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Abstract

We investigate the class of finite dimensional not necessary associative

algebras that have slowly growing length, that is, for any algebra in this

class its length is less than or equal to its dimension. We show that this

class is considerably big, in particular, finite dimensional Lie algebras as

well as many other important classical finite dimensional algebras belong

to this class, for example, Leibniz algebras, Novikov algebras, and Zinbiel

algebras. An exact upper bounds for the length of these algebras is proved.

To do this we transfer the method of characteristic sequences to non-unital

algebras and find certain polynomial conditions on the algebra elements

that guarantee the slow growth of the length function.

MSC: 15A03,17A99,15A78

Keywords: length of algebras, non-associative algebras, Lie algebras.

1 Introduction

Let F be an arbitrary field. In this paper A always denotes a finite dimensional not necessarily
unital not necessarily associative F-algebra with the operation (·) usually denoted by the
concatenation. Let SS = {a1, . . . , ak} be a finite generating set of A. Any product of a finite
number of elements from SS is a word in SS. The length of the word w, denoted l(w), equals
to the number of letters in the corresponding product. If A is unital, we consider 1 as a word
in SS with the length 0. It is worth noting that different choices of brackets provide different
words of the same length due to the non-associativity of A.

The set of all words in SS with the lengths less than or equal to i is denoted by SSi, here
i ≥ 0.

Note that similarly to the associative case, m < n implies that SSm ⊆ SSn.
The set  Li(SS) = 〈SSi〉 is the linear span of the set SSi (the set of all finite linear

combinations with coefficients belonging to F). We write  Li instead of  Li(SS) if SS is clear

∗The work was financially supported by the grant RSF 17-11-01124.
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from the context. It should be noted that for unital algebras  L0(SS) = 〈1〉 = F for any SS,

and for non-unital algebras  L0 = ∅. We denote  L(SS) =
∞⋃
i=0

 Li(SS).

Since the set SS is generating for A, we have A =  L(SS).

Definition 1.1. The length of a generating set SS of a finite-dimensional algebra A is defined
as follows: l(SS) = min{k ∈ Z+ :  Lk(SS) = A}.

Definition 1.2. The length of an algebra A is l(A) = max{l(SS) :  L(SS) = A}.

The problem of the associative algebra length computation was first discussed in [19, 20]
for the algebra of 3 × 3 matrices in the context of the mechanics of isotropic continua.

It is straightforward to see that the length of an associative algebra is strictly less than
its dimension, and this bound is sharp. Namely, one-generated associative algebra of the
dimension d has the length d − 1. The first non-trivial result in this direction is going back
to Paz [16]. More results on abstract associative algebras can be found, for example, in
[11, 14, 15]. However, in general most of the known results on the length function are just
bounds that are not sharp. Even the sharp upper bound for the length of the matrix algebra
is not known, see [14]. However, a great deal of work has been done investigating the related
notion of length for given generating sets of matrices, see [10, 12, 13] and references therein.

Recent results on the lengths of non-associative algebras were obtained in the works [8, 9].
In particular a strict upper bound on the length of a general non-associative unital algebra is
provided.

Theorem 1.3 ([8, Theorem 2.7]). Let A be a unital F-algebra, dimA = n ≥ 2. Then
l(A) ≤ 2n−2.

To prove this and several other results the method of characteristic sequences was intro-
duced, see [8, 9].

Definition 1.4. [8, Definition 3.1] Consider a unital F-algebra A of the dimension dimA = n,
and its generating set SS. By the characteristic sequence of SS in A we understand a
monotonically non-decreasing sequence of non-negative integers (f1, f2, . . . , fN ), constructed
by the following rules:

1. f1 = 0.

2. Denoting s1 = dim  L1(SS), we define f2 = . . . = fs1 = 1.

3. Let for some r > 0, k > 1 the elements f1, . . . , fr be already defined and the sets
 L1(SS), . . . ,  Lk−1(SS) are considered. Then we inductively continue the process in the
following way. Denote sk = dim  Lk(SS) − dim  Lk−1(SS). We define fr+1 = . . . =
fr+sk = k.

It is proved in [8, Lemma 3.5] that N = dimA and fN = l(SS).
The main focus of this paper is the algebras with slowly growing length.

Definition 1.5. We say that a class of algebras has slowly growing length, if for any repre-
sentative A of this class it holds that l(A) ≤ dim (A).

For example, associative algebras are of this type since the sequence  Lk(SS) growths
strictly monotone with k, and hence can not have more than dim (A) − 1 elements.

The main purpose of our paper is to show that the class of algebras with slowly growing
length is rather big, namely, a number of important classes of non-associative finite dimensional
algebras have slowly growing length, in particular, Lie algebras and more general classes such
as Leibniz algebras, Novikov algebras, and Zinbiel algebras are of this type. To proceed we
generalized the notion of characteristic sequences introduced in [8] to non-unital algebras.
It is straightforward to see that if the characteristic sequence (m1, . . . ,md) of an algebra
satisfies the condition mj+1 −mj ≤ 1 for all j = 1, . . . , d− 1 then the length of this algebra is
slowly growing. We find two combinatorial properties for algebras which ensure the aforesaid
condition for the characteristic sequences to be fulfilled. We call the corresponding algebras
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sliding and mixing due to the nature of these combinatorial properties, and investigate their
interrelations. After that we examine these combinatorial properties for the major classes of
algebras. We prove that associative and Lie algebras, and moreover, Leibniz algebras, are
both sliding and mixing. Novikov algebras are mixing, but in general they are not sliding.
Zinbiel algebras are sliding, but in general they are not mixing. However, there are algebras
that are neither sliding nor mixing, but have slowly growing length. We provide an example of
such algebras. Finally we discuss algebras that are neither sliding nor mixing and in general
are not algebras with slowly growing length. In particular, Valya and Vinberg algebras are
among them.

