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REGULAR SEMIGROUPS WEAKLY GENERATED BY

IDEMPOTENTS

LUÍS OLIVEIRA

Abstract. A regular semigroup is weakly generated by a set X if it has
no proper regular subsemigroups containing X. In this paper, we study
the regular semigroups weakly generated by idempotents. We show
there exists a regular semigroup FI(X) weakly generated by |X| idem-
potents such that all other regular semigroups weakly generated by |X|
idempotents are homomorphic images of FI(X). The semigroup FI(X)
is defined by a presentation 〈G(X), ρe ∪ ρs〉 and its structure is studied.
Although each of the sets G(X), ρe, and ρs is infinite for |X| ≥ 2, we
show that the word problem is decidable as each congruence class has a
“canonical form”. If FIn denotes FI(X) for |X| = n, we prove also that
FI2 contains copies of all FIn as subsemigroups. As a consequence, we
conclude that (i) all regular semigroups weakly generated by a finite set
of idempotents, which include all finitely idempotent generated regular
semigroups, strongly divide FI2; and (ii) all finite semigroups divide
FI2.

1. Introduction

Let S be a semigroup. An inverse of an element s ∈ S is another element
s′ ∈ S such that ss′s = s and s′ss′ = s′. We denote by V (s) the set of
all inverses of s in S. A semigroup where all elements have at least one
inverse, that is, no set V (s) is empty, is called regular. It is well known
that not all subsemigroups of regular semigroups are regular. Thus, for
classes of regular semigroups, the usual concept of variety of algebras is not
appropriate. Instead, the concept of e-variety is used. An e-variety [15, 17]
of regular semigroups is a class of these algebras closed for homomorphic
images, direct products, and regular subsemigroups.

For e-varieties, there is a concept similar to the concept of ‘free object’ for
varieties. If X is a nonempty set, let X ′ = {x′ | x ∈ X} be a disjoint copy
of X, and set X = X ∪X ′. A matched mapping is a mapping φ : X → S
such that x′φ is an inverse of xφ in S, for all x ∈ X. If V is an e-variety of
regular semigroups, a bifree object in V on X is a semigroup BFV(X) ∈ V,
together with a matched mapping ι : X → BFV(X), such that any other
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matched mapping φ : X → S, with S ∈ V, has a unique extension into a
homomorphism ϕ : BFV(X) → S.

There is, however, an important difference between varieties and e-varie-
ties: not all e-varieties have bifree objects. In fact, Yeh [26] proved that only
the e-varieties of locally inverse semigroups and the e-varieties of regular E-
solid semigroups have bifree objects on a set X with at least two elements.
Yeh showed that if S is a locally inverse semigroup or a regular E-solid
semigroup, and if φ : X → S is a matched mapping, then S has the smallest
regular subsemigroup containing Xφ. Using this fact, Yeh was able to prove
that all e-varieties of locally inverse semigroups and all e-varieties of regular
E-solid semigroups have bifree objects on any set X.

In addition, Yeh [26] constructed a finite semigroup S, together with a
matched mapping φ : X → S with |X| = 2, such that S had no smallest
regular subsemigroup containing Xφ. The semigroup S had two regular
subsemigroups, S1 and S2, both containing Xφ, such that S1 ∩ S2 was not
regular. Then, Yeh showed that S belongs to all e-varieties V containing
non-locally inverse and non-regular E-solid semigroups, and concluded that
V had no bifree objects on X since, otherwise, φ would not have a unique
extension. It was then obvious that V had also no bifree objects on any set
with more than two elements.

In this paper, a regular semigroup S with no proper regular subsemigroups
containing a set X is said to be weakly generated by X. Note that this does
not mean that S is generated by X itself since, very often, the subsemigroup
of S generated byX is a proper non-regular subsemigroup. As demonstrated
by the semigroup constructed by Yeh mentioned above, a regular semigroup
can have several distinct regular subsemigroups weakly generated by the
same set X. In fact, as described above, the existence of bifree objects
on an e-variety V is closely related with the property that all semigroups
S ∈ V have a unique regular subsemigroup weakly generated by Xφ, for
any matched mapping φ : X → S.

Although regular semigroups weakly generated by a set seem to be im-
portant in the theory of regular semigroups, little research has been done
about their structure. The goal of this paper is to contribute to the knowl-
edge about the structure of those semigroups. However, we will focus only
on the case of the regular semigroups weakly generated by idempotents. We
took this option not only because it is a simpler situation to begin with, but
also because regular semigroups weakly generated by a set X of idempotents
are, in fact, regular idempotent generated semigroups, although usually not
generated by X.

The (regular) idempotent generated semigroups have been a topic of great
interest in Semigroup Theory with a vast literature on the subject. One
of the reasons is the existence of natural examples of these semigroups,
such as the semigroup of all singular transformations on a finite set and
the semigroup of all singular n × n matrices over a field. From the pure
semigroup theoretical point of view, the interest in these semigroups comes
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also from both the facts that all (finite) semigroups can be embedded into
(finite) idempotent generated semigroups and that the set of idempotents of
a semigroup carries a lot of information about the semigroup itself and its
idempotent generated subsemigroup.

Nambooripad [21] characterized the set of idempotents of regular semi-
groups abstractly as partial algebras, the so-called regular biordered sets,
and proved [22] the existence of a ‘free regular idempotent generated semi-
group RIG(E) on a regular biordered set E’. These results were then gen-
eralized by Easdown to all semigroups. Easdown [9] characterized the set
of idempotents of a semigroup abstractly as a biordered set and proved the
existence of a ‘free idempotent generated semigroup IG(E) on a biordered
set E’. The semigroups IG(E) and RIG(E) have deserve a lot of attention
since then.

