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TATE–SHAFAREVICH GROUPS AND ALGEBRAS

BORIS KUNYAVSKĬI, VADIM Z. OSTAPENKO

Abstract. The Tate–Shafarevich set of a group G defined by Takashi Ono coincides, in the case
where G is finite, with the group of outer class-preserving automorphisms of G introduced by
Burnside. We consider analogues of this important group-theoretic object for Lie algebras and
associative algebras and establish some new structure properties thereof. We also discuss open
problems and eventual generalizations to other algebraic structures.

1. Introduction

A starting point of this research is the following purely group-theoretic notion. Let G be an
abstract group acting on itself by conjugation, and letH1(G,G) denote the first group cohomology
corresponding to this action.

Definition 1.1. The (pointed) set

X(G) := ker


H1(G,G) →

∏

C<G cyclic

H1(C,G)


 (1.1)

is called the Tate–Shafarevich set of G.

The definition and the name were introduced by Takashi Ono [On1], [On2]. The local-global
flavour justifies the allusion to the object bearing the same name which appeared in the arithmetic-
geometric context (related to the action of the absolute Galois group of a number field K on the
group A(K) of K-points of an abelian K-variety A). Recall that the usage of the Cyrillic letter
X (“Sha”) in this notation was initiated by Cassels because of its appearance as the first letter
in the surname of Shafarevich.

Formula (1.1) admits a more down-to-earth interpretation, attributed in [On2] to Marcin Mazur
(note that it appeared implicitly in an earlier paper by Chih-Han Sah [Sah]). For the reader’s
convenience, we reproduce this argument.

Recall that 1-cocycles Z1(G,G) are crossed homomorphisms, i.e. maps ψ : G → G with the
property

ψ(st) = ψ(s)sψ(t) = ψ(s)sψ(t)s−1.

Then the correspondence ψ(s) 7→ f(s) = ψ(s) · s gives a bijection between Z1(G,G) and End(G).
Under this correspondence, 1-coboundaries correspond to inner automorphisms. Further, a 1-
cocycle whose cohomology class becomes trivial after restriction to every cyclic subgroup cor-
responds to an almost inner (=locally inner=pointwise inner=class preserving) endomorphism,
i.e. f ∈ End(G) with the property f(g) = a−1ga (where a depends on g). Note that any class
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preserving endomorphism is injective. If G is finite, it is also surjective, and we arrive at the
object introduced by Burnside [Bur1] more than 100 years ago:

X(G) ∼= AIAut(G)/Inn(G),

where AIAut(G) (sometimes denoted by Autc(G)) stands for the group of almost inner automor-
phisms of G. In particular, if G is finite, X(G) is a group, not just a pointed set. (Ono [On2]
extended this to the case where G is profinite.)

There are many classes of groups G with trivial X(G), see the surveys [Ku1], [Ya] where such
groups are called X-rigid. One can also find there some interesting examples with nontrivial
X(G). Such examples often give rise to counter-examples to some difficult problems, such as
Higman’s problem on isomorphism of integral group rings.

Our first goal is to study the Lie-algebraic analogue of X(G), emphasizing its cohomological
nature and local-global flavour. This analogue, under different names, appeared in the literature.
In the pioneering work by Carolyn Gordon and Edward Wilson [GW], this object was studied
in the differential-geometric context, allowing them to produce a continuous family of isospectral
non-isometric compact Riemann manifolds. Recently, the interest to these Lie-algebraic structures
was revived in the series of papers by Farshid Saeedi and his collaborators [SMSB], [SMS1],
[SMS2], and also in the series of papers by Burde, Dekimpe and Verbecke [BDV1], [BDV2],
[BDV3].

In Section 2, we consider this Tate–Shafarevich Lie algebra X(g) and its generalization
X(g,M), where g is a finite-dimensional Lie algebra andM is a g-module. Our main contribution
here is the proof of the fact that X(g) is an ideal in the Lie algebra Der(g) of outer derivations
of g in the case where g is nilpotent. This gives a partial answer to a question posed in [BDV1].

Our next aim is to extend the parallelism between groups and Lie algebras by considering
associative algebras and introducing analogous objects. For such an algebra A, in Section 3, we
define two analogues of X(G) and X(g), additive Xa(A) and multiplicative Xm(A), and study
their simplest properties and relations to the objects defined earlier. We hope that these new
local-global invariants of associative algebras will prove useful, as their predecessors.

Finally, in Section 4, we overview some open problems arising from the parallelism among
the objects of the triad consisting of Lie algebras, associative algebras, and groups. We also
speculate on extending this parallelism from Lie algebras to other algebraic structures, such as
Malcev algebras, Leibniz algebras, Poisson algebras, and the corresponding triads whenever they
exist.