Our paper is organized as follows. In Section 2 we transfer the method of characteristic
sequences to non-unital algebras. In Section 3 polynomial properties which guarantee a slow
growth of length are introduced and length of corresponding algebras is estimated by means
of the characteristic sequences. In Section 4 we examine which important classes of non-
associative algebras have slowly growing length.

2 Characteristic sequences for non-unital alge-

bras

We begin with several definitions and auxiliary results, inherited from the unital case. Let A
be an F-algebra of the dimension dimA = n, n > 2, and SS be a generating set for A. The
algebra A can be either unital or non-unital.

Definition 2.1. A word w from a generating set SS of an algebra A is irreducible, if for each
integer m, 0 ≤ m < l(w), it holds that w /∈ Lm(SS).

Lemma 2.2. [8, Lemma 2.14] Any irreducible word w, l(w) > 1, is a product of two irre-
ducible words of non-zero lengths.

To work with algebras which are not necessarily unital, we need to generalize Definition
1.4 for non-unital case.

Definition 2.3. By the characteristic sequence of SS in A we understand a monotonically
non-decreasing sequence of non-negative integers (m1, . . . ,mN ), constructed by the following
rules:

1. If s0 = dimL0(SS) = 1, we set m1 = 0. Otherwise s0 = 0.

2. Denoting s1 = dim  L1(SS) − dimL0(SS), we define ms0+1 = . . . = ms0+s1 = 1.

3. Let for some r > 0, k > 1 the elements m1, . . . ,mr be already defined and the sets
 L0(SS), . . . ,  Lk−1(SS) be considered. Then we inductively continue the process in the
following way. Denote sk = dim  Lk(SS) − dim  Lk−1(SS). We define mr+1 = . . . =
mr+sk = k.

For a unital algebra we have in respective notations fi = mi+1. The main difference
between these sequences is that for non-unital algebra the characteristic sequence starts with 1,
while in the unital case it starts with 0.

Lemma 2.4. Consider a generating set SS of an algebra A. There exists a finite series of
sets E1, . . . , El(SS), satisfying the following properties:

1. Eh ⊂ Eh+1, h = 1, . . . , l(SS) − 1
2. Eh is a basis of Lh(SS).
3. Eh consists of irreducible words in SS of lengths 0, . . . , h, with exactly sj = dim  Lj(SS)−

dim  Lj−1(SS) words of length j for j = 1, . . . , h and s0 words of length 0, where s0 is 1 for
unital algebra and 0 otherwise.

Proof. We will construct Eh sequentially using induction on h.
The base: h = 1. Assume that A is unital. Then we choose the basis E1 as {1} ∪ SS0,

where SS0 is the maximal subset of SS, linearly independent modulo F. If A is non-unital,
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then we choose the basis E1 as the maximal linearly independent subset of SS. In both cases
there are exactly s0 irreducible words of length 0 and s1 words of length 1 in E1.

The step. Assume we have constructed Eh for all h ≤ k − 1, 2 ≤ k ≤ l(SS).
By Definition 2.1  Lk(SS) is the linear span of all irreducible words of length less than or

equal to k. We will construct Ek expanding Ek−1 by a set E using the following algorithm:

• Let {w1, . . . , wr} be the set of all irreducible words of length k. It is finite since the
number of words of length k is finite. Set t = 1, E = ∅.

• If wt ∈ 〈E∪Ek−1〉, increase t by 1. Otherwise, expand E with wt, making it E∪{wt},
and increase t by 1.

• If t < r, return to step 2. If t = r, end the algorithm.

We will show that Ek = Ek−1 ∪E is the desired set. Note that E ∩Ek−1 = ∅.
1. Ek = Ek−1 ∪ E ⊃ Ek−1.
2. Ek is a basis of  Lk(SS). Firstly, it is linearly independent by construction. Secondly,

〈Ek〉 =  Lk(SS), since every irreducible word of length l ≤ k− 1 lies in  Lk−1(SS) = 〈Ek−1〉 ⊂
〈E ∪ Ek−1〉, and by construction every irreducible word of length k is in 〈E ∪ Ek−1〉. Addi-
tionally, Ek being a basis of  Lk(SS) means that |E| = sk due to dim  Lk(SS) = dim 〈Ek〉 =
|Ek| = |E| + |Ek−1| = |E| + dim 〈Ek−1〉 = |E| + dim  Lk−1(SS).

3. Since E consists only of irreducible words of length k by construction, |E| = sk as
noted above, and Ek−1 consists of irreducible words of lengths 0, . . . , k − 1, with exactly sj
words of length j for j = 0, . . . , k − 1, we have Ek being composed of irreducible words of
lengths 0, . . . , k, with exactly sj words of length j for j = 0, . . . , k.

The following statements provide the analogs of [8, Lemma 3.4] in non-unital case.

