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In honour of Professor Peter Schenzel for his 74th birthday

CERTAIN ENDOMORPHISM RINGS OF LOCAL COHOMOLOGY MODULES

AND LYUBEZNIK NUMBERS

ALBERTO F.BOIX∗ AND MAJID EGHBALI

Abstract. The goal of this paper is twofold; on the one hand, motivated by questions raised by
Schenzel, we explore situations where the Hartshorne–Lichtenbaum Vanishing Theorem for local
cohomology fails, leading us to simpler expressions of certain local cohomology modules. As appli-
cation, we give new expressions of the endomorphism ring of these modules. On the other hand,

building upon previous work by Àlvarez Montaner, we exhibit the shape of Lyubeznik tables of the
so–called partially sequentially Cohen–Macaulay rings as introduced by Sbarra and Strazzanti.

1. Introduction

Let (R,m) be a n-dimensional local ring and I ⊂ R be an ideal. One of the most interesting
subjects in the study of local cohomology is to find upper bounds for the cohomological dimension of
I. One knows, thanks to Grothendieck’s Vanishing Theorem [BS13, 6.1.2], that cd(I) ≤ n and that

equality holds if
√
I = m because of the Non–Vanishing Theorem [BS13, 6.1.4]. On the other hand,

the Hartshorne-Lichtenbaum vanishing theorem [BS13, 8.2.1] says that if R is a complete local
domain, then Hn

I (R) vanishes if and only if dim(R/I) ≥ 1; in other words, this result characterizes
when cd(I) ≤ n − 1. Nowadays, one also knows necessary and sufficient conditions to guarantee
cd(I) ≤ n − 2 and cd(I) ≤ n − 3; the interested reader can consult [DT16, HNBPW18] and the
references given therein for additional information.

It is known that the vanishing of the local cohomology modules H i
I(R), for i = n, n−1 paving the

ground for connectedness results, where R is a complete regular local ring containing its separably
closed residue field and dimR/I ≥ 2; indeed, under these assumptions it is known thatHn−1

I (R) = 0

if and only if the punctured spectrum of R is connected. The vanishing of Hn−1
I (R) is known as

the second vanishing theorem. See [Har68, Ogu73, PS73, HL90] for its story of evolution, and
[HNBPW18] for the statement in mixed characteristic; we also want to mention here that this
problem is definitely closely related to upper bounding the cohomological dimension of I with
respect to R, see [Lyu07, pages 621–622]. It was one of the motivations behind our investigation
on the structure of Hn−1

I (R) 6= 0. Our main results in Section 2 (cf. Theorems 2.4, 2.7 and 2.8)
imply the following:

Theorem 1.1. Let (R,m) be a n-dimensional local ring and I ⊂ R be an ideal.

(i) If R is Cohen-Macaulay, dimR/I = 1 and Hn
I (R) = 0, then

H i
m(H

n−1
I (R)) = 0, for i 6= 1 and H1

m(H
n−1
I (R)) = Hn

m(R).

In particular, Hn−1
I (R) is not Artinian.
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2 A.F. BOIX AND M.EGHBALI

(ii) Let R be a regular local ring containing a field and I be of pure dimension 2. Then Hn−1
I (R)

is an specific finite copies of the injective hull of the residue field R/m over R.
(iii) Let V be a complete unramified DVR of mixed characteristic (0, p), let R = V [[x1, . . . , xn]], and

set K as its residue field. If I is an ideal of pure dimension two, then Hn−1
I (R) is injective

iff multiplication by p on Hn−1
I (R) is surjective.

When the Hartshorne-Lichtenbaum Vanishing Theorem fails, that is Hn
I (R) 6= 0, it is of some

interest to give a more explicit description of Hn
I (R); in this research direction, we want to single

out some results. First of all, Call and Sharp (see [CS86] and [BS13, 11.2.2]) proved that, when R
is complete and Gorenstein, and D(−) denotes the Matlis duality functor, then

Hn
I (R) ∼= D





⋂

p∈V

c(p)



 ,

where c(p) = ker(R //Rp ) and

V := {p ∈ Spec(R) : p ⊇ I, ht(p) = n− 1}.
Another description of Hn

I (R) under similar assumptions was also obtained by Call in [Cal86,
Theorem 1.5].

On the other hand, the second author and Schenzel [ES12, Theorem 1.2] showed that Hn
I (R) ∼=

Hn
m(R/J) for a certain ideal J of R, where R is a complete ring.
Motivated by this result, the following question was raised by Professor Peter Schenzel to the

second named author.

Question 1.2. Assume that (R,m) is a local ring with Hn
I (R) = 0 and dimR/I ≥ 2. Is there any

isomorphism
Hn−1

I (R) ∼= Hn−1
b

(R/J)

of R-modules, where dimR/b ≤ 1 and J is an ideal of R?

