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ALGORITHMIC LOCAL MONOMIALIZATION OF A BINOMIAL:

A COMPARISON OF DIFFERENT APPROACHES

SABRINA ALEXANDRA GAUBE AND BERND SCHOBER

Abstract. We investigate different approaches to transform a given binomial
into a monomial via blowing up appropriate centers. In particular, we develop
explicit implementations in Singular, which allow to make a comparison on
the basis of numerous examples. We focus on a local variant, where centers are
not required to be chosen globally. Moreover, we do not necessarily demand
that centers are contained in the singular locus. Despite these restrictions, the

techniques are connected to the computation of p-adic integral whose data is
given by finitely many binomials.

1. Introduction

The goal of this article is to investigate and to compare different methods to
transform a binomial into a monomial via blowing up appropriate centers. Within
this, we develop explicit implementations so that the different approaches can be
compared on the basis of numerous examples. This is motivated by the DFG-
project “Order zeta functions and resolutions of singularities” (principal investi-
gators: Christopher Voll and Anne Frühbis-Krüger), of which the second named
author is part of. In there, a technique for the explicit computation of special p-
adic integrals is developed using monomialization. In particular, the structure of
the integrals considered there allow a reduction to the case of finitely many binomi-
als. An increasing complexity in the p-adic integrals (which is reflected in a rapidly
increasing number of variables and binomials) requires to find monomialization al-
gorithms which keep the numbers of blowups and of final charts that have to be
considered small. Since the problem is of combinatorial nature, we focus on the
situation over a field, while we briefly discuss the case over Zp in Remark 7.4.

Let K be a field and let f = xA − ρxB ∈ K[x] := K[x1, . . . , xn] be a binomial,

where ρ ∈ K× and xA = xA1

1 · · ·xAn
n for A = (A1, . . . , An) ∈ Zn

≥0. We say that

f is locally a monomial if for every point q ∈ An
K = Spec(K[x]) there exists a

regular system of parameters for the local ring OAn
K
,q such that f is a monomial

times a unit with respect to these parameters. For example, x3
1x

2
2(1−x1)

4 is locally
monomial since for every q ∈ A2

K at least x1 or 1−x1 is a unit. On the other hand,
x1x2(x1 + x2) is not locally a monomial as there is no regular system of parameter
for the local ring at the origin such that x1x2(x1 + x2) becomes a monomial times
a unit. The tool that we want to apply to make a binomial locally monomial are
blowups, e.g., x1x2(x1+x2) becomes locally monomial after blowing up with center
V (x1, x2).

The blowup π : BlD(An
K) → An

K in a regular center D = V (xi | i ∈ I), for some
I ⊆ {1, . . . , n} is covered by the standard charts Ui := D+(Xi) ∼= An

K , i ∈ I, where
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D+(Xi) := BlD(An
K) \ V (Xi) is the complement of V (Xi). On Ui, the blowup π is

given by the morphism

K[x1, . . . , xn] −→ K[x′
1, . . . , x

′
n] =: K[x′]

xj 7→ x′
i x

′
j , if j ∈ I \ {i},

xj 7→ x′
j , if j = i or j /∈ I,

λ 7→ λ, for λ ∈ K.

The image of f ∈ K[x] in K[x′] is called the total transform of f in Ui. On the
level of exponents, the above morphism corresponds to the map

φπ,i : Z
n
≥0 −→ Zn

≥0,

where A = (A1, . . . , An) is mapped to A′ = (A′
1, . . . , A

′
n), which is defined by

A′
i :=

∑
j∈I Aj and A′

j := Aj if j 6= i. For the later use, recall that |A| :=
∑n

i=1 Ai.
In every Ui

∼= An
K , we may choose a center Di of the same shape as D and

we can iterate this to obtain a sequence of local blowups. We say that a finite
sequence of local blowups obtained by iterating the previous procedure is a local
monomialization of f = xA − ρxB if the total transform of f is locally a monomial
in every final chart of the blowup tree. For example, the latter is the case if the
total transform is of the form (up to multiplication by a non-zero constant)

(1.1) xC(1 − µxB′

) or xC(xi − µxB′

),

for C,B′ ∈ Zn
≥0 and µ ∈ K×, where we require in the second case that Ci = B′

i = 0

for the special i ∈ {1, . . . , n} given. The last hypothesis implies that we may

introduce the coordinate change yi := xi − µxB′

such that xC(xi − µxB′

) = xCyi
becomes a monomial. It is clear that xC(1 − µxB′

) is a monomial times a unit if

1−µxB′

is invertible in OAn
K
,q. On the other hand, if 1−µxB′

is not invertible, we
have to distinguish two cases. Let d be the greatest common divisor of the entries
of B′. First, if d = 1 or if d > 1 and µ has no d′-th root in K with d′|d, then

1− µxB′

is irreducible and regular. Hence, it can be extended to a regular system
of parameters at q. Otherwise, 1− µxB′

is not irreducible, but then all but one of
the distinct irreducible factors are invertible since they arise from the factorization
of T d′

− 1 ∈ K[T ] (with maximal d′ as in the first case and T a substitute for

(µxB′

)1/d
′

∈ K[x]). Note that in both cases all xi with B′
i 6= 0 are units in OAn

K
,q

Observe that (1.1) is not equivalent to being locally monomial. For example,
x2 − y2 ∈ C[x, y] and xp + yp ∈ Fp[x, y] (p ∈ Z prime) do not fulfill (1.1), but they
are monomial after a suitable change of variables x̃ := x+ y, ỹ := x− y in the first
example and x̄ := x+ y for the second.

We choose the centers in each chart independent of the other charts, i.e., we do
not necessarily obtain a sequence of global blowups. This provides more freedom
in the choice of the center and is still sufficient for the explicit computations, where
the local charts are interpreted as case distinctions. In [9, Question 5.6], this local
variant of monomialization via blowups is discussed in the context of resolution of
singularities.

The differences in the methods appear in choice of the center for the next blowup.
Let us briefly explain the variants. Consider a binomial

f = xC(xA − ρxB),

where A,B,C ∈ Zn
≥0 are such that AiBi = 0 for all i ∈ {1, . . . , n}. Set

g := xA − ρxB.

Suppose that f is not locally monomial. The basic idea for the four variants that
we consider are:
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(1) Centers contained in the locus of maximal order (section 3 / Construc-
tion 3.4). Choose D = V (xi | i ∈ I) such that D is contained in the locus
of maximal order of V (g). This is equivalent to imposing

min
{∑

i∈I

Ai,
∑

i∈I

Bi

}
= min

{
|A|, |B|

}
.

(2) Centers of codimension two (section 4 / Construction 4.4). Choose i, j ∈
{1, . . . , n} such that Ai 6= 0, Bj 6= 0 and both are maximal. Then, the
center for the blowup is D = V (xi, xj).

(3) Centers of minimal codimension contained in the singular locus (section 5 /
Construction 5.1). If min

{
|A|, |B|

}
≥ 2, choose I ⊆ {1, . . . , n} such that∑

i∈I Ai ≥ 2,
∑

i∈I Bi ≥ 2 and such that #I is minimal with this property.
Then D := V (xi | i ∈ I). Else, choose D as in (2).

(4) Centers of minimal codimension contained in an exceptional divisor or con-
tained in the singular locus (section 6 / Construction 6.1). If there is a
center D of type (2) contained in an exceptional divisor, we choose this.
Otherwise, we follow (3).

Note that the centers are not necessarily uniquely determined and one might have to
make a choice. In the respective sections, we provide examples for this phenomenon.

While (1) follows the usual approach to resolution of singularities, method (2)
solely has the motivation to minimize the numbers of charts after a single blowup
in order to make it easier to control the transform of the binomial. In particular,
the resulting morphism is not necessarily an isomorphism outside of the singular
locus of g. In (3), we consider a mixture of (1) and (2); we try to choose the centers
as large as possible, but moreover, we require that the centers are contained in
the singular locus of g (resp. its variant after a blowup) and if the latter is empty,
we follow (2). Finally, in (4), we relax the last condition (3) and allow centers of
codimension two, which are not necessarily contained in the singular locus of g, if
they are contained in an exceptional divisor.

In the respective sections, we discuss the benefits of each approach and show
the termination of the local monomialization algorithm resulting from the different
choices, see Propositions 3.8, 4.5, 5.2, and Corollary 6.2, respectively. Along this,
we discuss algorithms for explicit implementations of each variant to monomialize
a binomial, which have been realized in the open source computer algebra system
Singular [3].

We study the binomial through the appearing exponents A,B,C and their be-
havior along the blowups using φπ,i. More precisely, we deduce from the exponents
numerical measures that detect how far the given binomial is from being monomial.
Then we show that the respective measure decreases strictly after a single blowup
following the corresponding procedure and that a strict decrease may only appear
finitely many times.

In the final section, we analyze the different variants for the choice of the centers
by comparing the numbers of charts for a worst case scenario and for numerous
explicit examples. The latter is based on an implementation of the discussed algo-
rithms in Singular. As a measure for the complexity, we consider the number of
charts along the monomialization process as well as at the end. A brief summary
is that variant (1) has a significant larger number than the other three, while (2)
is often the most efficient algorithm. But there exist cases, where (3) and (4) are
slightly better than (2). As mentioned above, we have to make a choice among the
possible centers. For some of the example, we study the different results if we vary
the choices.
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binomial f = xÃ − ρxB̃

initialization
f = xC(xA−ρxB)

finished? return

center

transformation

yes

no

Figure 1. Flow chart of the main method.

Acknowledgements. We thank Anne Frühbis-Krüger for discussions, comments, and
her guidance with Singular. Further, we thank the referee for their helpful com-
ments.

2. The basic algorithmic framework and blowups

We begin by discussing the basic structure for the implementation of a mono-
mialization procedure. Within this, we also introduce numerical invariants, which
we later use to prove the termination of the different monomialization methods.
Furthermore, we provide an algorithm testing whether a given binomial fulfills con-
dition (1.1), which implies that the binomial is locally monomial. Finally, we give
an implementation of the transformation of the exponents along a blowup.

The main method is the same for all of the four strategies. The difference of
the monomialization methods appears only in the choice of the center. In Figure 1,
we provide the flow chart of the main method and in Algorithm 1 the precise
implementation.