Corollary 2.5. 1. For any term mh of the characteristic sequence of SS there is an
irreducible word in  L(SS) of the length mh.

2. If there is an irreducible word in letters from SS of the length k, then k is included
into the characteristic sequence of SS.

Proof. Consider set E = El(SS), constructed by Lemma 2.4.
Item 1. If mh belongs to the characteristic sequence of SS, then smh

6= 0 and there is at
least one irreducible word of length mh in the set E.

Item 2. The existence of an irreducible word of length k guarantees that sk = dim  Lk(SS)−
dim  Lk−1(SS) > 0, which means that k is included in the characteristic sequence by defini-
tion.

Lemma 2.6. The characteristic sequence of SS contains exactly dimA terms. Moreover,
for the last term we have mN = l(SS).

Proof. There are s0+s1+. . .+sl(SS) terms in the characteristic sequence since for j > l(SS) it
holds that sj = dimLj(SS)−dimLj−1(SS) = dimA−dimA = 0. This sum can be rewritten
as dimL1(SS) + (dimL2(SS) − dimL1) + . . . + (dimLl(SS) − dimLl(SS)−1 = dimLl(SS) =
dimA.

By Corollary 2.5, Item 2, there is an element of characteristic sequence of SS which
is equal to l(SS). This implies mN ≥ l(SS) as the sequence is non-decreasing. However by
Corollary 2.5, Item 1 there exists an irreducible word of length mN which means mN ≤ l(SS).
Thus, mN = l(SS).

3 Mixing and sliding algebras

In this section we study two properties of multiplication which can guarantee a slow growth
of length.
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Let x, y, z be variables. To introduce the following definition we need the special sets Ql

and Qr of monomials:

Ql(x, y, z) = {x(zy), x(yz), y(xz), y(zx), xy, yx, xz, zx, yz, zy, x, y, z},

here we consider those monomials of degree three where z is an argument of the first multi-
plication and the multiplier with z is the second factor of the second multiplication,

Qr(x, y, z) = {(xz)y, (zx)y, (yz)x, (zy)x, xy, yx, xz, zx, yz, zy, x, y, z},

here we consider those monomials of degree three where z is an argument of the first multi-
plication and the multiplier with z is the first factor of the second multiplication.

Definition 3.1. Let A be an F-algebra such that at least one of the following statements
holds:

1. z(xy) ∈ 〈Qr(x, y, z)〉 for all x, y, z ∈ A, if A is non-unital; z(xy) ∈ 〈Qr(x, y, z), 1〉 for
all x, y, z ∈ A, if A is unital.

2. (xy)z ∈ 〈Ql(x, y, z)〉 for all x, y, z ∈ A, if A is non-unital; (xy)z ∈ 〈Ql(x, y, z), 1〉 for
all x, y, z ∈ A, if A is unital.

Then we call A a sliding algebra.

To introduce the next class of algebras we need the monomial set: P (x, y, z) =

= Ql(x, y, z) ∪Qr(x, y, z) =

{
(xz)y, (zx)y, (yz)x, (zy)x, x(zy), x(yz), y(xz), y(zx),

xy, yx, xz, zx, yz, zy, x, y, z

}
,

i.e. we consider those monomials of degree 3 that have z inside the brackets.

Definition 3.2. Let A be an F-algebra such that for all x, y, z ∈ A it holds that (xy)z, z(xy) ∈
〈P (x, y, z), 1〉 if A is unital, and (xy)z, z(xy) ∈ 〈P (x, y, z)〉 if A is non-unital. Then we call
A a mixing algebra.

Remark 3.3. Associative algebras are both mixing and sliding.

We are going to prove the main properties of mixing and sliding algebras that guarantee
that these algebras have slowly growing length.

Let P̂ (x, y, z) ⊂ P (x, y, z) be the subset of degree 3 monomials. For a mixing algebra A let

Tl(x, y, z) ⊆ P̂ (x, y, z), respectively Tr(x, y, z) ⊆ P̂ (x, y, z), be the set of monomials that are
included with non-zero coefficients in at least one of the representations of (xy)z, respectively
z(xy), as linear combinations of the elements of P (x, y, z) ∪ {1} or P (x, y, z) in A.

Lemma 3.4. Let A be a mixing algebra, SS be a generating set of A, and M = (m1, . . . ,md)
be a characteristic sequence of SS. Then mj+1 −mj ≤ 1 for all j = 1, . . . , d− 1.

Proof. Assume the contrary. Let A be a mixing algebra, SS be its generating set, and assume
that there exists j such that 1 ≤ j ≤ d− 1 and the inequality mj+1 −mj ≤ 1 does not hold.
Let k be the smallest index such that mk+1 −mk ≥ 2.

Consider a word w of length at least two. It can be uniquely represented as w = w′ ·w′′,
where w′ and w′′ have non-zero lengths. We denote s(w) = min(l(w′), l(w′′)).

1. Consider an irreducible word w in SS of length mk+1. Then s(w) > 1. Indeed, if
s(w) = 1 then w is a product of irreducible words of length 1 and mk+1 − 1 by Lemma 2.2.
Hence by Corollary 2.5, Item 2, there is an element equal to mk+1 − 1 in the characteristic
sequence M . This is impossible, since M is non-decreasing and mk < mk+1 − 1 by the
assumption.

