy,z)) = idG,

which tells us that

φ(x)(f(y, z)) + f(x, yz)− (f(x, y) + f(xy, z)) ∈ Z(G).

This means that there exists a unique element k(x, y, z) ∈ Z(G) such that

φ(x)(f(y, z)) + f(x, yz) = k(x, y, z) + f(x, y) + f(xy, z).

Clearly, k(x, y, 1) = k(x, 1, z) = k(1, y, z) = 0.

It is shown in [23] that the map k : M×M×M → C obtained from an admissible
abstract kernel Φ as above is a 3-cocycle of the cohomology of M with coefficients
in theM -module Z(G), and that the cohomology class of k does not depend on the
choices made in the construction. Note that the same conclusion can be drawn from
[12, Section 5] using Corollary 2.9 instead of the surjectivity of the homomorphisms
φ(x), for x ∈M .

Let us now show that C-equivalent admissible abstract kernels determine coho-

mologous 3-cocycles. Given two abstract kernels Φ: M → End(G)
Inn(G) and Φ′ : M →

End(G′)
Inn(G′) , suppose that (M,G,Φ)

C∼= (M,G′,Φ′). That is, there exists a group iso-

morphism ξ : G→ G′ such that ξ(c) = c for all c ∈ C and ξφ(x)ξ−1 ∈ Φ′(x) for all
x ∈ M and all φ(x) ∈ Φ(x) (see Definition 3.1). Suppose that k is the 3-cocycle
associated with (M,G,Φ) as above. If we choose φ′(x) ∈ Φ′(x) and f ′(x, y) ∈ G′

by putting

φ′(x) = ξφ(x)ξ−1 and f ′(x, y) = ξ(f(x, y)),

then the 3-cocycle we get from (M,G′,Φ′) by means of this choice is precisely k.
Indeed, for all x, y, z ∈M , we have that

φ′(x)φ′(y) = ξφ(x)ξ−1ξφ(y)ξ−1 = ξφ(x)φ(y)ξ−1 =

= ξµf(x,y)φ(xy)ξ
−1 = µξ(f(x,y))ξφ(xy)ξ

−1 = µf ′(x,y)φ
′(xy),

and

φ′(x)(f ′(y, z)) + f ′(x, yz) = ξφ(x)ξ−1ξ(f(y, z)) + ξ(f(x, yz)) =

= ξφ(x)(f(y, z)) + ξ(f(x, yz)) = ξ(φ(x)(f(y, z)) + f(x, yz)) =

= ξ(k(x, y, z) + f(x, y) + f(xy, z)) = ξ(k(x, y, z)) + ξ(f(x, y)) + ξ(f(xy, z)) =

= k(x, y, z) + f ′(x, y) + f ′(xy, z).

Hence we get a well-defined map

ζ : M(M,C) → H3(M,C), ζ([M,G,Φ]) = Obs(Φ) = cl(k).

Proposition 6.1. The map ζ : M(M,C) → H3(M,C) is a monoid homomorphism.
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Proof. Let ζ([M,G1,Φ1]) = cl(k1) and ζ([M,G2,Φ2]) = cl(k2). According to the
beginning of this section, there are φi(x) ∈ Φi(x) and fi(x, y) ∈ Gi, i = 1, 2, for
x, y ∈M , with φi(1) = 1G and fi(x, 1) = fi(1, y) = 0, such that

φi(x)φi(y) = µfi(x,y)φi(xy)

and

φi(x)(fi(y, z)) + fi(x, yz) = ki(x, y, z) + fi(x, y) + fi(xy, z), i = 1, 2,

for all x, y, z ∈M . Let now Φ: M → End(G)
Inn(G) be the product of Φ1 and Φ2. Consider

the representatives φ(x) ∈ Φ(x) defined by

φ(x)(cl(g1, g2)) = cl(φ1(x)(g1), φ2(x)(g2))

(see Section 3) and the map f : M ×M → G defined by

f(x, y) = cl(f1(x, y), f2(x, y)).