Of course, Question 1.2 can be easily generalized as follows:

Question 1.3. Assume that (R,m) is a local ring, let I be an ideal of R, set c as the cohomological
dimension of I, and assume dimR/I = t ≥ 2. Is there any isomorphism

Hc
I (R) ∼= Hc

b(R/J)

of R-modules, where dimR/b ≤ t− 1 and J an ideal of R?

We give a partial positive answer to Question 1.3 in Proposition 3.2. This result is helpful in
answering questions about the structure of HomR(H

c
I (R),Hc

I (R)), the endomorphism ring ofHc
I(R),

where c is the cohomological dimension of I. Endomorphism rings of local cohomology modules
have been recently considered in various works such as [HS08, Kha07, Sch09, Sch10, ES12, Mah],
and references given there. To be more precise, for an R-module M one has the R–linear map

µM : R → HomR(M,M), r 7→ rm,

of R to the endomorphism ring of M , where r ∈ R and m ∈ M . This homomorphism is in general
neither injective nor surjective. There is a canonical injection HomR(M,M) → HomR(D(M),D(M))
induced by the canonical injection M → D(D(M)), where D(−) is the Matlis duality functor. In
Theorem 3.7, among other results, we provide sufficient conditions to guarantee the surjectivity of
µHc

I
(R) and µD(Hc

I
(R)); namely:

Theorem 1.4 (See Theorem 3.7). Let (R,m) be a complete Cohen-Macaulay local ring of dimension
n, let I be an ideal of R with dimR/I := t ≥ 2, and set c = n − (t − 1) as the cohomological
dimension of I. Suppose that AnnR Hc

I (R) contains at least a non–zero divisor of R/I. Then one
has isomorphisms of R–modules
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(i) HomR(H
c
I (R),Hc

I (R)) ∼= R/rR,
(ii) HomR(D(Hc

I (R)),D(Hc
I (R))) ∼= R/rR,

(iii) D(Hc
I (D(Hc

I (R)))) ∼= R/rR,

where 0 6= r ∈ AnnR Hc
I (R)∩Σ(I). In particular, the maps µHc

I
(R) and µD(Hc

I
(R)) are surjective.

Next in Section 3, we continue our investigation on Hn−1
I (R) with a view towards the so-called

Lyubeznik numbers of R. Lyubeznik numbers are one of the most interesting local rings’ invariants
with some topological interpretation, see [Lyu93, NBWZ16]. We refer the reader to Section 3 for
definitions.

Recently, there has been interest in finding the form of Lyubeznik tables. For instance, the
shape of Lyubeznik tables for sequentially, canonically Cohen-Macaulay [AM15], generalised Cohen-
Macaulay and Buchsbaum modules [NRE20] are known; it is also known the case of almost complete
intersection ideals under some additional conditions, see [NR22] for details. To do in this direction,
in Section 4 we continue our consideration of Lyubeznik numbers of certain partially sequentially
Cohen-Macaulay rings introduced in [SS17]; our main result (Theorem 4.10) shows the shape of the
Lyubeznik table of an i–sequentially Cohen–Macaulay ring, which recovers and extends the fact,
proved in [AM15, Proposition 4.1], that, under certain assumptions, sequentially Cohen–Macaulay
rings have a trivial Lyubeznik table.

2. On the non-Vanishing of the penultimate local cohomology module

We start this section with the below observation that we plan to use several times along this
paper.

Let
√
I = p1∩. . .∩pn, where pi’s are distinct minimal prime ideals of I for i = 1, . . . , n. Moreover,

set

Σ(I) := {r ∈ m : r is not contained in pi, i = 1, . . . , n}.
Notice that Σ(I) is nothing but the preimage in R of the set of non–zero divisors of R/I.

Remark 2.1. Some readers might ask why to care about the previous set; given (R,m) a commu-
tative Noetherian local ring, and given M a finitely generated R–module with dimR(M) := t ≥ 2,
set

EPR(M) := {r ∈ R : dimR(M/rM) = t− 1}.
Notice that this set contains, by [BS13, 9.5.10], the set

{r ∈ R : r is a parameter for M}.
In addition, if

√

AnnR(M) = p1 ∩ . . . ∩ pn

is an irredundant prime decomposition of
√

AnnR(M), then the set

{r ∈ R : r is a parameter for M}
contains

{r ∈ R : r /∈ pi for any 1 ≤ i ≤ n},
which is nothing but Σ(AnnR(M)).

Proposition 2.2. Let (R,m) be a local ring of dimension n and let x be a member of a system of
parameters for R, where x ∈ AnnR Hn

I (R). Then Hn
I (R) = 0.

