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RATIONAL FUNCTION SEMIFIELDS OF TROPICAL

CURVES ARE FINITELY GENERATED OVER THE

TROPICAL SEMIFIELD

SONG JUAE

Abstract. We prove that the rational function semifield of a
tropical curve is finitely generated as a semifield over the tropi-
cal semifield T := (R ∪ {−∞},max,+) by giving a specific finite
generating set. Also, we show that for a finite harmonic morphism
between tropical curves ϕ : Γ → Γ ′, the rational function semi-
field of Γ is finitely generated as a ϕ∗(Rat(Γ ′))-algebra, where
ϕ∗(Rat(Γ ′)) stands for the pull-back of the rational function semi-
field of Γ ′ by ϕ.

1. Introduction

This paper gives a tropical analogue of the fact that the function
field of an algebraic curve over C is generated by two elements over C:

Theorem 1.1. Let Γ be a tropical curve. Then, the rational func-

tion semifield Rat(Γ ) of Γ is finitely generated as a semifield over the

tropical semifield T := (R ∪ {−∞},max,+).

Here, a tropical curve is a metric graph that may have edges of
length ∞, and a rational function on a tropical curve is a piecewise
affine continuous function with integer slopes and with a finite number
of pieces or a constant −∞ function. The set Rat(Γ ) of all rational
functions on a tropical curve Γ has a natural structure of a semifield
over T , where the addition ⊕ is defined as the pointwise maximum
operation and the multiplication ⊙ as the pointwise usual addition.

The following lemma is our key to prove Theorem 1.1:

Lemma 1.2 ([2, Lemma 2.4.2]). Let Γ be a tropical curve. Then,

Rat(Γ ) is generated by all chip firing moves and all constant functions

as a group with tropical multiplication ⊙ as its binary operation.

Here, a chip firing move CF(Γ1, l) is the rational function defined by
the pair of a subgraph Γ1 and a number l ∈ R>0 ∪ {∞} as follows:
CF(Γ1, l)(x) := −min{dist(Γ1, x), l}, where Γ1 has no connected com-
ponents consisting only of a point at infinity and dist(Γ1, x) denotes
the distance between Γ1 and x. By this lemma, it is enough to find a
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2 SONG JUAE

finite set of rational functions which generates all chip firing moves as
a semifield over T .

The following example suggests that all chip firing moves defined by
one point generate all chip firing moves. Here, the valence val(x) of a
point x of a tropical curve is the minimum number of the connceted
components U \ {x} with all neighborhoods U of x.

Example 1.3. Let Γ be a tropical curve. Let Γ1 be a proper subgraph
of Γ that has no connected components consisting only of a point at
infinity. For any l ∈ R ∪ {∞} and any l′ such that 0 < l′ ≤ l, we can
cut the bottom side of the chip firing move CF(Γ1, l):

CF(Γ1, l
′) = CF(Γ1, l)⊕ (−l′).

Let Γ2 := {x ∈ Γ | dist(Γ1, x) ≤ l′}. We can cut the top side of the
chip firing move CF(Γ1, l):

CF(Γ2, l − l′) =
{

CF(Γ1, l)
⊙(−1) ⊕ l′

}⊙(−1)
⊙ l′.

We can extend the chip firing move CF(Γ1, l
′):

CF(Γ1, l) = CF(Γ1, l
′)⊙ CF(Γ2, l − l′).

Let x be a boundary point of Γ1 in Γ . Let ε be a sufficiently small
positive real number and y ∈ Γ \Γ1 such that dist(x, y) = ε. Then, we
can connect two chip firing moves CF(Γ1, ε) and CF({y}, ε):

CF(Γ1 ∪ [x, y], ε) = CF(Γ1, ε)⊙ CF({y}, ε)⊙ ε.

Let Γ3, Γ4 be any two proper subgraphs of Γ whose intersection is
empty and both that have no connected components consisting only
of a point at infinity. Let l be a positive real number such that the
intersection of {x ∈ Γ | dist(Γ3, x) ≤ l} and {x ∈ Γ | dist(Γ4, x) ≤ l}
is finite. Then, we have

CF(Γ3 ⊔ Γ4, l) = CF(Γ3, l)⊕ CF(Γ4, l).

Note that Algorithm 1 in Section 3 gives a range of “ε is sufficiently
small”. If Γ has no edges of length∞, then in fact all chip firing moves
defined by one point generate all chip firing moves. By the following
lemma, we may assume that Γ has no edges of length ∞.

Lemma 1.4. Let Γ be a tropical curve. Let Γ ′ be a tropical curve

which is obtained from Γ by contracting edges of length ∞. If Rat(Γ ′)
is finitely generated as a semifield over T , then so is Rat(Γ ).

Hence our next target is to find a finite set of rational functions
which generates all chip firing moves defined by one point as a semifield
over T . Let (G◦, l◦) be the canonical model for Γ , i.e., the pair of
the underlying graph G◦ of Γ whose set V (G◦) of vertices is {x ∈
Γ | val(x) 6= 2} and the length function l◦ defined by Γ and G◦ (for
more precisely, see Subsection 2.2). Fix a direction on edges of G◦.
Let each e ∈ E(G◦) be identified with the interval [0, l◦(e)] with this
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direction, where E(G◦) denotes the set of edges of G◦. For each edge

e ∈ E(G◦), let xe =
l◦(e)
4

, ye =
l◦(e)
2

, and ze =
3l◦(e)

4
. We define rational

functions

fe := CF

(

{ye},
l◦(e)

2

)

, ge := CF

(

{xe},
l◦(e)

4

)

, he := CF

(

{ze},
l◦(e)

4

)

.

