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Abstract

Birget, Margolis, Meakin and Weil proved that a finitely generated subgroupK of a free group
is pure if and only if the transition monoid M(K) of its Stallings automaton is aperiodic. In
this paper, we establish further connections between algebraic properties of K and algebraic
properties of M(K). We mainly focus on the cases where M(K) belongs to the pseudovariety
of finite monoids all of whose subgroups lie in a given pseudovariety of finite groups. We also
discuss normal, malnormal and cyclonormal subgroups of FA using the transition monoid of
the corresponding Stallings automaton.
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1 Introduction

With the purpose of finding efficient methods to tackle problems involving subgroups of
free groups, John Stallings [23] presented in a paper of 1983 a revolutionary approach. He
developed a way of associating with each finitely generated subgroup of a free group a finite
labeled graph, under the formalism of graph immersions. These graphs became known as
Stallings automata and constitute a most powerful tool for studying finitely generated
subgroups (“f.g. subgroups” for short) of a free group.

Some years later, Alexei Miasnikov and Ilya Kapovich gave Stallings’ construction a more
combinatorial flavor and collected numerous group-theoretic properties of f.g. subgroups of
free groups based on combinatorial properties of their Stallings automata [11]. Besides being
a very elegant theory, this approach displayed great benefits from an algorithmic viewpoint.
For a list of applications of Stallings automata, see [4].

Furthermore, the paper [3] written by Birget, Margolis, Meakin and Weil unveiled a new
way of characterizing properties of a finitely generated subgroup K of a free group, this time
by looking at algebraic properties of its Stallings automaton S(K), namely its transition
monoid M(K). In this article, the authors prove that the condition of a f.g. subgroup K of
a free group being pure (respectively, p-pure) is equivalent to the condition of M(K) being
aperiodic (respectively, p-periodic). Clearly, there are important instances of pseudovarieties
of monoids involved in this result.
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Indeed, finite automata and finite monoids are deeply related and constitute important
objects not only in mathematics but also in computer science. Moreover, pseudovarieties
and varieties contribute greatly to the classification of finite monoids and rational languages.
Hence, given a f.g. subgroup K of a free group, there is a strong motivation to find further
pseudovarietal properties of M(K) (other than being aperiodic or p-periodic) that correspond
to algebraic properties of K (as a subgroup of the ambient free group). More concretely, let
A be a finite alphabet and let K ≤f.g. FA be a finitely generated subgroup of the free group
FA over A. For what pseudovarieties of monoids V can we guarantee that M(K) ∈ V implies
M(Kϕ) ∈ V for every automorphism ϕ of FA? We say that such pseudovarieties are stable
under every automorphism of FA. And what do those “well-behaved” pseudovarieties
tell us about K itself?

Our main results concern pseudovarieties of a certain type that satisfy the previous
property and some characterizations of the subgroups involved. Given a pseudovariety of
groups H, we denote by H the pseudovariety of monoids all of whose subgroups lie in H.
In Theorem 5.5, we prove that if H is a pseudovariety of groups, then the pseudovariety
of monoids H is stable under all automorphisms of FA. Observe that the pseudovariety
of aperiodic monoids is precisely the pseudovariety of monoids all of whose subgroups are
trivial, that is, A = I. Let S = (kn)n≥1 be a sequence of positive integers and denote by
VS the pseudovariety of finite groups ultimately defined by the sequence (xkn = 1)n. In
Theorem 5.6, it is shown that M(K) ∈ VS if and only if there exists p ≥ 1 such that for all
x ∈ FA, n ≥ 1 and m ≥ p we have xn ∈ K ⇒ x(n,km) ∈ K.

Furthermore, inspired by the characterizations of normal, malnormal and cyclonormal
subgroups in terms of their Stallings automata presented in [11], we were also motivated to
discuss these conjugacy conditions by inspecting the structure of the transition monoids of
Stallings automata. More precisely, let Q be the vertex set of the automaton S(K) and,
given u ∈ (A ∪ A−1)∗, denote by δu the partial transformation over Q mapping a vertex
q ∈ Q to the vertex reached after reading u from q in S(K), whenever that is possible. In
Theorem 6.6, we prove that a nontrivial subgroup K ≤f.g. FA is normal in FA if and only
if M(K) is a group of size |Q|. Moreover, let RA be the set of all reduced words over the
alphabet A∪A−1, and let E = {δu ∈M(K) | δu = δ2

u, u ∈ RA\{1}}. Consider the restriction
of the natural partial order on M(K) to E, and let k be the size of a maximal chain on E.
In Theorem 6.9, we prove that a nontrivial subgroup K <f.g. FA is malnormal if and only if
k = 2 and |E| = |Q|+ 1.

This paper is organized as follows. In Section 2, we present some background concepts
needed for the upcoming sections. In Section 3, we include some results regarding the
structure of the automorphism group of a free group, as well as the effect of automorphisms
at the level of Stallings automata. We briefly explore what happens when the transition
monoid of a Stallings automaton is a group in Section 4. In Section 5, we state our most
important results regarding pseudovarieties that are stable under every automorphism of a
free group. Finally, in Section 6, we discuss normal, malnormal and cyclonormal subgroups
of FA using the transition monoid of the Stallings automaton. We end with some comments
regarding future directions of work.

2 Preliminaries

2.1 Free groups

Let A be a finite alphabet. We denote by A∗ the free monoid over A, by A−1 the set of
formal inverses of the letters in A, and we write Ã = A ∪A−1.

By successively erasing factors of the type aa−1(a ∈ Ã) from a word w ∈ Ã∗, we arrive
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at the unique reduced word w without factors of this kind. We can then consider the
congruence τA ⊆ Ã

∗ × Ã∗ given by

(u, v) ∈ τA ⇔ u = v.

Finally, we define FA = {uτA | u ∈ Ã∗} which, when endowed with the binary operation
(uτA)(vτA) = (uv)τA, becomes the free group over A.

When no confusion arises, we write u or even u instead of uτA; in particular, we consider
Ã as a subset of FA. Moreover, given a subgroup K ≤ FA, we write K to designate the set
of all reduced words in Ã∗ representing the elements of K.

2.2 Finite automata and rational languages

Let A be a finite alphabet. A language over A (or A-language) is a subset of A∗. We can
combine A-languages using the so-called rational operators: union, product and star. The
star operator applied to a language L yields the language

L∗ = {u1 . . . un | n ≥ 0;u1, . . . , un ∈ L} =
⋃

n≥0

Ln,

under the convention L0 = {1}, where 1 denotes the empty word.
Consider the congruence ∼L on A∗ given by

u ∼L v if ∀x, y ∈ A∗ (xuy ∈ L⇔ xvy ∈ L).

We define the syntactic monoid of L to be Synt(L) = A∗/∼L.
An A-language is called rational if it can be obtained from finite A-languages using the

rational operators finitely many times, which is the same as saying that it admits a rational
expression.

A finite automaton over A, also called an A-automaton, is a structure of the type
A = (Q,A,E, I, T ), where:

• Q is a finite set, called the set of vertices or states;

• E ⊆ Q×A×Q is the (finite) set of edges or transitions;

• I, T ⊆ Q are the sets of initial and terminal states, respectively.

When it is possible to read every letter of A from any vertex in Q, we say that A is a
complete automaton. The underlying graph of A is the directed labeled graph obtained
from A by ignoring the designation of vertices as initial or terminal; we denote it by ΓA.

A path in an automaton A = (Q,A,E, I, T ) is a sequence of the type

(p0, a1, p1)(p1, a2, p2) · · · (pn−1, an, pn)

where n ≥ 0, pi ∈ Q (0 ≤ i ≤ n) and (pi−1, ai, pi) ∈ E (1 ≤ i ≤ n). We represent it by

p0 p1 · · · pn
a1 // a2 // an // .

We call p1, . . . , pn−1 the intermediate vertices of the path. If n > 0, the label of such a path
is the word u = a1a2 . . . an ∈ A

∗; if n = 0, we get the trivial path at p0 and its label is the
empty word 1 ∈ A∗. If there exists a path between vertices p, q ∈ Q labeled by u ∈ A∗, we

represent it by p
u // q ; and when p = q, we say that u labels a loop at p.

A path p0
a1−−→ p1

a2−−→ · · ·
an−−→ pn in A is called successful if p0 ∈ I and pn ∈ T . We

define the language recognized by A as

L(A) = {u ∈ A∗ | u is the label of a successful path in A}.

The following result is well known (for a proof, see [14, Chapter 5, Theorem 5.2.1]) and
establishes a connection between finite automata and rational languages.

3



Theorem 2.1 (Kleene’s Theorem). Let A be a finite alphabet and L ⊆ A∗. Then there exists
a finite automaton A satisfying L(A) = L if and only if L is a rational language.

We call an automaton A = (Q,A,E, I, T ) deterministic if it has a unique initial state
and

(p, a, q), (p, a, r) ∈ E ⇒ q = r

for all p, q, r ∈ Q and a ∈ A. When A is deterministic, we define a partial function δ on
Q×A by

(p, a)δ = q ⇔ (p, a, q) ∈ E

for all p, q ∈ Q and a ∈ A. We call it the transition function of A and we often write
A = (Q,A, δ, q0, T ) instead ofA = (Q,A,E, q0, T ) when dealing with deterministic automata.
We denote by 0 the empty transformation, that is, the partial transformation whose domain
is the empty set ∅.

We can extend δ to Q×A∗ by letting (q, u)δ be the state reached after reading the word
u ∈ A∗ from q ∈ Q by following the labels on the edges (whenever that is possible). When
no confusion arises, we write q · u instead of (q, u)δ.

Given u ∈ A∗, we further define δu : Q→ Q by qδu = q ·u. Denoting by PT Q the monoid
of all partial transformations on Q, it is easy to check that the map

∆: A∗ −→ PT Q

u 7−→ δu

is a monoid homomorphism; hence, the image of ∆ is a submonoid of PT Q. We call it the
transition monoid of A and denote it by M(A).

Given an automaton A = (Q,A,E, I, T ), a subset P ⊆ Q and a word u ∈ A∗, we define

Pu = {q ∈ Q | there exists a path p
u // q in A for some p ∈ P}.

A vertex q ∈ Q is called accessible if there exists u ∈ A∗ such that q ∈ Iu and co-accessible
if qu ∈ T for some u ∈ A∗. Clearly, eliminating vertices which are not acessible and vertices
which are not co-accessible does not change the language recognized by the automaton.
When all vertices are both accessible and co-accessible, the automaton is said to be trim.

An automaton A = (Q, Ã,E, I, T ) is called involutive if, for all p, q ∈ Q and a ∈ A, we
have

(p, a, q) ∈ E ⇔ (q, a−1, p) ∈ E.