The implementations are of combinatorial nature. Instead of working with
the binomial xC(xA − ρxB), we consider the exponents A = (A1, . . . , An), B =
(B1, . . . , Bn) and C = (C1, . . . , Cn). Additionally, we introduce a vector of ones
and zeros E = (E1, . . . , En) ∈ {0, 1}n, where we encode, which variables corre-
spond to exceptional divisors, i.e., Ei = 1 if and only if div(xi) is an exceptional
divisor. This will be necessary for the variant for choosing the center of section 6,
see Construction 6.1.
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Algorithm 1 Main method (for a description see Remark 2.2)

INPUT: f = xÃ − ρxB̃ , mode ∈ {1, 2, 3, 4}, where (x) = (x1, . . . , xn), Ã, B̃ ∈ Zn
≥0

OUTPUT: list L, where L[i] is the data of the i-th chart
1: list Lf
2: Lf [1] = list(A,B,C, (0)), where f = xC(xA − ρxB) such that AiBi = 0, for all

i, and (0) ∈ Zn
≥0

3: if check finished(Lf [1]) then // see Algorithm 2
4: Lf [2] = Lf [3] = Lf [4] = ∅

5: L[1] = Lf
6: return L
7: Lf [2] = ι(f) = list(α, a, β, b) ∈ Z4

≥0 // Definition 2.1

8: I center = compute center(Lf,mode)
9: Lf [3] = I center

10: intmat path[2][1] = 0,−1
11: Lf [4] = path
12: L[1] = Lf
13: successors = fill list for next charts(L[1], 1)
14: for L+ ∈ successors do
15: L[size(L) + 1] = L+

16: i = 2
17: while i ≤ size(L) do
18: L[i] = transformation(L[i], mode) // see Algorithm 3
19: if check finished(L[i][1]) == false then
20: successors = fill list for next charts(L[i], i)
21: for L+ ∈ successors do
22: L[size(L) + 1] = L+

23: i = i+ 1

24: return L

Before stating and explaining Algorithm 1, let us introduce the following num-
bers, which play an important role in parts of the monomialization procedures
discussed in the present work.

Definition 2.1. Let K be any field. Let g = xA − ρxB ∈ K[x], for ρ ∈ K× and
A,B ∈ Zn

≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. We define

α(g) := max{Ai | i ∈ {1, . . . , n}}

a(g) := #{i ∈ {1, . . . , n} | Ai = α(g)}

β(g) := max{Bi | i ∈ {1, . . . , n}}

b(g) := #{i ∈ {1, . . . , n} | Bi = β(g)}

ι(g) := (α(g), a(g), β(g), b(g)) ∈ Z4
≥0.

Here, we equip Z4
≥0 with the lexicographical ordering ≤lex. Given f = xCg with

C ∈ Zn
≥0, we also write α(f) := α(g), . . . , ι(f) := ι(g), if no confusion is possible.

Clearly, ι(g) depends on the order of the monomials in g. In general, we have
ι(xA − xB) 6= ι(−xB + xA). Since we fix an order of the monomials in an imple-
mentation anyways, we will work later with the string (A,B) instead of g and we
neglect the matter of making ι(g) independent of the order of the monomials.

Remark 2.2 (Algorithm 1). The input is:

• a binomial f = xÃ − ρxB̃ ∈ K[x] = K[x1, . . . , xn];
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• an integer mode ∈ {1, 2, 3, 4}, which determines the method for choosing
the centers;

The output of Algorithm 1 is a list L which consists of all charts of the mono-
mialization process. From this list, one can determine a list of all leaves of the
monomialization tree, i.e., of all final charts. The data in a chart L[i] is of the
following form:

[1] (A,B,C,E) ∈ (Zn
≥0)

4 such that the total transform of f in the chart is

f = xC(xA − ρxB) and AiBi = 0, for all i ∈ {1, . . . , n}. Furthermore,
E ∈ {0, 1}n is the vector encoding which variables are exceptional.

[2] ι(f) = (α, a, β, b) ∈ Z4
≥0 is the measure introduced in Definition 2.1.

[3] I center ⊆ {1, . . . , n} is the index set such that 〈xi | i ∈ I center〉 is the
ideal defining the center for the next blowup.

[4] a pathmatrix

(
0 · · · x
−1 · · · y

)
such that x is the number of the predecessor

chart. The successors of the predecessors are labeled from 1 to #successors.
The number y indicates which of these successors the given chart is. This
entry is not important for the monomialization process, but for a later
evaluation of the final data to keep track of the global picture.

First, Algorithm 1 performs an initialization, by determining the exponents such

that f = xÃ − ρxB̃ = xC(xA − ρxB) has the desired form. Since there are no
exceptional divisors yet E = (0). Then, we check whether f verifies condition (1.1)
using the method check finished, see Algorithm 2. If (1.1) holds, then the binomial
is locally monomial and we fill the list Lf with trivial data and return L.

If (1.1) is not fulfilled, we determine the full data of the chart (lines 7–11). In
there, compute center(Lf,mode) is the method determining the index set of the
center for the next blowup. The input mode ∈ {1, 2, 3, 4} fixes, which of our four
methods is used. In the following sections, we discuss the methods for choosing the
center in details. Furthermore, intmat initiates an integer matrix called path, which
encodes the tree structure of the monomialization process.

Then, the method fill list for next charts copies the data from L[i] (in line 13 for
i = 1) to a list successors, which contains as many charts as needed (depending on
the center of the upcoming blowup). The only difference in the data of the charts
in successors is the adapted path matrix which contains the tree of the blowup
procedure. After this, the charts from list successors are added to the end of L.
Let us explain this step more in details: If we want to determine the successors
for L[i] and if the upcoming blowup has m many charts and if L has k entries in
total (with k ≥ i) before adding the successors to it, then the successors become
the entries L[k + 1], . . . , L[k +m] and we extend path for the successor L[k + j] by
the column (i, j)T at the end since it is the j-th chart of the blowup in L[i], where
j ∈ {1, . . . ,m}.

In the while-loop (lines 17–23), the data of L[i] (except for path) is modified
such that it becomes the transformed version of its predecessor with respect to
the previously determined center. The transformation algorithm is provided in
Algorithm 3 and described in Observation 2.3. Finally, we verify whether the data
in L[i] fulfills (1.1). If so, then the procedure continues with the entry L[i + 1] if
it exists (i.e., with the next chart which needs to be handled) or it stops if L has
i entries. Otherwise, if (1.1) does not hold, we blow up, the successor charts are
stored at the end of the list, analogous to before, and we continue with the chart
i+1. The while-loop will eventually end since we will show in the following sections
that the respective monomialization procedures terminate.

(End of Remark 2.2.)
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Algorithm 2 check finished

INPUT: list (A,B,C,E) of vectors in Zn
≥0 such that A 6= B and AiBi = 0 for all

i ∈ {1, . . . , n}
OUTPUT: true, if the binomial xC(xA − xB) fulfills (1.1); false otherwise
1: if min{|A|, |B|} == 0 then
2: return true
3: if |A| = 1 or |B| = 1 then
4: if ∃ i : Ci = 0 and (Ai = 1 and |A| = 1) or (Bi = 1 and |B| = 1) then
5: return true
6: return false

Note that in Algorithm 2 it does not matter that the coefficient is 1 instead of
ρ. The result is the same.

Observation 2.3. Let f = xC(xA − ρxB) ∈ K[x] be a binomial with AiBi = 0
for all i ∈ {1, . . . , n}. Let us consider how the exponents change along the blowup
with center D = V (x1, . . . , xm), for some m ∈ {2, . . . , n}. In the X1-chart, we have

x1 = x′
1, x2 = x′

1x
′
2, . . . , xm = x′

1x
′
m, xm+1 = x′

m+1, . . . , xn = x′
n.

On the level of exponents, this provides

A = (A1, A2, . . . , An) 7→ Ã′ := (A1 +A2 + . . .+Am, A2, . . . , An)

and analogous for B and C.
We factor the total transform of f as x′C′

(x′A′

− ρx′B′

) such that A′
iB

′
i = 0 for

all i ∈ {1, . . . , n}. If we set

δ := min{A1 + . . .+Am, B1 + . . .+Bm},

then we get
A′ = (A1 +A2 + . . .+Am − δ, A2, . . . , An),

B′ = (B1 +B2 + . . .+Bm − δ, B2, . . . , Bn),

C′ = (C1 + C2 + . . .+ Cm + δ, C2, . . . , Cn).

The other charts are analogous. Furthermore, it is straight forward to adapt this to
blowups in centers of the form V (xi | i ∈ I), where I ⊆ {1, . . . , n} is not necessarily
equal to {1, . . . ,m}.

This leads to Algorithm 3 for determining the transform of a binomial in a given
chart of the blowup in V (xi | i ∈ I).

Remark 2.4 (Algorithm 3). The input is:

• a list M , which represents the data of a chart and hence is of the same form
as L[i] in Remark 2.2

• an integer mode ∈ {1, 2, 3, 4}, which determines the method for choosing
the centers;

The output of Algorithm 3 is the transformed data of the input chart.
First, we initialize the data (lines 1–4). In particular, we specify the index set

I corresponding to the center of the blowup and the element i ∈ I such that M
corresponds to the Xi-chart of the blowup. After that, we transform the exponents
(A,B,C,E) as described in Observation 2.3 (but now for the general case) and
mark the variable xi as exceptional in lines 6–9. Finally, we check whether the
transformed binomial fulfills (1.1) and determine the remaining data so that the
output data is of the same form as L[i] in Remark 2.2. (Note that the path matrix
is extended in line 20 of Algorithm 1.)
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Algorithm 3 transformation (for a description see Remark 2.4)

INPUT: list M , mode ∈ {1, 2, 3, 4}, where M is of the same form as L[i] in
Remark 2.2

OUTPUT: list retList which is the transformed variant of chart M
1: (A,B,C,E) = M [1]
2: path = M [4]
3: I = M [3] // the index set of the center
4: i = path[2,ncols(path)] // so M is the Xi-chart of the blowup

// with center V (xi | i ∈ I)
5: δ = min{

∑
j∈I Aj ,

∑
j∈I Bj}

6: Ai =
∑

j∈I Aj − δ

7: Bi =
∑

j∈I Bj − δ

8: Ci =
∑

j∈I Cj + δ
9: Ei = 1

10: retList[1] = list(A,B,C,E)
11: if check finished(retList[1]) then
12: retList[2] = retList[3] = ∅

13: retList[4] = path;
14: return retList
15: retList[2] = ι(xC(xA − ρxB)) // Definition 2.1
16: I center = compute center(retList[1],mode)
17: retList[3] = I center
18: retList[4] = path
19: return retList

The only part of implementation which differs in the various modes is the compu-
tation of the center. We have seen above that every other method of the implemen-
tation only uses the mode parameter in order to call the compute center -method
which is described later.

3. Centers contained in the locus of maximal order

In this section we discuss the first of the four variants for the choice of center in
details. We fix a binomial

f = xC(xA − ρxB) ∈ K[x] = K[x1, . . . , xn],

where ρ ∈ K×, A,B,C ∈ Zn
≥0 are such that AiBi = 0 for all i ∈ {1, . . . , n} and K

is a field. We set

g := xA − ρxB.

Observe that the condition AiBi = 0 implies that at least one of them is zero and
hence xi cannot be factored from g.

If g = 1 − µxB or f = xC(xi − µxB), for C,B ∈ Zn
≥0 and µ ∈ K×, where we

require in the second case that Ci = 0 for the given i, then f is locally monomial
and no blowups are required. Hence, throughout this section, we assume that (1.1)
is not fulfilled, i.e., that the following condition holds:

(3.1)





• either min{|A|, |B|} ≥ 2, or

• min{|A|, |B|} = 1 and Ci 6= 0 for every i such that Ai = 1
if |A| = 1, or Bi = 1 if |B| = 1.

Again, let us point out that (3.1) does not imply that f is not locally monomial.
For example, x2− y2 ∈ C[x, y] is monomial after introducing x̃ := x+ y, ỹ := x− y,
but (3.1) holds. Nonetheless, it is not hard to test with a computer whether (1.1)
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is true and thus we admit that we might perform some blowups, which are not
needed.

