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ON THE PRIMALITY AND ELASTICITY OF ALGEBRAIC

VALUATIONS OF CYCLIC FREE SEMIRINGS

NANCY JIANG, BANGZHENG LI, AND SOPHIE ZHU

Abstract. A cancellative commutative monoid is atomic if every non-invertible el-
ement factors into irreducibles. Under certain mild conditions on a positive algebraic
number α, the additive monoid Mα of the evaluation semiring N0[α] is atomic. The
atomic structure of both the additive and the multiplicative monoids of N0[α] has
been the subject of several recent papers. Here we focus on the monoids Mα, and
we study its omega-primality and elasticity, aiming to better understand some fun-
damental questions about their atomic decompositions. We prove that when α is
less than 1, the atoms of N0[α] are as far from being prime as they can possibly be.
Then we establish some results about the elasticity of N0[α], including that when
α is rational, the elasticity of Mα is full (this was previously conjectured by S. T.
Chapman, F. Gotti, and M. Gotti).

1. Introduction

A cancellative and commutative (additive) monoid M is said to be atomic if every
non-invertible element of M can be decomposed as a sum of finitely many atoms (i.e.,
irreducible elements). This decomposition of an element into a formal sum of atoms
is called a factorization. The multiplicative flavor of the term ‘factorization’ is due to
the fact that the phenomenon of multiple decompositions into irreducibles/atoms was
first studied in rings of integers of algebraic number fields (for instance, in the ring
of integers Z[

√
−5], the element 6 has two distinct atomic decompositions, namely,

6 = 2 · 3 = (1−
√
−5)(1 +

√
−5)) and later in (the multiplicative monoids of) integral

domains.

Given that the primary purpose of this paper is to investigate the phenomenon of
multiple factorizations in certain additive submonoids of the nonnegative cone of R,
we will use additive notation. For a positive real α, we let N0[α] denote the smallest
subsemiring of R (with identity) containing α, namely,

N0[α] := {f(α) | f(x) ∈ N0[x]},
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where N0[x] is the semiring of polynomials in the indeterminate x with coefficients in
N0. It follows immediately that N0[α] is the additive submonoid of R generated by the
set {αn | n ∈ N0}. In this paper, we will focus on the additive structure of N0[α].

For rational numbers α, the atomicity of the monoid N0[α] was first considered in
[26, Section 5], and it was more thoroughly studied later in [13], where the authors in-
vestigated arithmetic and factorization invariants of N0[α], including the set of lengths,
elasticity, and omega-primality. In the same paper, the authors proved that the set of
elasticities of N0[α] is dense in [1,∞) for every non-integer rational α > 1, and they
also proved some special cases of following conjecture.

Conjecture 1.1. [13, Conjecture 4.8] For every non-integer rational α > 1, the set of

elasticities of N0[α] is [1,∞) ∩Q.

Generalizations of N0[α] (with α rational) were also studied in [2] from the factorization-
theoretical point of view. More recently, a deeper and more systematic study of the
atomic structure of N0[α] was carried out in [16] for any positive real α.

It is worth mentioning that atomicity and the arithmetic of factorizations in semir-
ings of polynomials and their evaluations have earned significant attention in recent
years. In [11], Cesarz et al. studied factorizations in R≥0[x] and N0[α] paying special
attention to the elasticity. In addition, arithmetic properties of semigroup semirings
were considered by Ponomarenko in [30]. On the other hand, Campanini and Facchini
in [12] studied several factorization-theoretical aspects of the multiplicative monoid of
the semiring N0[x]. More recently, Baeth and Gotti in [9] investigated the atomic struc-
ture of the multiplicative monoid of upper triangular matrices over positive semirings
(i.e., sub-semirings of R≥0), while a further investigation of the atomicity of both the
additive and the multiplicative monoids of positive semiring was carried out by Baeth,
Chapman, and Gotti [8]. Even more recently, the third author studied factorizations
in the additive evaluation monoids of the Laurent semiring N0[x, x

−1] at nonnegative
real numbers.