2. Let us choose an irreducible word w0 of length mk+1 in SS such that s(w0) is the
smallest. If there are several such words, we take any one of them. The chosen word can be
represented as a product of two irreducible words, w′

0 and w′′
0 , such that l(w′

0) = s(w0). Thus
we have the following 2 cases:

Case 1: w0 = w′
0 · w′′

0 . By Item 1 of the proof s(w0) ≥ 2. Hence w′
0 = w′

1 · w′
2, where

w′
1, w

′
2 are both irreducible and l(w′

1) < l(w′
0), l(w′

2) < l(w′
0). The algebra A is mixing,

which means that the irreducible word w0 = (w′
1 · w′

2) · w′′
0 ∈ 〈P (w′

1, w
′
2, w

′′
0 )〉, and from
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this follows that at least one element of Tl(w
′
1, w

′
2, w

′′
0 ) is an irreducible word, as elements of

P (w′
1, w

′
2, w

′′
0 ) \ P̂ (w′

1, w
′
2, w

′′
0 ) have strictly lesser length than w0. Assume that (w′

1 ·w
′′
0 ) ·w′

2
is irreducible. Then we have s((w′

1 ·w
′′
0 ) ·w′

2) = l(w′
2) < l(w′

0) = s(w0), which contradicts our
choice of w0. For other elements of Tl a similar reasoning holds. Thus the initial assumption
is false, i.e. mixing algebra cannot have a generating set with such a characteristic sequence
that the difference between neighboring element is greater than 1.

Case 2: w0 = w′′
0 · w′

0. We obtain the same contradiction similarly, considering an
irreducible element of Tr(w′

1, w
′
2, w

′′
0 ) instead of Tl(w

′
1, w

′
2, w

′′
0 ).

In the next lemma we need the following sets of monomials. Let Q̂l(x, y, z) ⊂ Ql(x, y, z)

and Q̂r(x, y, z) ⊂ Qr(x, y, z) be the subsets of degree 3 monomials. For a sliding algebra A

let Sl(x, y, z) ⊆ Q̂l(x, y, z), respectively Sr(x, y, z) ⊆ Q̂r(x, y, z), be the set of monomials that
are included with non-zero coefficients in at least one of the representations of (xy)z, respec-
tively z(xy), as linear combinations of elements of Ql(x, y, z)∪ {1} or Ql(x, y, z), respectively
Qr(x, y, z) ∪ {1} or Qr(x, y, z), in the algebra A.

Lemma 3.5. Let A be a sliding algebra, SS be a generating set of A, and M = (m1, . . . ,md)
be a characteristic sequence of SS in A. Then mj+1 −mj ≤ 1 for all j = 1, . . . , d− 1.

Proof. Assume the contrary: let A be a sliding algebra satisfying Item 1 of Definition 3.1.
The other cases can be considered similarly. Let SS be a generating set of A such that for its
characteristic sequence M the inequality mj+1−mj ≤ 1 does not hold for all j = 1, . . . , d−1.
Let k be the smallest index such that mk+1 −mk ≥ 2.

Consider a word w of length at least two. It can be uniquely represented as w = w′ ·w′′,
where w′ and w′′ have non-zero lengths. We denote lr(w) = l(w′′).

Let us choose such an irreducible word w0 of length mk+1 in SS that lr(w) is minimal
(if there are multiple possible candidates, we can choose one at random). By Lemma 2.2 w0

is equal to w′
0 · w′′

0 , where terms are irreducible and of lesser length.
1. lr(w0) = l(w′′

0 ) = 1 cannot hold: this would mean that l(w′
0) = mk+1 − 1 which by

Corollary 2.5, Item 2 would mean that there is an element of characteristic sequence equal to
mk+1 − 1, and that is impossible: M is non-decreasing and mk < mk+1 − 1 already.

2. If l(w′′
0 ) > 1, we can represent w′′

0 as w′′
1 · w′′

2 , where both w′′
1 , w

′′
2 are of positive

length and irreducible. The algebra A is sliding, which means that the irreducible word
w0 = w′

0 · (w′′
1 · w′′

2 ) ∈ 〈Qr(w′′
1 , w

′′
2 , w

′
0)〉 (or 〈Qr(w′′

1 , w
′′
2 , w

′
0), 1〉), and from this follows that

at least one element of Sr(w′′
1 , w

′′
2 , w

′
0) is an irreducible word as elements of Qr(w′

1, w
′
2, w

′′
0 ) \

Q̂r(w′
1, w

′
2, w

′′
0 ) have strictly lesser length than w0. Assume it is (w′′

1 ·w′
0) ·w′′

2 . Then we have
a contradiction as l((w′′

1 · w′
0) · w′′

2 ) = l(w0), but l(w′′
2 ) < l(w′′

0 ). For other elements of Tr a
similar observation holds. Thus the initial assumption is false, i.e. sliding algebra cannot have
a generating set with such a characteristic sequence that the difference between neighboring
element is greater than 1.

Theorem 3.6. The length of a mixing or a sliding algebra A of dimension d ≥ 2 is less than
or equal to d.

Proof. Follows directly from Lemma 3.4 or Lemma 3.5: for a generating set SS of A with
l(SS) = l(A) and characteristic sequence (m1, . . . ,md) we have m1 ≤ 1 and l(SS) = md ≤
md−1 + 1 ≤ . . . ≤ m1 + (d− 1) ≤ d.