Note that the semifield generated by ge, he over T coincides with the

semifield generated by ge ⊙ h
⊙(−1)
e over T since

ge =

(

−
l◦(e)

4

)

⊙
(

ge ⊙ h⊙(−1)
e ⊕ 0

)

and

he =

(

−
l◦(e)

4

)

⊙
{

(

ge ⊙ h⊙(−1)
e

)⊙(−1)
⊕ 0
}

.

Let R be the semifield generated by fe, ge, he for any e ∈ E(G◦) and
CF({v},∞)(= − dist(v, ·)) for any v ∈ V (G◦) over T . This semifield
R is finitely generated, and in fact, coincides with Rat(Γ ). Hence, we
have Theorem 1.1.

In the setting that a finite harmonic morphism between tropical
curves is given, we have the following proposition:

Proposition 1.5. Let ϕ : Γ → Γ ′ be a finite harmonic morphism be-

tween tropical curves. Then, Rat(Γ ) is finitely generated as a ϕ∗(Rat(Γ ′))-
algebra, where ϕ∗(Rat(Γ ′)) stands for the pull-back of Rat(Γ ′) by ϕ.

Note that Rat(Γ ) may not be finitely generated as a ϕ∗(Rat(Γ ′))-
module. See Example 3.15.

This paper is organized as follows. In Section 2, we give basic def-
initions related to semirings and tropical curves which we need later.
Section 3 gives proofs of Theorem 1.1, Lemma 1.4, and Proposition
1.5. In that section, we also show that there exists a generating set of
rational function semifield of any tree whose elements are fewer than
that of the above generating set and that rational function semifields
of tropical curves other than a singleton are not finitely generated as a
T -algebra.
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2. Preliminaries

In this section, we prepare basic definitions related to semirings and
tropical curves which we need later. For an introduction to the theory
of tropical geometry, for example, see [4]. We employ definitions in [2]
for tropical curves.
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2.1. Semirings. In this paper, a semiring is a commutative semiring
with the absorbing neutral element 0 for addition and the identity 1 for
multiplication such that 0 6= 1. If every nonzero element of a semiring
S is multiplicatively invertible, then S is called a semifield.

A map ϕ : S1 → S2 between semirings is a semiring homomorphism

if for any x, y ∈ S1,

ϕ(x+y) = ϕ(x)+ϕ(y), ϕ(x ·y) = ϕ(x) ·ϕ(y), ϕ(0) = 0, and ϕ(1) = 1.

Given a semiring homomorphism ϕ : S1 → S2, we call the pair (S2, ϕ)
(for short, S2) a S1-algebra.

The set T := R ∪ {−∞} with two tropical operations:

a⊕ b := max{a, b} and a⊙ b := a+ b,

where both a and b are in T , becomes a semifield. Here, for any a ∈ T ,
we handle −∞ as follows:

a⊕ (−∞) = (−∞)⊕ a = a and a⊙ (−∞) = (−∞)⊙ a = −∞.

T is called the tropical semifield.

2.2. Tropical curves. In this paper, a graph is an unweighted, undi-
rected, finite, connected nonempty multigraph that may have loops.
For a graph G, the set of vertices is denoted by V (G) and the set of
edges by E(G). The valence of a vertex v of G is the number of edges
incident to v, where each loop is counted twice. A vertex v of G is a
leaf end if v has valence one. A leaf edge is an edge of G incident to a
leaf end.

An edge-weighted graph (G, l) is the pair of a graph G and a function
l : E(G) → R>0 ∪ {∞}, where l can take the value ∞ on only leaf
edges. A tropical curve is the underlying topological space of an edge-
weighted graph (G, l) together with an identification of each edge e of
G with the closed interval [0, l(e)]. The interval [0,∞] is the one point
compactification of the interval [0,∞). We regard [0,∞] not just as a
topological space but as almost a metric space. The distance between
∞ and any other point is infinite. When l(e) = ∞, the leaf end of
e must be identified with ∞. If E(G) = {e} and l(e) = ∞, then we
can identify either leaf ends of e with ∞. When a tropical curve Γ is
obtained from (G, l), the edge-weighted graph (G, l) is called a model

for Γ . There are many possible models for Γ . A model (G, l) is loopless
if G is loopless. We frequently identify a vertex (resp. an edge) of G
with the corresponding point (resp. the corresponding closed subset)
of Γ . For a point x on a tropical curve Γ obtained from (G, l), if
x is identified with ∞, then x is called a point at infinity, else, x is
called a finite point. Γ∞ denotes the set of all points at infinity of
Γ . If Γ∞ is empty, i.e. l : E(G) → R>0, then Γ is called a metric

graph. If x is a finite point, then the valence val(x) is the number of
connected components of U \{x} with any sufficiently small connected
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neighborhood U of x, if x is a point at infinity, then val(x) := 1.
Remark that this “valence” is defined for a point of a tropical curve
and the “valence” in the first paragraph of this subsection is defined
for a vertex of a graph, and these are compatible with each other. We
construct a model (G◦, l◦) called the canonical model for Γ as follows.
We determine V (G◦) := {x ∈ Γ | val(x) 6= 2} except following two
cases. When Γ is homeomorphic to a circle S1, we determine V (G◦)
as the set consisting of one arbitrary point of Γ . When Γ has the
edge-weighted graph (T, l) as its model, where T is the tree consisting
of three vertices and two edges and l(E(T )) = {∞}, we determine
V (G◦) as the set of two points at infinity and any finite point of Γ .
The relative interior e◦ of an edge e is e \ {v, w} with the endpoint(s)
v, w of e. The genus g(Γ ) of Γ is the first Betti number of Γ , which
coincides with #E(G)−#V (G) + 1 for any model (G, l) for Γ . A tree

is a tropical curve of genus zero. The word “an edge of Γ” means an
edge of G with some model (G, l) for Γ .