Notation and conventions. Unless stated otherwise, k is an arbitrary field of characteristic zero,
g is a finite-dimensional Lie k-algebra, A is an associative k-algebra, and M is either a g-module,
or an A-bimodule, depending on the context.

2. Lie algebras

2.1. Preliminaries. Let g be a Lie algebra over k, and let M be a (left) g-module, i.e. M is a
vector k-space and there exists a k-bilinear map

g×M →M, (g,m) 7→ g ◦m,

such that

[g, h] ◦m = g ◦ (h ◦m)− h ◦ (g ◦m)

for all g, h ∈ g,m ∈ M . In particular, M = g is a g-module with respect to the adjoint action
g ◦ k = [g, k] because of the Jacobi identity.
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Further, recall that a derivation D : g →M is a k-linear map such that

D([g, h]) = g ◦D(h)− h ◦D(g) (2.1)

for all g, h ∈ g. For a given m ∈M , the map

Dm : g →M, g 7→ g ◦m,

is a derivation. Such derivations are called inner. We denote by Der(g,M) the set of all deriva-
tions and by ad(g,M) the set of all inner derivations. Clearly, they are both vector k-spaces, and
ad(g,M) is a k-subspace of Der(g,M). Let Out(g,M) = Der(g,M)/ad(g,M) denote the quo-
tient vector space. It is well known that Out(g,M) is the first Chevalley–Eilenberg cohomology
H1(g,M).

In the special case M = g, formula (2.1) is the usual Leibniz rule. We abbreviate the notation
Der(g, g), ad(g, g) and Out(g,M) to Der(g), ad(g) and Out(g), respectively. The first two vector
spaces acquire a natural Lie algebra structure defined by the Lie bracket [D,D′] = DD′ −D′D.
Therefore, since ad(g) is a Lie ideal of Der(g), Out(g) also carries a Lie algebra structure. It is
the Chevalley–Eilenberg cohomology H1(g, g) related to the adjoint action of g.

Definition 2.1.

AID(g,M) := {D ∈ Der(g,M) | (∀g ∈ g) (∃m ∈M) D(g) = g ◦m}.

(Here m may depend on g.) We call elements of AID(g,M) almost inner derivations of g with
coefficients in M .

Remark 2.2. Perhaps a more appropriate name for objects introduced in Definition 2.1 would
be locally inner derivations. It would better reflect their local-global flavour. We have chosen
another name, following [GW] and [BDV1], in order to avoid notational collisions. First, locally
inner derivations are used in the theory of Banach algebras (having a different meaning). Second,
this term is too close to local derivations, which are yet another object, intensely studied over
past years and having important applications.

Clearly, AID(g,M) is a subspace of Der(g,M) and ad(g,M) is a subspace of AID(g,M), so we
define

X(g,M) := AID(g,M)/ad(g,M).

This quotient is a subspace of Out(g,M).
As above, we shorten AID(g) := AID(g, g), and so on. These algebras were considered in

[GW], [SMSB], [BDV1]. As mentioned in Section 1, algebras g with nonzero X(g) exhibited
in the aforementioned papers often reveal important geometric phenomena, see [GW] for details.
Note that AID(g) inherits the Lie algebra structure from Der(g) (see [BDV1, Proof of Proposition
2.3]), ad(g) is a Lie ideal in AID(g), and hence X(g) also carries a natural Lie algebra structure.

Definition 2.3. We call X(g) the Tate–Shafarevich algebra of g.

2.2. Properties. We start with a basic structural question posed in [BDV1].

Question 2.4. Is AID(g) an ideal of Der(g)?

If this question is answered in the affirmative, we conclude that X(g) is an ideal of Out(g).
So far, Question 2.4 is wide open. The next result can be viewed as a first step.

Theorem 2.5. Let g be a finite-dimensional nilpotent Lie algebra over k = C. Then AID(g) is

an ideal of Der(g), and hence X(g) is an ideal of Out(g).
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Proof. Step 1. Note that since g is nilpotent, it is algebraic, i.e. there exists an affine algebraic
k-group G such that g = Lie(G).

Step 2. Denote N := Aut(G), the group of automorphisms of G. It also has a structure of an
algebraic group, and we have an isomorphism of Lie algebras Lie(N) ∼= Der(g), see, e.g. [OV,
Section I.2.10] (the material of this section refers to Lie groups but since k = C, the same holds
for algebraic groups).

Step 3. Denote H := AIAut(G), the group of almost inner automorphisms of G, see Section 1.
Let us prove that H is a closed normal subgroup of N .