Clearly, φ(1) = 1G and f(x, 1) = f(1, y) = 0. Furthermore, for all x, y, z ∈ M , we
have

φ(x)φ(y)(cl(g1, g2)) = cl(φ1(x)φ1(y)(g1), φ2(x)φ2(y)(g2)) =

= cl(µf1(x,y)φ1(xy)(g1), µf2(x,y)φ2(xy)(g2)) =

= cl(f1(x, y), f2(x, y)) + cl(φ1(xy)(g1), φ2(xy)(g2))− cl(f1(x, y), f2(x, y)) =

= f(x, y) + φ(xy)(cl(g1, g2))− f(x, y) = µf(x,y)φ(xy)(cl(g1, g2)),

and

φ(x)(f(y, z)) + f(x, yz) = φ(x)(cl(f1(y, z), f2(y, z))) + cl(f1(x, yz), f2(x, yz)) =

= cl(φ1(x)(f1(y, z)) + f1(x, yz), φ2(x)(f2(y, z)) + f2(x, yz)) =

= cl(k1(x, y, z) + f1(x, y) + f1(xy, z), k2(x, y, z) + f2(x, y) + f2(xy, z)) =

= cl(k1(x, y, z), k2(x, y, z)) + cl(f1(x, y), f2(x, y)) + cl(f1(xy, z), f2(xy, z)) =

= cl(k1(x, y, z), 0) + cl(0, k2(x, y, z)) + f(x, y) + f(xy, z) =

= k1(x, y, z) + k2(x, y, z) + f(x, y) + f(xy, z)

(recall that cl(c, 0) = cl(0, c) = c for all c ∈ C). So, for all x, y, z ∈M , we get

φ(x)φ(y) = µf(x,y)φ(xy)

and

φ(x)(f(y, z)) + f(x, yz) = k1(x, y, z) + k2(x, y, z) + f(x, y) + f(xy, z).

Thus we have

ζ([M,G,Φ]) = cl(k1 + k2) = cl(k1) + cl(k2) = ζ([M,G1,Φ1]) + ζ([M,G2,Φ2]).

□

Proposition 6.2. The monoid homomorphism ζ : M(M,C) → H3(M,C) is sur-
jective.

Proof. Let cl(k) ∈ H3(M,C). We have to show that there exists an admissible

abstract kernel Φ: M → End(G)
Inn(G) with Z(G) = C, inducing the given action on C,

and such that ζ([M,G,Φ]) = cl(k) (cf. [7, Lemma 9.1]). First consider the case in
which the monoid M has at least 3 elements. Let F be the free group on the set of
symbols

{[x, y] | x, y ∈M,x, y ̸= 1}
and let G be the direct product C × F . Define a map f : M ×M → G by

f(x, y) = [x, y] if x, y ̸= 1 and f(x, 1) = f(1, y) = 0,
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where we identify 0 × F with F . Next, we identify Z(G) with C and define an
endomorphism φ(x) ∈ End(G) by putting, on the generators of G:

φ(x)(c) = x · c,
where the action of M on C is the given one, and

(3) φ(x)([y, z]) = k(x, y, z) + f(x, y) + f(xy, z)− f(x, yz).

Then, for all x, y, z, t ∈M, we have

φ(x)φ(y)([z, t]) = φ(x)(k(y, z, t) + f(y, z) + f(yz, t)− f(y, zt)) =

= x · k(y, z, t) + k(x, y, z) + f(x, y) + f(xy, z)− f(x, yz) + k(x, yz, t) + f(x, yz)

+f(xyz, t)− f(x, yzt)− (k(x, y, zt) + f(x, y) + f(xy, zt)− f(x, yzt)) =

= f(x, y) + x · k(y, z, t) + k(x, y, z) + k(x, yz, t)− k(x, y, zt) + f(xy, z)− f(x, yz)

+f(x, yz) + f(xyz, t)− f(x, yzt) + f(x, yzt)− f(xy, zt)− f(x, y).