The maximal subgroups of IG(E) and RIG(E) have been one of the main
topics of research related to these semigroups. The reasons for this interest
are explained in [25]. The maximal subgroups of the earlier examples of
IG(E) and RIG(E) were all free groups [23, 19]. This led to the conjecture
that the maximal subgroups of both IG(E) and RIG(E) were always free.
However, in 2009, Brittenham, Margolis and Meakin [3] gave a first example
that disproves this conjecture. In fact, Gray and Ruskuc [13] proved that
quite the opposite occurs: every group is a maximal subgroup of some IG(E)
and of some RIG(E). In the past decade much research has been carried
on these semigroups related to their maximal subgroups (see, for example,
[4, 5, 6, 7, 8, 12, 14]). We refer the reader to the survey paper [25] for further
details on this topic. We just mention that the research presented here may
contribute with new questions on this topic. We briefly address this idea in
the last section of this paper.

The main achievement of this paper is a result showing that the class
WIG(X) of all regular semigroups weakly generated by a set X of idempo-
tents has a regular semigroup FI(X) such that all other regular semigroups
of WIG(X) are homomorphic images of FI(X). Thus FI(X) is a sort of “free
object” in WIG(X). We will effectively construct the semigroup FI(X), and
we will then study its structure.

This paper is organized as follows. In the next section, we introduce the
object of study, the regular semigroups weakly generated by a fixed set of
idempotents, in a more formal setting. We also recall some basic concepts
used in Semigroup Theory that we will need for the remainder of the paper.

In Section 3 we introduce the semigroup FI(X). We begin by construct-
ing its infinite set G(X) of generators from X. Then, we define FI(X) as
a quotient semigroup G(X)+/ρ, where ρ is the congruence generated by
two infinite sets, ρe and ρs, of relations. Thus, FI(X) is introduced as the
semigroup given by a presentation 〈X, ρe ∪ ρs〉, where both the set of gen-
erators and the set of generating relations are infinite. However, although
both G(X) and ρe ∪ ρs are infinite sets, we can show that each ρ-class has a
canonical element, called a mountain, thus solving the word problem for this
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presentation. We end Section 3 by constructing a model M(X) for FI(X),
where the elements of M(X) are precisely the mountains.

In Section 3 we prove also that FI(X) is a regular semigroup and that
the elements of G(X) are idempotents. But, to advance and conclude that
FI(X) ∈ WIG(X), we need to study the structure of FI(X) first. This
study will be done at the beginning of Section 4. The remainder of Section
4 is devoted to proving that FI(X) ∈ WIG(X). Finally, in Section 5, we
prove that all semigroups from WIG(X) are homomorphic images of FI(X).
However, we also observe that the converse is not true, that is, we construct
an example of a homomorphic image of FI(X) that is not weakly generated
by X. We end Section 5 with a brief reflection on decidability questions
that can now be posed (and are still open) about regular semigroups weakly
generated by a set of idempotents.

We will denote FI(X) by FIn if |X| = n. In Section 6, we compare
the different FIn and prove, somehow surprisingly, that each FIn can be
embedded into FI2. This result show us how complex must be the structure
of FI2 since we can immediately deduce that all regular semigroups weakly
generated by a finite set of idempotents strongly divide FI2.

We return to the structure of FI(X) in Section 7. In that section, we
compare the different D-classes of FI(X) and analyze its idempotents. One
of the goals is to get more information about the structure of the biordered
set of idempotents of FI(X). However, as it will become clear, more research
is needed on this topic since it is not immediate to identify if an element of
FI(X) is an idempotent.

In the last section of this paper we make some considerations about pos-
sible avenues for future research related with the research presented here.

2. Preliminaries

Let A be a nonempty subset of a semigroup S. A regular subsemigroup T
of S containing A is said to be weakly generated by A if T has no proper reg-
ular subsemigroups containing A. Note that, very often, T is not generated
by A as a semigroup. In fact, as mentioned earlier, S can have several (or
none) distinct regular subsemigroups weakly generated by the same subset
A. If S is regular and has no proper regular subsemigroups containing A,
then we say that S is weakly generated by A.

More generally, if X is a formal nonempty set and S is an arbitrary
regular semigroup, we shall say that S is weakly generated by X if there
exists a one-to-one mapping φ : X → S such that S is weakly generated
by the subset Xφ. We shall denote by WG(X) the category of all regular
semigroups weakly generated by X, that is,

(i) the objects of WG(X) are the pairs (S, φ : X → S), where S is a
regular semigroup and φ : X → S is a one-to-one mapping such that
S is weakly generated by the subset Xφ; and
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(ii) the morphisms from (S1, φ1 : X → S1) to (S2, φ2 : X → S2) are
the usual semigroup homomorphisms ϕ : S1 → S2 that verify also
φ1ϕ = φ2.

Given an object (S, φ : X → S) ∈ WG(X), we shall identify the set X with
its image under φ. In this manner, we avoid having to refer to the mapping
φ, and we shall write only S ∈ WG(X). Note that, in particular, given
S, T ∈ WG(X), a morphism ϕ : S → T is a usual semigroup homomorphism
such that ϕ|X is the ‘identity’ mapping.