Proof. We define (0 :R 〈x〉) := ⋃

n≥1(0 :R xu) = (0 :R xt), for some integer t. Consider the following
exact sequence

0 // (0 :R 〈x〉) // R // R/(0 :R 〈x〉) // 0.
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As x is not in any minimal prime ideal of R, it implies that dim(0 :R 〈x〉) < n and dimR/(0 :R
〈x〉) = n. By applying H i

I(−) to the above short exact sequence yields the isomorphism Hn
I (R) ∼=

Hn
I (R/(0 :R 〈x〉)). It shows that x is a regular element in R. It implies the following epimorphism

Hn−1
I (R/xR) // Hn

I (R) // Hn
I (R) // 0,

where the last map is the one induced by multiplication by x. Now, one can deduce that Hn
I (R) =

xHn
I (R) = 0. �

Remark 2.3. In the following we exploit the method used in [Zha07, Page 83] to choose an element
which is not contained in any minimal primes of I. Set c as the cohomological dimension of I, and
assume that the set of minimal primes of the support of Hc

I(R) is finite, see [HKM09]. We pick an
element y ∈ m as follows. If AssR(H

c
I (R)) 6= {m}, then the prime avoidance implies that there exists

y ∈ m \ pi, i = 1, . . . , n. If AssR(H
c
I (R)) = {m} so it implies that again y ∈ m \ pi, i = 1, . . . , n.

Since y is not contained in any minimal primes of I, R/yR is equidimensional of dimension n− 1.

Theorem 2.4. Let (R,m) be a local ring of dimension n and let I be an ideal of grade g < n,
where H i

I(R) = 0 for i = g + 1. Assume that the set of minimal primes of the support of Hg
I (R) is

finite. Then, for any element y ∈ R which is not contained in any minimal prime of I,

H i
yR(H

g
I (R)) = 0, for i 6= 1 and H1

yR(H
g
I (R)) = Hg+1

I+yR(R).

Proof. By Remark 2.3, we may choose y ∈ m \ I. Then, by [BS13, 8.1.2] we have the following
exact sequence:

(1) Hg
I+yR(R) → Hg

I (R) → (Hg
I (R))y → Hg+1

I+yR(R) → Hg+1
I (R).

As grade(I + yR) > g, we have Hg
I+yR(R) = 0 and therefore, keeping in mind that Hg+1

I (R) = 0,

the exact sequence (1) boils down to the below short exact sequence:

(2) 0 → Hg
I (R) → (Hg

I (R))y → Hg+1
I+yR(R) → 0.

In (2), notice that the map Hg
I (R) → (Hg

I (R))y is just the natural localization; in this way,
keeping in mind this fact jointly with the exactness of (2), it follows from [BS13, 2.2.21 (i)] that

H0
yR(H

g
I (R)) = 0 and H1

yR(H
g
I (R)) = Hg+1

I+yR(R). �

The below consequence of our previous result should be compared with [HMS14, Lemma 2.2].
Notice also that the below statement is just a particular case of [EY19, Lemma 3.2].

Corollary 2.5. Let I be a one dimensional ideal of an n-dimensional Cohen-Macaulay local ring
(R,m) with Hn

I (R) = 0. Then

H i
m(H

n−1
I (R)) = 0, for i 6= 1 and H1

m(H
n−1
I (R)) = Hn

m(R).

In particular, Hn−1
I (R) is not Artinian.

Proof. Similar to the proof of Theorem 2.4, choose y ∈ m \ I with
√
I + yR = m. Now the claim

follows from Theorem 2.4.
Note that in the caseHn−1

I (R) is Artinian, it follows thatHn
m(R) = 0 which is a contradiction. �

Proposition 2.6. Let (R,m) be a complete regular local ring of dimension n and I ⊂ R be an ideal
of pure dimension 2. Then SuppHn−1

I (R) ⊆ {m}.
Proof. Suppose that p is an arbitrary prime ideal of R not containing I. At once, Hn−1

IRp
(Rp) = 0.

In the event that I ⊆ p with dim(R/p) = 2, one has Hn−1
IRp

(Rp) = 0 because dim(Rp) < n − 1. If

I ⊆ p with dim(R/p) = 1, then Hn−1
IRp

(Rp) = 0 by the Hartshorne-Lichtenbaum vanishing Theorem.

Thus, Hn−1
I (R) is only supported at the maximal ideal. �
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Building upon Proposition 2.6, we obtain the below result in the equicharacteristic case; the
reader can compare our statement with [HK91, Theorem 3.6].

Theorem 2.7. Let (R,m) be a n-dimensional regular local ring containing a field K and I ⊂ R be

an ideal of pure dimension 2. Then Hn−1
I (R) ∼= Eλ2,2(R/I)−1, where E is the injective hull of the

residue field R/m over R, and

λ2,2(R/I) = dimKHomR(K,H
2
m(H

n−2
I (R))).

Proof. By passing to the completion we may assume that R is complete. It follows by Proposition
2.6 and [Lyu93, Corollary 3.6(b)] that Hn−1

I (R) is an R-module supported only at m and injective.