A common approach in resolution of singularities for a hypersurface V (g) is to
consider regular centers contained in its locus of maximal order. First, let us recall
its definition.

Definition 3.1. Let h ∈ K[x]\{0} be a non-zero polynomial and set X := V (h) ⊂
Spec(K[x]) = An

K . Let p ⊂ K[x] be a prime ideal. Geometrically, we denote by
xp ∈ An

K the point that corresponds to p.

(1) The order of X at xp (resp. of h at p) is defined as

ordxp
(X) := ordp(h) := sup{ℓ ∈ Z≥0 | h ∈ pℓ}.

(2) The maximal order of X is defined as

max-ord(X) := sup{ordxp
(X) | xp ∈ X}

and the locus of maximal order of X is

Max-ord(X) := {xp ∈ X | ordxp
(X) = max-ord(X)}.

Sometimes, we use the notation max-ord(h) := max-ord(X) or Max-ord(h) :=
Max-ord(X). Since the order is upper semi-continuous (see [5, Chapter III, §3,
Corollary 1, p. 220]), the level sets {xp ∈ X | ordxp

(X) ≥ a}, a ∈ Z≥0, are Zariski
closed. In particular, this is true for Max-ord(X).

If X is a variety, which is not a hypersurface, then the order is not an appropriate
measure for the complexity of the singularity, see [4, Example 2.7].

Lemma 3.2. Let g = xA − ρxB ∈ K[x] be a binomial such that min{|A|, |B|} ≥ 1
and AiBi = 0 for all i ∈ {1, . . . , n}. Let I ⊆ {1, . . . , n} be any subset. Set X :=
V (g) and DI := V (xi | i ∈ I). We have:

(1) max-ord(X) = min{|A|, |B|}.
(2) DI ⊆ Max-ord(X) ⇐⇒ min

{∑
i∈I Ai,

∑
i∈I Bi

}
= min

{
|A|, |B|

}
.

The condition min{|A|, |B|} ≥ 1 comes from the fact that we assume (3.1) to
hold. Notice that it is necessary, e.g., for g = x1x2−1 the maximal order is 1 and not
zero, which can be seen by computing the order at 〈x1−1, x2−1〉, cf. Example 7.2.

Proof of Lemma 3.2. Let m := 〈x1, . . . , xn〉 be the maximal ideal corresponding to
the origin. We have min{|A|, |B|} = ordm(g) ≤ max-ord(X).

Suppose there is some prime ideal p ⊂ K[x] with ordp(g) > ordm(g). This

implies, if we base change to an algebraic closure K of K, then there is a max-
imal ideal n ⊂ K[x] such that ordn(g) > ordm(g) = min{|A|, |B|}. Since K is
algebraically closed and n is a maximal ideal, there are c1, . . . , cn ∈ K such that
n = 〈x1 − c1, . . . , xn − cn〉 by Hilbert’s Nullstellensatz.

Set I1 := {i ∈ {1, . . . , n} | Ai 6= 0} and I2 := {i ∈ {1, . . . , n} | Bi 6= 0} . Since
AiBi = 0 for all i ∈ {1, . . . , n}, we have I1 ∩ I2 = ∅ and it makes sense to define
yi := xi − ci for i ∈ I1 and zi := xi − ci for i ∈ I2. This provides

xA − ρxB =
∏

i∈I1

(yi + ci)
Ai − ρ

∏

i∈I2

(zi + ci)
Bi =

∑

α∈Z
|I1|

≥0

λα(c)y
α −

∑

β∈Z
|I2|

≥0

µβ(c)z
β ,

where the coefficients λα(c), µβ(c) ∈ K fulfill λA(c) = 1, µB(c) = ρ and λα(c) =
µβ(c) = 0 if |α| ≥ |A| and α 6= A, resp. if |β| ≥ |B| and β 6= B (and we use the
obvious notation c, y, z). In order to have ordn(g) > min{|A|, |B|}, all terms yCzD

with |C| + |D| ≤ min{|A|, |B|} have to cancel out. This is impossible since the
variables appearing in the products are disjoint and λA(c)µB(c) 6= 0. Thus, we
arrived to a contradiction and (1) follows.
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Let us come to part (2). Set d := max-ord(X) = min{|A|, |B|}. The condition
DI = V (xi | i ∈ I) ⊆ Max-ord(X) is equivalent to

xA − ρxB ∈ 〈xi | i ∈ I〉d \ 〈xi | i ∈ I〉d+1.

The latter is equivalent to
∑

i∈I Ai ≥ d and
∑

i∈I Bi ≥ d, and equality has to hold
for one of them. Hence, (2) follows. �

Example 3.3. Let g = x3
1x2 − x3

3x
4
4 and set X := V (g) ⊂ A4

K . Using the pre-
vious lemma, we get that max-ord(X) = 4, V (x1, x2, x4) ⊆ Max-ord(X), while
V (x1, x2, x3) 6⊆ Max-ord(X).

Let us blow up with center D := V (x1, x2, x3, x4) ∈ Max-ord(X), the origin of
A4

K . In the X3-chart, we have (x1, x2, x3, x4) = (x′
1x

′
3, x

′
2x

′
3, x

′
3, x

′
3x

′
4) and the total

transform of g is x′4
3 (x

′3
1 x

′
2 − x′3

3 x
′4
4 ). We obtain essentially the same binomial and

no improvement is detected. The reason for this is that the center has been chosen
too small.

We leave it as an exercise to the reader to verify that the maximal order decreases
at every chart after blowing up with center V (x1, x2, x4).

Let us now describe the method for choosing the center for a binomial using the
locus of maximal order.

Construction 3.4. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn
≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA − ρxB. Assume that
hypothesis (3.1) holds. We choose I ⊆ {1, . . . , n} such that

min
{∑

i∈I

Ai,
∑

i∈I

Bi

}
= min

{
|A|, |B|

}

and we require additionally that

(3.2) ∀ j ∈ I : min
{ ∑

i∈I\{j}

Ai,
∑

i∈I\{j}

Bi

}
< min

{
|A|, |B|

}
.

Then, the center for the next blowup is DI := V (xi | i ∈ I).

By Lemma 3.2, the center DI is contained in the maximal order locus of V (g).
On the other hand, (3.2) guarantees thatDI is not too small so that an improvement
can be detected.

Example 3.5. Let f = xA − xB = x3
1x

2
2 − x5

3x4 ∈ K[x1, x2, x3, x4]. Since
min{|A|, |B|} = |A| = 5, we have {1, 2} ⊆ I for every I ⊆ {1, . . . , 4} fulfilling
the conditions of Construction 3.4. Furthermore, I ′ := {1, 2, 3, 4} does not fulfill
(3.2) for j = 4. Therefore, the unique center determined by Construction 3.4 is
V (x1, x2, x3).

Clearly, the subset I ⊆ {1, . . . , n} is not unique in general and we may have to
make a choice, as the following example shows. As explained in the introduction,
we do not require that our procedure provides a global monomialization of V (f).
Therefore we may allow to make choices as long as we can prove the termination
of the resulting procedure (Proposition 3.8).

Example 3.6. Let f = x1x
2
2−x3

3x
2
4x5 ∈ K[x1, . . . , x5]. Since no xi can be factored

in f , we have g = f . The maximal order of g is three and D1 := V (x1, x2, x3) and
D2 := V (x1, x2, x4, x5) are the possible choices for the center following Construc-
tion 3.4.

(1) Blow up with center D1. In the X3-chart, we have

(x1, x2, x3, x4, x5) = (x′
1x

′
3, x

′
2x

′
3, x

′
3, x

′
4, x

′
5).
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Hence, the total transform of f is f = x′3
3 (x

′
1x

′2
2 − x′2

4 x
′
5) = x′3

3 g
′, where

we define g′ := x′
1x

′2
2 − x′2

4 x
′
5. (Note that g′ fulfills the property that no x′

i

divides g′.) We have max-ord(g) = 3 = max-ord(g′) and |B′| = 3 = |A| <
|B| = 6.

(2) Blow up with center D2. In the X4-chart, we have

(x1, x2, x3, x4, x5) = (x̃1x̃4, x̃2x̃4, x̃3, x̃4, x̃4x̃5).

(For a better distinction to (1), we use ∗̃ instead of ∗′ for the coordinates
here.) The total transform of f is f = x̃3

4(x̃1x̃
2
2 − x̃3

3x̃5). Thus, we set g̃ :=

x̃1x̃
2
2 − x̃3

3x̃5. We get max-ord(g̃) = 3 = max-ord(g) and |B̃| = 4 < 6 = |B|.
(The situation in the X5-chart is analogous.)

On the other hand, in both cases, one can show that the maximal order is strictly
smaller than three if we consider the X1- or the X2-chart.

For the general case, we have to introduce a measure which detects the improve-
ment.

Definition 3.7. Let g = xA − ρxB ∈ K[x] with ρ ∈ K× and A,B ∈ Zn
≥0 such that

AiBi = 0 for all i ∈ {1, . . . , n}. We define

inv(g) :=
(
min{|A|, |B|}, max{|A|, |B|}

)
∈ Z2

≥0.

Here, we equip Z2
≥0 with the lexicographical ordering ≥lex.

In the above example, we have inv(g) = (3, 6), inv(g′) = (3, 3) <lex inv(g), and
inv(g̃) = (3, 4) <lex inv(g).

In fact, inv(g) = (max-ord(g),max-ord(g)·δ(g)), where δ(g) is a known secondary
invariant to measure the complexity of a given singularity, e.g., see [6, p. 120, where
it is called γ], [2, Theorem 3.18] or [1, Corollary 5.1].

Proposition 3.8. Let f = xC(xA − ρxB) ∈ K[x] = K[x1, . . . , xn] with ρ ∈ K×

and A,B,C ∈ Zn
≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA − ρxB.

Let π : BlDI
(An

K) → An
K be the blowup in a center DI , which fulfills the properties

as in Construction 3.4. For every standard chart Uxj
:= D+(Xj) ∼= An

K , j ∈ I, we
have

inv(g′) <lex inv(g),

where f = x′C′

(x′A′

− ρx′B′

) ∈ K[x′] with A′
iB

′
i = 0 for all i ∈ {1, . . . , n}, g′ :=

x′A′

−ρx′B′

is the strict transform of g, and (x′) = (x′
1, . . . , x

′
n) are the coordinates

in Uxj
.

In particular, the local monomialization process obtained by choosing the centers
as in Construction 3.4 terminates.