In this paper, we will be working simultaneously in the category WG(X)
and in the usual category of all semigroups. So, we must be careful and
have a way to clearly distinguish the two cases. If we say that ϕ : S → T
is a morphism, then we are implicitly assuming that S, T ∈ WG(X), for
some nonempty set X, and that ϕ is a morphism in the category WG(X).
Thus, if we say that T is a morphic image of S, then we are again implicitly
assuming that S, T ∈ WG(X), for some nonempty set X, and that there
exists a surjective morphism ϕ : S → T in WG(X). On the other hand,
if we say that ϕ : S → T is a homomorphism, then this means that we
are working in the usual category of all semigroups and that ϕ is just a
usual semigroup homomorphism. Thus, if we say that T is a homomorphic
image of S, then we are just saying that there exists a surjective semigroup
homomorphism ϕ : S → T .

To clarify the usage of this terminology, if we know that S ∈ WG(X), that
X is a subset of T , and that ϕ : S → T is a semigroup homomorphism such
that ϕ|X is the identity mapping, but we are not sure that T ∈ WG(X), then
we shall not call ϕ a morphism; in this case, we shall write that ϕ : S → T
is a homomorphism such that ϕ|X is the identity mapping. Summing up,
we use the terms morphism and morphic image if we know that we are
working in WG(X), for some nonempty set X; otherwise, we use the terms
homomorphism and homomorphic image.

The goal of this paper is to study the structure of the objects from a
particular subcategory of WG(X), namely

WIG(X) = {(S, φ : X → S) ∈ WG(X) | Xφ ⊆ E(S)} ,

where E(S) denotes the set of idempotents of S, as usual. As above, we
continue to identify X with its image under φ. In this case, X will be always
a set of idempotents of S. The semigroups from WIG(X) will be said to be
weakly idempotent generated by X. We remark that a regular semigroup
S weakly idempotent generated by X is always an idempotent generated
regular semigroup. In fact, since 〈E(S)〉 is always a regular subsemigroup
of S (see [10]) and it constains X, we must have S = 〈E(S)〉.

Given a formal nonempty set X, we denote by X+ and X∗ the free semi-
group and the free monoid on X, respectively, as usual. The elements of X
are called letters, while the elements of X∗ are called words. The content
c(u) of a word u is the set of all letters from X that occur in u. Usually, one
denotes the empty word of X∗ by 1. Given a word u ∈ X+, σ(u) and τ(u)
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will denote the first and the last letter of u, respectively. The length l(u) of
a word u is the number of letters that occur in u. Thus 1 is the only word of
length 0. If l(u) = n and i ≤ n, then σi(u) denotes the prefix of u of length
i. Similarly, τi(u) denotes the suffix of u of length i. We will also need the
notion of reverse of a word: if u = x1 · · · xn with xi ∈ X for i = 1, · · · , n,
then its reverse is the word

�

u = xn · · · x1.
Let S be a semigroup. The notions of left principal ideal, right principal

ideal, and principal ideal induce the well-known Green relations: for any
s, t ∈ S,

s L t ⇔ S1s = S1t, s R t ⇔ sS1 = tS1, s J t ⇔ S1sS1 = S1tS1,

H =L ∩ R and D=L ∨ R ,

where S1 is the monoid obtained from S by adding an identity element if
necessary. They induce also three quasi-orders:

s ≤L t ⇔ S1s ⊆ S1t, s ≤R t ⇔ sS1 ⊆ tS1, s ≤J t ⇔ S1sS1 ⊆ S1tS1.

We denote by Ka the K -class of the element a for K ∈ {H ,L ,R,D ,J }.
If S is a regular semigroup, then we can replace S1 with S in the definitions

of the previous relations. There is also another important relation on S for
the cases where S is regular, the natural partial order ≤ :

s ≤ t ⇔ s = et = tf for some e, f ∈ E(S) .

It is well-known that, in the previous definition of the natural partial order,
one can choose idempotents e and f such that e R s L f . We will use this
fact later on this paper.

Given two idempotents e and f of S, the sandwich set of e and f is the
set

S(e, f) = V (ef) ∩ E(fSe) .

There are other equivalent definitions for the sandwich set. One of then is
S(e, f) = fV (ef)e. Another equivalent definition is

S(e, f) = {g ∈ E(S) | fg = g = ge and egf = ef} .

Note that S(e, f) is always nonempty if S is regular. In fact, S(e, f) is al-
ways a rectangular band, and thus a subsemigroup, whenever it is nonempty.
These sandwich sets have other interesting properties. For example, if
e, e1, f, f1 ∈ E(S) are such that e L e1 and f R f1, then S(e, f) = S(e1, f1).
Hence, for regular semigroups, one can extend the definition of sandwich set
to all elements of S as follows: for a, b ∈ S, let S(a, b) = S(a′a, bb′) for some
(any) a′ ∈ V (a) and b′ ∈ V (b).

3. A idempotent generated regular semigroup FI(X)

The goal of this paper is to introduce, for each nonempty set X, a semi-
group FI(X) and to show that FI(X) plays an important universal role in
the category WIG(X). In this section, we introduce such semigroup. We
begin by defining its set of generators G(X). Then, FI(X) will be defined
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as a quotient of the free semigroup G(X)+. After, we show there exists a
canonical form for the elements of FI(X), and thus solving its word prob-
lem. This canonical form will allow us to prove that FI(X) is an idempotent
generated regular semigroup. We end this section describing a model for
FI(X).

Throughout this paper we will often need to refer to the entries of triples
g ∈ L × C × R, where L, C and R are nonempty sets. For that purpose,
we shall use the following notation without further comments: gl, gc and gr

refer to the left, middle and right entries of g, respectively. In other words,
g = (gl, gc, gr).