Furthermore, SuppHn−i
I (R) ⊆ V (m) for all i 6= 2. Now we are done by a result from Blickle [Bli07,

Theorem 1.1]. �

Again carrying over Proposition 2.6, we obtain the following statement in mixed characteristic.

Theorem 2.8. Let V be a complete unramified DVR of mixed characteristic (0, p), let R =
V [[x1, . . . , xn]], and set K as its residue field. Finally, let I ⊆ R be an ideal of pure dimension
two. Then, the following statements hold.

(i) Hn
I (R) is an injective R–module supported only at the maximal ideal.

(ii) Hn−1
I (R) is an injective R–module if and only if multiplication by p on Hn−1

I (R) is surjective.

Proof. On the one hand, (i) is just [NBW13, Lemma 4.4]; on the other hand, (ii) follows directly
combining Proposition 2.6 jointly with [NBW13, Lemma 4.2]. �

3. Endomorphism rings

Let M be an R-module. Consider the natural homomorphism

(3) µM : R → HomR(M,M), r 7→ rm,

of R to the endomorphism ring of M , where r ∈ R and m ∈ M . This homomorphism is in general
neither injective nor surjective. Of particular interest is the endomorphism rings of local cohomology
modules. They have been recently considered in various works such as [HS08, Sch09, ES12], and
references given there. In this section we consider EndR(H

c
I (R)), where c is the cohomological

dimension of I.
Before so, we start with the following technical result that holds in wide generality.

Proposition 3.1. Let R be a commutative Noetherian ring, let C be the category of R–modules, and

let C T
//C be a covariant, R–linear, right exact functor; moreover, assume that AnnR(T (R)) 6= 0.

Then, for any non–zero r ∈ AnnR(T (R)) there is an R–module isomorphism T (R) ∼= T (R/rR).

Proof. The exact sequence R
·r

//R //R/rR //0 becomes, after applying T, into the exact
sequence

(4) T (R)
·r

// T (R) // T (R/rR) // 0.

Since, by assumption, T (R)
·r

//T (R) is the zero map, one has, keeping in mind this fact jointly
with the exactness of (4), that there is an isomorphism

T (R) ∼= T (R/rR)

of R–modules, as claimed. �
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Proposition 3.2. Let (R,m) be a local ring, let I be an ideal of R, set c as the cohomological
dimension of I, and assume dimR/I = t ≥ 2. Moreover, suppose that AnnR Hc

I(R)∩Σ(I) is a non
empty subset of R. Then, for any non–zero element r ∈ AnnR Hc

I (R) ∩ Σ(I) one has that there is
an isomorphism of R–modules

Hc
I (R) ∼= Hc

I+rR(R/rR)

such that dim(R/rR) ≤ dim(R)− 1.

Proof. The result follows immediately from Proposition 3.1 just keeping in mind that, since c is
the cohomological dimension of I, the functor Hc

I is covariant, R–linear and right exact. �

Remark 3.3. Proposition 3.2 can not be applied, in general, when (R,m) is a local domain because,
in this case, it is known that AnnR(H

c
I (R)) = 0 if either dim(R) ≤ 3, [Lyn12, Theorem 4.4] if

c = dim(R) − 1 [ASN14, Lemma 3.6], or if c = ara(I) and R has prime characteristic [HJ20,
Theorem 2.6]. Our result can also not be applied when I is a cohomologically complete intersection
ideal inside a complete local ring [HS08, Corollary 2.3].

Remark 3.4. Proposition 3.2 leads to a naive algorithm that, given as input a local ring (R,m)
and I ⊆ R an ideal with c as cohomological dimension, returns as output ideals I ′, J ⊆ R and an
R–module isomorphism

Hc
I (R) ∼= Hc

I′(R/J),

with dim(R/J) ≤ dim(R) − µ(J), where µ(J) denotes the cardinality of a minimal generating set
of J as R–module.

Our algorithm works as follows; first of all, set SI,J := AnnR(H
c
I (R/J)) ∩ Σ(I).

(i) Initialize I ′ := I and J := (0).
(ii) (Step 1) If SI′,J = ∅, then stop and output the pair (I ′, J).
(iii) (Step 2) If SI′,J 6= ∅, then choose any non–zero r ∈ SI′,J and replace the pair (I ′, J) by the

pair (I ′ + rR, J + rR).
(iv) Repeat Steps 1 and 2 with the pair (I ′ + rR, J + rR).

We illustrate our method with the next example, which is borrowed from [SW20, Example 2].

Example 3.5. Let K be any field, let R = K[x, y, z, w](x,y,z,w)/(xyz, xyw) and let I = (x, y). The
reader will easily note that R is a three dimensional local ring and that R/I has dimension 2. It is
shown in [SW20, Example 2] that AnnR(H

2
I (R)) = (z, w). Therefore, in this case, for instance

z ∈ AnnR(H
2
I (R)) ∩ Σ(I).