Since k is a 3-cocycle, this last expression is equal to

f(x, y) + k(xy, z, t) + f(xy, z) + f(xyz, t)− f(xy, zt)− f(x, y) =

= f(x, y) + φ(xy)([z, t])− f(x, y) = µf(x,y)φ(xy)([z, t]).

Hence
φ(x)φ(y) = µf(x,y)φ(xy)

for all x, y ∈M . So we obtain an abstract kernel

Φ: M → End(G)

Inn(G)
, Φ(x) = cl(φ(x)).

Let us show that Φ is admissible. Suppose that x and y are two distinct non-trivial
elements of M . If xy = 1 then x2 ̸= 1 (since otherwise x = y) and φ(x)([x, x])
does not commute with φ(x)([x, y]). If xy ̸= 1 then φ(x)([x, x]) and φ(x)([y, x])
do not commute. Hence φ(x)(C × F ) is a non-abelian subgroup of C × F for all
x ∈M . Next, denoting CC×F (φ(x)(C×F )) by H and using elementary properties
of centralizers, we have

φ(x)(C × F ) ⊆ CC×F (H) =
⋂

(c,u)∈H

CC×F (c, u) =

=
⋂

(c,u)∈H

(CC(c)× CF (u)) =
⋂

(c,u)∈H

(C × CF (u)) = C ×
⋂

(c,u)∈H

CF (u).

Now, if we let H ̸= C, then
⋂

(c,u)∈H CF (u) is a cyclic subgroup of F (since the

centralizer of any non-trivial element of a free group is a cyclic subgroup of that
group) and hence φ(x)(C × F ) is an abelian subgroup of C × F , a contradiction
which shows that CC×F (φ(x)(C × F )) = C for all x ∈ M . So Φ is an admissible
abstract kernel, inducing the given action on C. The fact that ζ([M,G,Φ]) = cl(k)
is an immediate consequence of (3).

It remains to consider the cases in which M has less than 3 elements. If M
has only one element, then clearly H3(M,C) = 0, and so the result is obvious.
If M is the two element group, then the abstract kernels involved, as well as the
cohomology group H3(M,C), lie inside groups. Hence one can apply to this case
the proof of [7, Lemma 9.1]. If M = M2 = {1, x} is the two element monoid
that is not a group, then x is an absorbing element. It is known that if a monoid
possesses an absorbing element, then all its cohomology groups of order greater
than zero are trivial (see e.g. [15]), but for the sake of the reader’s convenience,
let us check here that H3(M2, C) = 0. Suppose that k : M2 ×M2 ×M2 → C is
a 3-cocycle. Then x · k(x, x, x) = 0. Define a 2-cochain g : M2 × M2 → C by
g(x, x) = −k(x, x, x). Then for the coboundary δg : M2 ×M2 ×M2 → C of g, one
has δg(x, x, x) = x · g(x, x) − g(x, x) + g(x, x) − g(x, x) = x · g(x, x) − g(x, x) =
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−x · k(x, x, x) + k(x, x, x) = k(x, x, x). Thus, the cohomology group H3(M2, C)
vanishes. This clearly implies the result. □

Proposition 6.3. For an admissible abstract kernel Φ: M → End(G)
Inn(G) , we have that

ζ([M,G,Φ]) = 0 if and only if Φ is extendable.

Proof. Suppose that Φ: M → End(G)
Inn(G) is extendable. That is, there exists a diagram

E : G // κ // B

θ

��

σ // // M

Φ
��

End(G)
p
// End(G)
Inn(G) ,

where E is a special Schreier extension, the monoid homomorphism θ is defined
thanks to the uniqueness in the Schreier condition,

b+ g = θ(b)(g) + b for every b ∈ B and every g ∈ G,

and Φ(x) = pθ(b) = cl(θ(b)) for any b such that σ(b) = x (see the beginning of
Section 4). Let us choose, for every x ∈ M , an element ux ∈ σ−1(x) with u1 = 0,
and denote θ(ux) by φ(x). Clearly, φ(x) ∈ Φ(x) and φ(1) = 1G. Since E is a special
Schreier extension, for all x, y ∈M , there exists a unique element f(x, y) ∈ G such
that ux + uy = f(x, y) + uxy. This defines a map f : M × M → G such that
f(x, 1) = f(1, y) = 0, and implies

φ(x)φ(y) = µf(x,y)φ(xy) for all x, y ∈M.