Next, we define recursively a sequence (Gi(X))i∈N0
of nonempty sets

Gi(X). We start by setting G0(X) = {1} and G1(X) = X, where 1 is
a new symbol not in X. For the definition of G2(X) to make sense, we need
also to agree on identifying each element x ∈ X with the triple (1, x, 1), so
that we can write xl = xr = 1. Now, for i ≥ 2, let

Gi(X) = Gi−1(X) ×Gi−2(X) ×Gi−1(X)

and

Gi(X) =
{

g ∈ Gi(X) | gl 6= gr, gc ∈ {(gl)l, (gl)r} ∩ {(gr)l, (gr)r}
}

.

Note that if g ∈ Gi(X) for some i ≥ 2, then also g1 = (gr, gc, gl) belongs to
Gi(X). Further, g 6= g1 since gl 6= gr, and so

{(g, gl, g1), (g, g
r , g1), (g1, g

l, g), (g1, g
r, g)} ⊆ Gi+1(X) .

Therefore, all Gi(X) are nonempty sets.
As a title of example, if X = {e, f}, then G1(X) = X, G2(X) = {e1, f1}

for

e1 = (e, 1, f) and f1 = (f, 1, e) ,

and G3(X) = {h, h1, h2, h3} for

h = (e1, f, f1), h1 = (e1, e, f1), h2 = (f1, f, e1) and h3 = (f1, e, e1) .

The reader should keep these three sets in mind since they will be used in
the examples of Section 5.

Let G(X) = ∪i∈N0
Gi(X). The height of g ∈ G(X) is the index υ(g) =

i ∈ N0 such that g ∈ Gi(X). To work with the elements of G(X), we need
to work with triples nested inside triples, which themselves are nested inside
other triples, and so on. Thus, we need to introduce some more notation to
deal with the nested triples of G(X). We begin by generalizing the notations
gl, gc and gr. Let u = x1 · · · xn be a nonempty word on the alphabet {c, l, r},
that is, xi ∈ {c, l, r} for 1 ≤ i ≤ n. Then gu = (((gx1)x2 · · · )xn . We define
also g1 = g.

Note that, for g ∈ Gi(X) with i ≥ 2, gc is either the left or right entry
of gl. It will be useful to have a generic way for referring to the side of the
entry gc inside gl. So, let glc denote the entry gc inside gl, that is, lc = l2

if gc = gl
2

, or lc = lr if gc = glr. Therefore, gc and glc represent the same
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element of G(X), but they have different meanings: gc is the central entry
of g, while glc is either the left entry or the right entry of gl. Usually, there
are also other elements g1 ∈ Gi(X) with gl1 = gl, but glc1 6= glc . This means
that we cannot compute glc directly from gl. In other words, we must always
know g for computing the entry glc of gl.

Let glo denote the other entry of gl distinct from both glc and glc. Thus
glc , glo ∈ Gi−2(X) if g ∈ Gi(X). As expected, we will use also the dual
notations grc and gro . Hence grc = gc = glc and gro 6= gc 6= glo . Note,
however, that gro and glo may be the same element of G(X) (see, for ex-
ample, the element h of the set G3(X) above). Now, if u = x1 · · · xn with
xi ∈ {c, l, r, lc, lo, rc, ro} for 1 ≤ i ≤ n, then let gu = (((gx1)x2) · · · )xn . For
example, if u = rloc, then gu = ((gr)lo)c.

Consider the free semigroup G(X)+ on G(X). In this paper, if nothing
is said in contrary, we will use g and h (with possible indices) to refer
to elements of G(X), and u and v (also with possible indices) to refer to
words from G(X)+. There are special characteristics that some words from
G(X)+ have that will be important to us. Next, we list some general terms
and notations that we will use throughout this paper.

Landscape: word u = g0 · · · gn ∈ G(X)+ (n ≥ 0) such that either
gi−1 ∈ {gli, g

r
i } or gi ∈ {gli−1, g

r
i−1} for all 1 ≤ i ≤ n. We denote

by L(X) the set of all landscapes of G(X)+. Note also that single
letters g ∈ G(X) are particular landscapes; whence G(X) ⊆ L(X).

Ridge: letter gi of a landscape such that υ(gi−1) = υ(gi+1) = υ(gi)−1.
Hence, a ridge is never the first nor the last letter of a landscape.

Peak: highest ridge of a landscape u. Note that u can have several
peaks, but all have the same height. If u has only one peak, we denote
it by κ(u). The height υ(u) of the landscape u is the maximum
between the height of its peaks, the height of σ(u), and the height
of τ(u). Note that this definition of height agrees with the notion of
height for elements of G(X) introduced earlier.

River: letter gi of a landscape such that υ(gi−1) = υ(gi+1) = υ(gi)+1.
As with ridges, rivers are never endpoints of landscapes.

Hill: u = g0 · · · gn ∈ L(X) with n ≥ 1 such that either gi−1 ∈ {gli, g
r
i }

for all 1 ≤ i ≤ n, or gi ∈ {gli−1, g
r
i−1} for all 1 ≤ i ≤ n. In the

former case we have an uphill since υ(gi) = υ(gi−1) + 1, while on
the latter case we have a downhill since υ(gi) = υ(gi−1) − 1. We
denote by L1(X), L+

1 (X) and L−
1 (X) the set of all hills, all uphills

and all downhills, respectively. Further, L+
2 (X) will denote the set

of all landscapes composed by an uphill followed by a downhill.
Valley: landscape composed by a downhill followed by an uphill. Thus,

a valley has always one (and only one) river at its lower height letter.
We denote by L−

2 (X) the set of all valleys of G(X)+, and by L2(X)
the set L+

2 (X) ∪ L−
2 (X).
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Canyon: valley u with σ(u) = τ(u). We denote by C(X) the set of all
canyons of G(X)+.