In this way, we obtain an R–module isomorphism

H2
I (R) ∼= H2

(x,y,z)(R/zR).

Notice that R′ := R/zR is isomorphic to

K[x, y, w](x,y,w)/(xyw).

Now, we repeat the previous steps with the pair (I ′ = (x, y, z), wR). Now, it is again easy to check
that

AnnR′(H2
I′(R

′)) = (w),

hence in this case

w ∈ AnnR′(H2
I′(R

′)) ∩ Σ(I ′),

and therefore one gets a final isomorphism of R–modules

H2
I (R) ∼= H2

(x,y)(K[x, y](x,y)).
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The next result try to shed some light into the quiddity of the AnnRHc
I (R), where again c

is the cohomological dimension of I. For an R-module M , let 0 = ∩n
i=1Qi(M) denote a reduced

minimal primary decomposition of the zero submodule of M . That is M/Qi(M), i = 1, . . . , n is
a pi-primary R-module. Clearly, AssR M = {p1, . . . , pn}. For an ideal I of R, we define U = {p ∈
AssR M | dimR/p = dimR, and dimR/I+p = 0}. We define QI(M) =

⋂

pi∈U
Qi(M). In the case

U = ∅, put QI(M) = M . This notation is employed in the next results.

Proposition 3.6. Let I be an ideal of a n-dimensional complete local ring (R,m), and set c as the
cohomological dimension of I. Assume that the set of minimal primes of the support of Hc

I(R) is
finite. Then,

AnnR Hc
I (R) ⊆ QIR′(R′),

where R′ := R/yR is an equidimensional ring of dimension n− 1, for some y ∈ R.

Proof. By what we have seen before Proposition 3.2, there exists an element y ∈ m which is not

contained in any minimal prime of I. From the short exact sequence 0 → R/(0 :R y)
y→ R → R′ → 0

one can get the long exact sequence

Hc
I(R/(0 :R y)) → Hc

I (R) → Hc
I (R

′) → Hc+1
I (R/(0 :R y)),

where Hc
I (R/(0 :R y)) ∼= Hc

I (R)⊗R R/(0 :R y) is zero because of our assumptions. Then one has

AnnR Hc
I (R) ⊆ AnnR Hc

I(R
′) ⊆ AnnR′ Hc

I(R
′) = QIR′(R′).

To this end note that the rightmost equality follows from [ES12, Theorem 4.2(a)]. �

Let (R,m) be a commutative Noetherian local ring; for an R-module M , there is a canonical
injection

(5) HomR(M,M) → HomR(M,D(D(M)))

induced by applying HomR(M,−) to the evaluation map M → D(D(M)), which is known to be an
injection [BS13, 10.2.2 (i)]. We claim that the target module in (5) is isomorphic to the R-module
HomR(D(M),D(M)); indeed, we know, thanks to [Hun07, Example 3.6] that, given another R–
module N, for any integer i ≥ 0 there is an R–module isomorphism

D(Tori(M,N)) ∼= ExtiR(M,D(N)).

Taking N = D(M) and i = 0 one gets the isomorphism

D(M ⊗R D(M)) ∼= HomR(M,DD(M)).

Finally, since by Hom–tensor adjointness one has the canonical isomorphism

D(M ⊗R D(M)) ∼= HomR(D(M),D(M)),

one finally ends up with the isomorphism

HomR(M,D(D(M))) ∼= HomR(D(M),D(M)).

Summing up, we always have the injection

(6) HomR(M,M) → HomR(D(M),D(M)).

In the following result, we give conditions to show that

HomR(H
c
I (R),Hc

I (R)) ∼= HomR(D(Hc
I (R)),D(Hc

I (R))).

Before stating our main result in this section, let us recall that if R is a complete local ring, then
D(Hh

I (D(Hh
I (R)))) ∼= R, where H i

I(R) = 0 for all i 6= h [Kha07, Theorem 2.5 and Corollary 2.6].
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Theorem 3.7. Let (R,m) be a complete Cohen-Macaulay local ring of dimension n, let I be an
ideal of R with dimR/I := t ≥ 2, and set c = n − (t − 1) as the cohomological dimension of
I. Suppose that AnnR Hc

I(R) ∩ Σ(I) is a non empty subset of R. Then one has isomorphisms of
R–modules

(i) HomR(H
c
I (R),Hc

I (R)) ∼= R/rR,
(ii) HomR(D(Hc

I (R)),D(Hc
I (R))) ∼= R/rR,

(iii) D(Hc
I (D(Hc

I (R)))) ∼= R/rR,

where 0 6= r ∈ AnnR Hc
I (R)∩Σ(I). In particular, the maps µHc

I
(R) and µD(Hc

I
(R)) are surjective.