2.3. Rational functions and chip firing moves. Let Γ be a tropical
curve. A continuous map f : Γ → R ∪ {±∞} is a rational function

on Γ if f is a piecewise affine function with integer slopes, with a
finite number of pieces and that can take the value ±∞ only at points
at infinity, or a constant function of −∞. For a point x of Γ and a
rational function f ∈ Rat(Γ ) \ {−∞}, x is a pole of f if the sign of the
sum of outgoing slopes of f at x is minus. The absolute value of the
sum is its degree. Let Rat(Γ ) denote the set of all rational functions
on Γ . For rational functions f, g ∈ Rat(Γ ) and a point x ∈ Γ \Γ∞, we
define

(f ⊕ g)(x) := max{f(x), g(x)} and (f ⊙ g)(x) := f(x) + g(x).

We extend f ⊕ g and f ⊙ g to points at infinity to be continuous on
whole Γ . Then both are rational functions on Γ . Note that for any
f ∈ Rat(Γ ), f ⊙ (−∞) = (−∞)⊙ f = −∞. Then Rat(Γ ) becomes a
semifield with these two operations. Also, Rat(Γ ) becomes a T -algebra
with the natural inclusion T →֒ Rat(Γ ). Note that for f, g ∈ Rat(Γ ),
f = g means that f(x) = g(x) for any x ∈ Γ .

A subgraph of a tropical curve is a compact nonempty subset of the
tropical curve with a finite number of connected components. Let Γ1

be a subgraph of a tropical curve Γ which does not have any connected
components consisting of only points at infinity and l a positive real
number or infinity. The chip firing move by Γ1 and l is defined as the
rational function CF(Γ1, l)(x) := −min(dist(x, Γ1), l).

2.4. Finite harmonic morphisms. Let ϕ : Γ → Γ ′ be a continuous
map between tropical curves. ϕ is a finite harmonic morphism if there
exist loopless models (G, l) and (G′, l′) for Γ and Γ ′, respectively, such
that (1) ϕ(V (G)) ⊂ V (G′) holds, (2) ϕ(E(G)) ⊂ E(G′) holds, (3) for
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any edge e of G, there exists a positive integer dege(ϕ) such that for any
points x, y of e, dist(ϕ(x), ϕ(y)) = dege(ϕ) ·dist(x, y) holds, and (4) for
every vertex v of G, the sum

∑

e∈E(G): e 7→e′, v∈e dege(ϕ) is independent

of the choice of e′ ∈ E(G′) incident to ϕ(v). This sum is denoted by
degv(ϕ). Then, the sum

∑

v∈V (G): v 7→v′ degv(ϕ) is independent of the

choice of a vertex v′ of G′, and is called the degree of ϕ. If both Γ and
Γ ′ are singletons, we regard ϕ as a finite harmonic morphism that can
have any number as its degree.

Let ϕ : Γ → Γ ′ be a finite harmonic morphism between tropical
curves. The pull-back ϕ∗ : Rat(Γ ′)→ Rat(Γ ) is defined by f ′ 7→ f ′ ◦ϕ.
Note that on each e ∈ E(G) with the model (G, l) above, ϕ∗(f ′) has
only multiples of dege(ϕ) as its slopes for any f ′ ∈ Rat(Γ ′).

3. Main results

In this section, we give proofs of Theorem 1.1 and Proposition 1.5.
First, we prove Theorem 1.1. To do it, we will prepare multiple

lemmas and an algorithm. Algorithm 1 gives a range of values for a
proper connected subgraph of a metric graph to connect the chip firing
move defined by it and another chip firing move (see Example 1.3).

Algorithm 1

Input: Γ : a metric graph
E(G◦) = {e1, . . . , en} : a labeling of edges of the canonical model
for Γ
S : a proper connected subgraph of Γ

Output: lS
1: i← 1
2: while i ≤ n do

3: if ei ∩ S = ∅ then

4: li ← (the diameter of Γ ), i← i+ 1
5: else {S ⊃ ei}
6: li ← (the diameter of Γ ), i← i+ 1
7: else {S ⊃ ∂ei}

8: li ← (the length of ei \ S)/2, i← i+ 1
9: else {S ⊂ e◦i }
10: li ← min{dist(S, x) | x is one of the endpoints of ei}, i← i+1
11: else

12: li ← (the length of ei \ S), i← i+ 1
13: end if

14: end while

15: lS ← min{l1, . . . , ln}
16: return lS
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In Algorithm 1, ei \ S denotes the closure of ei \ S, and if S consists
of only one point x, then we write lx instead of l{x}.