Indeed,
φ(x)φ(y) = θ(ux)θ(uy) = θ(ux + uy) =

= θ(f(x, y) + uxy) = θ(f(x, y))θ(uxy) = µf(x,y)φ(xy)

(clearly, θ(g) = µg for every g ∈ G). Then, thanks to Corollary 2.9, we get, as in
the beginning of this section, that

(4) φ(x)(f(y, z))+ f(x, yz) = k(x, y, z)+ f(x, y)+ f(xy, z) for all x, y, z ∈M,

where k : M × M × M → C is a 3-cocycle. Hence, by definition of ζ, we have
ζ([M,G,Φ]) = cl(k). Next, on the one hand

ux + uy + uz = f(x, y) + uxy + uz = f(x, y) + f(xy, z) + uxyz,

and, on the other hand

ux + uy + uz = ux + f(y, z) + uyz = φ(x)(f(y, z)) + ux + uyz =

= φ(x)(f(y, z)) + f(x, yz) + uxyz,

whence

φ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z) for all x, y, z ∈M.

Comparing the last equality with (4), we obtain that k = 0. Thus ζ([M,G,Φ]) = 0.
Conversely, suppose that ζ([M,G,Φ]) = 0. Then there are φ(x) ∈ Φ(x) and

f(x, y) ∈ G for x, y ∈M , with φ(1) = 1G and f(x, 1) = f(1, y) = 0, such that

φ(x)φ(y) = µf(x,y)φ(xy)

and, in addition, f(x, y) can be chosen so that

φ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z) for all x, y, z ∈M

(cf. [12, Proposition 5.6]). Then the set [G,φ, f,M ] of all pairs (g, x) ∈ G ×M
with the operation defined by

(g1, x) + (g2, y) = (g1 + φ(x)(g2) + f(x, y), xy)
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is a monoid, and the sequence

G // i // [G,φ, f,M ]
p // // M, i(g) = (g, 1), p(g, x) = x,

is a special Schreier extension of M by G inducing the given admissible abstract

kernel Φ: M → End(G)
Inn(G) ((0, x) + (g, 1) = (φ(x)(g), x) = (φ(x)(g), 1) + (0, x)). □

Now, as an immediate consequence of Propositions 6.2 and 6.3, we have the
following

Theorem 6.4. The map

ζ ′ : A(M,C) =
M(M,C)

L(M,C)
→ H3(M,C), ζ ′(cl([M,G,Φ])) = ζ([M,G,Φ]),

is a group isomorphism.

If M = Π is a group then Φ: Π → End(G)
Inn(G) factors through Aut(G)

Inn(G) and Theorem

6.4 turns into the classical interpretation of the third cohomology group of Π in

terms of the abstract kernels of the form Φ: Π → Aut(G)
Inn(G) [7, Theorem 10.1].

Acknowledgements

This work was partially supported by the Centre for Mathematics of the Univer-
sity of Coimbra – UID/MAT/00324/2020, by ESTG and CDRSP from the Poly-
technical Institute of Leiria – UID/Multi/04044/2020, funded by the Portuguese
Government through FCT/MCTES and co-funded by the European Regional De-
velopment Fund through the Partnership Agreement PT2020.

The third author was supported by the Shota Rustaveli National Science Founda-
tion of Georgia (SRNSFG), grant FR-18-10849, “Stable Structures in Homological
Algebra”.

References

[1] D. Bourn, Internal profunctors and commutator theory; applications to extensions classifi-

cation and categorical Galois theory, Theory Appl. Categ. 24 (2010), 451–488.
[2] D. Bourn, N. Martins-Ferreira, A. Montoli, M. Sobral, Schreier split epimorphisms in

monoids and in semirings, Textos de Matemática (Série B), Departamento de Matemática
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