Proof. By what we have seen in the proof of Proposition 3.2, if b = I + rR for some non–zero
r ∈ AnnR Hc

I(R) ∩ Σ(I), then one has that

(7) 0 6= Hc
I (R) ∼= Hc

b(R
′).

It implies that c ≤ cd(R′, b), where R′ := R/rR and (here is where we are using the Cohen–
Macaulay assumption) ht b ≥ n − (t − 1) = c. On the other hand, by the Independence Theorem
[BS13, 4.2.1], one has the isomorphism of R′–modules

H i
b(R

′) ∼= H i
IR′(R′) ∼= H i

I(R
′)

and from the surjection R → R′ we deduce that cd(R′, b) = cd(R′, I) ≤ cd(R, I), where the
inequality follows by [DANT02, Theorem 2.2]. Summing up, we have cd(R′, b) = c = ht b. That is,
H i

b(R
′) = 0 for all i 6= c.

Next, from (7), and applying Matlis duality we get the isomorphism D(Hc
I(R)) ∼= D(Hc

b(R
′)).

In the light of the above descriptions we have R–module isomorphisms

HomR(H
c
I (R),Hc

I (R)) ∼= HomR(H
c
b(R

′),Hc
b(R

′)) ∼= HomR′(Hc
b(R

′),Hc
b(R

′)),

and

HomR(D(Hc
I (R)),D(Hc

I (R))) ∼= HomR′(D(Hc
b(R

′)),D(Hc
b(R

′))).

Moreover, as R′ is a complete ring of dimension n − 1, it follows from [HS08, Theorems 2.2 and
2.6] that the endomorphism ring

HomR′(D(Hc
b(R

′)),D(Hc
b(R

′))) ∼= HomR′(Hc
b(R

′),Hc
b(R

′))

is isomorphic to the local ring R′. This proves parts (i) and (ii).
In order to prove part (iii), we proceed as follows; from (7) and the fact that Hc

I(M) ∼= Hc
I (R)⊗R

M and Hc
b(M) ∼= Hc

b(R
′)⊗R M for any R-module M , one obtains the following isomorphism

Hc
I (D(Hc

I (R))) ∼= Hc
b(D(Hc

b(R
′))).

Finally, by applying D(−) and using [HS08, Theorem 2.2] we are done. �

Recently, the annihilator of local cohomology turns out to be an interesting subject in Commu-
tative Algebra. See for instance [BE18a, BE18b, DSZ]. Of particular interest is the annihilator of
local cohomology at the spot of the cohomological dimension of an ideal. See [BE18a, Section 7]
and [HJ20] for a complete collection of attempts and related questions. An immediate consequence
of Theorem 3.7 is the following result, where, in the light of (3), AnnR(M) = ker µM .

Corollary 3.8. Let (R,m) be a complete Cohen-Macaulay local ring of dimension n, let I be an
ideal of R with dimR/I := t ≥ 2, and set c = n − (t − 1) as the cohomological dimension of I.
Suppose that AnnR Hc

I (R)∩Σ(I) is a non empty subset of R. Then AnnR(H
c
I (R)) = rR, for some

element r ∈ AnnR Hc
I(R) ∩ Σ(I).
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4. Lyubeznik tables

In this section, we consider mainly an invariant of local rings known as Lyubeznik numbers. Let
(R,m, k) be a local ring of dimension n which admits a surjection from a regular local ring (S, n, k)
containing a field. Let I be the kernel of the surjection. Lyubeznik [Lyu93] proved that the Bass
numbers

λi,j(R) := dimk Ext
i
S(k,H

dimS−j
I (S)) = dimk HomS(k,H

i
m(H

dimS−j
I (S))),

known as Lyubeznik numbers of R, depend only on R, i and j, but neither on S nor on the surjection
S → R. Note that, in the light of [HS93, Lyu93], these Bass numbers are all finite. One can collect
these integers in the so–called Lyubeznik table as follows:

Λ(R) =



















λ0,0 λ0,1 λ0,2 . . . . . . λ0,n

0 λ1,1 λ1,2 . . . . . . λ1,n

0 0 λ2,2 λ2,3 . . . λ2,n
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . λn−1,n

0 0 0 . . . 0 λn,n



















.

where λi,j := λi,j(R) for every 0 ≤ i, j ≤ n.

Remark 4.1. Let (R,m, k) be a complete regular local ring of dimension n containing a field, let I
be an ideal of R with dimR/I := t ≥ 2, and set c = n− (t− 1) as the cohomological dimension of
I. Suppose that AnnR Hc

I (R) ∩Σ(I) is a non empty subset of R. Put R′ = R/rR and b = I + rR.
As R is complete and contains a field, it contains a coefficient field, which by abuse of notation we
also denote by k. By the way of choosing r in Proposition 3.2, R′ is a complete regular local ring
containing a field too. Moreover, in the proof of Theorem 3.7 we have seen that cd(R′, b) = c = ht b.
Accordingly, for all integer i

dimk Ext
i
R(k,H

c
I (R)) = dimk Ext

i
R′(k,Hc

b(R
′)) = λi,d(R

′/b)

is finite, where d = dimR′/b.