We thank Pradeep Kumar Rai for communicating us the following fact.

Lemma 2.6. Let G be any group. Then AIAut(G) is a normal subgroup of Aut(G).

Proof. Let σ ∈ AIAut(G), ϕ ∈ Aut(G), g ∈ G. By the definition of an almost inner automor-
phism, we have σ(ϕ(g)) = aϕ(g)a−1 for some a ∈ G. Hence

(ϕ−1σϕ)(g) = ϕ−1(aϕ(g)a−1) = ϕ−1(a)gϕ−1(a−1) = ϕ−1(a)g(ϕ−1(a))−1.

Thus ϕ−1σϕ ∈ AIAut(G). �

To prove that H is closed in N , we use the same argument as in [GW]. Again, as at Step 2,
we only have to rephrase it, replacing Lie groups with algebraic groups.

Step 4. By Step 3, H is an affine algebraic group. Then Lie(H) is an ideal of Der(L), see, e.g.
[Hu, 10.2, Cor. A].

Step 5. As in [GW], we have an isomorphism Lie(H) ∼= AID(g). By Step 4, this finishes the
proof.

�

Remark 2.7. It is unclear whether one can extend the class of algebras for which the statement
of Theorem 2.5 holds. Already Step 1 of our proof breaks down for solvable algebras because
some of them are not algebraic, see [Bou, §5, Ex. 6 on p. 126], [Mi, 1.25, 3.42].

Example 2.8. Consider the 5-dimensional solvable Lie algebra g mentioned in Remark 2.7. It is
defined by the following multiplication table of basis elements: [e1, e2] = e5, [e1, e3] = e3, [e2, e4] =
e4 (all other products are equal to 0), so e5 is a central element.

We have g(n) := [g, g(n−1)] = Span(e3, e4) for all n ≥ 2. On the other hand, g′′ := [[g, g], [g, g]] =
0. Therefore, g is solvable but not nilpotent.

Let ϕ be a derivation of g with matrix C = (ϕji)
5
1. A straightforward computation of the ϕ(ei)

using Leibniz rule implies that all entries of C are zero except ϕ31, ϕ33, ϕ42, ϕ44, ϕ51, ϕ52, with no
other relations. Hence

Der(g) = Span(E31, E33, E42, E44, E51, E52),

where the Eji denote the matrix units.
Further, suppose that ϕ is an almost inner derivation so that the linear equation in y ∈ g

[x, y] = ϕ(x) (2.2)

has a solution for every x ∈ g. Representing x and y as vectors in kn in the basis {ei} and using
the conditions ϕ(ei) ∈ [ei, g] and the multiplication table, we present (2.2) as a system of linear
equations in the coordinates of y. We then use the condition that this system must be solvable
for any choice of the coordinates of x and arrive at the following conclusion: the entries of C
must satisfy the additional relations ϕ52 = ϕ33, ϕ51 = −ϕ44, and these relations are sufficient to
guarantee that ϕ is an almost inner derivation. Thus

AID(g) = Span(E31, E33 + E52, E42, E44 − E51). (2.3)
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Finally, suppose further that ϕ is an inner derivation. We then compute ϕ(ei) using the
multiplication table and arrive at the same result as in (2.3), i.e. ad(g) = Span(E31, E33 +
E52, E42, E44 −E51). We conclude that X(g) = AID(g)/ad(g) = 0.

Thus for the algebra we considered, X(g) is an ideal of Out(g) for trivial reasons. It remains
a tempting problem to find an example where Question 2.4 is answered in the negative.

Remark 2.9. Note that there are numerous examples of Lie algebras g with X(g) 6= 0, see
[GW], [SMSB], [BDV1]–[BDV3]. To give the reader some flavour, we reproduce here some of
such examples. We use the notation of Magnin’s tables [Ma] for algebras of small dimension.

Let g = g5,3 be given by a basis e1, . . . , e5 with multiplication table

[e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5

(all other entries equal 0). This is a 3-step nilpotent algebra with AID(g) = ad(g)⊕ 〈E5,3〉 where
E5,3 maps e3 to e5 and all other ei to 0. It is shown in [BDV1, Example 2.7] that the derivation
E5,3 is not inner, so that X(g) is an abelian Lie algebra of dimension 1.

We are grateful to the referee for pointing out other interesting examples of algebras g with
X(g) 6= 0. These are g = g6,20, the nilradical of the standard Borel subalgebra of the exceptional
simple Lie algebra g2 (see [BDV1, Remark 8.6]) and the filiform Witt algebra Wn for n ≥ 9 (see
[BDV2, Proposition 4.5]).