Remark 3.1. Let Γ be a metric graph and S1 a proper connceted
subgraph of Γ . Let l ≤ lS1 and S2 := {x ∈ Γ | dist(S1, x) ≤ l}. With
a := min{k ∈ Z>0 | l/k ≤ lS2}, m := min{k ∈ Z>0 | lS2/k ≤ l/a} and
any l′ > 0, by the definition of chip firing moves, we have

CF

(

S2,
l

a

)

= CF

(

S1,
l

a

)

⊙

a
⊙

k=1

⊙

x′∈Γ :
dist(S1,x

′)= kl
a

{

CF

(

{x′},
l

a

)

⊙
l

a

}

,

CF

({

x ∈ Γ | dist(S2, x) ≤
klS2

m

}

,
lS2

m

)

= CF

({

x ∈ Γ | dist(S2, x) ≤
(k − 1)lS2

m

}

,
lS2

m

)

⊙
⊙

x′∈Γ :

dist(S2,x
′)=

klS2
m

{

CF

(

{x′},
lS2

m

)

⊙
lS2

m

}

,

CF(S2, lS2) =

{

CF

(

S2,
l

a

)

⊕

(

−
lS2

m

)}

⊙

m−1
⊙

k=1

CF

({

x ∈ Γ | dist(S2, x) ≤
klS2

m

}

,
lS2

m

)

,

and

CF(S1, l + l′) = CF(S1, l)⊙ CF(S2, l
′).

Let Γ be a metric graph. Let R be as in Section 1. Let (G◦, l◦) be
the canonical model for Γ .

Lemma 3.2. Let e be an edge of G◦. Let x be in e◦. Then, CF({x}, lx) ∈
R.

Proof. If x is the midpoint of e, then CF({x}, lx) = fe ∈ R. Suppose

that x is not the midpoint of e. Assume that 0 < lx ≤
l◦(e)
4

and

ge(x) = −
l◦(x)
4

. Then

CF({x}, lx) =

{(

l◦(e)

2
− lx

)

⊙ fe ⊕

(

lx −
l◦(e)

2

)

⊙ f⊙(−1)
e

}⊙(−1)

⊙

(

−
l◦(e)

4

)

⊙ g⊙(−1)
e ⊕ (−lx) ∈ R.
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Similarly, if 0 < lx ≤
l◦(e)
4

and he(x) = −
l◦(e)
4

, then

CF({x}, lx) =

{(

l◦(e)

2
− lx

)

⊙ fe ⊕

(

lx −
l◦(e)

2

)

⊙ f⊙(−1)
e

}⊙(−1)

⊙

(

−
l◦(e)

4

)

⊙ h⊙(−1)
e ⊕ (−lx) ∈ R.

When l◦(e)
4

< lx ≤
l◦(e)
3

and ge(x) = −
l◦(e)
4

, we have

CF({x}, lx) =

{(

l◦(e)

2
− lx

)

⊙ fe ⊕

(

lx −
l◦(e)

2

)

⊙ f⊙(−1)
e

}⊙(−1)

⊙

{(

−
l◦(e)

4

)

⊙ g⊙(−1)
e

}⊙2

⊕ (−lx) ∈ R.

Similarly, if l◦(e)
4

< lx ≤
l◦(e)
3

and he(x) = −
l◦(e)
4

, then

CF({x}, lx) =

{(

l◦(e)

2
− lx

)

⊙ fe ⊕

(

lx −
l◦(e)

2

)

⊙ f⊙(−1)
e

}⊙(−1)

⊙

{(

−
l◦(e)

4

)

⊙ h⊙(−1)
e

}⊙2

⊕ (−lx) ∈ R.

When l◦(e)
3

< lx < l◦(e)
2

and ge(x) = −
l◦(e)
4

, we have

CF({x}, l◦(e)− 2lx) =

{(

l◦(e)

2
− lx

)

⊙ fe ⊕

(

lx −
l◦(e)

2

)

⊙ f⊙(−1)
e

}⊙(−1)

⊙

{(

−
l◦(e)

4

)

⊙ g⊙(−1)
e

}⊙2

⊕ (2lx − l◦(e)) ∈ R.

Similarly, if l◦(e)
3

< lx < l◦(e)
2

and he(x) = −
l◦(e)
4

, then

CF({x}, l◦(e)− 2lx) =

{(

l◦(e)

2
− lx

)

⊙ fe ⊕

(

lx −
l◦(e)

2

)

⊙ f⊙(−1)
e

}⊙(−1)

⊙

{(

−
l◦(e)

4

)

⊙ h⊙(−1)
e

}⊙2

⊕ (2lx − l◦(e)) ∈ R.

Let x be in the fifth case. Since

CF

({

x1 ∈ Γ | dist(x, x1) ≤
l◦(e)

2
− lx

}

,
l◦(e)

2
− lx

)

= CF

(

{x},
l◦(e)

2
− lx

)

⊙
⊙

x1∈e:

dist(x,x1)=
l◦(e)

2
−lx

{

CF

(

{x1},
l◦(e)

2
− lx

)

⊙

(

l◦(e)

2
− lx

)}

∈ R,

with inputs l = l◦(e)
2
− lx, S1 = {x1 ∈ Γ | dist(x, x1) ≤ l◦(e)/2 − lx} in

Remark 3.1, we have CF({x}, lx) ∈ R.
When x is in the sixth case, by the same argument, we have CF({x}, lx) ∈

R. �
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Note that lx coincides with min(dist(x, v), dist(x, w)) in the setting
of Lemma 3.2.