These pairs of edges are considered inverses of each other, and an edge labeled by a letter
in A (respectively, in A−1) is said to be positive (respectively, negative). When we know
beforehand that a certain automaton is involutive, we only draw the positive edges; the
negative ones are like “ghost” edges that we visualize only in our heads. Moreover, we
denote by E+ ⊆ E and E− ⊆ E the subsets of positive and negative edges, in that order.

Let A be an involutive automaton over A and let w = a1a2 . . . ak ∈ Ã
∗, with ai ∈ Ã for

1 ≤ i ≤ k. Suppose that w labels a path

p0
a1 // p1

a2 // . . .
ak // pk

in A. We say that the path labeled by w is reduced if it does not contain any consecutive
edges of the form

pi−1
ai // pi

a−1

i // pi−1

for 1 ≤ i ≤ k.
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An inverse automaton is an involutive, deterministic and trim automaton with a unique
terminal state. It is folklore that the transition monoid M(A) of an inverse automaton
A is an inverse monoid, i.e., for every x ∈ M(A), there exists a unique x−1 ∈ M(A)
satisfying xx−1x = x and x−1xx−1 = x−1. Moreover, since an inverse automaton is a minimal
automaton [2], it follows that the transition monoid of an inverse automaton A is isomorphic
to the syntactic monoid of the language recognized by A, that is, M(A) ∼= Synt(L(A)) [20].
For more details regarding rational languages and automata, the reader is referred to [6, 20].

Inverse monoids, being the transition monoids of inverse automata, will play an important
role in what follows, so we end this section by presenting some equivalence relations R, L,
H and D, known as Green’s relations [8], which are useful to analyze the structure of an
inverse monoid.

Let M be an inverse monoid and x, y ∈M . We say that x and y are:

• R-related if xx−1 = yy−1;

• L-related if x−1x = y−1y;

• H-related if xx−1 = yy−1 and x−1x = y−1y;

• D-related if there exists z ∈M such that x R z and z L y.

If K is one of Green’s relations, we write xK y to indicate that x and y are K-related,
i.e., belong to the same K-class. A monoid M is called K-trivial if all of its K-classes are
singletons. For more details regarding Green’s relations and the structure of inverse monoids,
the reader is referred to [10, 19].

2.3 Stallings’ construction

Let FA be a free group over a finite alphabet A. Let K = 〈u1, . . . , uk〉 ≤ FA be a finitely
generated subgroup of FA, where each generator ui is seen as a (nonempty) reduced word in
Ã∗. The notation ≤f.g. will be often used to indicate that a subgroup is finitely generated.
We begin by constructing the so-called flower automaton F(u1, . . . , uk) of K by fixing
a point q0, called the basepoint of the automaton, and gluing to it k “petals” labeled by
each of the ui, as well as the corresponding inverse edges, in order to obtain an involutive
automaton over Ã:

q0

u2

uk

u1

We declare q0 to be the unique initial state and the unique terminal state of the flower
automaton. To turn this into an inverse automaton, whenever we encounter a pair of distinct

edges p
a // q and p

a // r for some a ∈ Ã, we identify them, and we also identify the
corresponding inverse edges (so q and r collapse into a single vertex if they are distinct).
These identifications are known as Stallings foldings, and they are successively applied
until we reach a deterministic automaton. The inverse automaton thus obtained is called a
Stallings automaton of K.

Proposition 2.2. Let FA be a free group of finite rank and let K ≤f.g. FA. Then the
language recognized by any Stallings automaton of K is the intersection of all languages
L ⊆ Ã∗ containing K which are recognized by a finite inverse automaton with a basepoint.
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This result is proven in [2]. It allows us to conclude that any two Stallings automata of
K are isomorphic, so we can speak of the Stallings automaton of K, denoting it by S(K).
In other words, S(K) does not depend on the generating set of K nor on the order in which
the foldings are made. However, S(K) depends on the basis A of the free group we are
considering.

We illustrate Stallings’ construction with an example.

Example 2.3. Let A = {a, b, c} and K = 〈c, ba−1c−1, aca−1〉 ≤ FA. Then the flower
automaton F(c, ba−1c−1, aca−1) is depicted by

q0• •

• •

a //

c

��
a

��❄
❄❄

❄❄
❄❄

❄❄
boo

c

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

a

OO

c

��

After folding the two blue edges labeled by a and the green and red edges labeled by c, we
obtain the automaton

q0• •a //a,boo

c

��

c

��

It remains to fold the edges labeled by a, so S(K) is given by

q0 •
a,b //

c

��

c

��

The next result follows from the proof of Proposition 2.2, and it allows us to conclude
that the generalized word problem for finitely generated free groups is decidable (for
details, see [2]).

Proposition 2.4. Let K ≤f.g. FA. Then L(S(K)) = K and u ∈ FA belongs to K if and
only if u ∈ L(S(K)).

2.4 Pseudovarieties

A pseudovariety of (finite) monoids is a class of (finite) monoids V closed under taking
submonoids, homomorphic images and (finitary) direct products. This means that:

(i) For all M ∈ V, if N ≤M , then N ∈ V.

(ii) For all M ∈ V, if ϕ : M → N is an onto monoid homomorphism, then N ∈ V.

(iii) For all M,N ∈ V, M ×N ∈ V.

There is yet another way to describe pseudovarieties of monoids, according to the “equa-
tions” they satisfy. Given a set of variables A, a monoid identity on A is an element
(u, v) ∈ A∗×A∗, which we usually indicate by a formal equality u = v. We say that a monoid
M satisfies the identity u = v if uϕ = vϕ for every monoid homomorphism ϕ : A∗ → M .
In that case, we write M |= u = v. Informally, this means that we obtain a true equality
when we replace the variables of A by arbitrary elements of M in the identity u = v. If
(un = vn)n is a sequence of monoid identities, we say that M ultimately satisfies that
sequence of identities if there exists some p ≥ 1 such that M |= un = vn for every n ≥ p. If
C is the class of monoids ultimately satisfying the sequence of identities (un = vn)n, we say
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that C is ultimately defined by (un = vn)n. The next result provides a characterization of
pseudovarieties of monoids in terms of monoid identities, and a proof can be found in [7].

Theorem 2.5 (Eilenberg and Schützenberger). A class of finite monoids V is a pseudovari-
ety of monoids if and only if V is ultimately defined by a sequence of identities (un = vn)n.

We now introduce a notation that will be useful to simplify the writing of monoid
identities. Given a monoid M , we denote by E(M) the set of idempotents of M , i.e.
E(M) = {x ∈ M | x2 = x}. Observe that in a finite monoid there exists k ≥ 1 such that
xk ∈ E(M) for all x ∈ M ; we call k an exponent of M . If n denotes the least common
multiple of the numbers 1, 2, . . . , n, then xn is the unique idempotent power of x whenever
n ≥ k, for some exponent k of M . Following a convention of Schützenberger, in a pseudova-
riety defined by the identities (un = vn)n, we agree to replace every occurrence of n by the
symbol ω. If Σ is a set of monoid identities (which may feature the ω symbol), we denote by
JΣK the pseudovariety of monoids satisfying all the identities in Σ.

Example 2.6. Let G, Com, Sl and A denote the pseudovarieties of all finite groups,
commutative monoids, semilattices and aperiodic monoids, respectively. Then:

(i) G = Jxω = 1K

(ii) Com = Jxy = yxK

(iii) Sl = Jx2 = x, xy = yxK

(iv) A = Jxω+1 = xωK

As in the case of monoids, a pseudovariety of finite groups is a class of (finite)
groups closed under taking subgroups, homomorphic images and (finitary) direct products.
Equivalently, it is a pseudovariety of monoids whose elements are groups.

Given a pseudovariety of groups H, we denote by H the pseudovariety of finite monoids
all of whose subgroups lie in the pseudovariety of groups H. As the group H-classes of a
monoid are precisely its maximal subgroups and pseudovarieties of groups are closed under
taking subgroups, we can also say that H is the pseudovariety of monoids all of whose group
H-classes belong to H. Pseudovarieties of this kind will play a major role in this paper. For
more details concerning pseudovarieties of monoids, the reader is refered to [1, 20].

3 Free group automorphisms

We now discuss the automorphism group of a free group, that is, the group Aut(FA) whose
elements are the automorphisms of FA, for some finite alphabet A. Observe that an auto-
morphism in Aut(FA) maps any basis of FA to another basis of FA, and it is completely
determined by the images of the elements of a basis. The next result exhibits a finite gener-
ating set of Aut(FA).

Theorem 3.1. Let A be a finite alphabet with at least two elements and FA the free group
over A. The automorphisms of the form

αa : FA −→ FA

a 7−→ a−1

x 7−→ x (x ∈ A \ {a})

βab : FA −→ FA

a 7−→ ab

x 7−→ x (x ∈ A \ {a}),

with a, b ∈ A distinct letters, generate Aut(FA) as a group.
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A proof can be found in [15, Proposition 4.1], and it was Nielsen [18] who first presented
a set of generators of Aut(FA) very similar to the one above. For that reason, we designate
such automorphisms by elementary Nielsen automorphisms. Moreover, we call αa an
automorphism of type 1 and βab, β

−1
ab automorphisms of type 2. Note that β−1

ab is the
automorphism whose restriction to A consists of replacing a by ab−1 and fixing all other
letters of A. Such a manageable generating set of Aut(FA) will be absolutely crucial to
derive our most important results.

We now investigate the effect of applying an automorphism of FA to a f.g. subgroup
K ≤f.g. FA at the level of its Stallings automaton S(K). A fact that will sometimes be

useful is that any automorphism ϕ ∈ Aut(FA) induces a mapping A → Ã∗, a 7→ aϕ, which
can be uniquely extended to a free monoid endomorphism φ : Ã∗ → Ã∗.

Proposition 3.2. Let S(K) = (Q,A, δ, q0) be the Stallings automaton of K ≤f.g. FA and let

ϕ ∈ Aut(FA). Denote by φ : Ã∗ → Ã∗ the monoid homomorphism induced by ϕ. Then S(Kϕ)
is (isomorphic to) the inverse automaton obtained from S(K) by the following procedure:

1. For every edge q
a
−→ q′ in S(K), let aφ = a1a2 . . . ak (k ≥ 1, ai ∈ Ã) be the factorization

of the word aφ into letters. Then replace that edge by the sequence of edges

q = p0
a1−−→ p1

a2−−→ . . .
ak−−→ pk = q′,

where p1, . . . , pk−1 are new vertices, and add the corresponding inverse edges.

2. After completing all the edge replacements mentioned above, apply the necessary fol-
dings in order to get an inverse automaton.