Proof. If hypothesis (3.1) does not hold for f , then f is already locally monomial
and there is nothing to show. Hence, suppose that (3.1) holds. Without loss of
generality, we have |A| ≤ |B|. After relabeling the variables (x1, . . . , xn) we may
assume that

{i ∈ {1, . . . , n} | Ai 6= 0} = {1, . . . ,m},

for some m < n. Thus, we have {1, . . . ,m} ⊆ I, i.e., DI ⊆ V (x1, . . . , xm).
Let us consider the Xi-chart of the blowup with center DI . We distinguish two

cases, i ≤ m and i > m.
Assume that i ≤ m, i.e., Ai 6= 0. Using the notation of the proposition, we have

g′ = x′A(x′
i)

−Ai − ρx′B(x′
i)

|BI |−|A| ∈ K[x′],

where |BI | :=
∑

j∈I Bj . Notice that |BI | − |A| ≥ 0. Our hypothesis |A| ≤ |B|

implies that inv(g′) = (|A| − Ai, |B| + |BI | − |A|) in this case. Since Ai 6= 0, we
have |A| > |A| −Ai and hence inv(g′) <lex inv(g).
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Algorithm 4 compute center (in the locus of maximal order)

INPUT: list M , mode = 1, where M is of the same form as L[i] in Remark 2.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the mono-

mialization process
1: (A,B,C,E) = M [1]
2: I = ∅, J = ∅

3: A = {i | Ai > 0}, B = {i | Bi > 0}
4: if |A| < |B| then
5: I = A
6: for b ∈ B do
7: J = J ∪ {b}
8: if

∑
j∈J Bj ≥ |A| then

9: break
10: for i ∈ J do
11: if

∑
j∈J\{i} Bj ≥ |A| then

12: J = J \ {i}

13: I = I ∪ J
14: return I
15: else if |B| < |A| then
16: I = B
17: for a ∈ A do
18: J = J ∪ {a}
19: if

∑
j∈J Aj ≥ |B| then

20: break
21: for i ∈ J do
22: if

∑
j∈J\{i} Aj ≥ |B| then

23: J = J \ {i}

24: I = I ∪ J
25: return I
26: else if |A| = |B| then
27: I = A ∪ B
28: return I

Now, suppose that i ∈ {m+ 1, . . . n}, i.e., Bi 6= 0. We get

g′ = x′A′

− ρx′B′

= x′A − ρx′Bx
′|BI |−|A|−Bi

i ∈ K[x′].

First, we observe that min{|A′|, |B′|} ≤ |A′| = |A|. If the inequality is strict, we
obtain inv(g′) <lex inv(g) as desired. Hence, let us assume that min{|A′|, |B′|} =
|A′| = |A|. The claim follows if we can show |B′| < |B|. By (3.2) and the hypothesis
|A| ≤ |B|, we have that |BI | − Bi < |A| and therefore we get |B′| = |B| + |BI | −
|A| −Bi < |B| and in particular inv(g′) <lex inv(g).

Since the improvement of inv(.) is strict and since inv(.) takes values in Z2
≥0, the

local monomialization procedure using centers of the kind in Construction 3.4 ends
after finitely many steps. �

Given a binomial in K[x] = K[x1, . . . , xn], we provide in Algorithm 4 a method
to determine a subset I ⊆ {1, . . . , n} fulfilling the conditions of Construction 3.4.
Therefore, V (xi | i ∈ I) will be our center contained in the maximal order locus of
the binomial.

Remark 3.9 (Algorithm 4). The input is:
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• a list M , which represents the data of a chart and hence is of the same form
as L[i] in Remark 2.2

• the integer mode = 1, which tells us to choose the center as in Construc-
tion 3.4;

The output of Algorithm 4 is the index set I ⊆ {1, . . . , n} determining the next
center for the monomialization procedure.

First, we initialize the data (lines 1–3). We introduce the exponents of the
binomial xC(xA−ρxB) in the given chart. Further, we introduce two auxiliary sets
I and J , where I will become the output set.

Then we perform a case distinction depending on whether |A| < |B| (lines 4–14),
or |A| > |B| (lines 15–25), or |A| = |B| (lines 26–28).

Suppose |A| < |B|. Then, the maximal order of xA − ρxB is |A| and every i
with Ai > 0 contributes to the index set of the center (line 5). After that, we
sum up the elements of B until the resulting sum is ≥ |A| (lines 6–9). Within
this, we collect in J the indices j with Bj > 0 appearing in the sum. At this

moment, the index set Ĩ := I ∪ J fulfills the first condition of Construction 3.4,
min

{∑
i∈Ĩ Ai,

∑
i∈Ĩ Bi

}
= min

{
|A|, |B|

}
. But the second condition (3.2) does not

necessarily hold, i.e., the number of elements in Ĩ might be too large. Hence, we
remove step-by-step elements from J , without destroying first condition, until (3.2)
holds (lines 10–12).

The case |A| > |B| is analogous, we only have to interchange the role of A and B.
Finally, if |A| = |B|, all variables appearing in the binomial with non-zero exponent
have to be contained in the ideal of the center.

Clearly, the choice of center depends on the ordering of the variables. In Exam-
ple 3.6, we obtain the center D1 if we choose the ordering (x1, x2, x3, x4, x5), while
we get D2 for the ordering (x1, x2, x4, x5, x3) (using the notation of the example).

4. Centers of codimension two

Let us come to the second method for choosing the center. Recall that f =
xC(xA − ρxB) and g = xA − ρxB such that no xi can be factored from g. In
contrast to the previous method, we may neglect the connection to the singularities
of V (g) and choose centers of minimal codimension. This has the benefit that we
reduce the number of charts which we have to control after a single blowup. Hence,
the idea is to take i, j ∈ {1, . . . , n} such that Ai 6= 0 and Bj 6= 0, which provides
the center D = V (xi, xj). An additional requirement, which we shall need in order
to detect an improvement after the blowup, is that the exponents Ai and Bj are
maximal among the possible choices.

Example 4.1. (cf. Example 3.5) Let X = V (f) be the hypersurface described by
the binomial f = x3

1x
2
2−x5

3x4 ∈ K[x1, x2, x3, x4]. The maximal exponents appearing
in the monomials are A1 = 3 and B3 = 5. Therefore, we will choose D = V (x1, x3)
as the center for the next blowup.
In comparison to Example 3.5 we see that we can reduce the number of successor
charts by choosing a center of codimension 2.

Note that the maximal order is not an appropriate measure to detect the im-
provement along a blowup of the given type.

Example 4.2. Let f = g = xa
1x

a
2x

a
3 − xb

4 ∈ K[x1, x2, x3, x4] with a, b ∈ Z≥2

such that a < b < 2a. (For example, take a = 3 and b = 5). Observe that
max-ord(g) = b. We choose the center V (x1, x4). In the X1-chart, we have

(x1, x2, x3, x4) = (x′
1, x2, x3, x

′
1x

′
4)
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and the total transform of f is f = x′a
1 (x

a
2x

a
3 − x′b−a

1 x′b
4 ) = x′a

1 g′, where we define

g′ := x′A′

− x′B′

:= xa
2x

a
3 − x′b−a

1 x′b
4 .

Since a < b, we have |B′| = 2b − a > b, while b < 2a implies |A′| = 2a > b.
Therefore, we have max-ord(g′) > max-ord(g), which is not a surprise since the
center V (x1, x4) is not contained in Max-ord(g).

Note that the same happens if we blow up one of the other reasonable centers
of codimension two, which are V (x2, x4) and V (x3, x4).

We use ι(g) = (α(g), a(g), β(g), b(g)) ∈ Z4
≥0 of Definition 2.1 to deduce the

termination for the present method of monomialization. In Example 4.2, we have
ι(g′) = (a, 2, b, 1) <lex (a, 3, b, 1) = ι(g). In general, not any codimension two center
provides an improvement of ι(.).

Example 4.3. Consider the binomial f = g = xa
1 − xb

2x
c
3 ∈ K[x1, x2, x3] with

a, b, c ∈ Z≥2 and b ≤ c. We have

ι(g) =

{
(a, 1, c, 1), if b < c,

(a, 1, c, 2), if b = c.

Suppose that b < c. Let us blow up with center V (x1, x2), which does not fulfill
the additional hypothesis that the corresponding exponents in g are maximal. For
simplicity, we define m := min{a, b}. In the X2-chart, the total transform of f

is f = x′m
2 (x′a

1 x′a−m
2 − x′b−m

2 xc
3), which provides g′ = x′a

1 x′a−m
2 − x′b−m

2 xc
3 and

ι(g′) = (a, 1, c, 1) = ι(g).

In order to guarantee a decrease of ι(.), we choose the center as follows:

Construction 4.4. Let f = xC(xA − ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈
Zn
≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA − ρxB. Assume

that hypothesis (3.1) holds. If ι(g) = (α, a, β, b) ∈ Z4
≥0, then we choose j1, j2 ∈

{1, . . . , n} such that Aj1 = α and Bj2 = β. The center for the next blowup is then
DI = V (xj1 , xj2), for I = {j1, j2}.

Already in Example 4.2, we have seen that the center described in the above
construction is not unique. But, analogous to Proposition 3.8, we can prove the
following result.

Proposition 4.5. Let f = xC(xA − ρxB) ∈ K[x] = K[x1, . . . , xn] with ρ ∈ K×

and A,B,C ∈ Zn
≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA − ρxB.

Let π : BlDI
(An

K) → An
K be the blowup in a center DI , which fulfills the properties

as in Construction 4.4. For every standard chart Uxj
:= D+(Xj) ∼= An

K , j ∈ I, we
have

ι(g′) <lex ι(g),

where f = x′C′

(x′A′

− ρx′B′

) ∈ K[x′] with A′
iB

′
i = 0 for all i ∈ {1, . . . , n}, g′ :=

x′A′

− ρx′B′

, and (x′) = (x′
1, . . . , x

′
n) are the coordinates in Uxj

.
In particular, the local monomialization process obtained by choosing the centers

as in Construction 4.4 terminates.

Proof. We may assume j1 = 1 and j2 = 2 after relabeling the variables (x1, . . . , xn).
Hence, the center is V (x1, x2). Since the exponents A+ := (A3, . . . , An) and B+ :=
(B3, . . . , Bn) are not changed by the blowup, we use the abbreviation

g = xα
1 x

A+

+ − ρxβ
2x

B+

+ ,

where ι(g) = (α, a, β, b) and x+ := (x3, . . . , xn). Without loss of generality, we
assume α ≤ β.



ALGORITHMIC LOCAL MONOMIALIZATION OF BINOMIALS 15

Algorithm 5 compute center (with codimension 2)

INPUT: list M , mode = 2, where M is of the same form as L[i] in Remark 2.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the mono-

mialization process
1: (A,B,C,E) = M [1]
2: α = max{Ai}, β = max{Bi}
3: I = {min{i | Ai = α}, min{i | Bi = β} }
4: return I

In the X1-chart, the total transform of f provides g′ = x′A′

− ρx′B′

:= x
′A+

+ −

ρx′β−α
1 x′β

2 x
′B+

+ . Therefore, α(g′) < α = α(g), if a = a(g) = 1, or (α(g′), a(g′)) =
(α, a − 1) otherwise. So, we get ι(g′) <lex ι(g).

Let us consider the X2-chart of the blowup. In there, we obtain g′ = x′A′

−

ρx′B′

:= x′α
1 x

′A+

+ − ρx′β−α
2 x

′B+

+ . In order to show that ι(.) improves, we first notice
that (α(g′), a(g′)) = (α(g), a(g)) since A′ = A. Analogous to the X1-chart, we have
β(g′) < β = β(g), if b = b(g) = 1, or (β(g′), b(g′)) = (β, b − 1) otherwise. Hence,
we have in all cases that ι(g′) <lex ι(g).