By Remark 3.1 and Lemma 3.2, we prove the following three lemmas.
Let d be the diameter of Γ , i.e., d = sup{dist(x, y) | x, y ∈ Γ} =
max{dist(x, y) | x, y ∈ Γ}.

Lemma 3.3. For any x ∈ Γ and any positive real number l, the chip

firing move CF({x}, l) is in R.

Proof. For any x ∈ Γ and l > 0, by the definition of chip firing moves,
we have CF({x}, l) = CF({x}, d)⊕ (−l). Hence it is sufficient to check
that CF({x}, d) ∈ R. If x ∈ V (G◦), then CF({x}, d) ∈ R.

Suppose that there exists an edge e ∈ E(G◦) such that x ∈ e◦.
Considering Remark 3.1 with l = lx, S1 = {x}, by Lemma 3.2, we have

CF(S2, lS2) ∈ R

and

CF(S1, l + lS2) = CF(S1, l)⊙ CF(S2, lS2) ∈ R.

Since S2 contains a lot of whole edges of G◦ more than S1 and the set of
edges of G◦ is finite, by repeating inputs of l = lS2, S1 = S2 in Remark
3.1, we have CF({x}, d) ∈ R. �

Lemma 3.4. For any proper connected subgraph Γ1 and any positive

real number l, the chip firing move CF(Γ1, l) is in R.

Proof. By Lemma 3.3, if Γ1 consists of only one point, then we have
the conclusion. Assume that Γ1 does not consist of only one point.

Suppose that Γ1 contains no whole edges of G◦ and that there exists
an edge e ∈ E(G◦) containing Γ1. Let x1 and x2 be the endpoints of
Γ1. Let x be the midpoint of Γ1. By Lemma 3.3, for any positive real
number l, we have

CF(Γ1, l) =
[

{CF({x}, l + dist(x1, x))⊙ dist(x1, x)}
⊙(−1) ⊕ 0

]⊙(−1)

∈ R.

Note that CF(Γ1, l) is also obtained as follows with a sufficiently large
b ∈ Z>0:

CF

(

Γ1,
lx
b

)

= CF

(

{x},
lx
b

)

⊙
b
⊙

k=1

⊙

x′∈Γ :
dist(x,x′)= klx

b

{

CF

(

{x′},
lx
b
⊙

lx
b

)}

,

and inputs l = lx/b and S1 = Γ1, and repeating this process with inputs
l = lS2 , S1 = S2 in Remark 3.1.

Suppose Γ1 contains p edges. Let ∂Γ1∪ (V (G◦)∩Γ1) = {x1, . . . , xq}.
We may assume that x1, . . . , xq are distinct. Let Γ11, . . . , Γ1s be con-
nected components of Γ1\{x1, . . . , xq}. For a sufficiently small positive
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real number ε, let Γ ′
1i be the connected subgraph {x ∈ Γ1i | for any j, dist(x, xj) ≥

ε} of Γ . Then, we have

CF(Γ1, ε) =

{

q
⊕

k=1

CF({xk}, ε)

}

⊙

s
⊙

k=1

(ε⊙ CF(Γ ′
1k, ε)) .

The last divisor is in the first case, and thus it is in R. By inputting
l = ε, S1 = Γ1 and by repeating inputs l = lS2 , S1 = S2 in Remark 3.1,
we have CF(Γ1, d) ∈ R. From this, for any l > 0, we have CF(Γ1, l) =
CF(Γ1, d)⊕ (−l) ∈ R. �

Lemma 3.5. For any proper subgraph Γ1 and any positive real number

l, the chip firing move CF(Γ1, l) is in R.

Proof. Let Γ1 be a proper subgraph of Γ . Let s be the number of
connected components of Γ1. If s = 1, then the conclusion follows
Lemma 3.4. Assume s ≥ 2. Let Γ ′

1, . . . , Γ
′
s be all the distinct connected

components of Γ1. For l′ > 0, let Γ ′
k(l

′) := {x ∈ Γ | dist(Γ ′
k, x) ≤ l′}.

If l′ is sufficiently small, then the intersection of Γ ′
1(l

′), . . . , Γ ′
s(l

′) is
empty. Let l′1 be the minimum value of l′ such that this intersection is
nonempty. By induction on s, CF (

⋃s

k=1 Γ
′
k(l

′
1), d) ∈ R. On the other

hand,

CF(Γ1, l
′
1) =

s
⊕

k=1

CF(Γ ′
k, l

′
1) ∈ R.

Hence

CF(Γ1, d) = CF(Γ1, l
′
1)⊙ CF

(

s
⋃

k=1

Γ ′
k(l

′
1), d

)

∈ R.

In conclusion, for any l > 0, we have

CF(Γ1, l) = CF(Γ1, d)⊕ (−l) ∈ R. �

From Lemmas 1.2, 3.3, 3.4, 3.5, we have the following proposition.

Proposition 3.6. Let Γ be a metric graph. Then, Rat(Γ ) coincides

with R. In particular, it is finitely generated as a semifield ovar T .

Let us show Lemma 1.4:

Proof of Lemma 1.4. There exists a natural inclusion ι : Γ ′ →֒ Γ (cf.
[1]). With this inclusion ι, we have a natural inclusion κ : Rat(Γ ′) →֒
Rat(Γ ), i.e., for any f ′ ∈ Rat(Γ ′) and x′ ∈ Γ ′, κ(f ′)(ι(x′)) = f ′(x′)
and κ(f ′) is extended to be constant on each connected component
of Γ \ ι(Γ ′). Let {f ′

1, . . . , f
′
n} be a finite generating set of Rat(Γ ′).