However, it is not necessary for an algebra A to be mixing or sliding to satisfy l(A) ≤
dim (A) as the following example shows.

Example 3.7. Consider an algebra A over field F with basis e0 = 1F, e1, . . . , e4 and the
following multiplication law:

e1e1 = e2, e2e2 = e3, e1e3 = e4,

and other products equal to 0. This is a so-called bare algebra of the sequence (0, 1, 2, 4, 5)
and its length is equal to 5, as is its dimension, see [9, Definition 3.3, Theorem 3.15].
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However, it is neither mixing nor sliding. To prove this, consider

P (e1, e1, e2) =

{
(e1e2)e1, (e2e1)e1, e1(e2e1), e1(e1e2),

e1e1, e1e2, e2e1, e1, e2

}
=

= {0, e1, e2}. Since (e1e1)e2 = e3 6∈ 〈P (e1, e1, e2)∪{1}〉, A is not mixing. As P (e1, e1, e2) ⊃
Ql(e1, e1, e2), this also means that the first property of Definition 3.1 does not hold. To
demonstrate that the second property does not hold, note that (e1e1)e2 = e2(e1e1) and
P (e1, e1, e2) ⊃ Qr(e1, e1, e2), which means e2(e1e1) 6∈ 〈Qr(e1, e1, e2) ∪ {1}〉.

4 Important classes of non-associative algebras

and slowly growing length

Non-associative algebras are very important in mathematics and its applications, see [6, 18, 22]
and their bibliography. Now we examine standard classes of algebras of slowly growing length.
Recall that in this paper all algebras are finite dimensional.

The following lemma is useful in establishing various examples for algebras with polyno-
mial identities.

Lemma 4.1. Consider a finite-dimensional algebra A over field F, its basis {e1, . . . , ed} and
multilinear function G of k arguments such that G(ei1 , . . . , eik ) = 0 for all it ∈ {1, . . . , d}.
For all a1, . . . , ak ∈ A holds G(a1, . . . , ak) = 0.

Proof. As {e1, . . . , ed} is a basis of A, there exist such rij ∈ F that ai = ri1e1 + . . . + rided
for all i ∈ 1, . . . , k. We have

G(a1, . . . , ak) = G(r11e1 + . . . + r1ded, . . . , rk1e1 + . . . + rkded) =

=
∑

j1,...,jk∈{1,...,d}

r1j1 . . . rkjkG(ej1 , . . . , ejk ) = 0.

4.1 Lie and Leibniz algebras

Definition 4.2. An algebra A is called a Lie algebra if
1. xy = −yx for all x, y ∈ A,
2. (xy)z + (yz)x + (zx)y = 0 for all x, y, z ∈ A.

Trivially, Lie algebras are non-unital.
One possible generalization of Lie algebras are Leibniz algebras.

Definition 4.3. An algebra A is called a Leibniz algebra if (xy)z = x(yz) + (xz)y for all
x, y, z ∈ A.

An overview of Leibniz algebras can be found in [7].

Proposition 4.4. Leibniz algebras are both mixing and sliding.

Proof. Required properties of Definitions 3.1 and 3.2 are evident from the definition.

Corollary 4.5. Leibniz algebras have slowly growing length.

Below we provide an example that this bound is sharp for the class of Leibniz algebras.
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Example 4.6. Consider the algebra Bd with the basis x1, . . . , xd, d ≥ 3 and the following
multiplication law:

xix1 = xi+1, i = 1, . . . , d− 1,

with the other products being zero. Since l(Bd) ≤ d and l(Bd) ≥ l({x1}) = d, we have
l(Bd) = d.

Let us show that Bd is indeed a Leibniz algebra. We consider arbitrary elements u, y, z ∈
Bd and their representations via basis above. Let cy and cz be the coefficients at x1 of y and
z, correspondingly.

Due to the multiplication rules. the coefficient at x1 of yz is equal to zero, which
implies that u(yz) = 0. Meanwhile (uy)z = (uy)(czx1) = cz(uy)x1 = cz(u(cyx1))x1 =
czcy(ux1)x1 = cy(u(czx1))x1 = cy(uz)x1 = (uz)(cyx1) = (uz)y. Combining these two for-
mulas we achieve (uy)z = u(yz) + (uz)y.

For Lie algebras the above bound can be slightly improved.

Proposition 4.7. The length of a Lie algebra A of dimension d ≥ 2 is not greater than
d− 1.

Proof. Follows directly from Lemma 3.4 and the fact that A cannot be 1-generated. Indeed,
a2 = 0 for any a ∈ A. Thus 1-generated algebra can not be 2-dimensional. Now for a
generating set SS of A with l(SS) = l(A) and characteristic sequence (m1, . . . , md) we have
m1 = m2 = 1 and l(SS) = md ≤ md−1 + 1 ≤ . . . ≤ m2 + (d− 2) = d− 1.

This bound is sharp as well.

Example 4.8. Consider so-called filiform Lie algebra Ad with basis x1, . . . , xd, d ≥ 3 and
the following multiplication law:

x1xi = xi+1 = −xix1, i = 2, . . . , d− 1,

with other products being zero. Since l(Ad) ≤ d− 1 and l(Ad) ≥ l({x1, x2}) = d− 1, we
have l(Ad) = d− 1.