Since the improvement of ι(.) is strict and since ι(.) takes values in Z4
≥0, the

local monomialization procedure using centers of the kind in Construction 4.4 ends
after finitely many steps. �

The blowup π : BlDI
(An

K) → An
K with center DI chosen following Construc-

tion 4.4 is not necessarily an isomorphism outside the singular locus of V (g).

Example 4.6. Let f = g = x1x2 − x5
3 ∈ K[x1, x2, x3]. Construction 4.4 provides

the possible centers V (x1, x3) and V (x2, x3). Both are not contained in the singular
locus of V (g), which is Sing(V (g)) = V (x1, x2, x3). Therefore, the potential centers
are strictly larger than the singular locus and the corresponding blowup morphisms
are not an isomorphisms outside of the singular locus.

In Algorithm 5, we provide an implementation of Construction 4.4 to choose a
center of codimension 2.

Remark 4.7 (Algorithm 5). The input and the output are of the same form as
in Algorithm 4 (see Remark 3.9) with the only difference that the input mode is
2. We initialize the data, by fixing the names of the exponents of the binomial
f = xC(xA − ρxB) of this chart and determining the maximal exponents α resp. β
appearing on each side. Then, we choose i and j minimal in {1, . . . , n} such that
Ai = α and Bj = β achieve the maximal values.

Note that we cannot have α = 0 or β = 0 in this algorithm since we tested
whether (1.1) holds before applying compute center in Algorithm 1 (line 3) resp. in
Algorithm 3 (line 11).

5. Centers of minimal codimension contained in the singular locus

The third variant is a mixture of the first two. Namely, we want to choose
centers as large as possible (as in Construction 4.4), but we require additionally
that along the monomialization process the centers are contained in the singular
locus of the factor, which we obtain after factoring the monomial part, (similar to
Construction 3.4). If this singular locus is empty, we follow the method of section 4
(Construction 4.4). Within this, we have to distinguish several cases.

Construction 5.1. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn
≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA − ρxB. Assume that
hypothesis (3.1) holds. Let ι(g) = (α, a, β, b) ∈ Z4

≥0.
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(i) If min{α, β} ≥ 2 or min{|A|, |B|} = 1, choose DI = V (xj1 , xj2 ), for I =
{j1, j2} as in Construction 4.4, for the center of the blowup.

(ii) If α = 1, β ≥ 2 and min{|A|, |B|} ≥ 2, choose j1, j2, j3 ∈ {1, . . . , n}
with Aj1 = Aj2 = 1 and Bj3 = β. The center of the next blowup is
DI = V (xj1 , xj2 , xj3 ), for I = {j1, j2, j3}.

(iii) If α ≥ 2, β = 1 and min{|A|, |B|} ≥ 2, choose j1, j2, j3 ∈ {1, . . . , n}
with Aj1 = α and Bj2 = Bj3 = 1. The center of the next blowup is
DI = V (xj1 , xj2 , xj3 ), for I = {j1, j2, j3}.

(iv) If α = β = 1 and min{|A|, |B|} ≥ 2, choose j1, j2, j3, j4 ∈ {1, . . . , n}
with Aj1 = Aj2 = Bj3 = Bj4 = 1. The center of the next blowup is
DI = V (xj1 , xj2 , xj3 , xj4), for I = {j1, j2, j3, j4}.

We say (f, g) is in case (∗) if condition (∗) is fulfilled, where ∗ ∈ {i, ii, iii, iv}.

Observe that for f = x1(x1 − x2x3) we are in case (i), while f = x1(x1 − x2)
is monomial. Furthermore, f = x1x2x3 − x4x5x6 is case (iv) and there are several
choices for the center.

Proposition 5.2. Let f = xC(xA − ρxB) ∈ K[x1, . . . , xn] with ρ ∈ K× and
A,B,C ∈ Zn

≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Let g = xA − ρxB

and ι(g) = (α, a, β, b) ∈ Z4
≥0. Let π : BlDI

(An
K) → An

K be the blowup in a center
DI , which fulfills the properties as in Construction 5.1. For every standard chart
Uxj

:= D+(Xj) ∼= An
K , j ∈ I, we have

ι(g′) <lex ι(g),

where f = x′C′

(x′A′

− ρx′B′

) ∈ K[x′] with A′
iB

′
i = 0 for all i ∈ {1, . . . , n}, g′ :=

x′A′

− ρx′B′

, and (x′) = (x′
1, . . . , x

′
n) are the coordinates in Uxj

.
In particular, the local monomialization process obtained by choosing the centers

as in Construction 5.1 terminates.

Proof. We show the result by going through all cases of Construction 5.1. First, if
(f, g) is in case (i), then we have ι(g′) <lex ι(g) by Proposition 4.5.

Next, we assume that (f, g) is in case (ii), i.e., α = 1, β ≥ 2 and min{|A|, |B|} ≥
2. We relabel the variables, so that we have Bm+1 = β and {i ∈ {1, . . . , n} | Ai =
1} = {1, . . . ,m} for some 2 ≤ m < n. In particular,

g = x1x2 · · ·xm − ρxB.

Hence, without loss of generality, the center is DI := V (x1, x2, xm+1).
The X1- and the X2-chart are analogous, so we consider only one of them. In

the X1-chart, we get (using the notation of the statement of the proposition)

g′ = x′
2 · · ·x

′
m − ρ x′β−2

1 x′B.

We see that (α(g′), a(g′)) = (1,m− 1) <lex (1,m) = (α(g), a(g)). This implies the
desired decrease ι(g′) <lex ι(g). Observe that (β(g′), b(g′)) = (β(g), b(g)) did not
change.

On the other hand, using the notation xB = xβ
m+1x

B+

+ , we obtain in the Xm+1-
chart

g′ = x′
1 · · ·x

′
m − ρ x′β−2

m+1 x
′B+

+ .

We have (α(g′), a(g′)) = (α(g), a(g)) and β(g′) ≤ β(g). Either the inequality is
strict or we have equality and b(g′) = b(g)− 1 since the power of x′

m+1 decreased
strictly. In both cases, we get ι(g′) <lex ι(g).

The case that (f, g) is in case (iii) is analogous to the previous one. One only
has to interchange the role of A and B and take into account that (α(g′), a(g′)) =
(α(g), a(g)) in the X1-(resp. X2-)chart.
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Algorithm 6 compute center of minimal codimension contained in the singular
locus

INPUT: list M , mode = 3, where M is of the same form as L[i] in Remark 2.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the mono-

mialization process
1: (A,B,C,E) = M [1]
2: α = max{Ai}, β = max{Bi}
3: i1 = min{i | Ai = α}, i2 = min{i | Bi = β}
4: I = {i1, i2}
5: if min{α, β} ≥ 2 or min{|A|, |B|} == 1 then // case(i)
6: return I
7: else if min{|A|, |B|} ≥ 2 then
8: if α = 1 and β ≥ 2 then // case(ii)
9: I = I ∪min{i | Ai = 1 and i > i1}

10: else if α ≥ 2 and β = 1 then // case(iii)
11: I = I ∪min{i | Bi = 1 and i > i2}
12: else if α = 1 and β = 1 then // case(iv)
13: I = I ∪ {min{i | Ai = 1 and i > i1}, min{i | Bi = 1 and i > i2} }

14: return I

Finally, suppose that (f, g) is in case (iv). After relabeling the variables we get

g = x1 · · ·xm − ρxm+1 · · ·xm+ℓ,

for some 2 ≤ m < n and 2 ≤ ℓ < n with m+ ℓ ≤ n. Without loss of generality, the
center is DI = V (x1, x2, xm+1, xm+2). So, we have to consider four charts. In the
X1-chart we get

g′ = x′A′

− ρx′B′

= x′
2 · · ·x

′
m − ρx′

m+1 · · ·x
′
m+ℓ.

This implies that (α(g′), a(g′)) = (α(g), a(g)− 1) and (since B′ = B) we also have
(β(g′), b(g′)) = (β(g), b(g)). In particular, we get ι(g′) <lex ι(g). The other three
charts are analogous.

Since the improvement of ι(.) is strict in every case and since ι(.) takes values
in Z4

≥0, the local monomialization procedure using centers of the kind in Construc-
tion 5.1 ends after finitely many steps. �

In Algorithm 6 we discuss an implementation for the choice of the center following
Construction 5.1.

Remark 5.3 (Algorithm 6). The input and the output are of the same form as
in Algorithm 4 (see Remark 3.9) with the only difference that the input mode is
3. First, we initialize the data and determine the minimal indices i1 and i2, for
which the maximal entry of A resp. B is achieved, where f = xC(xA − ρxB) is the
monomial in the given chart.

If V (xi1 , xi2 ) is contained in the singular locus of V (xA − ρxB) or if f is of the
form f = xC(xj − xD), for j ∈ {i1, i2} and D ∈ {A,B} the corresponding element,
then the algorithm returns {i1, i2} as the index set for the upcoming center (line
5–6). This is case (i) of Construction 5.1.

Otherwise, we have min{α, β} = 1 and min{|A|, |B|} ≥ 2. Thus we make a case
distinction depending on the value of α and β (starting line 7), where we have to
add an index i > i1 for which Ai = 1 if α = 1 and analogous if β = 1. The latter
guarantees the center is contained in the singular locus of xA − ρxB. This covers
the missing cases (ii)–(iv) of Construction 5.1.
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As in Algorithm 5, the case min{α, β} = 0 cannot appear since we tested whether
the data of the chart is of the form (1.1) (line 3 Algorithm 1 and line 11 Algorithm 3).

If we consider the binomial of Example 4.1 and apply Algorithm 6, we obtain
the same center as using Algorithm 5. But it may happen that the two algorithms
lead to different centers.

Example 5.4. Let f = x1x2+x2
3 ∈ K[x1, x2, x3]. Algorithm 6 provides the center

V (x1, x2, x3), while Algorithm 5 gives the center V (x1, x3).

6. Centers of minimal codimension contained in an exceptional

divisor or contained in the singular locus

Now, we present the fourth variant, where we slightly relax the restriction on
the centers that we imposed in the previous section. We obtain this by taking the
preceding resolution process into account.

Let π : BlD(An
K) → An

K be the blowup with center D = V (xi | i ∈ I) for
I ⊆ {1, . . . , n}. In theXi-chartUi = D+(Xi) ∼= An

K (i ∈ I), we have the coordinates
(x′) = (x′

1, . . . , x
′
n) and 〈xj | j ∈ I〉 ·K[x′] = 〈x′

i〉 ⊂ K[x′]. Hence, the preimage of
the center along the blowup π coincides with the divisor E := div(xi) in Ui. Since a
blowup is an isomorphism outside of its center, we have the freedom to choose any
center D′ ⊂ Ui contained in E without losing the condition that the composition
of π and the blowup in D′ is an isomorphism outside of D. In particular, we may
choose centers of codimension two as in Construction 4.4.

Clearly, the previous observation extends to any finite sequence of (local) blowups
of the above type. This motivates the following method for choosing the center.

Construction 6.1. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn
≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Let (y1, . . . , ym), m ≤ n, be a subsystem
of distinguished variables of (x1, . . . , xn) such that the exceptional divisor of the
local monomialization procedure is given by div(y1 · · · ym). If there is a center
DI = V (xj1 , xj2) as in Construction 4.4, which is also contained in the exceptional
locus, DI ⊂ div(y1 · · · ym), then choose DI as the center for the next blowup.
Otherwise, we follow Construction 5.1.