In the next result, we recover [Wal01, page 1632].

Theorem 4.2. Let I be a one dimensional ideal of a n-dimensional regular local ring (R,m)
containing a field. Then the Lyubeznik table of R/I is trivial; in other words,

Λ(R/I) =

(

0 0
0 1

)

.

Proof. Since Lyubenznik numbers are stable under completion, without loss of generality we may
assume that R is complete. By using the Hartshorne-Lichtenbaum Vanishing Theorem and Corol-
lary 2.5 one has λ0,0(R/I) = 0, λ0,1(R/I) = 0 and λ1,1(R/I) = 1. �

It is noteworthy to mention that with the assumptions of Theorem 2.7 the Lyubeznik table of
R/I is as follows:

Λ(R) =





0 λ0,1 0
0 0 0
0 0 λ0,1 + 1



 .

(see also [Wal01, Proposition 2.2]).
We want to illustrate the above Lyubeznik table with the following example, borrowed from

[ÀM13, Example 55].
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Example 4.3. Let K a field, and consider I = (x1, x3) ∩ (x2, x4) inside R = K[x1, x2, x3, x4] is the
defining ideal of the union of the two skew lines in P

3
K
. Using the Mayer-Vietoris exact sequence,

one can check that

H2
I (R) ∼= H2

(x1,x3)
(R)⊕H2

(x2,x4)
(R), H3

I (R) ∼= E2−1,

where E denotes a copy of the ∗ injective hull of K. Therefore, in this case, one obtains the following
Lyubeznik table:





0 1 0
0 0 0
0 0 2



 .

4.1. Certain partially sequentially Cohen-Macaulay rings. Hereafter, R will denote a com-
mutative Noetherian regular ring containing a field, which is either local of dimension n, or
R = K[x1, . . . , xn], where K is a field, and R is standardly Z-graded; moreover, M will always

denote a finitely generated R-module and, given 0 ≤ j ≤ dim(M), Kj(M) := Extn−j
R (M,R).

Definition 4.4. Let M−1 = 0 and, given a non-negative integer k, we denote by Mk the maximum
submodule of M with dimension less than or equal to k. We call {Mk}k≥−1 the dimension filtration
of M . The module M is said to be sequentially Cohen-Macaulay (sCM), if Mk/Mk−1 is either
zero or a k-dimensional Cohen-Macaulay module for all k ≥ 0.

We refer the interested reader to see [CDSSS22] for motivations to study on the concept of
sequentially Cohen-Macaulay modules. In [SS17], the authors introduced the following notion:

Definition 4.5. Let i ≥ 0 be an integer, and let {Mk}k≥−1 be the dimension filtration of M ; it is
said that M is i-partially sequentially Cohen-Macaulay (from now on, i-sCM for the sake of brevity)
provided, for any i ≤ k ≤ dim(M), Mk/Mk−1 is either zero or a k-dimensional Cohen-Macaulay
module.

As pointed out in [SS17], sequentially Cohen-Macaulay modules are exactly the 0-sCM modules;
it is also worth noting that, if M is canonically Cohen-Macaulay module (see [Sch04, Definition
3.1]), then this is equivalent to say that M is a dim(M)-sCM module. Notice that i-sCMness does
not guarantee to be (i− 1)-sCM.

Indeed, to illustrate our last remark we want to give an example of an i–sequentially Cohen–
Macaulay module borrowed from [CDSSS22, Example 7 (2)].

Example 4.6. Given K a field, consider the ring

R/I =
K[x1, x2, x3, x4, x5]

(x1) ∩ (x2, x3) ∩ (x21, x4, x5)
.

In this case, one has the filtration

0 = M−1 = M0 = M1 ⊂ M2 =
(x1) ∩ (x2, x3)

I
⊂ M3 =

(x1)

I
⊂ M4 = R/I.

One can check that M4/M3 and M3/M2 are Cohen–Macaulay modules of dimensions 4 and 3
respectively, but M2/M1 is not Cohen–Macaulay. Hence R/I is a 3–sequentially Cohen–Macaulay
ring which is not 2–sequentially Cohen–Macaulay.

In [AM15, Theorem 3.2 and Remark 3.3], Àlvarez Montaner shows that, under certain assump-
tions, sequentially Cohen-Macaulay rings have a trivial Lyubeznik table; our main goal in this note
is to use his approach to partially compute the Lyubeznik table of i-sCM rings.