Lie algebras arise from associative algebras by changing the product x · y into [x, y] =
x · y − y · x, and the following statement provides the connections between these two related
algebras.

Proposition 4.9. Let A be an associative algebra over a field F with the multiplication ·:
A×A → A, and A(−) be ts adjoint Lie algebra, i.e., A(−) = (A, [, ]), where [x, y] = x ·y−y ·x
for any x, y ∈ A. Then any generating set SS of A(−) is a generating set of A and l(SS) ≤
lLie(SS), where lLie(SS) is the length of SS in A(−) and l(SS) is its length in A.

Proof. Both statements follow from the fact that for set SS ⊂ A we have  LLie
n (SS) ⊂  Ln(SS).

Here  LLie
n (SS) is a linear span of all words of length less than or equal to n in SS with respect

to the product [, ]. We prove this fact by induction.
The base. For n = 1 we have  LLie

1 (SS) =  L1(SS) as the set of all linear combinations of
elements from SS.

The step. Assume that the statement holds for n = 1, . . . , N − 1. For n = N we have
 LLie
N (SS) =

⋃
i∈{1,...,N−1}

[ LLie
i (SS),  LLie

N−i(SS)]. Applying induction hypothesis to each com-

ponent we have  LLie
N (SS) ⊆

⋃
i∈{1,...,N−1}

[ Li(SS),  LN−i(SS)]. Then using that [ Li(SS),  LN−i(SS)] ⊆

LN (SS), we have the desired inclusion.
Since SS is a generating set of A(−), there exists n0 such that A =  LLie

n0
(SS) ⊂  Ln0

(SS) ⊂

A. Thus,  Ln0
(SS) = A and lLie(SS) ≥ l(SS).

Note that the above proposition does not mean that the length of A(−) is greater than
or equal to the length of A. Actually, any mutual behavior of these numerical invariants is
possible, as the following examples show.

8



Example 4.10. Consider the algebra A1 = R2 over R with the addition and the multi-
plication defined coordinate-wise. Then A1 is a unital algebra of the dimension 2. Hence,

l(A1) = 1. Also lLie(A
(−)
1 ) = 1 since a product of any two elements in A

(−)
1 equals 0.

Example 4.11. Consider A2 = R3 over R with coordinate-wise addition and multiplication.
Then A2 is a unital algebra of the dimension 3. Hence l(A2) ≤ 2. Since l({(0, 1, 2)}) = 2 in

A2 it follows that l(A2) = 2. Meanwhile, l(A
(−)
2 ) = 1 since any product in A

(−)
2 is equal to 0.

Example 4.12. Consider A3 = M2(R). Then l(A3) = 2, see, for example, [16]. Let us prove

that lLie(A
(−)
3 ) = 3. To do this we consider the set {G1, G2}, where G1 = E11 − E12 and

G2 = E21 + E22, here Eij is the matrix with 1 in (i,j)-th position and 0 elsewhere. Then we
have

[G1, G2] = (E11 − E12)(E21 + E22) − (E21 + E22)(E11 − E12) =

= −E11 −E12 −E21 + E22 =: G3,

[G3, G1] = (−E11 −E12 −E21 +E22)(E11 −E12)− (E11 −E12)(−E11 −E12 −E21 +E22) =

= −E11 + 3E12 − E21 + E22 =: G4.

As [G1, G1] = [G2, G2] = 0, [G2, G1] = −[G1, G2] and G1, G2, G3 and G4 are linearly in-

dependent, the set {G1, G2} is a generating system of length 3. As l(A
(−)
3 ) ≤ 3 by Proposition

4.7, we have l(A
(−)
3 ) = 3.

4.2 Novikov algebras

Another well-known class of non-associative algebras is the class of Novikov algebras. Their
properties can be found, for example, in [3].

Definition 4.13. An algebra A is called a Novikov algebra if
1. x(yz) − (xy)z = y(xz) − (yx)z for all x, y, z ∈ A,
2. (xy)z = (xz)y for all x, y, z ∈ A.

Proposition 4.14. Novikov algebras are mixing and hence they have slowly growing length.

Proof. Required properties of Definition 3.2 are evident from definition of the class.

The following example shows that this bound is sharp.

Example 4.15. Consider algebra Cd with basis x1, . . . , xd, d ≥ 3 and the following multipli-
cation law:

x1xi = xi+1, i = 1, . . . , d− 1,

with other products being zero. Since l(Cd) ≤ d and l(Cd) ≥ l({x1}) = d, we have l(Cd) = d.
Cd is indeed a Novikov algebra. To prove this, consider elements u, y, z ∈ Cd and their

representations via basis above. Let cu and cy be coefficients of u and y at x1.
Coefficient at x1 of uy and uz are zero, which means (uy)z = (uz)y = (yu)z = 0, and the

second property of Definition 4.13 holds, while the first is reduced to u(yz) = y(uz). For the
latter we have u(yz) = u((cyx1)z) = cyu(x1z) = cucyx1(x1z) = cuy(x1z) = y((cux1)z) =
y(uz).

Another example demonstrates that Novikov algebras are not necessarily sliding.