Note that DI ⊂ div(y1 · · · ym) is equivalent to the condition that xj1 = yk1
or

xj2 = yk2
, for some k1, k2 ∈ {1, . . . ,m}.

As a consequence of Propositions 4.5 and 5.2, we get the termination of the
local monomialization procedure using centers given by Construction 6.1 (since ι(.)
decreases strictly after the blowup).

Corollary 6.2. The local monomialization process obtained by choosing the centers
as in Construction 6.1 terminates for every binomial f ∈ K[x].

In Algorithm 7 we present an implementation of Construction 6.1. This is analo-
gous to Algorithm 6 with the only difference in line 5, where we have the additional
condition Ei1 + Ei2 > 0. The latter holds whenever xi1 or xi2 correspond to an
exceptional divisor of a previous blowup.

7. A glimpse into the case of more than one binomial and

non-invertible coefficients

Let us briefly outline a method to extend our procedures to finitely many bino-
mials and to a single binomial with coefficients in Zp.
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Algorithm 7 compute center with minimal codimension contained in an excep-
tional divisor or contained in the singular locus

INPUT: list M , mode = 4, where M is of the same form as L[i] in Remark 2.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the mono-

mialization process
1: (A,B,C,E) = M [1]
2: α = max{Ai}, β = max{Bi}
3: i1 = min{i | Ai = α}, i2 = min{i | Bi = β}
4: I = {i1, i2}
5: if min{α, β} ≥ 2 or min{|A|, |B|} == 1 or Ei1 + Ei2 > 0 then
6: return I // exceptional or case(i)
7: else
8: I = compute center(M, 3)
9: return I // case(ii),(iii),(iv)

Construction 7.1. Let f1, . . . , fm ∈ K[x] = K[x1, . . . , n] be finitely many bi-
nomials, where K is a field. In order to monomialize them, we may successively
apply one of the discussed procedures to f1, then the total transform of f2 and
so on. Since each of methods terminates, we reach the case that each fi is locally
monomial.

At the end of the last construction, the total transform of the binomials f1, . . . , fm
are not necessarily simultaneously locally monomial, or in other words, the product
f1 · · · fm is not necessarily locally monomial, as the following example illustrates.

Example 7.2. Let K be a field and consider

f1 := x1 − 1, f2 := x2 − 1, f3 := x1x2 − 1.

We claim that the product f1f2f3 is not locally monomial. To see this, we introduce
y1 := x1 − 1 and y2 := x2 − 1. Then f1f2f3 = y1y2(y1y2 + y1 + y2).

Eventually, the task to make f1, . . . , fm simultaneously locally monomial can be
reduced to the problem of (locally) monomializing an element of the form

m∏

i=1

(xA(i) − λi), λi ∈ K× and A(i) ∈ Zn
≥0 for 1 ≤ i ≤ m.

This problem is connected to the desingularization of arrangements of smooth sub-
varieties, which is treated over algebraically closed fields in [7] or [8], for example.
Nonetheless, for finitely many prime characteristics p = char(K) > 0 (depending on
the exponents A(i)) the situation becomes more involved and further investigations
are required. Since the present article focuses on the case of a single binomial, we
do not go into the details here.

When successively applying a monomialization method to (f1, f2, . . . , fm), the
order in which we handle the elements has an impact on the final numbers of charts.

Example 7.3. Let K be any field. Consider the binomials

f1 = v2 − y4z, f2 = x2y − z3 ∈ K[x, y, z, v].

If we use our local monomialization method with codimension two centers for
(f1, f2) (i.e., first for f1 and then for the total transform of f2), then the procedure
needs computation in 43 charts and 19 of these charts are final charts.

On the other hand, if we take the order (f2, f1), then the same procedure needs
only 31 charts and 12 of them are final charts.
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We now turn out attention to the situation over Zp instead of over a field.

Remark 7.4. We observe that our proofs for the termination of the local mono-
mialization procedures rely on a study of the exponents. This suggests that the
methods may also be used for a first steps towards a monomialization if we are
not necessarily restricted to the situation over field K. Consider a binomial in
Zp[x] = Zp[x1, . . . , xn], say

f = pexC(xA − λpdxB ), λ ∈ Z×
p ,

for d, e ∈ Z≥0 and A,B,C ∈ Zn
≥0 with AiBi = 0 for all i ∈ {1, . . . , n}. We fix one

of the procedures, which we discussed, and apply it to f , considered as a binomial
with coefficients in the field Qp = Quot(Zp). As we have seen, this terminates after
finitely many blowups. Since the coefficients are in Zp, the resulting total transform
of f is not necessarily locally monomial. For example, it may appear that the total
transform of f is of the form

pex′C′

(x′A′

− λpd ),

for some A′ ∈ Zn
≥0 with |A′| ≥ 2. Here, d, e ∈ Z≥0 are the same integers as at the

beginning since we did not touch coefficients. If d 6= 0, then the monomialization
process is not finished, yet.

There are at least two directions that one could follow:

(1) We blow up centers of the form 〈x′
i, p〉, where i is chosen appropriately. This

has the drawback that the ambient ring after the blowup is not necessarily
isomorphic to a polynomial ring over Zp. More precisely, in the X ′

i-chart,
we get Zp[x

′, v]/〈p− x′
iv〉.

(2) An alternative method is to make a case distinction depending on the
residues of x′

i modulo p. If x′
i ≡ 0 mod p, we can write it as x′

i = p yi
for some new variables taking values in Zp. By choosing i appropriately,
we can make d decrease. On the other hand, if x′

i 6≡ 0 mod p for all i, then

x′A′

− λpd is a unit. Thus f is monomial.

8. Comparing the variants

Finally, let us compare the discussed algorithms for monomializing a binomial.
First, we analyze the complexity of the algorithms by estimating the maximal
possible number of blowups needed to monomialize a given binomial. After that we
turn out attention to explicit examples, where we compare the numbers of charts
appearing along the monomialization and as well as the number of final charts. At
the end, we briefly look at the question, whether the different choice for the centers
in a fixed method have an impact on the resulting numbers.

Remark 8.1. We can interpret the process of blowing up as a tree structure. The
vertices correspond to the charts, where we put the original data on level 0 and all
charts, which arise after the ℓ-th blowup are put on level ℓ. Two vertices v on level
ℓ and w on level ℓ + 1 are connected by an edge if the chart corresponding to w
is one of the charts of the blowup in v. The unique vertex on level 0 is called the
root of the tree and vertices on level ℓ, which are not connected to any vertex of a
higher level, are called leaves of the tree. The latter correspond to the final charts
of the blowup procedure. In Figure 2, we illustrate the tree structure for a simple
example.

The number of charts is delimited by the number of charts, which we newly
create after a blowup, and by the longest path from the root to any leaf. The first
of these numbers is determined by the codimension of the center. This provides the
following bounds:



ALGORITHMIC LOCAL MONOMIALIZATION OF BINOMIALS 21

f = y2 − x3

D+(X) : x2(y2 − x) D+(Y ) : y2(1− x3y)

D+(X) : x3(xy2 − 1) D+(Y ) : x2y3(y − x)

D+(X) : x6y3(y − 1) D+(Y ) : x2y6(1− x)

(0)

(1)

(2)

(3)

Figure 2. Example for the tree structure of a blowup process for
f = y2 − x3. In the boxes we indicate, which of the charts of the
blowup we are considering, and we provide the total transform of
f . We abuse notation and denote the coordinates in each chart
by (x, y). In every case, where a blowup is performed, the ideal of
the center is 〈x, y〉. The number (ℓ) on the right marks the level.
There are two leaves on level 3 and one leaf each on level 2 and 1.

(8.1)

mode maximal codimension of a possible center

1 (max.ord.) n = (number of variables)

2 (codim.2) 2

3 (min.codim.) 4

4 (exc.) 4

Using the invariant, which we introduced to prove the termination of the respec-
tive variant for monomialization, we can bound the length of the longest path of
the resulting tree of blowups.

Lemma 8.2. Let g = xA − ρxB ∈ K[x] = K[x1, . . . , xn] with ρ ∈ K×, A,B ∈ Zn
≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. The following are upper bounds for the
longest path from the root to any leaf in the blowup tree of the respective mode:

(8.2)

mode upper bound for the longest path

1 (max.ord.) 2m−1M +m− 1−

m−1∑

ℓ=1

2m−ℓ−1(m− ℓ+ 1)

2 (codim.2) (α+ β − 4)(n− 1) + a+ b+ 1

3 (min.codim.) (α+ β − 4)(n− 1) + a+ b+ 1

4 (exc.) (α+ β − 4)(n− 1) + a+ b+ 1

where

m := min{|A|, |B|}, M := max{|A|, |B|},
α := max{Ai | i ∈ {1, . . . , n}}, a := #{i ∈ {1, . . . , n} | Ai = α(g)},
β := max{Bi | i ∈ {1, . . . , n}}, b := #{i ∈ {1, . . . , n} | Bi = β(g)}.
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Proof. Recall that for centers contained in maximal order locus of g (mode = 1),
we introduced inv(g) =

(
min{|A|, |B|}, max{|A|, |B|}

)
∈ Z2

≥0 as measure for the

complexity of the singularity (Definition 3.7), which strictly decreases with respect
to the lexicographical ordering on Z2

≥0 after each blowup. We have inv(g) = (m,M).

Observe that m ≤ M . Let (m′,M ′) be the value of inv(g′) in a chart after the
blowup in a center contained in the locus of maximal order of g. The proof of
Proposition 3.8 provides that either

(i) (m′,M ′) ≤lex (m− 1, 2M −m), or
(ii) (m′,M ′) ≤lex (m,M − 1).

If we are k1 times in case (ii) and then once in (i), we obtain that the value of
inv(.) is bounded by

(m− 1, 2(M − k1)−m).

Note that k1 ∈ {0, . . . ,M − m} since we cannot have M − 1 < m in (ii). At
this stage, we performed k1 + 1 blowups. Iterating this, the upper bound for the
invariant becomes

(
m− s, 2sM −

s∑

ℓ=1

2s−ℓ+1kℓ −

s∑

ℓ=1

2s−ℓ(m− ℓ+ 1)
)

after s steps, where, for ℓ ∈ {1, . . . , s},

kℓ ∈ {0, . . . , 2ℓ−1M −

ℓ−1∑

q=1

2ℓ−qkq −

ℓ−1∑

q=1

2ℓ−1−q(m− q + 1)− (m− ℓ+ 1)},

is the number of times that we are in case (ii) until the first entry drops fromm−ℓ+1
to m− ℓ in case (i). The number of blowups up to this point is k1 + . . .+ ks + s.

If s = m − 1, the first entry of the bound for inv(.) is 1. In particular, we
can only be in case (ii) for the remaining decreases if we want to determine the
maximal length of a path in the blowup tree. Hence, the second entry for the bound
determines the number of blowups remaining. In total, we obtain the bound

m−1∑

ℓ=1

kℓ + (m− 1) + 2m−1M −

m−1∑

ℓ=1

2m−ℓkℓ −

m−1∑

ℓ=1

2m−ℓ−1(m− ℓ+ 1) =

= 2m−1M +m− 1−
m−1∑

ℓ=1

(2m−ℓ − 1)kℓ −
m−1∑

ℓ=1

2m−ℓ−1(m− ℓ+ 1).