To do so, we need to use the following results; the first one is a natural common generalization
of [Sch99, Theorem 5.5] and [Sta96, page 88]. To fix notation, recall that, under the assumptions of
this section, given a finitely generated (graded if we are working with the polynomial ring) module
M, we denote by Kj(M) its j–th deficiency module.
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Theorem 4.7. Let k ≥ 0 be an integer. Then, M is k-sCM if and only if, for any k ≤ j ≤ dim(M),
Kj(M) is either zero or Cohen-Macaulay of dimension j.

Proof. The proof is verbatim the one done by Schenzel in [Sch99, Theorem 5.5]; following his
notation, the only changes in the proof are that one has to take the intervals k ≤ i ≤ dim(M) and,
when one tackles the spectral sequence, the interval − dim(M) ≤ p ≤ −k. �

The second one is a technical fact proved in [AM15, Lemma 3.1].

Lemma 4.8. Assume that there is a flat endomorphism R
ϕ

//R such that ϕ(m) ⊆ m satisfy-
ing, for a given ideal I ⊆ R (homogeneous if R is a polynomial ring as above), that the ideals
{ϕt(I)R}t≥0 form a descending chain cofinal with {It}t≥0. Given p, j ∈ N, if Hp

m(K
j(R/I)) = 0,

then µp(m,Hn−i
I (R)) = 0.

The last preliminary fact we need was also proved in [AM15, Proposition 1.1]; namely:

Proposition 4.9. Lyubeznik numbers satisfy the following Euler characteristic type formula:
∑

0≤p≤j≤dim(R/I)

(−1)p−jλp,j(R/I) = 1.

In this way, our main result in this subsection is the following result, which recovers and extends
[AM15, Proposition 4.1]; namely:

Theorem 4.10. Let i ≥ 0 be an integer, and suppose that R/I is i-sCM (in the local case, it is
enough to assume that the completion of R/I is i-sCM). Moreover, we assume that there is a flat

endomorphism R
ϕ

//R such that ϕ(m) ⊆ m satisfying, for a given ideal I ⊆ R (homogeneous if
R is a polynomial ring as above), that the ideals {ϕt(I)R}t≥0 form a descending chain cofinal with
{It}t≥0. Then, one has that λp,j(A/I) = 0 for any p 6= j, where i ≤ j ≤ dim(A/I).

Proof. Let i ≤ j ≤ dim(R/I); by Theorem 4.7, one has that the corresponding deficiency module
Kj(R/I) is either zero or Cohen–Macaulay of dimension j. This implies, thanks to Lemma 4.8,
that λp,j(R/I) = 0 for any p 6= j, as claimed. �

Remark 4.11. Under the assumptions of Theorem 4.10, we know that the Lyubeznik table of an
i–sCM ring has the following shape:



















λ0,0 λ0,1 . . . . . . . . . λ0,d

0 λ1,1 . . . . . . . . . λ1,d
...
0 . . . λi, i 0 . . . 0
... 0
0 . . . . . . 0 0 λd,d



















Let us express this shape in a different way; given 1 ≤ k ≤ d+ 1, denote by vK the column vector
with the following d+ 1 entries in R. Indeed, if 1 ≤ l ≤ d+ 1, its l–th entry is

(vk)l =

{

0, if l ≤ k,

λk−1,l−1, if l ≥ k + 1.

In this way, denoting by ek the k–th canonical basis vector of Rd+1 one has that, if our R/I is
i–partially sequentially Cohen–Macaulay, then its Lyubeznik table is

Λ(R/I) = diag(λ0,0, . . . , λd,d) +

i
∑

k=1

ek · vT
k ,
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where diag(λ0,0, . . . , λd,d) denotes the square matrix of size d+1 with λ0,0, . . . , λd,d in the diagonal

and zeros outside, · denotes matrix product, and (−)T denotes transposition of matrices.
We also want to discuss some small values of i.

(i) For i = 0, the ring is sequentially Cohen–Macaulay and therefore has a trivial Lyubeznki table
by [AM15, Proposition 4.1].

(ii) For i = 1, Proposition 4.9 combined with Theorem 4.10 gives the following shape of the
Lyubeznik table:



















λ0,0 λ0,1 . . . . . . . . . λ0,d

0 λ1,1 0 . . . . . . 0
...
0 . . . λi,i 0 . . . 0
... 0
0 . . . . . . . . . 0 λd,d



















5. Open questions and final remarks

We wanto to end up with the following question that seems so natural for us keeping in mind
the results obtained along this manuscript.

Question 5.1. Let (R,m) be a commutative Noetherian local ring, let I ⊆ R be an ideal such that
dim(R/I) ≥ 2, and set c as the cohomological dimension of I. Is it true that there exists an ideal
J ⊆ R such that:

(i) There is an R–module isomorphism

Hc
I(R) ∼= Hc

I+J(R/J).

(ii) If µ(J/I) denotes the number of a minimal generating set of J/I as R/I–module, then

dim(R/J) = dim(R/I)− µ(J/I).

(iii) I + J is a cohomologically complete intersection ideal in R/J.
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