Mountain range: landscape u with σ(u) = τ(u) = 1. Thus, the
height of a nontrivial mountain range is the height of its peaks.
Note that all mountain ranges have odd length, and u = 1 is the
only mountain range with length 1. We denote by MR(X) the set
of all mountain ranges of G(X)+.

Mountain: mountain range with no rivers. Thus, it is either the trivial
mountain range u = 1, or it is composed by an uphill followed by
a downhill. Nontrivial mountains have only one ridge. We denote
by M1(X) and M(X) the sets of all mountains and all nontrivial
mountains, respectively. So, M(X) = MR(X) ∩ L+

2 (X).

We shall use the previous terminology also to refer to subwords of a given
word u ∈ G(X)+. For example, a hill of u ∈ L(X) is a subword of u
that is also a hill. A hill of u ∈ L(X) is called maximal if it is not properly
contained in another hill of u, while a valley of u is called maximal if it is not
properly contained in another valley of u. Thus, each nontrivial mountain
range is uniquely decomposable into an initial maximal uphill, followed by a
possible empty sequence of maximal valleys between its consecutive ridges,
and ending with a maximal downhill. However, we must be careful since
u1u2 is not a landscape if u1 and u2 are two landscapes such that g =
τ(u1) = σ(u2): it appears a double gg at the junction of u1 with u2. Let
u1 ∗ u2 denote the landscape obtained from u1u2 by replacing gg with g.

We associate a mountain to each g ∈ G(X) \ {1} as follows:

β1(g) =

{

gc
n

gc
n−1lgc

n−1

· · · gcglggrgc · · · gc
n−1

gc
n−1rgc

n

if υ(g) = 2n

1gc
n

gc
n−1lgc

n−1

· · · gcglggrgc · · · gc
n−1

gc
n−1rgc

n

1 if υ(g) = 2n+ 1.

Thus, β1(g) is a mountain composed by an uphill λl(g), called its left hill,
followed by a downhill λr(g), called its right hill. Hence β1(g) = λl(g)∗λr(g).
For technical reasons, we define also β1(1) = λl(1) = λr(1) = 1.

Let ρ be the smallest congruence on G(X)+ containing both sets

ρe = {(1g, g), (g1, g), (g2 , g) | g ∈ G(X)}

and

ρs =
{

(gcglg, g), (ggrgc, g), (grgcggcgl, grgcgl) | g ∈ G(X) and υ(g) ≥ 2
}

.

We denote by FI1(X) the semigroup G(X)+/ρ. We can immediately see
that ρe turns FI1(X) into an idempotent generated monoid with identity
element 1ρ. Further, the class 1ρ is constituted by all words with content
{1}. Let G(X)⊕ be the subsemigroup of all words form G(X)+ with content
different from {1}, and let FI(X) be the semigroup FI1(X) \ {1ρ}. Then
FI(X) = G(X)⊕/ρ. We may write FI1n and FIn instead of FI1(X) and
FI(X), respectively, if |X| = n.
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To avoid using a heavier notation, we will try not to write the congruence
ρ in our expressions. Thus, we will represent the ρ-class of u by [u]. If A is
a subset of G(X)+, then

[A] = {[u] | u ∈ A} .

We will write also u ≈ v to indicate that [u] = [v] in FI1(X). If we write
u = v, we are effectively saying that u and v are the same word. For
example, for g ∈ G(X), β1(g) ≈ λl(g)λr(g) but β1(g) 6= λl(g)λr(g) because
of the double gg that occurs at the junction of λl(g) with λr(g) in λl(g)λr(g).

Lemma 3.1. Let g, g1 ∈ G(X) with υ(g) > 1. Then:

(i) g ≈ gcg ≈ ggc ≈ gglg ≈ ggrg and grggl ≈ grgcgl.
(ii) [ggr ], [ggl], [grg], [glg] ∈ E(FI(X)).
(iii) [glg] L [grg] L [g] R [ggr ] R [ggl].
(iv) [g] ∈ S([grgc], [gcgl]).
(v) g1 ≈ β1(g1).

Proof. Note that ggc ≈ ggrgcgc ≈ ggrgc ≈ g and gglg ≈ ggcglg ≈ g2 ≈ g
by definition of ρe and ρs. We prove that gcg ≈ g and ggrg ≈ g similarly.
Hence, we have also grggl ≈ grgcggcgl ≈ grgcgl, and we have finished the
proof of (i). Now, (ii) and (iii) follow from gglg ≈ g ≈ ggrg, while (iv) is
just the definition of ρs and of the sandwich set since both [grgc] and [gcgl]
are idempotents by (ii). From the definition of ρ we also conclude that

gc
i

gc
i−1lgc

i−1

≈ gc
i−1

and gc
i−1

gc
i−1rgc

i

≈ gc
i−1

for all i such that 0 < 2i ≤ υ(g). Hence β1(g) ≈ g. Clearly also β1(g1) ≈ g1
if υ(g1) ≤ 1. �

Let u = g0 · · · gn ∈ G(X)+. Extend β1 to u as follows:

β1(u) = β1(g0) ∗ · · · ∗ β1(gn) .