We aim to maximize the bound for the number of blowups. The only variation in
the expression are the numbers k1, . . . , km−1. Since 2m−ℓ − 1 ≥ 1 the maximum is
obtained if kℓ = 0, for all ℓ ∈ {1, . . . ,m − 1}. In conclusion, we have proven the
bound of (8.2) for mode = 1.

Let us consider the remaining three cases (mode ∈ {2, 3, 4}). For each of them,
we used ι(g) = (α(g), a(g), β(g), b(g)) ∈ Z4

≥0 of Definition 2.1 to measure the im-
provement of the singularity after the blowup following the respective strategy. We
have ι(g) = (α, a, β, b). Note that a+b ≤ n. Let us fix the value of mode ∈ {2, 3, 4}.

Let (α′, a′, β′, b′) be the value of ι(g′) after the blowup in the center, which
is determined by the strategy given by mode. Let j ∈ {1, . . . , n} be such that
we are in the Xj-chart. By Propositions 4.5, 5.2, and Corollary 6.2, we have
(α′, a′, β′, b′) <lex (α, a, β, b). The decrease can be made more precise depending
on which chart we are. Since g = xA − ρxB and AiBi = 0 for all i ∈ {1, . . . , n}, we
either have Aj 6= 0 (case (I)) or Bj 6= 0 (case (II)). In these two cases, the proofs
of Propositions 4.5, 5.2, and Corollary 6.2 provide that we have:
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(I)

{
(α′, a′, β′, b′) = (α, a − 1, β, b), if a > 1;
(α′, a′, β′, b′) = (α′, a′, β, b), with α′ < α, if a = 1;

(II)

{
(α′, a′, β′, b′) = (α, a, β, b − 1), if b > 1
(α′, a′, β′, b′) = (α, a, β′, b′), with β′ < β, if b = 1.

Note that a′ ≤ n − b in (I) and b′ ≤ n − a in (II). Since in (I) (resp. (II)), the
last two (resp. first two) entries remain the same, the operations determined by (I)
and (II) are independent of each other.

Due to the bound of a′ and b′, we get the longest path in the resolution tree
if both the value of a(.) and b(.) decrease to the value 1 first. This is achieved
after a + b − 2 blowups following the respective monomialization procedure. We
denote the strict transform of g at this step by g′′, which is obtained after factoring
the monomial part from the total transform of g. Notice that we have ι(g′′) =
(α, 1, β, 1). After the next blowup the invariant is at most (α − 1, n − 1, β, 1) (in
case (I)) resp. (α, 1, β − 1, n− 1) (in case (II)). If the maximum is attained, then
we get after n − 2 further blowups the value (α − 1, 1, β, 1) resp. (α, 1, β − 1, 1).
Therefore, after at most a+ b+ (α− 2)(n− 1) + (β − 2)(n− 1) blowups, the value
of ι(.) becomes (1, 1, 1, 1). The latter means that the total transform of g is of the
form xC(x1 − ρx2), for some C ∈ Zn

≥0 and appropriately chosen variables. After

one more blowup, the total transform of g fulfills condition (1.1) and thus is locally
monomial and the assertion follows. �

As an immediate consequence of (8.1) and Lemma 8.2, we obtain:

Corollary 8.3. Let g = xA − ρxB ∈ K[x1, . . . , xn] with ρ ∈ K× and A,B ∈ Zn
≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Using the notation of Lemma 8.2, the
following are upper bounds for the number of charts in the respective variant for
monomializing g:

mode upper bound for the number of charts

1 (max.ord.) nd(m,M)

for d(m,M) := 2m−1M +m− 1−

m−1∑

ℓ=1

2m−ℓ−1(m− ℓ+ 1)

2 (codim.2) 2(α+β−4)(n−1)+a+b+1

3 (min.codim.) 4(α+β−4)(n−1)+a+b+1

4 (exc.) 4(α+β−4)(n−1)+a+b+1

Moreover, this worst case number of charts yields to a non-polynomial time
algorithm in the number of variables and the degree of the binomial. The running
time results as a product of the running time per chart times the number of charts
and for each procedure the numer of charts is potentially exponential in α, β, a, b
resp. m,M , where α and β are bounded by the degree of the binomial, a and b are
bounded by the number of variables and M and m are bounded by the degree of
g, too.

Of course, the upper bounds are quite rough and the concrete number of blowups
can be far smaller for explicit examples. For example, in the variant, where we
choose the centers in the locus of maximal order, the codimension of the center is
not necessarily always n in every blowup.

Let us come to the study of explicit examples. In Figures 3 and 4, we provide
several examples, where we consider the number of leaves and the number of total
charts for each method for choosing the center. All examples are computed via an
explicit implementation in Singular of the algorithms described in the previous
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binomial max.ord. codim.2 min.codim exc.

1. x1x2 − x3x4 4 / 5 2 / 3 4 / 5 4 / 5

2. x1x2 − x3x4x5 10 / 13 3 / 5 10 / 13 10 / 13

3. x1x2 − x3x4x5x6 22 / 29 4 / 7 22 / 29 22 / 29

4. x1x2x3 − x4x5x6 60 / 79 6 / 11 40 / 53 40 / 53

5. x1x2x3 − x4x5x6x7 246 / 325 10 / 19 124 / 165 124 / 165

6. x1x2x3 − x4 · · ·x8 876 / 1.159 15 / 29 340 / 453 340 / 453

7. x1 · · · x4 − x5 · · ·x8 1.968 / 2.601 20 / 39 496 / 661 496 / 661

9. x1 · · · x4 − x5 · · ·x9 11.376 / 15.041 35 / 69 1.672 / 2.229 124 / 165

10. x1 · · · x5 − x6 · · ·x10 113.760 / 150.411 70 / 139 6.688 / 8.917 6.688 / 8.917

11. x1x2 − x2

3 3 / 4 3 / 5 3 / 4 3 / 4

12. x1x2x3 − x2

4 7 / 10 7 / 13 7 / 10 7 / 10

13. x1x2x3x4 − x2

5 15 / 22 15 / 29 15 / 22 15 / 22

14. x1x2x3 − x4

4 21 / 33 21 / 41 21 / 31 21 / 38

15. x1x2x3x4 − x4

5 85 / 134 85 / 169 85 / 127 85 / 162

16. x1 · · · x5 − x4

6 341 / 538 341 / 681 341 / 511 341 / 666

17. x1 · · · x6 − x4

7 1.365 / 2.154 1.365 / 2.729 1.365 / 2.047 1.365 / 2.698

18. x1x2 − x3

3 4 / 6 4 / 7 4 / 6 4 / 6

19. x1x2x3 − x3

4 13 / 20 13 / 25 19 / 30 13 / 22

20. x1x2x3x4 − x3

5 40 / 62 40 / 79 104 / 164 40 / 72

21. x1x2x3 − x5

4 31 / 47 31 / 61 43 / 67 31 / 58

22. x1x2x3x4 − x5

5 236 / 364 156 / 311 364 / 565 156 / 304

23. x1 · · · x5 − x5

6 1.181 / 1.822 781 / 1.561 3.381 / 5.223 781 / 1.546

24. x1 · · · x6 − x5

7 5.906 / 9.112 3.906 / 7.811 32.782 / 50.521 3.906 / 7.780

Figure 3. List of examples. In the last four columns, the entries
are “the number of leaves/total number of charts”.

sections and the base field is always Q. In the following, we discuss patterns, which
can be observed in the examples, and we provide some indications for the noticed
behavior of the different methods. Nonetheless, we do not provide rigorous proofs
for the patterns in general.

Example 8.4 (Figure 3, Examples 1–10). In the first block of examples, all expo-
nents of the starting binomial are one. This has the effect that the variant choosing
centers of codimension two has a strong advantage, as can be easily seen in the
number of charts. The reason for this is that the codimension of the centers in the
other methods is very large, but the effect of the blowup is not much different than
with a center of codimension two.

Let us illustrate this for g = x1x2x3 − x4x5x6. The codimension two center,
which will choose is V (x1, x4). In the X1-chart of the blowup, the strict transform
of g is g′ = x2x3 − x4x5x6. (Here, we abuse notation and denote the variables in
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the chart of the blowup also by x1, . . . , x6.) In the X4-chart, we obtain the strict
transform x1x2x3 − x5x6.

On the other hand, the variant choosing a center in the locus of maximal order
determines the origin V (x1, . . . , x6) as the unique center. In the X1-chart of the
corresponding blowup, the strict transform of g is g′ = x2x3 − x4x5x6. This is the
same as the one before. In the remaining 5 charts, the strict transforms are of the
same (up to renaming the variables). In contrast to the codimension two center,
we have 6 different charts instead of only 2.

For the other two methods, the center is V (x1, x2, x4, x5) and the analogous
behavior appears, as the reader may verify.

Example 8.5 (Figure 3, Examples 11–17). In the second block of examples, all
binomials have a term x2k

n appearing and the other monomial is of the form as in
Examples 1–10. The number of leaves is in all cases the same, the total number of
charts varies. The variant which seems to be most efficient is the one, where we
choose the centers in the singular locus with minimal codimension. Note that the
centers in this case are all of codimension three.

If k = 1, the maximal order is two. Therefore, the centers for mode ∈ {1, 3, 4}
coincide. Since the codimension of the center is three in these cases, none of the
variables remaining in the strict transforms are exceptional. Moreover, already for
x1x2 − x2

3 one can verify that the codimension two centers requires more blowups
to monomialize than the other methods. In the latter, the blowup with center
V (x1, x2, x3) is sufficient.

This changes slightly for k = 2 and the differences in the number of total charts
increases. The variant for mode = 3 remains the most efficient one. For example,
the maximal order locus of x1x2x3 − x4

4 = 0 is V (x1, x2, x3, x4), while V (x1, x2, x4)
is the chosen center of the minimal codimension contained in the singular locus.

Example 8.6 (Figure 3, Examples 18–24). The last block of examples in Figure 3
is of the same form as the previous one, but we have x2k+1

n as a monomial. As one
can see in the numbers, the behavior changes, except for Example 18.

If the maximal order of the binomial is ≤ 3, then the variant, which chooses the
center in the locus of maximal order, is the best choice. One can verify that in this
method, the behavior is the same as in the previous block.

One of the reasons for the large numbers for mode = 3 (centers of minimal
codimension contained in the singular locus) is that the codimension is three at
the beginning. For example, if k = 1, the strict transform of the binomial in
the Xn-chart of the first blowup is x1 · · ·xn−1 − xn. This is not transversal to
the exceptional divisor, which is given by xn = 0 in this chart. Therefore n − 1
more blowups are necessary in this chart. Moreover, in the X1-chart, we obtain
x2 · · ·xn−1 − x1x

3
n as strict transform, so x1 just switch the side in the binomial.

In contrast to this, the variable x1 disappears in the X1-chart of the blowup in
V (x1, x2, x3, xn) (which is the center for mode = 1).