The fundamental purpose of the present paper is to continue the study of N0[α]
initiated in [16]. Though, unlike [16], which focused on the atomicity, here we study
two arithmetic statistics of N0[α]: the omega-primality and the elasticity. In every
atomic monoid, it is well known that every prime element is an atom. However, the
converse does not hold in general. The omega-primality, introduced by Geroldinger
and Hassler in [19], is an atomic statistic that measures how far an atom is from being
a prime. In Section 3, we prove that, according to the omega-primality measurement,
every atom in N0[α] is as far from being a prime as it can possibly be (provided that
0 < α < 1). The omega-primality of the additive monoids N0[q] (for any positive
rational q) was recently considered by Chapman, Gotti, and Gotti in [13, Section 5].

An integral domain R is called half-factorial if its multiplicative monoid is atomic and
if any two factorizations of the same nonzero nonunit element have the same number
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of irreducibles (counting repetitions). The elasticity was introduced and first studied
in the eighties by Steffan [31] and Valenza [32] as a measurement to understand how
far Dedekind domains and, specifically, rings of integers of algebraic number fields are
from being half-factorial domains. Since then, the elasticity has become one of the
most popular arithmetic statistics studied in factorization theory (see, for instance,
[3, 4, 6, 11, 14, 28] and the most recent papers [10, 21, 24, 25, 27]). The elasticity of a
monoid can be defined similarly to that of an integral domain. The last two sections
of the paper are devoted to study the elasticity of N0[α]. In Section 4, we prove that
the elasticity of N0[α] is finite if and only if N0[α] is a finitely generated monoid. In
addition, we find conditions under which the set of elasticities of N0[α] is dense in the
elasticity interval. In Section 5, we focus on the elasticity of N0[α] when α is rational,
and we show that N0[α] is fully elastic when α is a non-integer rational greater than 1,
which is Conjecture 1.1.

2. Background

2.1. General Notation. We let P, N, and N0 denote the set of primes, positive in-
tegers, and nonnegative integers, respectively. If S is a subset of R and r is a real
number, we let S≥r denote the set {s ∈ S | s ≥ r}. Similarly, we use the notations
S>r, S≤r, and S<r. For a positive rational q, the positive integers a and b with q = a/b
and gcd(a, b) = 1 are denoted by n(q) and d(q), respectively.

Let f(X) ∈ Q[X ] be a nonzero polynomial. The support of f(X), denoted by
supp f(X), is the set of exponents of the monomials appearing in the canonical repre-
sentation of f(X); that is,

supp f(X) := {n ∈ N0 : f
(n)(0) 6= 0},

where f (n)(X) denotes the n-th formal derivative of f(X). The order of f(X) is defined
to be the minimum of supp f(X), which is the largest d ∈ N0 such that f(X) = Xdg(X)
for some g(X) ∈ Q[X ]. Now suppose that f(X) is monic. Let ℓ be the smallest positive
integer such that ℓ · f(X) ∈ Z[X ]. Then there exist unique p(X), q(X) ∈ N0[X ] such
that ℓf(X) = p(X)− q(X) and that p(X) and q(X) share no monomials of the same
degree (that is, the greatest common divisor of p(X) and q(X) in the free commutative
monoid (N0[X ],+) is 0). We call the pair (p(X), q(X)) the minimal pair of f(X). In
addition, if α is a real algebraic number, the minimal pair of α is defined to be the
minimal pair of its minimal polynomial over Q.

According to Descartes’ Rule of Signs, the number of variations of sign of a polyno-
mial f(X) ∈ R[X ] has the same parity as and is at least the number of positive roots
of f(X), counting multiplicity. Also, it was proved by D. R. Curtiss [17] that there
exists a polynomial µ(X) ∈ R[X ], which he called a Cartesian multiplier, such that the
number of variations of sign of the product polynomial µ(X)f(X) equals the number
of positive roots of f(X), counting multiplicity.
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2.2. Commutative Monoids and Factorizations. In the scope of this paper, a
monoid is a cancellative and commutative semigroup with an identity element. In
addition, monoids here will be written additively unless we explicitly state otherwise.
In particular, the identity element of a monoid is 0. Let M be a monoid. We set
M• = M \{0}. It is clear that 0 is an invertible element of M . The monoid M is called
reduced if 0 is its only invertible element. For every α ∈ R>0, the additive submonoid
N0[α] of R≥0, which plays a fundamental role in this paper, is reduced. In general
every additive submonoid of R≥0 is reduced. Additive submonoids of Q≥0, also known
as Puiseux monoids, are also reduced; they will also be of importance in this paper.
From this point on, we tacitly assume that all monoids here (that are not groups) are
reduced.