3. Successively eliminate every vertex with outdegree 1 which is not the basepoint.

Proof. Let A be the automaton we obtain after following step 1; A′ the automaton we get
by the end of step 2; and A′′ the final automaton.

Since A′′ is inverse and the only vertex which may have outdegree 1 is the basepoint, we
know that it is the Stallings automaton of some finitely generated subgroup of FA. Thus, we
only need to show that Kϕ = L(A′′), in view of Proposition 2.4. We start by observing that
L(A′′) = L(A′) = L(A). Indeed, regarding the latter equality, given u ∈ L(A′), we know
that u labels a successful path in A′ which can be lifted to a successful path in A labeled by
a word v obtained by inserting factors of the form aa−1 (a ∈ Ã) into u. Hence, u = v ∈ L(A)
and L(A′) ⊆ L(A). On the other hand, since the inverse automaton A′ is obtained from A
by simply folding edges, it is clear that L(A) ⊆ L(A′), so L(A) ⊆ L(A′). As for the first
equality, since A′′ is a subautomaton of A′, we have L(A′′) ⊆ L(A′), and any word accepted
by A′ gives rise to a word accepted by A′′ by deleting some factors of the form aa−1 (a ∈ Ã).
Therefore, L(A′) ⊆ L(A′′) and the chain of equalities follows.

Now, given u ∈ Kϕ, there exists v = v1v2 . . . vk ∈ K, with vi ∈ Ã for 1 ≤ i ≤ k, such
that u = vφ. We know that v labels a path

q0
v1−−→ q1

v2−−→ · · ·
vk−−→ qk = q0

in S(K) so, by step 1, we get a successful path

q0
v1φ−−→ q1

v2φ−−→ · · ·
vkφ−−−→ qk = q0

in A. We deduce that vφ ∈ L(A), which entails u = vφ ∈ L(A). Hence, Kϕ ⊆ L(A).
As for the opposite inclusion, given u = u1u2 . . . uk ∈ L(A), with ui ∈ Ã for 1 ≤ i ≤ k,

we have a path
q0

u1−−→ q1
u2−−→ · · ·

uk−−→ qk = q0

8



in A, which can be modified to yield a reduced path q0
w
−−→ q0 in A. By doing that, we

get u = w, and there exists a successful path q0
v
−→ q0 in S(K) for some v ∈ Ã∗ satisfying

w = vφ. Therefore, we obtain w ∈ L(S(K))φ, which implies that u = w ∈ L(S(K))φ = Kϕ,
concluding the proof.

We begin by analyzing the effect of an automorphism of type 1 at the level of Stallings
automata. The following lemma is just a trivial observation.

Lemma 3.3. Let K ≤f.g. FA. Then M(Kαa) = M(K) for all a ∈ A.

Given a class of monoids C and ϕ ∈ Aut(FA), we say that C is stable under ϕ if the
condition

M(K) ∈ C ⇒M(Kϕ) ∈ C

holds for all K ≤f.g. FA.
The next lemma contains two other simple remarks.

Lemma 3.4. Let C be any class of monoids.

(i) If C is stable under all automorphisms of types 1 and 2, then C is stable under all
automorphisms of FA.

(ii) If M(Kϕ) = M(K) holds for all automorphisms ϕ of type 1 and 2, then it holds for
all automorphisms of FA.

Given K ≤f.g. FA, let S(K) = (Q,A, δ, q0) be the Stallings automaton of K. We proceed
by analyzing the effect of an automorphism of type 2 on S(K). Out of convenience, we paint
the vertices in Q red.

Let a, b ∈ A be two distinct letters, and write β = βab. When no confusion arises, we will
always write β instead of βab. Consider the automaton B obtained from S(K) by replacing

each edge q
a
−−→ q′ (and its inverse) with q

a
−−→ r

b
−−→ q′ (and their inverses), where r 6∈ Q is

a new vertex which we paint blue. This way, B becomes an involutive automaton. Observe
that, by doing this, B is not necessarily deterministic, as we may encounter something like

•
b // • •

boo .

In fact, ambiguity only arises in these cases, which appear if and only if we find

•
a // • •

boo

in S(K). After we perform all the foldings in B and delete all the vertices with outdegree 1
which are not the basepoint, we get an inverse automaton which is (isomorphic to) S(Kβ),
in view of Proposition 3.2.

An important observation is that by doing only “first order” foldings, i.e., by replacing
each ocurrence of

q
a // •

b // q′ q′′boo

in B with

q
a // q′′ b // q′ ,

we already get a deterministic automaton. For a proof, see [9].
Alternatively, consider the involutive automaton S(K)β = (Qβ , A, θ, q0) obtained from

S(K) by doing the following:

1. We keep all (positive) edges with label x ∈ A \ {a}.

9



2. If q
a
−−→ q′ b

←−− q′′ appears in S(K), we replace q
a
−−→ q′ with q

a
−−→ q′′.

3. If q
a
−−→ q′ appears in S(K), but it is not possible to read b−1 from q′, then we replace

that edge with q
a
−−→ r

b
−−→ q′, where r 6∈ Q is a new vertex.

Note that Q ⊆ Qβ and S(K)β is isomorphic to the automaton we get after performing
all “first order” foldings in B, and hence it is an inverse automaton since no “second order”
foldings are required. We keep considering that the vertices in Q are painted red, and the
ones in Qβ \ Q are painted blue. It follows that S(Kβ) = (Q′, A, γ, q0) is the (inverse)
automaton we obtain from S(K)β by deleting all vertices with outdegree 1 which are not the
basepoint.

Observe that S(Kβ−1) can be obtained by a similar procedure. In this case, the notation
we use is S(K)β

−1

= (Qβ
−1

, A, θ′, q0).

Example 3.5. Let A = {a, b, c} and let K ≤f.g. FA be given by

S(K) : 1 2 3

456

//oo aoo coo

b

��
a

//
b

oo

a

��
cee

The automaton B described above is obtained by replacing every edge i
a
−→ j with a pair

of edges i
a
−→ k

b
−→ j, as we depict below.

B : 1 7 2 3

4

856

9

//oo

a

��

b

��

coo

b

��

a
//

b

??⑧⑧⑧⑧⑧⑧⑧⑧⑧

b
oo

boo aoo

cee

After performing all the “first order” foldings in B, we obtain an automaton isomorphic to
S(K)β, which is also achieved by making the following substitutions in S(K): replace the

edge 2
a
−→ 1 with 2

a
−→ 7

b
−→ 1; replace the edge 5

a
−→ 4 with 5

a
−→ 3; and replace the edge

1
a
−→ 6 with 1

a
−→ 5.

S(K)β : 1 7 2 3 4

5

6

//oo

a

$$❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏
coo b //

a

::ttttttttttttt

b

��

boo aoo cee

Finally, the Stallings automaton of Kβ ≤f.g. FA is achieved by deleting vertex 6 in S(K)β,
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because it has outdegree 1 and it is not the basepoint.

S(Kβ) : 1 7 2 3 4

5

//oo

a

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
coo b //

a

::ttttttttttttt

boo aoo cee

We now present some examples of pseudovarieties of monoids that do not satisfy the
property of being stable under all automorphisms of a free group.

Let Sl, R, L, Com and CR be the pseudovarieties of semilattices, R-trivial, L-trivial,
commutative and completely regular monoids, in that order. Let A = {a, b}, β = βab ∈
Aut(FA) and K = 〈a〉 ≤ FA be the subgroup of FA generated by a ∈ FA. Then the
automata S(K) = ({q0}, {a, b}, δ, q0) and S(Kβ) = ({q0, q1}, {a, b}, γ, q0) are depicted by

S(K) : q0//oo

a

��

S(Kβ) : q0 q1//oo
a

**

b

jj

We have the following:

• M(Kβ) 6∈ Sl, for γa is not an idempotent; however, M(K) ∈ Sl.

• M(Kβ) 6∈ Com, since γaγb 6= γbγa, but M(K) ∈ Com.

• M(Kβ) 6∈ CR = Jxω+1 = xK, since γωa = 0 6= γa; in contrast, M(K) ∈ CR.

These observations allow us to conclude that the pseudovarieties Sl (and, consequently, R
and L, since every R-trivial or L-trivial inverse monoid is a semilattice), Com and CR are
not stable under β ∈ Aut(FA).

Moreover, despite the fact that the pseudovariety A = Jxω+1 = xωK of aperiodic monoids
is stable under all automorphisms of FA, the pseudovariety An = Jxn+1 = xnK is not, for
any n ≥ 1. In fact, if ξ ∈ Aut(FA) is the automorphism given by

ξ : FA −→ FA

a 7−→ abn

b 7−→ b,

then M(Kξ) 6∈ An. To see why, observe that S(Kξ) = ({q0, . . . , qn}, {a, b}, θ, q0) can be
depicted by

S(Kξ) : q0 q1 . . . qn−1 qn//oo a // b // b // b //

b

kk

So θn+1
b 6= θnb , which shows that M(Kξ) 6∈ An, even though M(K) ∈ An.

We end this section with a lemma that we will use extensively. Let β0 : Ã∗ −→ Ã∗ be the
unique free monoid homomorphism extending the function

Ã −→ Ã∗

a 7−→ ab

a−1 7−→ b−1a−1

x 7−→ x, if x ∈ Ã \ {a, a−1}.

11



Similarly, let β−1
0 : Ã∗ −→ Ã∗ be the extension of

Ã −→ Ã∗

a 7−→ ab−1

a−1 7−→ ba−1

x 7−→ x, if x ∈ Ã \ {a, a−1}.

We have the following result.

Lemma 3.6. Let q, q′ ∈ Q and u ∈ Ã∗. Given K ≤f.g. FA, let S(K) = (Q,A, δ, q0) and
S(K)β = (Qβ, A, θ, q0).

(a) If q · u = q′ in S(K), then q · uβ0 = q′ in S(K)β . As a consequence, q · uβ0 = q′ in
S(K)β .

(b) If q · u = q′ in S(K)β, then q · uβ−1
0 = q′ in S(K).

Proof. If u = 1, both items are trivial, so we carry on with u ∈ Ã+.

(a) We can write u = u1u2 . . . um, where each ui is either a letter, the word ab−1 or the word
ba−1, such that uiui+1 6∈ {ab

−1, ba−1}, for 1 ≤ i ≤ m − 1. Indeed, such factorization
of u is always possible, for ab−1 and ba−1 have no letters in common, and it is unique.
We then have a path

q = p0
u1−→ p1

u2−→ . . .
um−1
−−−→ pm−1

um−−→ pm = q′

in S(K), for some vertices pi ∈ Q and 0 ≤ i ≤ m.

Given any 1 ≤ i ≤ m, we analyse three possible cases.