It is also worth noting that such examples cannot be found among algebras of dimension less
than 5: according to [BDV1, Proposition 2.8], every almost inner derivation of such an algebra
is inner.

We shall discuss more (known and unknown) properties of X(g) in Section 4, in the context
of parallelism among groups, Lie algebras, and associative algebras.

Meanwhile, for the sake of application in the next section, we consider the algebra X(g,M)
in the special case M = U(g), the universal enveloping algebra of g, where the module structure
is given by the adjoint action of g continuing the adjoint action of g on itself. (There are other
actions that we do not consider here.) Recall that the Poincaré–Birkhoff–Witt (PBW) theorem
provides the canonical k-linear injective map i : g → U(g). We will identify g with its image i(g)
without special mentioning.

We start with the following simple (and perhaps well-known) lemma.

Lemma 2.10. Let m ∈ U(g). If for all g ∈ g we have g ◦m ∈ g, then m ∈ g.

Proof. Recall that U(g) has a natural filtration

U0 ⊂ U1 ⊂ · · · ⊂ Um ⊂ . . .

where Ui is spanned by the monomials of length at most i.
The associated grading gives, by canonical symmetrization, a decomposition

U(g) =
⊕

m≥0

Um (2.4)

where U0 = U0 = k, and Um = Um/Um−1 (m ≥ 1) is the set of symmetric homogeneous elements
of degree m (in particular, U1(g) is isomorphic to g, and each direct summand is g-invariant. See,
e.g. [Dix, 2.4.6, 2.4.10] for details.

This immediately implies the assertion of the lemma. �

We will need the following proposition where some of the statements are well known.

Proposition 2.11. The map i induces k-linear injective maps



6 BORIS KUNYAVSKĬI, VADIM Z. OSTAPENKO

(i) Der(g) → Der(g, U(g));
(ii) ad(g) → ad(g, U(g));
(iii) Out(g) → Out(g, U(g));
(iv) AID(g) → AID(g, U(g));
(i) X(g) → X(g, U(g)).

Proof. Assertions (i), (ii) and (iv) are obvious, (iii) and (v) are immediate consequences of Lemma
2.10.

�

Corollary 2.12. There exist finite-dimensional Lie algebras g with nonzero X(g, U(g)).

Proof. By Proposition 2.11(v), for any Lie algebra with X(g) 6= 0 we have X(g, U(g)) 6= 0.
There are many examples of such algebras, see Remark 2.9 above. �

3. Associative algebras

In this section, k is a field, A is an associative unital k-algebra, and M is an A-bimodule. We
do not use any special symbols for denoting multiplication in A and left and right actions of A
on M with the hope that this does not lead to any confusion.

In this case we have two versions of X(A), additive and multiplicative.

3.1. Additive X(A). Recall that a derivation D : A→M is a k-linear map such that

D(ab) = D(a)b+ aD(b)

for all a, b ∈ A. For a given m ∈M , the map

Dm : A→M, m 7→ am−ma,

is a derivation. Such derivations are called inner. We denote by Der(A,M) the set of all deriva-
tions and by ad(A,M) the set of all inner derivations. Clearly, they are both vector k-spaces,
and ad(A,M) is a k-subspace of Der(A,M). Let Out(A,M) = Der(A,M)/ad(A,M) denote the
quotient space. It is well known that Out(A,M) is the first Hochschild cohomology HH1(A,M).

In the special case M = A we abbreviate the notation Der(A,A), ad(A,A) and Out(A,A)
to Der(A), ad(A) and Out(A), respectively. The first two spaces acquire a natural Lie algebra
structure defined by the Lie bracket [D,D′] = DD′ −D′D, ad(A) is a Lie ideal of Der(A), hence
Out(A) also carries a Lie algebra structure. This Lie algebra is the first Hochschild cohomology
HH1(A).

Definition 3.1. Set

AID(A,M) := {D ∈ Der(A,M) | (∀a ∈ A) (∃m ∈M) D(a) = am−ma}.

(Here m may depend on a.) We call elements of AID(A,M) almost inner derivations of A with
coefficients in M .

Clearly, AID(A,M) is a subspace of Der(A,M), ad(A,M) is a subspace of AID(A,M), and we
define

Xa(A,M) := AID(A,M)/ad(A,M).

It is a subspace of Out(A,M).
As in Section 2, in the particular caseM = A we shorten AID(A,M) andXa(A,M) to AID(A)

and Xa(A), respectively. As above, AID(A) inherits the Lie algebra structure from Der(A).
Indeed, the same argument as in [BDV1, Proof of Proposition 2.3] works here as well.