For a subset S of M , we let 〈S〉 denote the submonoid of M generated by S, that
is, 〈S〉 is the intersection of all submonoids of M containing S. We say that a monoid
is finitely generated if it can be generated by a finite set. The difference group gp(M)
of M is the unique abelian group (up to isomorphism) such that any abelian group
containing a homomorphic image of M will also contain a homomorphic image of
gp(M). If M is an additive submonoid of R≥0, then

gp(M) = {r − s | r, s ∈ M}.
A nonzero element a ∈ M is called an atom if whenever a = b+ c for some b, c ∈ M

either b = 0 or c = 0. Following common notation, we let A (M) denote the set
consisting of all atoms of M . Following [15], we say that M is atomic if every non-
invertible element of M can be expressed as a sum of atoms. For b, c ∈ M , we say
that b divides c in M if there exists b′ ∈ M such that c = b + b′, in which case we
write b |M c. An element p ∈ M• is called a prime provided that for all b, c ∈ M ,
the fact that p |M b + c implies that either p |M b or p |M c. It is not hard to verify
that every prime is an atom. The converse does not hold in general; for instance, one
can readily check that N := {0} ∪ Z≥2 is an atomic monoid with A (N) = {2, 3} even
though N does not contain any primes. A monoid is called an atom-prime monoid or
an AP-monoid if every atom is prime.

In an atomic monoid, an element can be decomposed as a sum of atoms in multiple
ways, and to understand these multiple atomic decompositions, the notion of a factor-
ization plays a central role. Assume for the rest of this section that M is an atomic
monoid. We let Z(M) denote the free (commutative) monoid on A (M), that is, Z(M)
is the monoid consisting of all formal sums of atoms of M . Now for each x ∈ M , we let
Z(x) denote the set of all formal sums z := a1 + · · ·+ aℓ in the free monoid Z(M) with
a1, . . . , aℓ ∈ A (M) satisfying a1 + · · · + aℓ = x in M . We then call z a factorization

of x and ℓ the length of z. The monoid M is called a unique factorization monoid

(UFM ) if every nonzero element of M has a unique factorization, that is, |Z(x)| = 1
for all x ∈ M•. It is well known that a monoid is a UFM if and only if it is an atomic
AP-monoid. Following Anderson, Anderson, and Zafrullah [5] and Halter-Koch [29],
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we say that M is a finite factorization monoid (FFM ) if Z(x) is a finite set for all
x ∈ M•. Every UFM is clearly an FFM, and it follows from [18, Proposition 2.7.8]
that every finitely generated monoid is an FFM. We denote the length of z by |z|, and
then, for each x ∈ M , we set

L(x) := {|z| | z ∈ Z(x)}.

The set L(x) will play an important role in the coming sections. Following Zaks [33],
we say that M is a half-factorial monoid (HFM ) if any two factorizations of the the
same nonzero element of M have the same length, that is, |L(x)| = 1 for all x ∈ M•.
Note that every UFM is an HFM. Following [5] and [29], we say that M is a bounded

factorization monoid (BFM ) if L(x) is a finite set for all x ∈ M•. Observe that
every FFM is a BFM, and every HFM is a BFM. The bounded and finite factorization
properties were recently surveyed in [7] in the context of integral domains. A brief
introduction to factorization theory in commutative monoids can be found in [20],
while an extensive background material on factorization theory in both commutative
monoids and integral domains can be found in [18].

3. Primality

Let M be an atomic monoid that is not a group. The omega-primality of a ∈ A (M),
denoted by ω(a), is the smallest n ∈ N∪ {∞} such that the following condition holds:

if a |M
∑k

i=1 ai for some a1, . . . , ak ∈ A (M), then there exists S ⊆ J1, kK with |S| ≤ n
such that a |M

∑

i∈S ai. Observe that an atom a of M is prime if and only if ω(a) = 1.
Therefore we can think of the omega-primality of an atom as a measure of how far it
is from being a prime. The omega-primality of M is then defined as

ω(M) := sup{ω(a) | a ∈ A (M)}.