Let L1, . . . , Lm be all the connected components of Γ \ ι(Γ ). Then

{κ(f ′
1), . . . , κ(f

′
n),CF(Γ \ L1,∞), . . . ,CF(Γ \ Lm,∞)} is a finite gen-

erating set of Rat(Γ ). In fact, for any f ∈ Rat(Γ ) \ {−∞}, since f is a
piecewice affine function with a finite number of pieces, it breaks each
Li into a finite number of pieces Li1, . . . , Lisi on each which it has a
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constant slope. We may assume that Lij ∩{ι(Γ
′)∪
⋃j−1

k=1 Lik} 6= ∅. Let

xi1 be the unique point of Li1 ∩ ι(Γ ′). For any j = 2, . . . , si, let xij be

the unique point of Lij ∩ Li,j−1. Let xi,si+1 be the point at infinity of
Lisi. Let aij be the slope of f on Lij in the direction from xij to xi,j+1.
Since the restriction f |ι(Γ ′) can be regarded as a rational function on Γ ′,

it is written as g(κ(f ′
1), . . . , κ(f

′
n))⊙h(κ(f ′

1), . . . , κ(f
′
n))

⊙(−1) with poly-

nomials g, h ∈ T [X1, . . . , Xn]. Let bij be the value CF(Γ \ Li,∞)(xij).
Then, we have

f = g(κ(f ′
1), . . . , κ(f

′
n))⊙ h(κ(f ′

1), . . . , κ(f
′
n))

⊙(−1)

⊙

m
⊙

i=1

si
⊙

j=1

[

(−bij)⊙

{

(

CF(Γ \ Li,∞)⊕ bi,j+1

)⊙(−1)

⊕ (−bij)

}⊙(−1)
]⊙(−aij)

,

which completes the proof. Here, when aij = 0, then the last divisor
means the zero function 0 ∈ Rat(Γ ). �

In conclusion, we have Theorem 1.1.

Remark 3.7. By the proof of Theorem 1.1, we have the following: for
a tropical curve Γ , all chip firing moves defined by one finite point, and
of the form CF(Γ \ (y, x],∞) with x ∈ Γ∞ and a finite point y on the
unique edge incident to x generate Rat(Γ ) as a semifield over T . This
assertion is used in the proof of [3, Corollary 3.9].

Since the pull-back of the rational function semifield of a tropical
curve by a finite harmonic morphism contains T , the following corollary
follows from Theorem 1.1:

Corollary 3.8. Let ϕ : Γ → Γ ′ be a finite harmonic morphism between

tropical curves. Then, Rat(Γ ) is finitely generated as a semifield over

ϕ∗(Rat(Γ ′)).

By the proof of Lemma 1.4, we have the following corollary:

Corollary 3.9. Let Γ be a tropical curve. Let (G◦, l◦) be the canonical

model for Γ and E∞ the subset of E(G◦) cosisting of all edges of length

∞. Then, there exists a generating set of Rat(Γ ) consisting of at most

#V (G◦) + 2(#E(G◦)−#E∞) elements.

Proof. V (G◦) contains #V (G◦)−#E∞ vertices which are finite points.
Thus R for the metric graph obtained from Γ by contracting all edges
in E∞ is generated by #V (G◦)−#E∞+2(#E(G◦)−#E∞) elements.
From the proof of Lemma 1.4, Rat(Γ ) is generated by #V (G◦)−#E∞+
2(#E(G◦)−#E∞) +#E∞ = #V (G◦) + 2(#E(G◦)−#E∞) elements.

�

Second, we consider rational function semifields of trees.

Lemma 3.10. Let T be a tree. Let (G◦, l◦) be the canonical model

for T . Let V1 ⊂ V (G◦) denote the subset of all leaf ends. If #V1 is
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even, then there exists a pairing of vertices in V1 such that the union

of unique paths connecting paired vertices covers T .

Proof. Since #V1 is even, there exists a pairing of vertices in V1. If it
is not desired, then there exists an edge e of G◦ which is not contained
in the union of unique paths connecting paired vertices. Since T is a
tree, there exist two vertices v, w such that the unique path connecting
them contains e. By pairing again v, w and the two other vertices
v′, w′ originally paired with v, w respectively, the number of covered
edges increases. In fact, the union of the path from v to w and the
path from v′ to w′ contains e and both the path from v to v′ and the
path from w to w′. Hence, by repeating this process, we have the
conclusion. �

Proposition 3.11. Let T be a tree. Let (G◦, l◦) be the canonical model

for T and V1 ⊂ V (G◦) the subset of all leaf ends. Then there exists a

generating set of Rat(T ) consisting of at most
[#V1+1]

2
elements, where

[x] = max{n ∈ Z |n ≤ x}.

Proof. By Lemma 3.10, there exists a pairing of vertices in V1 except
at most one vertex v0 such that the union of unique paths connecting
paired vertices covers T except at most one edge e0 incident v0. Let
v, w be any paired vertices and P the unique path connecting them.
Let f be a rational function on T which has slope one on P in the
direction from v to w and constant on other points. Let g be a rational
function on T which has slope one on e0 and constant on other points.
Then such f and g generates Rat(T ) as a semifield over T . In fact,
for a tree T ′ which is a metric graph obtained from T by contracting
edges of length ∞, the restrictions of such f and g on T ′ generate
fe′, ge′, he′ and CF({v},∞) for each edge e′ and each vertex v of the
underlying graph of the canonical model for T ′ and chip firing moves of
the form of CF(Γ \ Li,∞) in the proof of Lemma 1.4. Hence we have
the conclusion. �

Third, we show that except the singleton case, rational function semi-
fields of tropical curves are not finitely generated as a T -algebra by the
following two lemmas.