Note that β1(u) ∈ MR(X). The following result is obvious from Lemma
3.1.(v).

Lemma 3.2. β1(u) ≈ u for all u ∈ G(X)+.

Let u = g0 · · · gn ∈ L(X) and assume that gi is a river of u. Set

v =

{

g0 · · · gi−1gi+2 · · · gn if gi−1 = gi+1 , or

g0 · · · gi−1g
′
igi+1 · · · gn if gi−1 6= gi+1 ,

where g′i = (gi+1, gi, gi−1) ∈ G(X). Then v is another landscape with length
not greater than the length of u. Furthermore, v ∈ MR(X) if u ∈ MR(X).
We say that v is obtained from u by uplifting a river and write u → v (or

u
gi
−→ v if one needs to identify the river uplifted). If gi−1 6= gi+1, then

the uplifting of gi replaces the river gi with a ridge g′i. Furthermore, gi−1

and gi+1 become rivers of v unless they were ridges of u, respectively. If
gi−1 = gi+1, then the uplifting of gi eliminates the river gi, but creates
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a new river gi−1 if neither gi−1 nor gi+1 are ridges of u; otherwise, it just
eliminates the river gi and creates no new ridge nor river. We use the symbol
∗
−→ to denote the reflexive and transitive closure of →.

Let u be a landscape of length n and height i, and consider the set U(u) =

{v ∈ G(X)+ | u
∗
−→ v}. Note that if v ∈ U(u), then v is landscape with length

at most n, height at most j = ⌊i + n/2⌋, and such that σ(v) = σ(u) and
τ(v) = τ(u). Further, v has less than ⌈n/2⌉ rivers. Hence, we can record the
number of rivers of each height of v in a j-tuple r(v) = (r1(v), · · · , rj(v)),
where rk(v) is the number of rivers of v of height k − 1. Thus, the sum of
all entries of r(v) is less than ⌈n/2⌉. Let R(u) = {r(v) | v ∈ U(u)}. Then
R(u) is a finite set and we can consider it ordered by the lexicographic order.
Hence, the j-tuple with all entries equal to 0 is the smallest j-tuple of R(u),
and it corresponds to the landscapes of U(u) with no rivers, that is, the
landscapes of U(u) that belong also to L+

2 (X) ∪ L1(X) ∪G(X).
If v ∈ U(u) and v → v1 by uplifting a river of height k, then v1 ∈ U(u),

rk(v1) = rk(v) − 1, rk+1(v) ≤ rk+1(v1) ≤ rk+1(v) + 2, and rk1(v1) = rk1(v)
for all other k1. So r(v1) < r(v). Consequently, we cannot apply upliftings
of rivers indefinitely to u, and we must always stop after a finite number
of upliftings of rivers with a landscape with no rivers, that is, a landscape
from L+

2 (X) ∪ L1(X) ∪G(X).
It is also easy to see that the uplifting of rivers is a commutative operation.

In other words, if gi and gj are two rivers of u ∈ L(X), then the uplifting of
gi followed by the uplifting of gj gives the same landscape as the uplifting of
gj followed by the uplifting of gi. Hence, the uplifting of rivers is a system
of rules commonly known as a noetherian locally confluent system of rules.
An important property of this kind of systems is that, independently of
the order of the rules that we apply to an element, we must always stop
after a finite number of steps with the same ‘reduced’ element (see [24]).
In the case considered here, this means that, independently of the order of
upliftings of rivers that we apply to u ∈ L(X), we will always end up with
the same landscape from U(u) with no rivers. In particular, U(u) has a
unique landscape with no rivers. We designate it by β2(u). Note further

that β2(u) = β2(v) if u ∈ L(X) and u
∗
−→ v, and that β2(u) ∈ M1(X) if

u ∈ MR(X).

Lemma 3.3. β2(u) ≈ u for all u ∈ L(X).

Proof. Let gi be a river of u and let v be obtained from u by uplifting gi.
By Lemma 3.1.(i),

gi−1gigi+1 ≈

{

gi−1 if gi−1 = gi+1

gi−1g
′
igi+1 if gi−1 6= gi+1 ,

where g′i = (gi+1, gi, gi−1) ∈ G(X). Hence u ≈ v. Now, applying several
times the previous conclusion, we obtain β2(u) ≈ u. �
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For each u ∈ G(X)+, let β(u) = β2(β1(u)). Then β(u) ∈ M1(X) and,
by the two previous lemmas, β(u) ≈ u. We register this observation in the
next corollary for future reference.

Corollary 3.4. β(u) ≈ u for all u ∈ G(X)+.

The next result is a consequence of Lemma 3.1.(i).

Lemma 3.5. If u = g0 · · · gn ∈ L−
1 (X), then u

�

u ≈ g0.

Proof. Note that gi ∈ {gli−1, g
r
i−1}, for i = 1, · · · , n, since u ∈ L−

1 (X). Now,
applying Lemma 3.1.(i) several times, we have

u
�

u ≈ u ∗
�

u = g0 · · · gn−2gn−1gngn−1gn−2 · · · g0

≈ g0 · · · gn−2gn−1gn−2 · · · g0

≈ g0 · · · gn−3gn−2gn−3 · · · g0
...

≈ g0g1g0 ≈ g0 .

So u
�

u ≈ g0. �

We can now prove that FI1(X) is a regular monoid.