Therefore ω(M) = 1 if and only if every atom of M is prime, and so the omega-
primality of M measures how M is from being an AP-monoid or a UFM. We say
that M is an anti-prime monoid provided that ω(a) = ∞ for every a ∈ A (M); that
is, atoms in M are as far from being prime as they can possibly be. In particular, an
anti-prime monoid has infinite omega-primality.

It was proved in [13, Thereom 5.6] that for any rational q that is not an integer, if
N0[q] is atomic, then its omega-primality is infinite. As the following theorem indicates,
when N0[α] is atomic and α is an algebraic number in the interval (0, 1), the monoid
N0[α] is an anti-prime monoid and, in particular, has infinite omega-primality.

Theorem 3.1. Let α ∈ R>0 with 0 < α < 1 be an algebraic number such that the

monoid N0[α] is atomic. Then N0[α] is an anti-prime monoid.
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Proof. Let p(X) and q(X) be polynomials in N0[X ] with p(α) = q(α) such that
ord p(X) > 0 and ord q(X) = 0; for instance, we can take p(X) and q(X) to be
the polynomials in the minimal pair of α. Since α is a positive algebraic number
less than 1, it follows from [16, Theorem 4.1] that A (N0[α]) = {αn | n ∈ N0}. Set
M := N0[α] and, for each n ∈ N, we set

Mn := 〈αj | j ∈ N≥n〉.
Fix k ∈ N0. We will argue by induction that, for each n ∈ N0, there exists βn ∈ Mk+n

such that αk |M βn. For n = 0, we can take β0 = αk. Now suppose that for n ∈ N0,
there exists βn ∈ Mk+n with αk |M βn. Take m ∈ N0 such that βn = mαk+n + β ′

n+1

for some β ′
n+1 ∈ Mk+(n+1). Set βn+1 := mαk+nq(α) + β ′

n+1. Since mαk+nq(α) =
mαk+np(α) ∈ Mk+(n+1), it follows that βn+1 ∈ Mk+(n+1). In addition,

βn+1 = mαk+n(q(α)− 1) + (mαk+n + β ′
n+1) = mαk+n(q(α)− 1) + βn,

and so βn |M βn+1. Because αk |M βn, we obtain that αk |M βn+1, as desired.

Let us show now that ω(αk) = ∞ for every k ∈ N0. To do this, suppose, by way
of contradiction, that ω(αk) = K ∈ N for some k ∈ N0. Take N ∈ N large enough
so that KαN < αk. By the argument given in the previous paragraph, we can take
x ∈ MN such that αk |M x. Since x ∈ MN , we can write x = a1 + · · · + aℓ, where
a1, . . . , aℓ ∈ {αj | j ∈ N≥N}. It follows from αk |M x and ω(αk) = K that there exists
S ⊆ J1, ℓK with |S| ≤ K such that αk |M

∑

i∈S ai. However, this would imply that
αk ≤

∑

i∈S ai ≤ |S|αN ≤ KαN < αk, a contradiction. As a consequence, ω(αk) = ∞
for every k ∈ N0, from which we can conclude that N0[α] is an anti-prime monoid. �

Corollary 3.2. Let α ∈ R>0 with 0 < α < 1 be an algebraic number such that N0[α]
is atomic. Then ω(N0[α]) = ∞.

For an algebraic number α in the interval (0, 1) such that (N0[α],+) is atomic, we
have proved in Theorem 3.1 that every atom has infinite omega-primality. Even in the
context of additive submonoids of Q≥0, we can find examples of non-finitely generated
monoids whose omega-primality is finite. Our next example illustrates this observation.
The conductor c(M) of a Puiseux monoid M is defined by

c(M) := inf{r ∈ R≥0 ∪ {∞} | M≥r = gp(M)≥r}.

Example 3.3. Fix q ∈ (1, 2) ∩Q, and let Mq denote the Puiseux monoid 〈[1, q] ∩Q〉.
We can readily check that Mq is atomic with A (Mq) = [1, q] ∩Q. On the other hand,
it is not hard to verify that the conductor of Mq is finite. Moreover, if c := c(Mq), then
one can further argue that c ∈ N and

Mq = {0}
⋃

( c−1
⋃

k=1

[k, kq] ∩Q

)

⋃

(

[c,∞) ∩Q
)

,
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where kq < k+1 for every k ∈ J1, c−1K and cq ≥ c+1. Observe that these inequalities
guarantee that c = ⌈ 1

q−1
⌉.