• If ui 6∈
{
aε, (ab−1)

ε
| ε = ±1

}
, then

(pi−1, ui)δ = (pi−1, ui)θ = (pi−1, uiβ0)θ.

• If ui = aε with ε ∈ {−1, 1}, then

(pi−1, ui)δ = (pi−1, a
ε)δ = (pi−1, (ab)

ε) θ = (pi−1, uiβ0) θ.

• If ui =
(
ab−1

)ε
with ε ∈ {−1, 1}, then

(pi−1, ui)δ =
(
pi−1, (ab

−1)ε
)
δ = (pi−1, a

ε)θ =
(
pi−1, (abb

−1)ε
)
θ = (pi−1, uiβ0)θ,

since θa = θabb−1 , by construction of S(K)β .

To finish, one easily shows by induction on m that (q, u1 . . . um)δ = (q, (u1 . . . um)β0)θ,
which concludes the proof.

(b) Note that (q, u)δ = q′ ⇒ (q, u)δ = q′ and uβ−1
0 = uβ−1

0 , so we can assume that u is
reduced. The proof is similar to the one above. Indeed, we can write u = u1u2 . . . um,
where each ui is either a letter, the word ab or the word b−1a−1, such that uiui+1 6∈
{ab, b−1a−1}, for 1 ≤ i ≤ m− 1. We get a path

q = p0
u1−→ p1

u2−→ . . .
um−1
−−−→ pm−1

um−−→ pm = q′

in S(K)β , for some vertices pi ∈ Q and 0 ≤ i ≤ m.

Let ε ∈ {−1, 1}. Given any 1 ≤ i ≤ m, again there are three possible cases.
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• If ui 6∈ {a
ε, (ab)ε}, then

(pi−1, ui)θ = (pi−1, ui)δ = (pi−1, uiβ
−1
0 )δ = (pi−1, uiβ

−1
0 )δ.

• If ui = aε, then

(pi−1, ui)θ = (pi−1, a
ε)θ =

(
pi−1, (ab

−1)ε
)
δ =

(
pi−1, uiβ

−1
0

)
δ =

(
pi−1, uiβ

−1
0

)
θ.

• If ui = (ab)ε, then

(pi−1, ui)θ = (pi−1, (ab)
ε) θ = (pi−1, a

ε)δ = (pi−1, uiβ
−1
0 )δ,

since uiβ
−1
0 =

(
ab−1b

)ε
.

Again, by induction on m, one shows that (q, u1 . . . um)θ = (q, u1β
−1
0 . . . umβ

−1
0 )δ,

which concludes the proof.

When dealing with the automorphism β−1 instead of β, by switching the roles of β0 and
β−1

0 we get the following analogue of Lemma 3.6.

Lemma 3.7. Let q, q′ ∈ Q and u ∈ Ã∗. Given K ≤f.g. FA, let S(K) = (Q,A, δ, q0) and

S(K)β
−1

= (Qβ
−1

, A, θ′, q0).

(a) If q · u = q′ in S(K), then q · uβ−1
0 = q′ in S(K)β

−1

. As a consequence, q · uβ−1
0 = q′

in S(K)β
−1

.

(b) If q · u = q′ in S(K)β
−1

, then q · uβ0 = q′ in S(K).

4 Transition groups

In this small section, we focus on finitely generated subgroups K ≤f.g. FA of a free group
with the property that M(K) is a group. We begin with a simple lemma.

Lemma 4.1. Let A be an inverse automaton over the alphabet A which is not complete.
Then there exists a word w ∈ Ã∗ which cannot be read from any state in A.

Proof. Let A be an inverse and incomplete automaton, with set of states Q = {q1, . . . , qn}
for some n ≥ 1, and transition function δ. We can assume that there exists a letter a ∈ A
such that q1 6∈ dom δa. Since A is inverse, for each 1 ≤ i ≤ n there exists ui ∈ Ã

∗ such that
qi · ui = q1. Consider the word

w = (u1a)(u1a)−1(u2a)(u2a)−1 . . . (una)(una)−1.

Since every factor of the type (uja)(uja)−1 labels a loop at every state in dom δ(uja)(uja)−1 ,
and qi 6∈ dom δuia for every 1 ≤ i ≤ n, it follows that w is a word which cannot be read from
any state in A.

The next result is well known and a proof can be found in [16, Theorem 5.1].

Theorem 4.2. Consider 1 6= K ≤f.g. FA with Stallings automaton S(K) = (Q,A, δ, q0).
The following conditions are equivalent:

(i) K has finite index in FA, i.e., [FA : K] <∞.
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(ii) S(K) is complete.

(iii) M(K) is a group.

Now we prove that every class of groups is stable under all automorphisms of a free group.

Theorem 4.3. Let K ≤f.g. FA and let ϕ be an automorphism of FA. If M(K) is a group,
then M(Kϕ) = M(K).

Proof. The case K = 1 is clear, so we focus on the case K 6= 1. Suppose that M(K) is a
group, let S(K) = (Q,A, δ, q0) be the Stallings automaton of K and S(Kβ) = (Q′, A, γ, q0)
be the Stallings automaton of Kβ. Since S(K) is complete by Theorem 4.2, S(K)β is the

automaton obtained from S(K) by simply replacing every occurrence of q
a
−−→q′ b

←−−q′′ with

q
a
−−→ q′′ b

−−→ q′. Moreover, since S(K)β is also complete, it has no vertices with outdegree 1,
whence S(Kβ) = S(K)β.

Now, we know that M(Kβ) is generated, as a group, by γa and all the γx with x ∈ A\{a}.
But M(Kβ) is also generated by γab and γx (x ∈ A \ {a}), since we can write γa = γabγb

−1.
Moreover, note that γab = δa and γx = δx for all x ∈ A \ {a}. Since δa, δx (x ∈ A \ {a})
generate M(K) as a group, we get M(K) = M(Kβ). By a similar argument, we get
M(K) = M(Kβ−1). The conclusion now follows from Lemma 3.3 and Lemma 3.4.

When the transition monoid of S(K) is a group, we can actually characterize K in terms
of the pseudovarieties M(K) belongs to.

Theorem 4.4. Let K ≤f.i. FA with S(K) = (Q,A, δ, q0). Consider the pseudovariety of
groups V ultimately defined by the sequence of identities (un = 1)n over the set of variables
X. The following conditions are equivalent:

(i) M(K) ∈ V.

(ii) There exists p ≥ 1 such that, for every group homomorphism ψ : FX → FA, the condi-
tion unψ ∈ K holds for all n ≥ p.

Proof. (i)⇒ (ii): By assumption, K has finite index in FA, so the Stallings automaton S(K)
is complete. This implies that if v,w ∈ Ã∗ are such that v = w, then for every q ∈ Q we
have

q · v = q · v = q · w = q · w.

Hence, the monoid homomorphism

∆: Ã∗ −→M(K)

u 7−→ δu

induces a group homomorphism

∆̃: FA −→M(K)

g 7−→ δg.

By assumption, there exists p ≥ 1 such that M(K) |= un = 1 for all n ≥ p. This means
that given any group homomorphism ϕ : FX → M(K), we have unϕ = 1 for all n ≥ p.
Fix such a p ≥ 1 and let ψ : FX → FA be a homomorphism. Since ψ∆̃ : FX → M(K) is a
homomorphism, it follows that unψ∆̃ = 1 for all n ≥ p. This implies that δ

unψ
= 1 for all

n ≥ p, and thus q · unψ = q for all q ∈ Q and n ≥ p. In particular, we have q0 · unψ = q0 for
all n ≥ p, which shows that unψ ∈ K for all n ≥ p, as we wanted.
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(ii) ⇒ (i): Let φ : Ã∗ → FA be the quotient morphism. Take p ≥ 1 satisfying (ii) and
n ≥ p. There exist x1, . . . , xm ∈ X and k1, . . . , km ∈ Z such that un = xk1

1 · · · x
km
m ∈ FX . Our

goal is to prove that, given any words w1, . . . , wm ∈ Ã
∗, we have δk1

w1
· · · δkm

wm
= 1, which is the

same as proving that q · wk1

1 · · ·w
km
m = q for all q ∈ Q. Note that the condition K ≤f.i. FA

entails that S(K) is complete.
Write w = wk1

1 · · ·w
km
m , take any q ∈ Q, and let v ∈ Ã∗ be such that q0 ·v = q. Since FX is

a free group, the function X → FA, xi 7→ (vwiv
−1)φ induces a homomorphism ψ : FX → FA

satisfying unψ = (vwv−1)φ. Then (vwv−1)φ ∈ K and thus q0 · vwv
−1 = q0, by construction

of S(K) and taking into account that it is a complete automaton. We conclude that q ·w = q,
as we wanted.

Example 4.5. The pseudovariety of abelian groups is given by Ab = Jxyx−1y−1 = 1K,
and the pseudovariety of p-groups is given by Gp = Jxp

ω
= 1K. Hence, the above theorem

allows us to conclude that M(K) is an abelian group if and only if K has finite index and
contains all elements of the type xyx−1y−1 (x, y ∈ FA); and it is a p-group if and only if it
has finite index and there exists m ≥ 1 such that xp

m
∈ K for all x ∈ FA.

5 Pseudovarieties of type H

In this section, we prove that if H is a pseudovariety of finite groups, then the pseudovariety of
monoids H (defined at the end of Section 2.4) is stable under all automorphisms of FA. Then
we characterize some finitely generated subgroups of FA in terms of these pseudovarieties.

We begin with a simple lemma regarding the group H-classes of an inverse monoid, which
follows from [19, Lemma II.1.7].

Lemma 5.1. Let M be an inverse monoid and denote by Hx the H-class of x ∈ M . Then
Hx is a group if and only if xx−1 = x−1x. Moreover, y ∈ Hx if and only if yy−1 = xx−1

and y−1y = x−1x.

Observe that if the elements of a monoid M are injective partial transformations, then
f, g ∈M are in the same group H-class if and only if dom f = im f = dom g = im g.

Recall that S(K) = (Q,A, δ, q0), S(K)β = (Qβ, A, θ, q0) and let M(K)β denote the
transition monoid of S(K)β . We will now show that every group H-class of M(K)β is the
homomorphic image of a subgroup of some group H-class of M(K). We say that a monoid
M divides a monoid N if M is a homomorphic image of a submonoid of N .

Lemma 5.2. Every group H-class of M(K)β divides some group H-class of M(K).

Proof. We invite the reader to follow the arguments on Example 5.3. Let H be a group
H-class of M(K)β. We will analyse two cases and make use of Lemma 3.6 several times
without explicitly mentioning it.

• Case 1: There is some u ∈ Ã+ such that dom θuu−1 ⊆ Q and H = Hθ
uu−1

.