Proposition 3.6. The monoid FI1(X) is an idempotent generated regular
monoid and [

�

u] is an inverse of [u] for all u ∈ L+
2 (X).

Proof. We have already seen that FI1(X) is an idempotent generated mo-
noid. Since v ≈ β(v) and β(v) ∈ M1(X) ⊆ L+

2 (X) ∪ {1} for all v ∈ G(X)+,
it is enough to prove the second part of this proposition to conclude also
that FI1(X) is regular. Let u = g0 · · · gn ∈ L+

2 (X) with peak gk for some
0 < k < n. Then u1 = g0 · · · gk ∈ L+

1 (X), while u2 = gk · · · gn ∈ L−
1 (X). By

Lemma 3.5, u2
�

u2 ≈ gk ≈
�

u1u1 (note that
�

u1 = gk · · · g0 ∈ L−
1 (X)). Hence

u
�

uu = u1 ∗ u2
�

u2 ∗
�

u1 u1 ∗ u2 ≈ u1 ∗ gk ∗ gk ∗ u2 = u1 ∗ u2 = u .

Since
�

v = u for v =
�

u, we have similarly that
�

uu
�

u ≈
�

u. Consequently, [
�

u] is
an inverse of [u]. �

Now that we have shown that FI1(X) is a regular monoid, let us prove
that each ρ-class ̺ has a canonical element. The next couple of results
contain technical details that lead to the conclusion that β(u) = β(v) if and
only if u ≈ v. Thus ̺ contains exactly one mountain, namely β(u) for some
(any) u ∈ ̺. We will call β(u) the canonical form of u ∈ G(X)+.

Lemma 3.7. Let g ∈ G(X) and let u = g0 · · · gn ∈ L(X). Then:

(i) λr(g) ∗ λl(g)
∗
−→ g and β1(g

2)
∗
−→ β1(g).

(ii) If υ(g) ≥ 2 and h ∈ {gr, gl}, then λr(h) ∗ λl(g)
∗
−→ hg and λr(g) ∗

λl(h)
∗
−→ gh.

(iii) β1(u)
∗
−→ λl(g0) ∗ u ∗ λr(gn).

(iv) β(u) = β2(u) if u ∈ MR(X).
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(v) β(u) = u if u ∈ M1(X).

Proof. (i). We prove the first part of (i) by induction on υ(g). Clearly

λr(1) ∗ λl(1) = 1 and λr(g) ∗ λl(g) = g1g
1
−→ g for g ∈ G1(X) = X. Let

g ∈ Gi(X) for i ≥ 2 and assume that λr(h) ∗ λl(h)
∗
−→ h for all h ∈ Gj(X)

with j < i. Then

λr(g) ∗ λl(g) = ggr(λr(g
c) ∗ λl(g

c))glg
∗
−→ ggrgcglg

gc

−→ ggrgglg
∗
−→ g

as desired. Now, the second part of (i) follows easily from the first:

β1(g
2) = λl(g) ∗ λr(g) ∗ λl(g) ∗ λr(g)

∗
−→ λl(g) ∗ g ∗ λr(g) = β1(g) .

(ii). We prove (ii) also by induction on υ(g). If υ(g) = 2, then

λr(h) ∗ λl(g) = h1glg

and either h = gl or h = gr. If h = gl, then h1glg
1
−→ hg. If h = gr,

then h1glg
1
−→ hgglg

gl

−→ hg. Thus, we get λr(h) ∗ λl(g)
∗
−→ hg in both cases.

Similarly, we show that λr(g) ∗ λl(h)
∗
−→ gh if υ(g) = 2.

Let g ∈ Gi(X) for i > 2 and let h ∈ {gl, gr}. Assume that λr(h1) ∗

λl(h2)
∗
−→ h1h2 and λr(h2) ∗ λl(h1)

∗
−→ h2h1 for all h2 ∈ Gj(X) such that

2 ≤ j < i and h1 ∈ {hl2, h
r
2}. Note that gc ∈ {hl, hr}. Hence,

λr(h) ∗ λl(g) = λr(h) ∗ λl(g
c)glg

∗
−→ hgcglg

∗
−→ hg ,

where the first
∗
−→ follows from the induction hypothesis, while the second

∗
−→ follows from the same arguments used in the case υ(g) = 2. We can show

that λr(g) ∗ λl(h)
∗
−→ gh similarly.

(iii). We show that β1(ui)
∗
−→ λl(g0) ∗ ui ∗ λr(gi), for ui = g0 · · · gi,

by induction on i. Clearly β1(u0) = λl(g0) ∗ u0 ∗ λr(g0). Assume that

β1(ui−1)
∗
−→ λl(g0) ∗ ui−1 ∗ λr(gi−1). Then, by the induction hypothesis and

by (ii),

β1(ui) = β1(ui−1) ∗ β1(gi)

∗
−→ λl(g0) ∗ ui−1 ∗ λr(gi−1) ∗ λl(gi) ∗ λr(gi)

∗
−→ λl(g0) ∗ ui−1 ∗ (gi−1gi) ∗ λr(gi) = λl(g0) ∗ ui ∗ λr(gi) .

We have proved by induction that β1(u)
∗
−→ λl(g0) ∗ u ∗ λr(gn).

(iv) follows easily from (iii) since g0 = 1 = gn if u ∈ MR(X):

β(u) = β2(β1(u)) = β2(λl(g0) ∗ u ∗ λr(gn)) = β2(u) ;

and (v) is obvious from (iv). �

Proposition 3.8. Let g ∈ G(X) and u, v ∈ G(X)+.