We claim that ω(M) is finite. Proving this claim amounts to showing that the
identity ω(a) = c + ⌈a⌉ holds for all a ∈ A (Mq). Fix a ∈ A (Mq) and set n := ⌈a⌉
(note that n = 1 if a = 1, and n = 2 if a > 1). Then for any nonzero elements
q1, . . . , qc+n ∈ Mq, we have q1+ · · ·+qc+n ≥ c+n. This implies that a |Mq

q1+ · · ·+qc+n

because (q1+ · · ·+qc+n)−a ≥ c+(n−a) ≥ c. It follows that ω(a) ≤ c+n. To argue the
reverse inequality, first observe that c < 1+ 1

q−1
, which implies that (c−1)q+a < c+a.

On the other hand, the fact that nq > a implies (c−1)q+a

c+n−1
< q, and it is clear that

c+a
c+n−1

> 1. Then there exists an element b ∈ Mq such that

(c− 1)q + a

c + n− 1
< b <

c+ a

c+ n− 1
.

Consequently, (c−1)q < (c+n−1)b−a < c, so (c+n−1)b−a /∈ Mq. As a consequence,
a ∤Mq

(c+ n− 1)b. We then conclude from a |Mq
(c+ n)b that ω(a) = c+ n.

Based on Corollary 3.2 and [13, Theorem 5.6], we conclude this section with the
following conjecture.

Conjecture 3.4. Let α be a positive algebraic number such that N0[α] is atomic. Then

ω(N0[α]) < ∞ if and only if α ∈ N.

4. Elasticity

In this section we study the elasticity of the monoids N0[α] for positive algebraic
numbers α. First, let us formally define the notion of elasticity. Let M be an atomic
monoid. The elasticity of x ∈ M•, denoted by ρ(x), is defined as

ρ(x) :=
sup L(x)

min L(x)
.

In addition, we set ρ(M) := sup{ρ(x) | x ∈ M•} and call it the elasticity of M . Notice
that ρ(M) ∈ R≥1 ∪ {∞}. Furthermore, observe that ρ(M) = 1 if and only if M is an
HFM. As a result, the elasticity provides a measurement for how far an atomic monoid
is from being an HFM. The elasticity of M is called accepted if there is an element
x ∈ M• such that ρ(M) = ρ(x).

Theorem 4.1. [18, Theorem 3.1.4] Every reduced finitely generated monoid has ac-

cepted elasticity.
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It was proved in [16, Theorem 5.4] that for any positive algebraic number α, the
equality ρ(N0[α]) = 1 holds if and only if N0[α] is a UFM, which happens precisely
when the degree of the minimal polynomial of α equals |A (N0[α])|. This seems to be
the only fact known so far about the elasticity of the monoids N0[α]. In this section,
we offer some insights into the elasticity of the monoids N0[α].

Let us provide, for any positive algebraic number α, a necessary condition for the
elasticity of N0[α] to be finite.

Proposition 4.2. Let α ∈ R>0 be an algebraic number such that N0[α] is atomic.

Then ρ(N0[α]) < ∞ if and only if N0[α] is finitely generated.

Proof. It follows from [18, Proposition 2.7.8] that every finitely generated monoid is an
FFM and so a BFM. Therefore, if N0[α] is finitely generated, then ρ(β) < ∞ for all
β ∈ N0[α]

•. In particular, by Theorem 4.1, every reduced finitely generated monoid
has finite elasticity. Thus, the reverse implication follows.