Proposition 3.2. For any D,D′ ∈ AID(A) we have [D,D′] ∈ AID(A).
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Proof. Let a ∈ A. We have D(a) = am−ma, D′(a) = am′ −m′a for some m,m′ ∈ A depending
on a, so that

[D,D
′](a) = (DD

′

−D
′

D)(a) = D(D′(a))−D
′(D(a)) = D(am′

−m
′

a)−D
′(am−ma)

= D(a)m′ + aD(m′)−D(m′)a−m
′

D(a)−D
′(a)m− aD

′(m) +D
′(m)a+mD

′(a)

= (am−ma)m′ + aD(m′)−D(m′)a−m
′(am−ma)− (am′

−m
′

a)m− aD
′(m) +D

′(m)a+m(am′

−m
′

a)

= amm
′

−mam
′ + aD(m′)−D(m′)a−m

′

am+m
′

ma− am
′

m+m
′

am− aD
′(m) +D

′(m)a+mam
′

−mm
′

a

= an− na,

where n = mm′ −m′m−D′(m) +D(m′). Hence [D,D′] ∈ AID(A). �

Clearly, ad(A) is a Lie ideal in AID(A), and hence Xa(A) also carries a natural Lie algebra
structure.

Definition 3.3. We call Xa(A) the additive Tate–Shafarevich algebra of A.

Once a new object is introduced, the first question to ask is whether it can be nontrivial.
It is not hard to construct an associative algebra A with nonzero Xa(A). Here is a ‘generic’
construction suggested by Leonid Makar-Limanov (a similar construction was communicated to
us by Alexei Kanel-Belov; cf. also Example 3.11 below).

Example 3.4. Take a non-commutative algebra A with an infinite set S of generators and finitary
multiplication table, i.e. such that only a finite number of generators do not commute with any
given generator. Let m denote a formal infinite sum of elements of A such that every generator
appears only in a finite number of summands of m. Then the map

Dm : A→ A, a 7→ am−ma,

is well-defined and is a derivation of A. Clearly, this derivation is almost inner but not inner, so
that Xa(A) 6= 0.

Our further goal is to exhibit a finitely generated algebra A with Xa(A) 6= 0. Towards this
end, consider A = U(g) where g is a Lie algebra, and U(g) is its universal enveloping algebra.
Any g-bimodule M has a unique structure of a U(g)-bimodule.

Lemma 3.5.

(i) For any g-bimodule M the vector k-spaces Xa(U(g),M) and X(g,M) are isomorphic.

(ii) The Lie algebras Xa(U(g)) and X(g, U(g)) are isomorphic.

Proof. First recall that every derivation D : g → M can be uniquely extended to a derivation
D′ : U(g) →M (see, e.g. [Dix, Lemma 2.1.3] or [CE, XIII.2]). (One has to continue D using the
canonical embedding g → U(g) and then use Leibniz rule.) Under this process, the inner deriva-
tions ad(g,M) go to the inner derivations ad(U(g),M), and AID(g,M) goes to AID(U(g),M).
This proves (i). It is easy to see that in the case M = U(g) the Lie bracket [D1,D2] of derivations
of g goes to D′

1D
′
2 −D′

2D
′
1 where D′

i (i = 1, 2) are the corresponding derivations of U(g). This
proves (ii). �

Corollary 3.6. There exist finitely generated associative algebras A with Xa(A) 6= 0.

Proof. Let A = U(g) where g is a finite-dimensional Lie algebra with nonzero X(g, U(g)). In
view of explicit examples mentioned in Remark 2.9, such Lie algebras exist, see Corollary 2.12.
By Lemma 3.5, we have Xa(A) 6= 0. �

The algebra U(g) is infinite-dimensional, so the next step is to look for finite-dimensional

associative algebras A with Xa(A) 6= 0. Somewhat degenerate examples arise from the following
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observation (see, e.g. [GR, Proposition 1]): a Lie algebra g is associative if and only if it is two-step
nilpotent. As examples of two-step nilpotent Lie algebras g with X(g) 6= 0 can be produced in
abundance, see [BDV2], we obtained the needed associative algebras A for free. Note, however,
that the obtained associative algebras are obviously not unital. To repair this, one can use a

standard procedure of adjoining the unit to get a unital algebra Ã := k ⊕ A for which we have

Xa(Ã) = Xa(A) 6= 0.
It is tempting to use the same examples of finite-dimensional nilpotent Lie algebras g with

nonzero X(g) to construct ‘genuine’ examples of finite-dimensional associative algebras A with
nonzero Xa(A).

Let us first record some obvious properties of derivations in the following lemma the proof of
which is straightforward. Let A be an associative algebra, and let g = Lie(A) be its Lie algebra
(the underlying vector k-space of A equipped with the bracket [x, y] = xy − yx).