Example 4.16. Consider algebra C over field F with basis x1, x2, x3, x4 and the following
multiplication law:

x1x1 = x2, x1x2 = x3, x2x1 = x4,

with other products being zero.
C is ia Novikov algebra. To prove this we will check the properties of Definition 4.13 on

basis elements and infer it for other elements by Lemma 4.1.
For a triple u, y, z ∈ {x1, x2, x3, x4} any product of the elements u, y, z in any order is

zero if at least one of them is not equal to x1, which means that both properties hold in this
case. If u = y = z = x1, they also trivially hold.
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However, C is not sliding as (x1x1)x1 = x4 cannot be represented as a linear combi-
nation of elements of Ql(x1, x1, x1) = {x1(x1x1), x1x1, x1} = {x3, x2, x1} and vice versa
x1(x1x1) = x3 cannot be represented as a linear combination of elements of Qr(x1, x1, x1) =
{(x1x1)x1, x1x1, x1} = {x4, x2, x1}.

4.3 Zinbiel algebras

We also consider Zinbiel algebras, for further information on which we direct the reader to [1].

Definition 4.17. An algebra A is called a (right)-Zinbiel algebra if x(yz) = (xy + yx)z for
all x, y, z ∈ A.

Proposition 4.18. Zinbiel algebras are sliding and hence they have slowly growing length.

Proof. Required properties of Definition 3.1 are evident from definition of the class.

The following example shows that the above bound is sharp.

Example 4.19. Consider the algebra Zd over the field R with the basis x1, . . . , xd, d ≥ 3
and the following multiplication law:

xixj =
j

i + j
xi+j , i, j = 1, . . . , d, i + j ≤ d,

with other products being zero. Since l(Zd) ≤ d and l(Zd) ≥ l({x1}) = d, we have l(Zd) = d.
Zd is indeed a Zinbiel algebra. To prove this we will demonstrate its defining property on

basis elements and infer it for other elements by Lemma 4.1.
We have for i, j, k such that i + j + k ≤ d

xi(xjxk) =
k

j + k
xixj+k =

k

j + k + i
xi+j+k = (xixj + xjxi)xk,

and for i, j, k such that i + j + k > d

xi(xjxk) = 0 = (xixj + xjxi)xk.

Now we demonstrate that Zinbiel algebras are not necessarily mixing.

Example 4.20. Consider algebra Z over field F with basis x1, x2, x3, x4, x5 and the following
multiplication law:

x1x2 = x4 = −x2x1, x4x3 = x5,

with other products being zero.
Zd is a Zinbiel algebra. To prove this we will demonstrate its defining property on basis

elements and infer it for other elements by Lemma 4.1.
For a triple u, y, z ∈ {x1, x2, x3, x4, x5} any product of u, y, z in any order is zero if at

least one of them is equal to x4, x5, which means that the property holds in this case. If
{u, y, z} ( {x1, x2, x3}, the possible products are zero as well. For the remaining possibilities
see the table below (the last column checking u(yz) = (uy + yu)z).

u y z Result
x1 x2 x3 0 = (x4 − x4)x3

x2 x1 x3 0 = (−x4 + x4)x3

x1 x3 x2 0 = (0 + 0)x2

x3 x1 x2 0 = (0 + 0)x2

x2 x3 x1 0 = (0 + 0)x1

x3 x2 x1 0 = (0 + 0)x1

However, the algebra is not mixing as (x1x2)x3 = x5 cannot be represented as a linear
combination of elements of P (x1, x2, x3) =

=






(x1x3)x2, (x3x1)x2, (x2x3)x1, (x3x2)x1,
x1(x3x2), x1(x2x3), x2(x1x3), x2(x3x1),

x1x2, x2x1, x1x3, x3x1, x2x3, x3x2, x1, x2, x3




 =

= {0, x1, x2, x3, x4}.
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4.4 Some classes of algebras that do not have slowly grow-

ing length

A class of algebras closely connected with Novikov algebras are Vinberg algebras, also known
as right-symmetric algebras (RSA), which are the algebras satisfying just the first one of the
two conditions determining Novikov algebras, i.e.

Definition 4.21. An algebra A is called a Vinberg algebra if (xy)z − x(yz) = (xz)y − x(zy)
for all x, y, z ∈ A.

An overview of such algebras can be found in [2, 4, 5].
It can be shown that Vinberg algebras, which are in general neither mixing nor sliding,

do not have slowly growing length universally. Below we present an example of such algebra.

Example 4.22. Consider a non-unitary algebra R with basis e1, e2, e3, e4 and the following
multiplication table (the operation being concatenation):

e1e1 = e2, e1e2 = e3, e3e2 = e4.

with the other products being zero. The characteristic sequence of the set {e1} is 1, 2, 3, 5,
while R belongs to the class of Vinberg algebras. To prove the latter, by Lemma 4.1 it is
enough to check that for x, y, z ∈ {e1, e2, e3, e4} it holds that

(xy)z − x(yz) = (xz)y − x(zy).

If either of x, y, z is e4, then every term is obviously zero. After substitution of ei every
term has the same length as words in {e1}. This length is greater or equal to 3 (as there are
three sub-terms of positive length).

For words of lengths 3 and 5 consider the table below.
x y z Result
e1 e1 e1 0 − e3 = 0 − e3
e1 e1 e3 0 − 0 = 0 − 0
e1 e3 e1 0 − 0 = 0 − 0
e3 e1 e1 0 − e4 = 0 − e4
e2 e2 e1 0 − 0 = 0 − 0
e2 e1 e2 0 − 0 = 0 − 0
e1 e2 e2 e4 − 0 = e4 − 0

Words of length 4 or 6 and higher are equal to zero, which means that the desired property
holds trivially, and the algebra under consideration is a Vinberg algebra.