For the direct implication, assume that N0[α] is not finitely generated. Then it
follows from [16, Theorem 4.1] that A (N0[α]) = {αn | n ∈ N0}. Since N0[α] is not
finitely generated, α /∈ N. We will construct a sequence (βn)n∈N with βn ∈ N0[α] for
every n ∈ N such that sup{ρ(βn) | n ∈ N)} = ∞. Let (p(X), q(X)) be the minimal
pair of α. Then z1 := p(α) and z2 := q(α) are two distinct factorizations of the same
nonzero element β1 ∈ N0[α] and have lengths p(1) and q(1), respectively. Since 1 is not
a root of the minimal polynomial of α, we see that p(1) 6= q(1), which means z1 and
z2 have different lengths. Without loss of generality, suppose that |z1| < |z2|. For each
n ∈ N, set βn = βn

1 . Then, for every n ∈ N, both p(α)n and q(α)n yield factorizations
of βn whose lengths are p(1)n and q(1)n, respectively. Therefore

(4.1) ρ(N0[α]) ≥ ρ(βn) =
sup L(βn)

min L(βn)
≥ q(1)n

p(1)n
=

(

q(1)

p(1)

)n

for every n ∈ N. Since q(1)/p(1) > 1, taking the limits of both sides of (4.1), we see
that ρ(N0[α]) = ∞, which concludes the proof. �

Corollary 4.3. Let α ∈ R>0 be an algebraic number such that α < 1. If N0[α] is
atomic, then ρ(N0[α]) = ∞.

Proof. Suppose that N0[α] is atomic. If α < 1, then 0 is a limit point of N0[α]
• and,

therefore, N0[α] cannot be finitely generated. Hence it follows from Proposition 4.2
that ρ(N0[α]) = ∞. �

In general, it seems significantly difficult to establish a general formula for the elas-
ticity of N0[α] when this monoid is finitely generated. However, when |A (N0[α])| =
degmα(X) + 1, we are able to provide a formula for the elasticity.
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Proposition 4.4. Let α be a positive algebraic number with minimal polynomial given

by mα(X) := Xn+
∑n−1

i=0 aiX
i, where a0, . . . , an−1 ∈ Z. Let (p(X), q(X)) be the minimal

pair of mα(X). If |A (N0[α])| = degmα(X) + 1, then

ρ(N0[α]) = max

{

p(1)

q(1)
,
q(1)

p(1)

}

.

Proof. Since |A (N0[α])| = degmα(X)+1, it follows from [16, Theorem 4.1] that N0[α]
is atomic with A (N0[α]) = {1, α, α2, . . . , αn}. Thus, N0[α] is finitely generated, and
so [18, Proposition 2.7.8] guarantees that N0[α] is an FFM. On the other hand, from
the condition |A (N0[α])| = degmα(X) + 1, we see that α 6= 1, which implies p(1) 6=
q(1). Without loss of generality, we can assume p(1) < q(1). Since N0[α] is finitely
generated, Theorem 4.1 allows us to choose two nonzero polynomials f, g ∈ N0[X ] with
max{deg f(X), deg g(X)} ≤ n and f(α) = g(α) such that

ρ(N0[α]) = max

{

f(1)

g(1)
,
g(1)

f(1)

}

< ∞,

where the last inequality follows from the fact that N0[α] is an FFM. Suppose, for a
contradiction, that f and g share a common term, namely Xk. Then the polynomials
f0(X) := f(X)−Xk and g0(X) := g(X)−Xk are both in N0[X ], and so f0(α) and g0(α),
seen as formal sums, give two factorizations of the same element of N0[α]. Therefore if
f(1) > g(1), then

ρ(N0[α]) ≥
f0(1)

g0(1)
=

f(1)− 1

g(1)− 1
>

f(1)

g(1)
,

which contradicts the selection of f and g. In a similar way, we can obtain a contra-
diction when g(1) > f(1). Thus, we conclude that f and g do not share any common
term.

Now we have mα(X) = p(X) − q(X) and f(X)− g(X) = cmα(X) for some c ∈ Z.
Interchanging the roles of f and g if necessary, we can assume that c ∈ N0. The
equality f(X) + cq(X) = g(X) + cp(X), along with the fact that f and g do not share
any common term, guarantees that f(X) = cp(X) and g(X) = cq(X). Observe that
c > 0 because f and g are nonzero. Finally,

ρ(N0[α]) = max

{

f(1)

g(1)
,
g(1)

f(1)

}

=
cq(1)

cp(1)
=

q(1)

p(1)
.