Lemma 3.7.

(i) Der(A) ⊆ Der(g).
(ii) ad(A) = ad(g).
(iii) AID(A) = AID(g) ∩Der(A).
(iv) Xa(A) ⊆ X(g).

This implies that genuine examples we are looking for cannot be too small:

Corollary 3.8. If dim(A) ≤ 4, then Xa(A) = 0.

Proof. By [BDV1, Proposition 2.8], for g = Lie(A) we have X(g) = 0 (see Remark 2.9 above).
The assertion now follows from Lemma 3.7(iv). �

3.2. Multiplicative X(A). Let G = Autk(A) be the group of all k-algebra automorphisms of
A. In the sequel, we shorten Autk(A) to Aut(A). Let A× denote the group of invertible elements
of A. Denote by Inn(A) the group of inner automorphisms of A. Recall that ϕ ∈ Inn(A) if there
exists a ∈ A× such that ϕ(x) = axa−1. Inn(A) is a normal subgroup of Aut(A).

Definition 3.9. Define

AIAut(A) := {ϕ ∈ Aut(A) | (∀x ∈ A) (∃a ∈ A×) ϕ(x) = axa−1}.

(Here a may depend on x.) We call elements of AIAut(A) almost inner automorphisms of A.

Clearly, Inn(A) is a normal subgroup of AIAut(A).

Definition 3.10. The group

Xm(A) := AIAut(A)/Inn(A)

is called the multiplicative Tate–Shafarevich group of A.

As in Section 3.1, we first make sure that there exist A with Xm(A) 6= 0. The following
example (provided by Be’eri Greenfeld) is parallel to Example 3.4.

Example 3.11. Let A be the algebra of (countably) infinite matrices S over k which are eventu-
ally scalar (namely, for i+ j ≫ 1, S(i, j) = λδi,j for some λ ∈ k). Consider the automorphism of
A induced by conjugation by an infinite diagonal matrix diag(λ1, λ2, . . . ) with distinct nonzero
λi’s. This is an almost inner automorphism of A which is not inner. Hence Xm(A) 6= 0.

Remark 3.12. Both Examples 3.4 and 3.11 are reminiscent of a similar well-known construction
arising in the group-theoretic set-up. Namely, let G = FSym(Ω) be a finitary symmetric group
(the group of all permutations of an infinite set Ω fixing all but finitely many elements of Ω).
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Viewing G as a subgroup of the symmetric group Sym(Ω), consider an automorphism ϕ : G →
G induced by conjugation by some a ∈ Sym(Ω) \ FSym(Ω). Clearly, ϕ is almost inner but
not inner. Actually, in this case AIAut(G)/Inn(G) is isomorphic to the infinite simple group
FSym(Ω)/Sym(Ω) (this observation is attributed to Passman, see [Sah, Introduction]), andX(G)
is even larger because there are non-surjective almost inner endomorphisms [AE].

As in Section 3.1, we are interested in exhibiting examples of finitely generated (or even finite-
dimensional) algebras A with nontrivial Xm(A).

In the case A = U(g), considered in Section 3.1 in the context of the additive X, we did not
succeed in presenting an example of g with Xm(U(g)) 6= 0.

Consider finite-dimensional algebras A. In this case, G can be equipped with a structure of an
affine algebraic k-group (not necessarily connected). Let GA denote its identity component, it is a
closed, connected, normal subgroup of finite index in G. Since the field k is of characteristic zero,
the Lie algebra Der(A) is isomorphic to Lie(G) = Lie(GA). The group of inner automorphisms
Inn(A) is a closed, connected, normal subgroup of G, so that the group of outer automorphisms
G/Inn(A) is well defined and also acquires the structure of an affine algebraic k-group, and the
Lie algebra Lie(G/Inn(A)) is isomorphic to Out(A) = Der(A)/ad(A), the Lie algebra of outer
derivations of A; see, e.g. [Hu, Corollary 13.2], [Str, Proposition 3.1].

Recently, this structure attracted considerable attention, see [CSS], [ER], [LRD], [RDSS] and
the references therein. It is an invariant of the derived equivalence class of A and is related to
the representation type of A.

It would be interesting to understand whether one can use the multiplicative and additive
X(A) in this circle of problems. First, one has to answer some basic questions. Recall that we
assume A to be a finite-dimensional associative unital algebra over a field k of characteristic zero.

Lemma 3.13. AIAut(A) is a normal subgroup of Aut(A).

Proof. One has to repeat, word for word, the proof of Lemma 2.6. �

Corollary 3.14. AIAut(A) is a normal subgroup of GA. �

Question 3.15. Is AIAut(A) a closed subgroup of GA?