The phenomenon that a variable is switching sides also appears for the other two
methods (mode ∈ {2, 4}), but it has less impact for the codimension two centers as
we are creating less charts, where the mentioned blowups arise. On the other hand,
for examples of this kind of larger maximal order, the codimension 2 center become
more efficient and the last variant (mode = 4) is slightly better. The reasons for
the latter are the same as in Example 8.5.

Example 8.7 (Figure 4, Examples 25–29). Let us turn to examples, where the
appearing exponents are larger. More precisely, we consider binomials of the form
x2
1−x3

2x
4
3 · · ·x

n+1
n , for n ∈ Z≥3. The large exponents have the effect that the centers

are of codimension two at the beginning of all variants. Due to the exceptional
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binomial max.ord. codim.2 min.codim exc.

25. x2

1 − x3

2x
4

3 6 / 11 6 / 11 6 / 11 6 / 11

26. x2

1 − x3

2x
4

3x
5

4 12 / 22 12 / 23 12 / 22 12 / 23

27. x2

1 − x3

2x
4

3x
5

4x
6

5 18 / 34 15 / 29 15 / 28 15 / 29

28. x2

1 − x3

2x
4

3x
5

4x
6

5 · · ·x
12

11 288 / 560 98 / 195 98 / 180 98 / 195

29. x2

1 − x3

2x
4

3x
5

4x
6

5 · · ·x
17

16 2.304 / 4.480 582 / 1.163 582 / 1.036 582 / 1.163

30. x1x2 − x3

3x
4

4 8 / 12 8 / 15 8 / 12 8 / 13

31. x1x2 − x3

3x
4

4x
5

5 16 / 24 13 / 25 16 / 24 13 / 22

32. x1x2 − x3

3x
4

4x
5

5x
6

6 28 / 42 19 / 37 22 / 33 19 / 33

33. x1x2 − x3

3x
4

4x
5

5x
6

6 · · ·x
12

12 512 / 768 76 / 151 132 / 198 76 / 141

34. x1x2 − x3

3x
4

4x
5

5x
6

6 · · ·x
17

17 4.096 / 6.144 151 / 301 652 / 978 151 / 286

35. x2

1 − x2

2x3 2 / 3 2 / 3 2 / 3 2 / 3

36. x2

1 − x2

2x
2

3x4 3 / 5 3 / 5 3 / 5 3 / 5

37. x2

1 − x2

2x
2

3x
2

4x
2

5 · · ·x
2

11x12 11 / 21 11 / 21 11 / 21 11 / 21

38. x2

1 − x2

2x
2

3x
2

4x
2

5 · · ·x
2

16x17 16 / 31 16 / 31 16 / 31 16 / 31

39. x1x
2

2 − x3x
2

4 6 / 9 2 / 3 2 / 3 2 / 3

40. x2

1x
3

2 − x4x
2

5x
2

6 146 / 264 24 / 47 22 / 42 24 / 47

41. x1x
2

2x
3

3 − x4x
2

5x
3

6 385 / 677 26 / 51 16 / 29 16 / 29

42. x2

1x
2

2x
2

3 − x4x
2

5x
3

6 1.486 / 2.677 154 / 307 108 / 191 115 / 218

43. x2

1x
3

2x
3

3 − x4x
2

5x
2

6x
3

7 18.702 / 34.262 126 / 251 104 / 196 124 / 246

44. x1x
2

2x
3

3x
4

4 − x5x
2

6x
3

7x
4

8 107.062 / 196.798 260 / 519 206 / 371 213 / 392

Figure 4. List of examples (continued).

divisors created there, the centers for mode = 4 coincide with the centers in the
codimension two variant (mode = 2).

For centers in the locus of maximal order and centers of minimal codimension
(mode ∈ {1, 3}), there appear eventually centers of higher codimension. For exam-
ple, in x2

1 − x3
2 · · ·x

6
5, we obtain after five blowups with centers of codimension two

the strict transform x2
1 − x2x4x

6
5 and (x2, x3, x4) are exceptional. Our variant for

choosing centers in the locus of maximal order, determines V (x1, x2, x4) as the next
center, while, for mode = 3, the next center is V (x1, x5). This leads to more charts
in the first variant. Analogous to Example 8.5, the centers of minimal codimension
are slightly better in the number of total charts than the centers of codimension
two, but the number of leaves are the same.

Example 8.8 (Figure 4, Examples 30–34). In contrast to the previous block of
examples, the difference between centers of codimension two and centers of higher
codimension becomes more clear for binomials of the type x1x2 − x3

3x
4
4 · · ·x

n
n, for

n ∈ Z≥4. As a consequence the variants with mode ∈ {2, 4} are more efficient for
large n ≫ 4, while mode = 4 is slightly better as the center of codimension three
at the beginning provide a fast improvement. On the other hand, the number of
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charts are larger for the remaining two variants, where the reason for the large
numbers if mode = 1 are the same as in Example 8.7.

Example 8.9 (Figure 4, Examples 35–38). There are also types of binomials,
for which all variants choose the same centers. For example, for binomials of the
form x2

1 − x2
2 · · ·x

2
n−1xn, for some n ∈ Z≥3, all centers in the monomialization

procedures are of codimension two. If we blowup with center V (x1, x2), the total
transform of the binomial in the respective charts are x2

1(1 − x2
2 · · ·x

2
n−1xn) and

x2
2(x

2
1 − x2

3 · · ·x
2
n−1xn). While the first chart is locally monomial, the second one

is of the same form as the original binomial with the difference that x2 does not
appear anymore. Hence, the total number of charts is 2(n− 1)− 1 and the number
of leaves is n− 1.

Example 8.10 (Figure 4, Examples 39–44). This block of examples consists of
homogeneous polynomials. Hence, the variant choosing the centers in the locus of
maximal order will first blow up the closed point, which creates many charts. For
increasing degree of the homogeneous binomial, we obtain a fast growing number
of charts and leaves. The other three variants are more efficient, where all of them
choose first centers of codimension two. In contrast to mode = 1, the centers of
larger codimension are more efficient than the codimension two centers towards the
end of the monomialization procedure, where the appearing exponents are at most
one. This phenomenon has already been observed in Example 8.5.

Example 8.11 (Figure 5). As we have seen, it may appear that we have to make
a choice for the center in the respective variant for monomialization. Let us have a
glimpse into the question, how different choices affect the number of charts. Instead
of modifying the implementations, we explore this by interchanging the appearing
exponents appropriately in a given example.

If mode ∈ {2, 3, 4}, the numbers do not change, except for the block of example 41
in Figure 5. In 41, i.e. x1x

2
2x

3
3 − x4x

2
5x

3
6 the numbers are larger compared to

the other choices 41.2 and 41.3. The reason for this is that the codimension two
centers (mode ∈ {2, 4}) for example 41 are of the form V (x1, xi) or V (xj , x4) (for
i ∈ {4, 5, 6} and j ∈ {1, 2, 3}) at the beginning of the monomialization process.
Hence, the improvement of the exponent of xi, resp. xj , is only by one and more
blowups are needed. On the other hand, mode = 3 is less affected by this, for
example, the first center for example 41, x1x

2
2x

3
3 − x4x

2
5x

3
6, is V (x2, x5). Example

41.3 is slightly better if mode = 3, as the first appearing powers are even.
The first method (via centers contained in the locus of maximal order) varies

more if we interchange the exponents. In the cases, where the maximal order is two,
the number of charts is significantly larger if we the first exponents are odd. The
reason for this can be seen in Example 8.7, where the binomial became x2

1−x2x4x
6
5.

The next center following our way of choosing the center (for mode = 1), would be
V (x1, x2, x4). Hence, we create three new charts and in two of them, we have to
blow up V (x1, x5) three times. In contrast to this, if we blowup first in V (x1, x5),
we would get a smaller number of charts, since we only have to blow up V (x1, x2, x4)
at the end, when we reach x2

1 − x2x4 as strict transform.
Note that we interchanged the exponents only at the beginning of the monomi-

alization process. In principle, one could interchange them after each blowup in
order to optimize the choice of the center, but we do not address this here.

In conclusion, the approach by blowing up centers contained in the locus of
maximal order provides a significant larger number of charts than the other variants
if the exponents appearing in the binomial increase. Most of the time, choosing only
centers of codimension two (mode = 2) leads to a small number of charts, while
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binomial max.ord. codim.2 min.codim exc.

27. x2

1 − x3

2x
4

3x
5

4x
6

5 18 / 34 15 / 29 15 / 28 15 / 29

27.2 x2

1 − x5

2x
3

3x
6

4x
4

5 20 / 38 15 / 29 15 / 28 15 / 29

27.3 x2

1 − x6

2x
5

3x
4

4x
3

5 15 / 28 15 / 29 15 / 28 15 / 29

28. x2

1 − x3

2x
4

3x
5

4x
6

5 · · ·x
12

11 288 / 560 98 / 195 98 / 180 98 / 195

28.2 x2

1 − x11

2 x9

3 · · ·x
3

6x
12

7 x10

8 · · ·x4

11 414 / 812 98 / 195 98 / 180 98 / 195

28.3 x2

1 − x12

2 x11

3 x10

4 x9

5 · · ·x
3

11 141 / 266 98 / 195 98 / 180 98 / 195

28.4 x2

1 − x12

2 x10

3 · · ·x4

6x
11

7 x9

8 · · ·x
3

11 114 / 212 98 / 195 98 / 180 98 / 195

31. x1x2 − x3

3x
4

4x
5

5 16 / 24 13 / 25 16 / 24 13 / 22

31.2 x1x2 − x3

3x
5

4x
4

5 20 / 30 13 / 25 16 / 24 13 / 22

32. x1x2 − x3

3x
4

4x
5

5x
6

6 28 / 42 19 / 37 22 / 33 19 / 33

32.2 x1x2 − x6

3x
5

4x
4

5x
3

6 22 / 33 19 / 37 22 / 33 19 / 33

33. x1x2 − x3

3x
4

4x
5

5x
6

6 · · ·x
12

12 512 / 768 76 / 151 132 / 198 76 / 141

33.2 x1x2 − x12

3 x11

4 x10

5 · · ·x3

12 218 / 327 76 / 151 132 / 198 76 / 141

38. x2

1 − x2

2x
2

3x
2

4x
2

5 · · ·x
2

16x17 16 / 31 16 / 31 16 / 31 16 / 31

38.2 x2

1 − x2x
2

3x
2

4x
2

5 · · ·x
2

17 16 / 31 16 / 31 16 / 31 16 / 31

41. x1x
2

2x
3

3 − x4x
2

5x
3

6 385 / 677 26 / 51 16 / 29 16 / 29

41.2 x3

1x2x
2

3 − x3

4x5x
2

6 244 / 427 12 / 23 16 / 29 12 / 23

41.3 x2

1x2x
3

3 − x2

4x5x
3

6 274 / 483 19 / 37 14 / 25 14 / 25

Figure 5. List of examples, where the different choice within one
method are considered.

a particular structure of the binomial may give a small advantage to the other
variants (mode ∈ {3, 4}) in some cases. But since the advantage is only small, our
choice for a first investigation of a local monomialization of a binomial and the data
resulting from it is via centers of codimension two.
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