The following lemma holds by the definitions of two operators ⊙, ⊕.

Lemma 3.12. Let Γ be a tropical curve. For any rational functions

f, g ∈ Rat(Γ ) \ {−∞}, f ⊙ g and f ⊕ g may have as these poles only

points that are poles of f or g.

Lemma 3.13. Let Γ be a metric graph. Then, Rat(Γ ) is finitely gen-

erated as a T -algebra if and only if Γ is a singleton.

Proof. The if part is clear. We shall show the only if part. If Rat(Γ )
is finitely generated as a T -algebra, then by Lemma 3.12, Γ must be a
singleton. �
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Proposition 3.14. Let Γ be a tropical curve. Then, Rat(Γ ) is finitely
generated as a T -algebra if and only if Γ is a singleton.

Proof. By Lemma 3.13, it is enough to show that with any metric
graph Γ ′ obtained from Γ by contracting edges of length ∞, if Rat(Γ )
is finitely generated as a T -algebra, then so is Rat(Γ ′). Assume that
Rat(Γ ) is finitely generated as a T -algebra. Let {f1, . . . , fn} be a finite
generating set of Rat(Γ ). Then the set of restrictions {f1|Γ ′, . . . , fn|Γ ′}
is a finite generating set of Rat(Γ ′) with the natural inclusion Γ ′ →֒
Γ . In fact, the restriction map Rat(Γ ) → Rat(Γ ′) is surjective since
the contraction Γ ։ Γ ′ contracts only trees. Hence, we have the
assertion. �

Finally, we shall show Proposition 1.5:

Proof of Proposition 1.5. Fix loopless models (G, l), (G′, l′) for Γ , Γ ′,
respectively, such that ϕ(V (G)) = V (G′). For any edge e of G, if e is
not incident to a point at infinity, then let Fe := CF(Γ \ e◦, l(e)/2);

otherwise, let Fe := CF(Γ \ e,∞).
Assume that l(e) < ∞. Let v be one of the vertices incident to

e. Let Gv,e be a rational function on Γ which has slope one from v
to the midpoint of e; has a sufficiently large positive integer to be its
slope from v to a point of each edge incident to v other than e; is
the constant zero function on other points; has v as its unique point

where attains the minimum value − l(e)
2
. Let x ∈ e◦. Assume that

dist(x, v) = lx ≤
l(e)
2
. If dist(x, v) = l(e)

2
, then we have

CF({x}, lx)⊙ {−(dege(ϕ)− 1)lx}

= ϕ∗(CF({ϕ(x)}, lϕ(x)))⊙ F⊙(dege(ϕ)−1)
e ⊙

⊙

e1∈E(G)\{e}:
e1⊂ϕ−1(ϕ(e))

F
⊙dege1 (ϕ)
e1 .

Suppose dist(x, v) ≤ l(e)
4
. Let f ′ be a rational function on Γ ′ which coin-

cides with CF({ϕ(x)}, lϕ(x)) on U ′ := {x′ ∈ Γ ′ | dist(ϕ(x), x′) ≤ lϕ(x)};
has a sufficiently small negative slope s from U ′ on the ε-neighborhood
of U ′ with a sufficiently small positive real number ε enough to be the
restriction of Gv,e on the inverse image of the ε-neighborhood of U ′

does not take zero; is the constant −lϕ(x) + sε on other points. Then,
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there exists a positive integer b such that

CF({x}, lx)⊙ {−(dege(ϕ)− 1)lx}

= ϕ∗(f ′)⊙

{

Fe ⊕Gv,e ⊙

(

l(e)

2
− 2lx

)}⊙(dege(ϕ)−1)

⊙
⊙

e1∈E(G)\{e}:
e1⊂ϕ−1(ϕ(e)),v∈e1

F⊙b
e1
⊙

⊙

e2∈E(G)\{e},v2∈V (G)\{v}:
e2⊂ϕ−1(ϕ(e)),v2∈ϕ−1(ϕ(v)),

v 6∈e2,v2∈e2

G⊙b
v2,e2

⊕(− dege(ϕ)lx).

Suppose l(e)
4

< dist(x, v) < l(e)
2
. Then, we have

CF

(

{x},
l(e)

2
− lx

)

⊙ {−(dege(ϕ)− 1)lx}

= ϕ∗(CF({ϕ(x)}, lϕ(x))⊙

{

Fe ⊕Gv,e ⊙

(

l(e)

2
− 2lx

)}⊙(dege(ϕ)−1)

⊙
⊙

e1∈E(G)\{e}:
e1⊂ϕ−1(ϕ(e))

F
⊙dege1 (ϕ)
e1 ⊕

{

−(dege(ϕ)− 1)lx −

(

l(e)

2
− lx

)}

.