We see no reason to have an affirmative answer for an arbitrary algebra A. See, however,
Theorem 3.17 below.

Clearly, Inn(A) is a closed, connected, normal subgroup of Aut(A), so that if for a certain
algebra A Question 3.15 is answered in the affirmative, then Xm(A) becomes a closed subgroup
of Out(A), thus acquiring the structure of an affine algebraic k-group. This gives rise to the
following observation.

Lemma 3.16. Suppose that AIAut(A) is a closed subgroup of Aut(A). Then the Lie algebras

Lie(Xm(A)) and Xa(A) are isomorphic.

Proof. Under the standard correspondence between algebraic groups and Lie algebras, which
takes elements of G (=automorphisms of A) to derivations of A as mentioned above (see [Hu, Sec-
tion 10.7 and Corollary 13.2]), inner automorphisms of A go to inner derivations of A and similarly,
almost inner automorphisms of A go to almost inner derivations of A. Since the characteristic
of k is zero, this correspondence gives rise to isomorphisms of Lie algebras Lie(Inn(A)) ∼= ad(A),
Lie(AIAut(A)) ∼= AID(A) (again, see [Hu, Corollary 13.2]), hence

Lie(Xm(A)) = Lie(AIAut(A)/Inn(A)) ∼= Lie(AIAut(A))/Lie(Inn(A)) ∼= AID(A)/ad(A)

= Xa(A),

which proves the lemma. �
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Thus, under the assumptions of Lemma 3.16, any eventual example of an algebra A with
nonzero X(A), either additive or multiplicative, would immediately yield a required example for
the other structure.

Here is an important special case.

Theorem 3.17. Let k = C. With the notation as above, assume in addition that the algebraic

k-group GA is nilpotent. Then

(i) AIAut(A) is a closed normal subgroup of GA with Lie algebra AID(A);
(ii) the Lie algebras Lie(Xm(A)) and Xa(A) are isomorphic.

Proof. As in Theorem 2.5, the proof of (i) follows, mutatis mutandis, the proof of Theorem 2.3
in [GW].

We obtain (ii) by combining (i) with Lemma 3.16. �

Remark 3.18. So far it is not clear whether there exists A fitting into the frame of Theorem
3.17 and providing an example with nonzero X(A). One can try to produce such an A using the
results of R. D. Pollack [Po], particularly Theorem 1.6 and Example 1.7.

4. Concluding parallels

4.1. Structure properties. Actually, very little is known on the structure properties of the
Tate–Shafarevich groups and algebras considered above. As of now, main vague parallels arise
from looking at X(G) of finite groups G, see [Ku2] for more details.

Here are some basic questions. Throughout we assume that g is a finite-dimensional Lie algebra
and A is a finite-dimensional associative unital algebra. As to the characteristic of the ground
field, in this section we shall consider two separate cases, following a suggestion of the referee.

4.1.1. Case char(k) = 0.

Question 4.1.

(i) Does there exist g such that the algebra X(g) is non-abelian?
(ii) Does there exist A such that the algebra Xa(A) is non-abelian?
(iii) Does there exist A such that the group Xm(A) is non-abelian?

Recall that Sah [Sah] disproved Burnside’s statement [Bur2] and exhibited examples of p-groups
G with non-abelian X(G), the smallest among them is a group of order 215.

Our working hypothesis is that all these questions are answered in the affirmative.

Question 4.2.

(i) Does there exist g such that the algebra X(g) is non-solvable?
(ii) Does there exist A such that the algebra Xa(A) is non-solvable?
(iii) Does there exist A such that the group Xm(A) is non-solvable?

Here we would rather expect that all Tate–Shafarevich algebras and groups appearing in these
questions are solvable. Note that even in the case of finite groups G only a conditional statement
is available. The proof of the solvability in [Sah] contains a gap noticed by Murai [Mu] who
showed that the validity of this assertion depends on the Alperin–McKay conjecture.

4.1.2. Case char(k) = p > 0. In this case, one might expect a very different behaviour of all
versions of X. A general reason is that in a situation where an algebra has no outer derivations
in characteristic zero, it may have such in positive characteristic. Here are several instances of
this phenomenon.

• All derivations of the group algebra k[G] of a finite group G are inner if char(k) = 0 but
there are outer derivations in the modular case, see, e.g. [ArKo].
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• All derivations of a simple finite-dimensional Lie k-algebra are inner (first Whitehead’s
lemma) but there are outer derivations in the modular case, even for classical Lie algebras, where
such algebras are classified for p > 3, see [BGP, Lemma 2.7]. There are more examples of the
same flavour for non-classical simple algebras, as well as for classical algebras in characteristics
2 and 3. The latter cases provide algebras g with non-solvable Out(g) thus refuting a conjecture
of Zassenhaus. See [BM] for details and a more recent paper [BMPG] for an infinite family of
counter-examples in characteristic 3.