Let X = dom θuu−1 = dom θu−1u and define

X ′ =
⋂

v∈Ã∗

θv∈H

dom δ
vβ−1

0

.

Note that X ⊆ X ′ because, given q ∈ X, we have q ∈ dom θv for every v ∈ Ã∗ satisfying
θv ∈ H, and thus q ∈ dom δ

vβ−1

0

, which implies q ∈ X ′. Furthermore, since S(K) is
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a finite automaton, there exists some ℓ ≥ 0 such that, for every w ∈ Ã∗, we can find
a word w̃ satisfying |w̃| ≤ ℓ and δw = δw̃. Hence, there is a finite amount of words
v1, v2, . . . , vm ∈ Ã

∗ (m ≥ 0) such that θv1
, θv2

, . . . , θvm ∈ H and

X ′ =
m⋂

i=1

dom δ
viβ

−1

0

.

Consider the element e = v1β
−1
0 v1β

−1
0

−1
. . . vmβ

−1
0 vmβ

−1
0

−1
. Then δe is an idempotent

and dom δe = X ′. Now, consider the subgroup H ′ ≤ Hδe
given by

δw ∈ H
′ ⇔ Xδw ⊆ X.

In fact, since δw ∈ H
′ is injective, we have Xδw ⊆ X ⇔ Xδw = X; and if δw satisfies

this condition, then also (X ′ \ X)δw = X ′ \ X, since dom δw = dom δw−1. We claim
that the function Φ given by

Φ: H ′ 7−→ H

δw −→ θuu−1θwβ0

is a surjective group homomorphism.

First we show that Φ is well defined. Given δw ∈ H
′, we must prove that

dom (θuu−1θwβ0
) = X (1)

dom (θw−1β0
θuu−1) = X. (2)

We start with (1). It is clear that the left hand side of the equality is contained in
X. Regarding the reverse inclusion, given q ∈ X, we have q ∈ X ′ = dom δw, which
implies q ∈ dom θwβ0

and q ∈ dom (θuu−1θwβ0
). Now we focus on (2). If q ∈ X then

q ∈ dom δw−1, and thus q ∈ dom θw−1β0
. Consequently,

(q, w−1β0)θ = (q, w−1)δ ∈ X = dom θuu−1

because Xδw−1 = X. As for the other inclusion, if we take q ∈ dom (θw−1β0
θuu−1), then

q′ = (q, w−1β0)θ ∈ dom θuu−1 = X ⊆ dom δw.

Therefore, we can read w from q′ in S(K), and if (q′, w)δ = q′′, then (q′, wβ0)θ = q′′

by Lemma 3.6. Since the automaton S(K)β is inverse, the equality q′ = (q, w−1β0)θ
implies q = (q′, wβ0)θ. It follows that (q′, w)δ = q ∈ X, as Xδw = X. This completes
the proof of (2).

In order for Φ to be indubitably well defined, we must also confirm that if δw = δz ∈ H
′,

then θuu−1θwβ0
= θuu−1θzβ0

. But we already know that

dom (θuu−1θwβ0
) = dom (θuu−1θzβ0

) = X;

and taking q ∈ X ⊆ dom δw = dom δz, we obtain

(q, uu−1(wβ0))θ = (q, wβ0)θ = (q, w)δ = (q, z)δ = (q, zβ0)θ = (q, uu−1(zβ0))θ,

which establishes the claim.

Next, we show that Φ is a homomorphism, which amounts to proving that

θuu−1θwβ0
θuu−1θzβ0

= θuu−1θwβ0
θzβ0
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for all δw, δz ∈ H
′. Again, it suffices to check that these transformations have the same

domain. Indeed, if that is true, then for any vertex q in their domain, we will obtain

(q, uu−1(wβ0)uu−1(zβ0))θ = (((q, uu−1(wβ0))θ, uu−1)θ, zβ0)θ

= ((q, uu−1(wβ0))θ, zβ0)θ

= (q, uu−1(wβ0)(zβ0))θ.

It is clear that

dom (θuu−1θwβ0
θuu−1θzβ0

) ⊆ dom (θuu−1θwβ0
θzβ0

).

Regarding the other inclusion, let q ∈ dom (θuu−1θwβ0
θzβ0

). Then q ∈ X ⊆ dom δw and
we can take q′ = (q, wβ0)θ = (q, w)δ ∈ X, as q ∈ X and Xδw = X. Since q′ ∈ dom θzβ0

,
we conclude that q′ ∈ dom (θuu−1θzβ0

), whence Φ is indeed a group homomorphism.

Finally, we prove that Φ is surjective by showing that

θv = θuu−1θ
(evβ−1

0
e)β0

= (δ
evβ−1

0
e
)Φ

for every θv ∈ H. Observe that δ
evβ−1

0
e
∈ Hδe

because θv±1 ∈ H, vβ−1
0

−1
= (vβ−1

0 )−1 =

v−1β−1
0 and dom δ

ev±1β−1

0
e

= X ′ by definition of X ′ and δe. Moreover, δ
evβ−1

0
e
∈ H ′

since q ∈ X implies

(q, evβ−1
0 e)δ = (q, vβ−1

0 )δ = (q, v)θ ∈ X.

Hence, it remains to verify that θv = θuu−1θ
(evβ−1

0
e)β0

. If these partial transformations

have the same domain then, for any vertex q in their domain,

(q, uu−1(evβ−1
0 e)β0)θ = (q, (eβ0)vβ−1

0 β0(eβ0))θ

= (q, vβ−1
0 β0)θ

= (q, v)θ.

Hence, it suffices to check that dom θv = dom (θuu−1θ
(evβ−1

0
e)β0

). On the one hand,

the equalities dom θv = X = dom θuu−1 entail dom θv ⊇ dom (θuu−1θ
(evβ−1

0
e)β0

). On

the other hand, if q ∈ dom θv = dom θuu−1, then q ∈ dom δe, which implies that
q ∈ dom θeβ0

. Also, q ∈ dom δ
vβ−1

0

yields q ∈ dom θ
vβ−1

0
β0

. We conclude the proof by

observing that (q, vβ−1
0 β0)θ = (q, v)θ ∈ X ⊆ dom δe ⊆ dom θeβ0

.

• Case 2: There is some u ∈ Ã+ such that dom θuu−1 6⊆ Q and H = Hθ
uu−1

.

We begin by recalling an important fact. Given a blue vertex q ∈ Qβ \ Q in S(K)β

and a word w ∈ Ã∗, if q ∈ dom θw, then the first letter of w must be a−1 or b; and if
q ∈ im θw, then the last letter of w must be a or b−1.

In this case, if v ∈ Ã∗ is such that θv ∈ H, then the equalities θa = θabb−1 and
θa−1 = θbb−1a−1 allow us to write θv = θbṽb−1 for some ṽ ∈ Ã∗; in particular, θu = θbũb−1 .
Now, since

θbũb−1bũ−1b−1 R θ(bũb−1bũ−1b−1)b L θb−1(bũb−1bũ−1b−1)b,

we get θuu−1 D θ(b−1bũb−1)(b−1bũb−1)−1 . In view of [10, Proposition 2.3.6], we conclude
that

H ∼= Hθ
b−1bũbb−1ũ−1b−1b

.

Therefore, this case can be reduced to the previous one.
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Denoting by θ1 the transformation induced by the empty word 1, observe that above we
have covered all possibilites, since Hθ1

is either trivial (and the claim automatically follows),
or there exists x ∈ A satisfying θ1 = θxx−1 (and we fall into the previous cases).

Example 5.3. Let A = {a, b, c, d} and let K ≤f.g. FA be given by the Stallings automaton
S(K) = (Q,A, δ, 1) depicted by

S(K) : 1 2 3 4

567

//oo a // c // boo

b
oo

c

WW✴✴✴✴✴✴✴
c

��✎✎
✎✎
✎✎
✎

c

II

c

		

dee

dee

Then S(Kβ) = S(K)β = (Q′, A, γ, 1) can be portrayed by

S(Kβ) : 1 8 2 3 4

567

//oo a // b // c // boo

b
oo

c

WW✴✴✴✴✴✴✴
c

��✎✎
✎✎
✎✎
✎

c

II

c

		

dee

dee

Let u = b−1bc. Using the notation in the proof of Lemma 5.2, consider the group H-class

H = Hγ
uu−1

= {γu, γu2 , γu3} ∼= Z3.

of M(Kβ). Then we have

X = dom γuu−1 = {2, 3, 6}

X ′ = dom δ
uβ−1

0

∩ dom δ
u2β−1

0

∩ dom δ
u3β−1

0

= dom δc ∩ dom δc2 ∩ dom δc3 = {1, 2, 3, 6, 7}.

Letting e = cc−1, it follows that

Hδe
= Hδc

= {δc, δc2 , . . . , δc6} = H ′ ∼= Z6

Since H ∼= Z3 is a homomorphic image of H ′ ∼= Z6, one monoid divides the other.

We need one last lemma before proving the main theorem of this section. It can be
proven in a similar way, so we only make a sketch here. For details, see [9].

Lemma 5.4. Let A′ = (P ′, A, λ′, q0) be an inverse automaton with a basepoint and let
A = (P,A, λ, q0) be a subautomaton obtained by deleting a vertex of outdegree 1 which is not
the basepoint. Then every group H-class of M(A) divides some group H-class of M(A′).

Proof. Let P ′ \ P = {p′} and p
x
−→ p′, p′ x−1

−−−→ p (p ∈ P , x ∈ Ã) be the extra edges in
A′. Let also u ∈ Ã+ be such that H = Hλ

uu−1
is a group H-class of A. We define the sets

Y = dom λuu−1 = dom λu−1u and

Y ′ =
⋂

v∈Ã∗

λv∈H

dom λ′
v.

It is clear that Y ⊆ Y ′, and we can choose a finite amount of words v1, v2, . . . , vm ∈ Ã∗
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(m ≥ 0) such that λv1
, λv2

, . . . , λvm ∈ H and Y ′ =
⋂m
i=1 domλ′

vi
. Consider the word

e = v1v
−1
1 v2v

−1
2 . . . vmv

−1
m ∈ Ã

∗.

Then λ′
e is an idempotent and domλ′

e = Y ′. As in the previous lemma, we split the proof in
two cases and argue in a similar manner.

• Case 1: p′ 6∈ Y ′.

Let H ′ ≤ Hλ′
e

be the subgroup defined by

λ′
w ∈ H

′ ⇔ Y λ′
w = Y.

Then it suffices to check that

Ψ: H ′ 7−→ H

λ′
w −→ λuu−1λw

is a surjective group homomorphism.

• Case 2: We have p′ ∈ Y ′.