�

4.1. The Set of Elasticities. The set R(M) = {ρ(x) | x ∈ M•} is called the set

of elasticities of M . It turns out that if α > 1 is an algebraic number and is not an
algebraic integer, then R(N0[α]) is dense in R≥1.

Proposition 4.5. Let α be an algebraic number such that α > 1. If α is not an

algebraic integer, then N0[α] is densely elastic.
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Proof. Since α > 1, we see that 0 is not a limit point of N0[α], and so it follows from
[22, Proposition 4.5] that N0[α] is a BFM. In addition, it follows from [16, Theorem 4.1]
that A (N0[α]) = {αn | n ∈ N0}. Take β ∈ N0[α] to be a nonzero element, and set

ℓ := min L(β) and L := max L(β).

Let f(X) be a polynomial in N0[X ] such that f(α) = β, and take n ∈ N such that
n > deg f(X) and αn+1 > αn + β. Now set β ′ := β + αn ∈ N0[α].

We claim that the atom αn appears in every factorization of β ′. Suppose, by way
of contradiction, that this is not the case. Then there exists g(X) ∈ N0[X ] such that
n /∈ supp g(X) such that f(α) + αn = g(α). Observe that deg g(X) < n as otherwise
g(α) ≥ αdeg g(X) ≥ αn+1 > f(α) + αn. Since n > max{deg f(X), deg g(X)}, the
polynomial Xn + f(X)− g(X) ∈ Z[X ] is a monic polynomial of degree n having α as
a root. However, this contradicts that α is not an algebraic integer.

Since αn appears in every factorization of β ′, it follows that Z(β ′) = αn + Z(β) and,
consequently,

ρ(β ′) =
max L(β ′)

min L(β ′)
=

1 + max L(β)

1 + min L(β)
=

L+ 1

ℓ+ 1
.

By induction, we obtain that M+n
m+n

∈ R(N0[α]) for every n ∈ N. Finally, suppose that
(βm)m∈N is a sequence in N0[α] such that sup{ρ(βm) | m ∈ N} = ρ(N0[α]), and set
ℓm := min L(βm) and Lm := max L(βm). By virtue of [25, Lemma 5.6],

S :=

{

Lm + n

ℓm + n

∣

∣

∣

∣

m,n ∈ N

}

is dense in [1, ρ(N0[α])] (resp., in R≥1) if ρ(N0[α]) < ∞ (resp., ρ(N0[α]) = ∞). Since
S is a subset of R(N0[α]), the set R(N0[α]) is dense in R≥1 and, therefore, N0[α] is
densely elastic. �

Based on Proposition 4.5, we wonder whether the set of elasticities of N0[α] is dense
in R≥1 provided that N0[α] has infinite elasticity.

Question 4.6. Is R(N0[α]) dense in R≥1 provided that ρ(N0[α]) = ∞?

5. Rational Cyclic Semirings

The monoid M is called fully elastic if R(M) is an interval in the poset Q∪{∞}. We
proceed to prove that if q ∈ Q>1, then the monoid N0[q] is fully elastic. This answers
a conjecture posed by Chapman et al. [13, Conjecture 4.8] (see [23, Conjecture 4.11]
for another recent conjecture related to the atomicity of N0[q]).

Theorem 5.1. For any q ∈ Q>1, the monoid N0[q] is fully elastic.
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Proof. Fix q ∈ Q>1. If q ∈ N, then N0[q] = N0 is a UFM, and so it is trivially fully
elastic. Then we assume that q /∈ N. Write q = a/b for some a, b ∈ N with gcd(a, b) = 1.
If a = b + 1, then N0[q] is fully elastic by [13, Proposition 4.4]. Thus, we assume that
a− b > 1.

To argue that N0[q] is fully elastic, fix a rational number s/t, where s, t ∈ N such
that s > t ≥ 1 and gcd(s, t) = 1.

Claim: If there exists β ∈ N0[q] such that ℓ := min L(β) and L := max L(β) satisfy
that s− t |N tL− sℓ, then there exists β ′ ∈ N0[q] such that ρ(β ′) = s/t.

Proof of Claim: Fix β ∈ N0[q], and set ℓ := min L(β) and L := max L(β). Now suppose
that s− t |N tL− sℓ. Since b ≥ 2, the rational q is not an algebraic integer, and so we
can proceed as we did in the proof of Proposition 4.5 to verify that

(5.1) S :=

{

L+ c

ℓ+ c

∣

∣

∣

∣

c ∈ N

}

⊆ R(N0[q]).