Since

CF

({

x1 ∈ Γ | dist(x, x1) ≤
l(e)

4
−

lx
2

}

,
l(e)

4
−

lx
2

)

= CF

(

{x},
l(e)

4
−

lx
2

)

⊙
⊙

x1∈e:

dist(x,x1)=
l(e)
4

− lx
2

{

CF

(

{x1},
l(e)

4
−

lx
2

)

⊙

(

l(e)

4
−

lx
2

)}

,

CF

({

x1 ∈ Γ | dist(x, x1) ≤
l(e)

2
− lx

}

,
l(e)

4
−

lx
2

)

= CF

({

x1 ∈ Γ | dist(x, x1) ≤
l(e)

4
−

lx
2

}

,
l(e)

4
−

lx
2

)

⊙
⊙

x1∈e:

dist(x,x1)=
l(e)
2

−lx

{

CF

(

{x1},
l(e)

4
−

lx
2

)

⊙

(

l(e)

4
−

lx
2

)}

,

and 0 < 3
(

l(e)
4
− lx

2

)

< l(e)
2
, with inputs l = l(e)

4
− lx

2
, S1 = {x1 ∈

Γ | dist(x, x1) ≤ l(e)/2−lx} in Remark 3.1, we can show that CF({x}, lx)
is generated by Fe, Gv,e as a ϕ∗(Rat(Γ ′))-algebra.

Assume that l(e) = ∞. Identify e = [0,∞]. Let x, y ∈ e be any
distinct points such that x < y. Let g[x,y] be the rational function on
Γ which has slope one in the direction from x to y, is constant on any
other points, and whose minimum value is zero. Identify ϕ(e) = [0,∞].
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Let g′[ϕ(x),ϕ(y)] be the rational function on Γ ′ which has slope one in the

direction from ϕ(x) to ϕ(y), is constant on any other points, and whose
minimum value is zero. Let v be the endpoint 0 of e. Let lx (resp. ly)
be the length of [v, x] (resp. [v, y]). Then, we have

g[x,y] = g[v,y] ⊙ (−lx)⊕ 0

and

g[v,y] = ϕ∗
(

g′[ϕ(v),ϕ(y)]
)

⊙CF({v}, ly)
⊙(dege(ϕ)−1)⊙

⊙

e1∈E(G)\{e}:
e1⊂ϕ−1(ϕ(e))

F
dege1 (ϕ)
e1 ⊕0.

Let w be the endpoint ∞ of e. Then, we have

g
⊙(−1)
[x,y] = g

⊙(−1)
[x,w] ⊕ (− dist(x, y))

and
g
⊙(−1)
[x,w] = Fe ⊙ g[v,x].

Let Γ1 be the metric graph obtained from Γ by contracting all edges of
G of length∞ to the finite endpoints. We regard that Γ1 is a subgraph
of Γ . By the proof of Theorem 1.1, for any rational function f ∈
Rat(Γ ), the restriction f |Γ1 is generated by (the restrictions on Γ1 of
elements of) {CF({x}, lx),CF({v},∞) | x ∈ Γ1 \V (G), v ∈ V (G) \Γ∞}
as a T -algebra. Let g be the generated rational function such that
f |Γ1 = g|Γ1. By (tropical) multiplying rational functions of the forms

of g
⊙(±1)
[x,y] above to g, f is made of g. Hence {Fe, Gv1,e1,CF({v},∞) | e ∈

E(G), v, v1 ∈ V (G)\Γ∞, e1 ∈ E(G)\E∞, v1 ∈ e1} generates Rat(Γ ) as
a ϕ∗(Rat(Γ ′))-algebra, where E∞ denotes the subset of E(G) consisting
of all edges of length ∞. �

By Example 3.15, we know that Rat(Γ ) may not be finitely generated
as a ϕ∗(Rat(Γ ′))-module.

Example 3.15. Let Γ := [0, 2] and Γ ′ := [0, 1]. The map ϕ : Γ →
Γ ′; x 7→ x when 0 ≤ x ≤ 1; x 7→ 2 − x when 1 < x ≤ 2 is a finite har-
monic morphism of degree two. Assume that Rat(Γ ) is finitely gener-
ated as a ϕ∗(Rat(Γ ′))-module, i.e., there exist f1, . . . , fn ∈ Rat(Γ ) \
{−∞} such that Rat(Γ ) =

⊕n

i=1 ϕ
∗(Rat(Γ ′)) ⊙ fi. Let x′ be a point

of [0, 1) ⊂ Γ ′. Then, for any pair of values a, b ∈ R>0, Rat(Γ )
contains a rational function which has a, b as values at each element
x1, x2 of ϕ−1(x′). For example, consider (CF({x1}, ε)

⊙p ⊙ a ⊕ 0) ⊙
(CF({x2}, ε)

⊙q ⊙ b ⊕ 0) ∈ Rat(Γ ) with a small positive number ε > 0
and some p, q ∈ Z>0 such that pε > a and qε > b. On the other
hand, for any i and f ′ ∈ Rat(Γ ′) such that (ϕ∗(f ′) ⊙ fi)(x1) = a,
since a − fi(x1) = ϕ∗(f ′)(x1) = ϕ∗(f ′)(x2) hold, (ϕ∗(f ′) ⊙ fi)(x2) =
a − fi(x1) + fi(x2) holds. Hence, if for any j, b 6= a − fj(x1) + fj(x2)
holds, then

⊕n

i=1 ϕ
∗(Rat(Γ ′))⊙fi contains no rational functions which

take a, b at x1, x2 respectively. It is a contradiction. Therefore, Rat(Γ )
is not finitely generated as a ϕ∗(Rat(Γ ′))-module.
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