It is not clear what are the Tate–Shafarevich algebras in all these exceptional cases. In light
of the aforementioned counter-examples to the Zassenhaus conjecture, it would be particular
tempting to answer Question 4.2(i) in this set-up. This is an interesting topic for future research,
and we thank the referee for bringing the aforementioned examples to our attention.

4.2. Eventual generalizations. It is tempting to extend the notions introduced in this paper
to other algebraic structures for which there exists a developed cohomology theory, with a goal
to define, explore and apply analogues of Tate–Shafarevich sets to relevant problems of different
categories. One has to try to equip these sets, if possible, with an additional structure (group
or algebra). Also, it is very desirable to include the structure under consideration in a relevant
triad, if such exists, similarly to the classical triad consisting of Lie algebras, associative algebras
and groups.

A prototypical example where one can observe these structures is the set of (n × n)-matrices
giving rise to the Lie algebra g = gln(k) if equipped by the bracket (X,Y ) 7→ XY − Y X,
to the associative algebra A = Mn(k) if equipped by matrix multiplication, and to the group
G = GLn(k) of the invertible elements of the latter algebra. One has to emphasize, however,
that each of the three objects has trivial Tate–Shafarevich set. Indeed, the Skolem–Noether
theorem implies this for Xa(A) and Xm(A) because of the absence of outer automorphisms and
derivations, X(g) = 0 by first Whitehead’s lemma, and X(G) = 1 by a theorem of Hideo Wada
[Wa]. To complete the picture, one can mention a theorem of Feit and Seitz [FS] stating that
X(S) = 1 for any finite simple nonabelian group S. Thus, looking for eventual analogies, one
has to leave the realm of simple (or, more generally, semisimple) objects in favour of the study
of nilpotent ones.

Below we list some possible situations where the generalizations we are looking for seem reach-
able.

• Malcev algebras

Malcev algebras arise from Lie algebras when one relaxes the Jacobi identity replacing it with
a weaker condition, and keeps the anti-commutativity, see, e.g. [Sag], [KS]. One can start
with derivations of such an algebra M , where inner derivations are defined as in [Sch], and
introduce almost inner derivations. The arising set X(M) carries a structure of vector space
but not necessarily a structure of Lie algebra. The relevant triad to be considered should include
alternative algebras (as a substitute for associative algebras) and Moufang loops (as a substitute
for groups). Note that analogues of Lie theorems in this set-up are available, see the paper
of Kerdman [Ke] and the references therein. As in the classical case, the ‘Lie correspondence’
between Moofang loops and Malcev algebras works particularly well in the nilpotent case, see
[GRSS].

• Leibniz algebras

Leibniz algebras arise from Lie algebras in an opposite way, when one keeps the Jacobi identity
and drops the anti-commutativity condition, see, e.g. [Lo1], [AOR]. Here there is a well-developed
(co)homology theory [LP], [Pi], and the Leibniz adjoint cohomology HL1(L,L) of a Leibniz al-
gebra L is the space of outer derivations of L, see [LP]. One then can introduce almost inner
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derivations and X(L) as in the case of Lie algebras, see [AdKu] where the authors provide exam-
ples of L with nonzero X(L). The eventual triad should include dialgebras [Lo3] (as a substitute
for associative algebras) and so-called ‘coquecigrues’ [Lo2], [JP], whose existence is known for
several classes of Leibniz algebras and an analogue of Lie theory is established. Hopefully, X(L)
may reveal some related geometric phenomena.

• Poisson algebras

Recall that a Poisson algebra A is equipped with structures of associative algebra and Lie
algebra which are related by the Leibniz identity. The Poisson adjoint cohomology H1

π(A) is the
quotient Derπ(A)/Ham(A), where Derπ(A) is the Lie algebra of Poisson derivations (i.e. deriva-
tions of both associative and Lie structures) and Ham(A) is the ideal of Hamiltonian derivations.
As in the preceding cases, we can introduce almost inner derivations and define X(A). Here one
can hope to use the Duflo isomorphism [PT] for establishing connections and analogies with other
versions of X. We hope that this object admits a conceptual interpretation within the frame of
Poisson geometry, in the spirit of [Wei]. But this is another story.

Acknowledgements. We thank Be’eri Greenfeld, Alexei Kanel-Belov, Leonid Makar-Limanov and
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anonymous referee for careful reading and thoughtful remarks.
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