Since s − t |N tL − sℓ, we can take c ∈ N such that tL − sℓ = c(s − t) and, from this
equality, we obtain that

s

t
=

L+ c

ℓ+ c
∈ S.

Therefore, by virtue of (5.1), there exists β ′ ∈ N0[q] such that ρ(β ′) = s/t, from which
the claim follows.

Now for each k ∈ N, set ℓk := min L(ak) and Lk = max L(ak). Since qk ∈ A (N0[q]),
we see that ℓk = min L(bkqk) ≤ bk. Similarly, 1 ∈ A (N0[q]) ensures that Lk ≥ ak.
As a result, if we take N ∈ N such that qN > s/t, then we obtain that tLk − sℓk ≥
tak − sbk ≥ 1 for every k ≥ N . Now let rk denote the integer in J0, s− t− 1K such that

rk ≡ tLk − sℓk (mod s− t).

Now fix k ∈ N. Since 1 = minA (N0[q]), we can easily see that ak · 1 is the only
maximum-length factorization of ak in N0[q]. Suppose now that

zk :=

mk
∑

i=j

niq
i ∈ Z(ak)

is a minimum-length factorization of ak, where j ∈ N0 and nj 6= 0. Observe that j ≥ k
as, otherwise, the equality

ak−jbmk = njb
mk−j +

mk
∑

i=j+1

nia
i−jbmk−i

would imply that a |N nj and, after replacing aqj by bqj+1, we would obtain another
factorization z′ in Z(ak) with |z′| < |z|. This observation, along with [13, Lemma 3.2],
allows us to write z =

∑mk

i=k niq
i for some nk, . . . , nmk

∈ J0, a − 1K. Now take r ∈
J0, s − t − 1K such that rk = r for infinitely many k ∈ N. Then pick the sub-indices
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k1, . . . , ks−t as follows. First, take k1 ≥ N with rk1 = r. Once kj has been chosen, take
kj+1 > mkj with rkj+1

= r.

Now consider the element x = ak1 + · · · + aks−t , and set ℓx := min L(x) and Lx :=
max L(x). It is clear that Lx = Lk1 + · · · + Lks−t

. We proceed to show that the

identity ℓx = ℓk1 + · · · + ℓks−t
also holds. For j ∈ J1, s − tK, let

∑mkj

i=kj
n
(j)
i qi be the

minimum-length factorization of akj , where n
(j)
i ∈ J0, a − 1K for every i ∈ Jkj , mkjK.

Since x = ak1 + · · ·+ aks−t ,

(5.2)

s−t
∑

j=1

mkj
∑

i=kj

n
(j)
i qi ∈ Z(x).

Notice that from our construction we have

Jk1, mk1K ≺ Jk2, mk2K ≺ · · · ≺ Jks−t, mks−t
K,

where for any two subsets S and T of R, we write S ≺ T when s < t for all s ∈ S and
t ∈ T . Thus, in the factorization of x show in (5.2), for different ordered pairs (i, j)

and (i′, j′), the coefficients n
(j)
i and n

(j′)
i′ correspond to different atoms, and all of the

coefficients n
(j)
i lay in the interval J0, a− 1K. It follows now from [13, Lemma 3.2] that

x =
∑s−t

j=1

∑mkj

i=kj
n
(j)
i qi is the minimal factorization of x, hence,

ℓx =

s−t
∑

j=1

mkj
∑

i=kj

n
(j)
i = ℓk1 + · · ·+ ℓks−t

,

as desired. Therefore

tLx − sℓx = t
s−t
∑

j=1

Lkj − s
s−t
∑

j=1

ℓkj =
s−t
∑

j=1

(tLkj − sℓkj)

≡
s−t
∑

j=1

rj ≡ (s− t)r ≡ 0 (mod s− t).

Since ℓx := min L(x) and Lx := max L(x), the fact that s − t |N tLx − sℓx, along with
the previous claim, guarantees the existence of x′ ∈ N0[q] such that ρ(x′) = s/t. Hence
N0[q] is fully elastic. �
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