In this case, if v ∈ Ã+ is such that λv ∈ H then, since p′ ∈ dom λ′
v ∩ dom λ′

v−1 has

outdegree 1, we must have v = x−1ṽx for some ṽ ∈ Ã∗. In particular, u = x−1ũx for
some ũ ∈ Ã∗. Similarly to what we obtained in Case 2 of Lemma 5.2, it follows that

λx−1ũxx−1ũ−1x R λ(x−1ũxx−1ũ−1x)x−1 L λx(x−1ũxx−1ũ−1x)x−1 ,

which implies λuu−1 D λ(xx−1ũx)(xx−1ũx)−1 and

H ∼= Hλ
xx−1ũx−1xũ−1xx−1

.

This case can now be reduced to the previous one, as we cannot read a word starting
with x from p′.

As we have remarked before, the automaton S(Kβ) = (Q′, A, γ, q0) can be obtained from
S(K)β = (Qβ, A, θ, q0) by successively deleting all vertices in Qβ \ {q0} with outdegree 1.
Hence, in view of Lemma 5.4, it follows that every group H-class of M(Kβ) divides some
group H-class of M(K)β . Applying then Lemma 5.2, we conclude that every group H-class
of M(Kβ) divides some group H-class of M(K). Clearly, a similar result can be deduced for
M(Kβ−1) and M(K), by invoking Lemma 3.7 instead of Lemma 3.6 throughout the proof
of Lemma 5.2.

Since pseudovarieties are closed under division, the above discussion, together with
Lemma 3.3 and Lemma 3.4, yields the following result.

Theorem 5.5. Let H be a pseudovariety of groups. Then the pseudovariety of monoids H
is stable under all automorphisms of FA.

Observe that if H is the trivial pseudovariety (i.e. the pseudovariety of groups consisting
of only trivial groups), then H is precisely the pseudovariety of aperiodic monoids, in view
of [20, Chapter 3 - Proposition 4.2]. And if H is the pseudovariety of p-groups, then H is
the pseudovariety of monoids all of whose subgroups are p-groups. Therefore, Theorem 5.5
generalizes the results obtained in [3], where it is implicitly shown that the pseudovarieties
of aperiodic monoids and monoids all of whose subgroups are p-groups are stable under all
automorphisms of FA.
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5.1 Some characterizations

We proceed by characterizing finitely generated subgroups K ≤f.g. FA satisfying M(K) ∈ H,
for certain pseudovarieties of groups H.

Let S = (kn)n≥1 be a sequence of positive integers and denote by VS the pseudovariety
of finite groups ultimately defined by the sequence (xkn = 1)n. In other words, a finite group
G belongs to VS if and only if there exists p ≥ 1 such that G satisfies the identity xkn = 1
for all n ≥ p. Observe that, since an identity of the type xn = yn in a group is equivalent
to xny

−1
n = 1, any pseudovariety defined by a sequence encompassing a single letter is of the

type VS for some suitable S. Given two integers m,n ≥ 1, we denote by (m,n) the greatest
common divisor of m and n.

Theorem 5.6. Let K ≤f.g. FA have Stallings automaton S(K) = (Q,A, δ, q0), and let
S = (kn)n≥1 be a sequence of positive integers. The following conditions are equivalent:

(i) M(K) ∈ VS.

(ii) ∃p ≥ 1,∀q ∈ Q,∀v ∈ Ã∗,∀n ≥ 1,∀m ≥ p q · vn = q ⇒ q · v(n,km) = q.

(iii) ∃p ≥ 1,∀x ∈ FA,∀n ≥ 1,∀m ≥ p xn ∈ K ⇒ x(n,km) ∈ K.

Proof. (i)⇒ (ii): Assume that (i) holds. Let q ∈ Q, v ∈ Ã∗ and n ≥ 1 be such that q ·vn = q.
We define

O(v) =
⋂

m≥1

dom δvm

ℓ = min{t ≥ 1 | ∀o ∈ O(v) o · vt = o},

and choose s ≥ 1 such that, for all o ∈ dom δv \ O(v), o · vs is not defined. Then we define
r = ℓs + 1 and w = vr. Since we can only read w from vertices lying in O(v), we deduce
that δw belongs to a group H-class of M(K). Moreover, q ∈ O(v) implies

q · w = q · (vℓ)sv = q · v,

so q · wi = q · vi for all i ≥ 1. If O(v) = {o1, . . . , om} (m ≥ 1) and d is the order of δw, then
δwd is the restriction of the identity mapping fixing precisely o1, . . . , om. Given 1 ≤ i ≤ m,
there is a smallest di ≥ 1 such that oi · v

di = oi, so we get disjoint cycles

oi = oi,0
v // oi,1

v // · · ·
v // oi,di−1

v

kk

in S(K), where the vertices oi,0, oi,1, . . . , oi,di−1 ∈ Q are all distinct. It is clear that d is the
least common multiple of d1, . . . , dm; in particular, di | d for all i. Assuming, without loss of
generality, that q = o1, we must have d1 | n, since o1 · w

n = o1 = o1 · w
d1 . Furthermore, by

hypothesis, there exists p ≥ 1 such that δw
km is an idempotent for all m ≥ p. This implies

that d1 | km if m ≥ p because d1 | d and d | km. Thus, for all m ≥ p, we obtain d1 | (n, km)
and q · v(n,km) = q · w(n,km) = q, so (ii) follows.

(ii) ⇒ (iii): Take p satisfying

∀q ∈ Q,∀v ∈ Ã∗,∀n ≥ 1,∀m ≥ p q · vn = q ⇒ q · v(n,km) = q.

Let x ∈ FA and n ≥ 1 be such that xn ∈ K. We can assume that x is reduced, seen as an
element of Ã∗, and write x = uwu−1 for some u,w ∈ Ã with w cyclically reduced. Then
q0 ·xn = q0 ·uw

nu−1 = q0. Letting q = q0 ·u, it follows that q ·wn = q. Hence, q ·w(n,km) = q
for all m ≥ p, by assumption. This entails

q0 = q0 · uw
(n,km)u−1 = q0 · x(n,km),
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so x(n,km) ∈ K for all m ≥ p, and (iii) follows.
(iii) ⇒ (ii): Take p ≥ 1 satisfying

∀x ∈ FA,∀n ≥ 1,∀m ≥ p xn ∈ K ⇒ x(n,km) ∈ K.

Let also q ∈ Q, v ∈ Ã∗ and n ≥ 1 be such that q · vn = q. Take a word u ∈ Ã∗ satisfying
q0 · u = q. Then q0 · uv

nu−1 = q0 implies (uvu−1)n ∈ K, and hence (uvu−1)(n,km) ∈ K for

all m ≥ p. The equalities q · u−1uv(n,km)u−1u = q and u−1uv(n,km)u−1u = v(n,km) allow us
to conclude that q · v(n,km) = q for all m ≥ p, as we wanted.

(ii) ⇒ (i): Take p satisfying

∀q ∈ Q,∀v ∈ Ã∗,∀n ≥ 1,∀m ≥ p q · vn = q ⇒ q · v(n,km) = q.

Let H = Hδv
be a group H-class. If d is the order of δv in H then, for all q ∈ dom δv , we

obtain q ·vd = q. It follows that q ·v(d,km) = q for all m ≥ p, by hypothesis. Since (d, km) ≤ d,
we obtain that d = (d, km), and thus d | km if m ≥ p. We conclude that the order of every
element in H divides all the km for m ≥ p, thereby showing that H ∈ VS .

Let k ≥ 1 and denote by Bk the Burnside pseudovariety given by Bk = Jxk = 1K.
Considering the constant sequence kn = k, we get the following corollary.

Corollary 5.7. Let K ≤f.g. FA have Stallings automaton S(K) = (Q,A, δ, q0). The follow-
ing conditions are equivalent:

(i) M(K) ∈ Bk.

(ii) ∀q ∈ Q,∀v ∈ Ã∗,∀n ≥ 1 q · vn = q ⇒ q · v(k,n) = q.

(iii) ∀x ∈ FA,∀n ≥ 1 xn ∈ K ⇒ x(k,n) ∈ K.

Let π be a set of prime numbers and π′ its complement in the set of primes. A π-number
is a number all of whose prime factors lie in π. Out of convenience, we will also consider 1 to
be a π-number, for every choice of π. A finite group G is called a π-group if its order factors
into primes from π. By Lagrange and Cauchy theorems, this is equivalent to saying that
the order of every element in G is a π-number. We denote by Gπ the pseudovariety of all

finite π-groups. Observe that if π = {p1, p2, . . . }
1 and S =

(
(p1 · · · pn)n!

)

n
, then Gπ = VS

[21, Proposition 7.1.16]. Hence, by Theorem 5.6, we get a characterization of subgroups
K ≤f.g. FA satisfying M(K) ∈ Gπ. However, in this case, we present a somewhat simpler
characterization, using essentially the same ideas. A proof can be found in [9].

Corollary 5.8. Let K ≤f.g. FA with Stallings automaton S(K) = (Q,A, δ, q0). Let also π
be a set of prime numbers with complement π′ in the set of primes. Denote by Π and Π′ the
sets of π-numbers and π′-numbers, respectively. The following conditions are equivalent:

(i) M(K) ∈ Gπ.

(ii) ∀q ∈ Q,∀v ∈ Ã∗,∀n ∈ Π′ q · vn = q ⇒ q · v = q.

(iii) ∀x ∈ FA,∀n ∈ Π′ xn ∈ K ⇒ x ∈ K.

6 Conjugacy conditions

In this section, we discuss normal, malnormal and cyclonormal subgroups of FA using the
transition monoid of the Stallings automaton.

1If π = {p1, p2, . . . , pm} is finite, we consider pm+1 = pm+2 = · · · = 1.
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6.1 Normal subgroups

We begin by analyzing the effect of conjugating a subgroup at the level of the Stallings
automaton. Given a nontrivial subgroup K ≤f.g. FA, we denote by Γ(K) the underlying
labeled graph of S(K). In view of the abstract characterization of Stallings automata, Γ(K)
is of the form

q0 q1

. . .

. . .

u //

??⑧⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
❄

where q1 is either q0 or the closest vertex to q0 having outdegree (strictly) greater than 2.
We say that q0

u
−→ is the tail of S(K) and the remaining graph is the core of S(K), which

we denote by C(K). Note that the tail is not a graph, since the vertex q1 does not belong to
the tail, so it is empty if q1 = q0. Consequently, given K ≤f.g. FA, its Stallings automaton
S(K) is either equal to C(K) with a vertex chosen to be the basepoint (if K is normal in FA
then this is the case); or it is obtained by “gluing” a tail q0

u
−→ to C(K) and declaring q0 to

be the basepoint.
The next result states that two f.g. subgroups of a free group are conjugate if and only

if their core graphs are isomorphic (for a proof, see [11]).