Definition 4.23. An algebra A is called a Valya algebra if
1. xy = −yx for all x, y ∈ A,
2. J(x1x2, x3x4, x5x6) = 0, where J(x, y, z) = (xy)z+(yz)x+(zx)y for all x1, x2, . . . , x6 ∈

A

An overview of Valya algebras can be found in [21].
Universally Valya algebras are neither mixing nor sliding, and they do not necessarily

have slow growing length.

Example 4.24. Consider algebra V over a field F with basis e1, e2, e3, e4, e5, e6 and the
following multiplication laws:

e1e2 = e3 = −e2e1, e2e3 = e4 = −e3e2,

e3e4 = e5 = −e4e3, e4e5 = e6 = −e5e4,

with other products being zero.
It is a Valya algebra: for the first property multiplication is clearly anti-commutative and

for the second it is enough to check it on any six basis elements ei1 , ei2 , ei3 , ei4 , ei5 , ei6 by
Lemma 4.1.

J(ei1ei2 , ei3ei4 , ei5ei6) is a sum of three words of similar length in letters {e1, e2}, and
this length is at least 6 as each eij is a word of positive length.
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If this length is other than 8, then every summand is zero as there are no non-zero words
in this alphabet of such length.

Otherwise consider the summands in J(ei1 , . . . , ei6 ). They are represented as products of
three words of length at least 2 in {e1, e2}. A non-zero word of length 8, equal to ±e6 can be
represented this was only as a product of ±e3,±e4,±e4 in correct order (one of ±e4 being in
the outer product).

However, J(e3, e4, e4) = 0. Since J is linear and symmetric by its arguments, all other
combinations of ±e3,±e4,±e4 as arguments of J will result in 0 as well.

The generating set {e1, e2} has characteristic sequence (1, 1, 2, 3, 5, 8). It follows that
l(A) = 8 > 6 = dimV.

In the previous sections we discussed classes of algebras with slowly growing lengths. We
remark that there are many algebras such that their length is not bounded by the dimension
but is bounded by a certain linear function of the dimension. Below we present a certain
family of such algebras.

Proposition 4.25. Let r ≥ 2 be an integer and Ar be an algebra satisfying the property: for
all x, y1, . . . , yr ∈ Ar and any product v = y1 · · · yr (with any placement of parentheses) the
equality xv = 0 holds. Then l(Ar) ≤ (r − 1)dimAr.

Proof. Consider a generating set SS of Ar such that l(SS) = l(Ar) and its characteristic
sequence M = (m1, . . . , md), where d = dimAr . We are going to prove that mj+1−mj ≤ r−1
for all 1 ≤ j ≤ d− 1 .

Assume the contrary. Let k be the smallest index such that mk+1 −mk ≥ r.
Consider a word w of length at least two. It can be uniquely represented as w = w′ ·w′′,

where w′ and w′′ have non-zero lengths. We denote s(w) = min(l(w′), l(w′′)).
Consider an irreducible word w in SS of length mk+1. There are two possibilities.
Case 1: s(w) ≤ r − 1. Then w is a product of irreducible words of length s(w) and

mk+1 − s(w) by Lemma 2.2. Hence by Corollary 2.5, Item 2, there is an element equal to
mk+1 − s(w) in the characteristic sequence M . This is impossible, since M is non-decreasing
and mk < mk+1 − s(w) by the assumption.

Case 2: s(w) ≥ r. If s(w) = l(w′′) then l(w′′) ≥ r. Hence w = 0 by the condition on the
products of (r + 1) factors in Ar . Otherwise s(w) = l(w′). Then l(w′′) ≥ l(w′) ≥ r and again
w = 0. Both of these possibilities contradict the fact that w is irreducible.

Thus, the initial assumption is incorrect and mj+1−mj ≤ r−1 for all 1 ≤ j ≤ d−1. This
allows us to conclude that l(Ar) = l(SS) = md ≤ md−1 +(r−1) ≤ . . . ≤ m1 +(r−1)(d−1) <
(r − 1)d.

Let us note that if r = 2 then the algebras Ar are sliding, and therefore, the bound is
sharp. If r > 2 then the resulting bound is not sharp. However, for any r there exist algebras
which provide growth of length which is linear in dimension with coefficient r − 1.

Example 4.26. Consider an algebra Ed with the basis x1, . . . , xd, d ≥ r ≥ 2 and the following
multiplication law:

xjx1 = xj+1, j = 1, . . . , r − 2,

xixr−1 = xi+1, i = r − 1, . . . , d− 1,

with other products being zero. We have

l(Ed) ≥ l({x1}) = (r − 1)d − (r − 2)(r − 1).

Let us prove that Ed satisfies the conditions of Proposition 4.25.
At first, we consider x, y1, . . . , yr ∈ {x1, . . . , xd}. A word xv, where v is a product of

y1, . . . , yr , is indeed zero as v cannot be neither x1 nor xr−1. So, the required condition holds
for the basis of Ed. Then by Lemma 4.1 it is satisfied for other elements as well.
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