Theorem 6.1. Let A be a finite alphabet and H,K ≤f.g. FA. Then H and K are conjugate
subgroups if and only if C(H) ∼= C(K).

Example 6.2. Let A = {a, b, c} and consider the Stallings automaton S(K)

• • •//oo c //
a

))

b

ii

of a certain K ≤f.g. FA. Then its tail is •
c // and we have

C(K) : • •
a

))

b

ii

S(bcKc−1b−1) : •• • • •//oo c //
a

))

b

ii
c //b //

S(c−1Kc) : • •//oo
a

))

b

ii

S(a−2c−1Kca2) : • • • oo //
a

))

b

ii
a //

We define an automorphism of a labeled directed graph to be a permutation σ on its
vertices such that, for every pair of vertices p and q, if we have p

a
−→ q then we also have

pσ
a
−→ qσ. We say that a graph is vertex-transitive if, given two distinct vertices, there

exists an automorphism of the graph taking one of the vertices to the other vertex. The
following result is a consequence of Theorem 6.1.

Corollary 6.3. Let K be a nontrivial finitely generated subgroup of FA. Then K is normal
in FA if and only if K has finite index and C(K) is vertex-transitive.
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Example 6.4. Let A = {a, b}. The automaton

• •//oo
a

**

a

jj

b

��

b

��

is vertex-transitive and complete, so the corresponding subgroup is normal in FA. However,
if K ≤f.g. FA is given by the Stallings automaton

• • •//oo
a

))

a

ii

b

�� b
))

b

ii

a

��

then K is not a normal subgroup of FA because, despite being complete, S(K) is not
vertex-transitive.

Before we characterize the normal subgroups of FA in terms of their transition monoids,
we fix some notation and terminology regarding group actions. Let X be a nonempty finite
set and SX be the symmetric group over X. Given a group G, a right action of G on X is
a function ϕ : X ×G→ X satisfying (x, 1)ϕ = x and (x, gh)ϕ = ((x, g)ϕ, h)ϕ, for all x ∈ X
and g, h ∈ G. If G ≤ SX , then its elements are permutations on X, hence we get an action
of G on X given by (x, g) 7→ xg. For each x ∈ X, the orbit of x is xG = {xg | g ∈ G}
and the stabilizer of x is Gx = {g ∈ G | xg = x} ≤ G. One easily checks that the orbits
constitute a partition of X. We say that the action is transitive if it determines a single
orbit. It is well known that |xG| = [G : Gx], from which we derive the following result.

Lemma 6.5. Let G be a finite group equipped with a transitive right action over a nonempty
set X. The following conditions are equivalent:

(i) Gx = {1} for all x ∈ X.

(ii) Gx = {1} for some x ∈ X.

(iii) |G| = |X|.

We are ready to state the aforementioned characterization of normal subgroups.

Theorem 6.6. Let 1 6= K ≤f.g. FA and M(K) be the transition monoid of its Stallings
automaton S(K) = (Q,A, δ, q0). Then K is normal in FA if and only if M(K) is a group of
size |Q|.

Proof. Suppose first that K E FA. Since K has finite index by Corollary 6.3, S(K) is
complete and M(K) is a group, by Corollary 4.2. Moreover, given p, q ∈ Q, there exists
u ∈ Ã∗ such that p · u = q, as S(K) is connected, and hence M(K) ≤ SQ acts transitively
on Q. Let δu ∈M(K) and q ∈ Q be such that q · u = q. Take an arbitrary vertex p ∈ Q and
consider an automorphism of S(K) inducing a bijection ϕ : Q→ Q that maps q to p. Then
we have

p · u = qϕ · u = (q · u)ϕ = qϕ = p,

so δu fixes p too. Hence, if δu ∈M(K) is a transformation with a fixed point, it follows that
δu = 1. We conclude that M(K) satisfies property (i) of Lemma 6.5, thereby showing that
|M(K)| = |Q|, by property (iii).

Assume now that M(K) ≤ SQ is a group and |M(K)| = |Q|. As we remarked above,
M(K) acts transitively on Q by connectedness of S(K) so, by Lemma 6.5, the stabilizer of
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any state is trivial. Given any p, q ∈ Q, our goal is to define a bijection ϕ : Q→ Q such that
pϕ = q and, for all r ∈ Q and v ∈ Ã, the equality rϕ · v = (r · v)ϕ holds; this will show that
S(K) is vertex-transitive. For every r ∈ Q, take ur ∈ Ã

∗ satisfying p · ur = r and define

ϕ : Q −→ Q

r 7−→ q · ur.

To check that ϕ is well defined, observe that if v ∈ Ã∗ is such that p ·v = r, then p ·urv
−1 = p

and δurv−1 = 1 by property (i) of Lemma 6.5. Hence, δur = δv and, in particular, q ·ur = q ·v.
Similarly one checks that ϕ is an injection, for if r = p · ur and s = p · us satisfy rϕ = sϕ,
then q · ur = q · us implies δur = δus , and

r = p · ur = p · us = s.

Since Q is finite, we deduce that ϕ is a bijection. Finally, note that for all r ∈ Q and v ∈ Ã,
we have

rϕ · v = (q · ur) · v

= q · urv

= (p · urv)ϕ

= ((p · ur) · v)ϕ

= (r · v)ϕ.

The desired conclusion now follows.

6.2 Malnormal subgroups

Given any group G and K ≤ G, we say that K is malnormal in G if gKg−1 ∩ K = 1
for all g ∈ G \ K. In the case of free groups, there is the following well-known result [11,
Theorem 9.10].

Lemma 6.7. A subgroup K ≤f.g. FA is malnormal if and only if, in its Stallings automaton
S(K) = (Q,A, δ, q0), there do not exist two distinct vertices q, q′ ∈ Q and a nonempty reduced
word u such that u labels a loop at both q and q′.

Before stating our result regarding malnormality, we present some definitions and make
a few observations. Given an inverse monoid M , the natural partial order on M is the
partial order ≤ given by

x ≤ y ⇔ x = ey for some e ∈ E(M).

If the elements of M are injective partial transformations, then f, g ∈M satisfy f ≤ g if and
only if g|dom f = f . Note also that a partial transformation is an idempotent if and only if it
is a restriction of the identity. The next result is just another simple remark.

Lemma 6.8. Let K ≤f.g. FA and x ∈ Ã∗ be such that δx ∈ E(M(K)). Then, for all r ∈ Ã∗

and n ≥ 1, the condition δrxnr−1 = δrxr−1 ∈ E(M(K)) holds.

Given a partially ordered set (X,≤) and Y = {y1, . . . , yn} ⊆ X for some n ≥ 1, we say
that Y is a chain on X if there exists σ ∈ Sn satisfying y1σ < · · · < ynσ. We say that a
chain of the type y1 < y2 < · · · < yk (k ≥ 1) has length k.

Finally, a word u ∈ Ã∗ is called cyclically reduced if uu is a reduced word, which
is equivalent to saying that u is reduced and there exist no a ∈ Ã and v ∈ Ã∗ satisfying
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u = ava−1. It is easy to see that every reduced word u can be uniquely written as u = xvx−1

for some reduced word x and cyclically reduced word v. Observe that if a word uw is
cyclically reduced, then wu is cyclically reduced too.

Now we characterize the malnormal subgroups of FA in terms of their transition monoids.

Theorem 6.9. Given a nontrivial subgroup K <f.g. FA, consider the monoid homomorphism

∆: Ã∗ −→M(K)

u 7−→ δu

and let RA be the set of all reduced words over Ã. Denote by E the set of idempotents of
(RA \ {1})∆. Consider the restriction of the natural partial order on M(K) to E, and let
k be the size of a maximal chain on E. Then K is malnormal if and only if k = 2 and
|E| = |Q|+ 1.

Proof. First observe that, by construction of S(K) = (Q,A, δ, q0), there exist a nonempty
cyclically reduced word u ∈ RA and q ∈ Q such that u labels a loop at q. Hence, such δu
is not the empty transformation on Q. Since M(K) is finite, there exists n ≥ 1 such that
δnu ∈ E. So if k = 1, then 0 6∈ E and, consequently, 0 6∈M(K). This implies that S(K) is a
complete automaton by Lemma 4.1, so M(K) is a finite group. As K 6= FA, it follows that
S(K) has at least two vertices. Given a ∈ A, there exists some n ≥ 1 such that δna = idQ,
and clearly an ∈ RA \ {1}. Hence, if q and q′ are two distinct vertices in S(K), the word an

labels a loop at q and labels a loop at q′. This entails that K is not malnormal.
Now suppose that k ≥ 3. Then there exist at least three distinct elements δu, δv , δw ∈ E

satisfying δu < δv < δw. Accordingly, δw fixes at least two distinct vertices, say q and q′,
which implies that w ∈ RA \ {1} labels a loop at both q and q′. Hence, K is not malnormal.

All in all, if K is malnormal, then k = 2. Note that, in this case, 0 ∈ E; otherwise, by
Lemma 4.1, M(K) would be a group, and thus it would have a unique idempotent. So there
exist distinct nonempty sets Q1, Q2, . . . , Qℓ ⊆ Q (ℓ ≥ 1) such that

E = {0, idQ1
, . . . , idQℓ

},

yielding |E| = ℓ + 1. Now, given any q ∈ Q, by construction of S(K) there exists some
u ∈ RA \ {1} satisfying q · u = q, which means that δu fixes q. As S(K) is finite, there exists
n ≥ 1 for which un 6= 1 and δun is an idempotent fixing q. This shows that q ∈ Qi for some
1 ≤ i ≤ ℓ, and therefore

Q = Q1 ∪Q2 ∪ · · · ∪Qℓ.

If |Q| > 1, malnormality of K implies that |Qi| = 1, for 1 ≤ i ≤ ℓ, which gives |Q| = ℓ and
|E| = |Q|+ 1; if |Q| = 1, then E = {0, idQ} and |E| = |Q|+ 1 too.

Finally, keeping the notation introduced in the preceding paragraph, suppose that k = 2
and |E| = |Q|+ 1 (so ℓ = |Q|). In order to prove that K is malnormal, we only need to show
that, for all 1 ≤ i, j ≤ ℓ,

i 6= j ⇒ Qi ∩Qj = ∅.

Indeed, if that is the case, we get

|Q| = |Q1|+ |Q2|+ · · ·+ |Qℓ| ≥ ℓ.

So, under the hypothesis that |Q| = ℓ, all the Qi must be singletons, as they are nonempty.
Hence, if K is not malnormal, then there exist distinct states q, q′ ∈ Q and u ∈ RA \ {1}
such that q · u = q and q′ · u = q′. Also, there exists n ≥ 1 such that δun = idQj

∈ E for
some 1 ≤ j ≤ ℓ. Since q, q′ ∈ Qj , it follows that |Qj| > 1, which contradicts our assumption.
Therefore, if all the Qi (1 ≤ i ≤ ℓ) are disjoint, then K is a malnormal subgroup of FA.
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We proceed by proving the disjointness claim by contradiction. Suppose that there exist
1 ≤ i < j ≤ ℓ and u, v ∈ RA \ {1} such that δu = idQi

, δv = idQj
and q ∈ Qi ∩ Qj . Note

that, by assumption, Qi 6= Qj . As before, we can write u = ũxũ−1 and v = ṽyṽ−1, for
some ũ, ṽ ∈ RA and x, y ∈ RA \ {1}, so that both x and y are cyclically reduced words.
Moreover, let t ∈ RA be the longest prefix shared by ũ and ṽ and write ũ = tr, ṽ = ts for
some appropriate r, s ∈ RA. Then u = trxr−1t−1 and v = tsys−1t−1.

Since M(K) is finite, there exists n ≥ 1 such that δxn , δyn ∈ E, which implies

δrxnr−1, δsyns−1 ∈ E,

by Lemma 6.8. Letting w = trxnr−1t−1 and z = tsyns−1t−1, we also have δw = δu and
δz = δv . Hence, we deduce that δw 6= δz and δrxnr−1 6= δsyns−1.

We now analyse three possible cases:

• Case 1: r = 1 and s = 1.

We have u = txt−1 and v = tyt−1, with x 6= y nonempty cyclically reduced words. If
xy 6∈ RA, then we can write x = x̃a and y = a−1ỹ for some a ∈ Ã and x̃, ỹ ∈ RA. In
that case, the last letter of y cannot be a, and thus xy−1 ∈ RA \ {1}. So there exists
ε ∈ {−1, 1} such that xyε ∈ RA \ {1}. However, this yields a contradiction, for we
would get a chain

0 < δxnyεn < δxn

or

0 < δxnyεn < δyεn

in E, which violates the assumption that k = 2. Indeed, δxnyεn 6= 0 because xnyεn

labels a loop at (q, t)δ, as x and y do so; and δyεn 6= δxn entails δxnyεn < δxn or
δxnyεn < δyεn .

• Case 2: r = 1 and s 6= 1.

We have u = txt−1 and v = tsys−1t−1, with x 6= y nonempty cyclically reduced words.
If xsys−1 6∈ RA, then we can write x = x̃a and s = a−1s̃ for some a ∈ Ã and x̃, s̃ ∈ RA.
In that case, the first letter of x cannot be a−1, and thus sys−1x ∈ RA \ {1}. Either
way, we can use an argument similar to the above to get a chain

0 < δxnsyns−1 < δxn or 0 < δxnsyns−1 < δsyns−1

or

0 < δsyns−1xn < δxn or 0 < δsyns−1xn < δsyns−1

in E, yielding a contradiction again. The case r 6= 1 and s = 1 is analogous.

• Case 3: r 6= 1 and s 6= 1.

We have u = trxr−1t−1 and v = tsys−1t−1, with x 6= y nonempty cyclically reduced
words. If rxr−1sys−1 6∈ RA, then we can write r = ar̃ and s = as̃ for some a ∈ Ã
and r̃, s̃ ∈ RA. However, that is not possible, for otherwise ta would be a longer prefix
common to ũ and ṽ. So rxr−1sys−1 ∈ RA and we get a chain

0 < δrxnr−1syns−1 < δrxnr−1

or

0 < δrxnr−1syns−1 < δsyns−1

in E, contradicting the assumption that k = 2.

In any case, we always arrive at a contradiction, which means that if 1 ≤ i < j ≤ ℓ, then
Qi ∩Qj = ∅. This, as we remarked, concludes the proof of the theorem.

26



6.3 Cyclonormal subgroups

Given any group G and K ≤ G, we say that K is cyclonormal if gKg−1 ∩ K is a cyclic
group for every g ∈ G \K.

Let K ≤f.g. FA with S(K) = (Q,A, δ, q0), and let p, q ∈ Q. Denoting by φ : Ã∗ → FA the
quotient morphism, we define

L(p,q) = {uφ | u ∈ Ã∗ labels a loop at (p, q) in S(K)× S(K)} ≤ FA.

Here, S(K) × S(K) denotes the direct product of S(K) with itself, so its vertex set is
Q × Q and there exists an edge (p, p′)

a
−→ (q, q′) if and only if we have edges p

a
−→ q and

p′ a
−→ q′ in S(K). In Stallings’ terminology, this corresponds to the pull-back of S(K) with

itself.
It is clear that if |Q| = 1, then K is cyclonormal; and if |A| = 1, then every subgroup of

FA is cyclonormal. Below we present a result regarding cyclonormality in free groups.

Theorem 6.10. [11] Let K ≤f.g. FA be a subgroup of FA and S(K) = (Q,A, δ, q0). The
following conditions are equivalent:

(i) K is cyclonormal.

(ii) For each pair of distinct vertices (p, q) ∈ Q×Q, the subgroup L(p,q) is cyclic.

(iii) For every p 6= q ∈ Q, there exists u ∈ RA such that p · u = p, q · u = q, and for all
v ∈ RA satisfying p · v = p and q · v = q, the equality v = um holds for some m ∈ Z.

The following lemma is straightforward but contains a useful observation.

Lemma 6.11. Let A be a set of size n > 2 and A1, . . . , Aℓ ⊆ A (ℓ ≥ 1) be distinct nonempty
subsets such that ∪ℓi=1Ai = A. If there are more than

(n
2

)
nonsingletons among the Ai, then

there exist distinct 1 ≤ i, j ≤ ℓ satisfying |Ai ∩Aj | > 1.

We are ready to prove our main result.

Theorem 6.12. Suppose that |A| ≥ 2 and let 1 6= K <f.g. FA be a cyclonormal subgroup of
FA with Stallings automaton S(K) = (Q,A, δ, q0). Let E and k ≥ 1 be as in Theorem 6.9.
Then either k = 2 or k = 3. Moreover, if |Q| = n > 2, then k = 2 implies |E| ≤

(n
2

)
+ 1; and

if k = 3, then |E| ≤ n+
(n

2

)
+ 1.

Proof. If k = 1, then M(K) is a finite group and S(K) is a complete automaton, as we
observed in the proof of Theorem 6.9. Consequently, given two distinct letters a, b ∈ A,
there exist m,n ∈ Z such that, given any pair of vertices p and q, the words am and bn label
loops at both p and q. However, there are no u ∈ RA and s, t ∈ Z satisfying am = us and
bn = ut, as the first letter of u would have to be simultaneously equal to a and b. Hence, if
K is cyclonormal, then k > 1.

Now let Q1, Q2, . . . , Qℓ ⊆ Q (ℓ ≥ 1) be distinct nonempty sets satisfying

E = {0, idQ1
, . . . , idQℓ

}.

Since K is cyclonormal, there cannot exist i 6= j such that |Qi ∩ Qj | ≥ 2. Otherwise, we
could find δv 6= δw ∈ E fixing at least two vertices p, q ∈ Q, and we may assume that
dom δw 6⊂ dom δv. Suppose that there were u ∈ RA labelling a loop at both p and q and
s, t ∈ Z satisfying v = us and w = ut. Then taking r ∈ dom δw \ dom δv, we would get
r · u|t| = r · ut = r ·w = r, whence r · u|t|s = r. However, we would also get r · us = r · v 6∈ Q,
which implies r · us 6∈ Q and r · u|t|s 6∈ Q, a contradiction. This allows us to conclude that
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k ≤ 3, for otherwise there would exist δv < δw whose domains would have at least two
vertices in common.

Moreover, if |Q| = n > 2, k = 2 and |E| >
(n

2

)
+1, then ℓ >

(n
2

)
. If there are no singletons

among the Qi, then Lemma 6.11 holds for A = Q and Ai = Qi (1 ≤ i ≤ ℓ); therefore,
there exist distinct i and j such that |Qi ∩Qj | ≥ 2, a contradiction since K is cyclonormal.
Otherwise, assume that Q1, . . . , Qt (1 ≤ t ≤ ℓ) are singletons, say Q1 = {q1}, · · · , Qt = {qt},
for some q1, . . . , qt ∈ Q. Let σ ∈ SQ be a permutation on Q whose cycles have length greater
than 2 (this is possible since |Q| > 2). For 1 ≤ i ≤ t, let Bi = {qi, qiσ}. Then the nonsingular
sets B1, . . . , Bt, Qt+1, . . . , Qℓ cover Q, the Bi are all distinct by the choice of σ, and no Bi is
equal to a Qj if j 6= i, as k = 2 implies Qi 6⊂ Qj. By Lemma 6.11, we conclude that there
exist 1 ≤ i ≤ t and t+ 1 ≤ j ≤ ℓ for which |Bi ∩Qj | ≥ 2, thereby implying Qi ⊂ Qj, which
is absurd. The contradiction we arrived at followed from the assumption that |E| >

(n
2

)
. We

conclude that |E| ≤
(n

2

)
+ 1 as claimed.

Finally, if |Q| = n > 2, k = 3 and ℓ > n +
(n

2

)
, there are certainly more than

(n
2

)

nonsingletons among the Qi. It follows from the previous lemma that there exist distinct
1 ≤ i, j ≤ ℓ such that |Qi ∩Qj | ≥ 2, which contradicts the fact that K is cyclonormal. We
conclude that, in this case, ℓ ≤ n+

(n
2

)
, and thus |E| ≤ n+

(n
2

)
+ 1.

The following example shows that M(K) and E alone are not sufficient to completely
characterize cyclonormality. Let A = {a, b, c} and consider the subgroups H,K ≤f.g. FA
with Stallings automata

S(H) : 1 2//oo c //

a

��

a

��

S(K) : 1 2//oo c //

a,b

��

a,b

��

It is clear that M(K) = M(H) and the sets E (as in Theorem 6.9) are also equal. However,
H is cyclonormal whereas K is not.

7 Future research

Regarding future directions of work, it would be interesting to determine more properties
P (not necessarily related to pseudovarieties) satisfying the following condition: given a
subgroup K ≤f.g. FA, if M(K) satisfies property P , then M(Kϕ) also satisfies property P ,
for all ϕ ∈ Aut(FA). The next step would be to link the algebraic property P of M(K) to
an algebraic property of K as a subgroup of FA.

Moreover, it could also be interesting to study the effect of various operators acting on
the lattice of f.g. subgroups of a free group at the level of the transition monoids of Stallings
automata.

Finally, one could pursue these same goals regarding structures that generalize Stallings
automata for some wider classes of groups [5, 12, 13, 17, 22].
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