(i) β(g) = β(g1) = β(1g) = β(g2).
(ii) If υ(g) ≥ 2, then β(g) = β(gcglg) = β(ggrgc) and β(grgcggcgl) =

β(grgcgl).
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(iii) β(u) = β(v) if and only if u ≈ v.

Proof. (i). β(g) = β(g1) = β(1g) are obvious equalities. Further, by Lemma
3.7.(i), β(g2) = β2(β1(g

2)) = β2(β1(g)) = β(g) and (i) is proved.

(ii). By Lemma 3.7.(iii), β1(g
cglg)

∗
−→ λl(g

c) ∗ (gcglg) ∗ λr(g) = β1(g).
Thus β(gcglg) = β(g). We have also β(ggrgc) = β(g) by duality. Once more
by Lemma 3.7.(iii), we have

β1(g
rgc)

∗
−→ λl(g

r) ∗ (grgc) ∗ λr(g
c) = λl(g

r)λr(g
c)

and β1(g
cgl)

∗
−→ λl(g

c)λr(g
l). Hence,

β1(g
rgcggcgl)

∗
−→ λl(g

r)λr(g
c) ∗ β1(g) ∗ λl(g

c)λr(g
l)

= λl(g
r)(λr(g

c) ∗ λl(g
c))glggr(λr(g

c) ∗ λl(g
c))λr(g

l)

∗
−→ λl(g

r)gcglggrgcλr(g
l)

∗
−→ λl(g

r)gglggrgλr(g
l)

∗
−→ λl(g

r)gλr(g
l)

and

β1(g
rgcgl)

∗
−→ λl(g

r) ∗ (grgcgl) ∗ λr(g
l) = λl(g

r)gcλr(g
l)

gc

−→ λl(g
r)gλr(g

l) .

Consequently, β(grgcggcgl) = λl(g
r)gλr(g

l) = β(grgcgl).
(iii). Let ρ′ = {(u, v) ∈ G(X)+ ×G(X)+ | β(u) = β(v)}. Note that ρ′ is

a congruence on G(X)+ since β(u1u2) = β(β(u1)u2) = β(u1β(u2)). Hence,
we just need to prove that ρ = ρ′. But ρ ⊆ ρ′ since ρe ⊆ ρ′ by (i) and
ρs ⊆ ρ′ by (ii). Assume now that (u, v) ∈ ρ′. Since u ≈ β(u) and β(v) ≈ v
by Corollary 3.4, we conclude that (u, v) ∈ ρ and ρ′ ⊆ ρ. �

Although G(X) and ρe ∪ ρs are always infinite sets (except for |X| = 1),
Proposition 3.8.(iii) gives us a solution for the word problem for FI1(X): to
check if u ≈ v, we just need to compute both β(u) and β(v), and check if
we get the same mountain. Thus:

Corollary 3.9. The word problem for FI1(X) is decidable.

We introduce the operation ⊙ on both M1(X) and M(X) as follows:

u1 ⊙ u2 = β(u1 ∗ u2) = β2(u1 ∗ u2) .

Proposition 3.10. (M1(X),⊙) and (M(X),⊙) are models for FI1(X) and
FI(X), respectively.

Proof. This result follows from Proposition 3.8.(iii) and Lemma 3.7.(v). �

We already know that FI(X) is a regular semigroup, but we intend to
show that FI(X) is weakly generated by the idempotents of X. To do so,
we need first to deepen our knowledge about the structure of FI(X).
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4. The structure of FI(X)

We define the ground ǫ(g) of a letter g ∈ G(X) recursively as follows:
ǫ(1) = {1} and ǫ(g) = ǫ(gl) ∪ {g} ∪ ǫ(gr) if υ(g) ≥ 1. Thus υ(g1) < υ(g) for
any g1 ∈ ǫ(g) \ {g}.

Lemma 4.1. Let g, h ∈ G(X). Then:

(i) h ∈ ǫ(g) if and only if ǫ(h) ⊆ ǫ(g).
(ii) If h ∈ ǫ(g) \ {g}, then there exists u = g0 · · · gn ∈ L+

1 (X) such that
n = υ(g) − υ(h), gi ∈ ǫ(g) for all 0 ≤ i ≤ n, g0 = h and gn = g.

Proof. (i). We only need to prove that ǫ(h) ⊆ ǫ(g) if h ∈ ǫ(g), and this is
done by induction on υ(g). This statement is obviously true for υ(g) = 0,
that is, for g = 1. Assume that ǫ(h1) ⊆ ǫ(g1) for all g1 such that υ(g1) <
υ(g) and all h1 ∈ ǫ(g1). If h ∈ ǫ(g), then either h = g, or h ∈ ǫ(gl), or
h ∈ ǫ(gr). In the latter two cases, we have either ǫ(h) ⊆ ǫ(gl) or ǫ(h) ⊆ ǫ(gr),
respectively, by the induction hypothesis. Hence,

ǫ(h) ⊆ ǫ(gr) ∪ {g} ∪ ǫ(gl) = ǫ(g) ,

as wanted.
(ii). Let h ∈ ǫ(g) \ {g}. Once more, we use induction to prove (ii), but

now on n = υ(g) − υ(h). If n = 1, then h = gr or h = gl. Hence u = hg is
an uphill satisfying the conditions of (ii). Assume now that n ≥ 2. Then
h ∈ ǫ(gl) or h ∈ ǫ(gr). Without loss of generality, we assume that h ∈ ǫ(gl).
Note that υ(gl)−υ(h) = n−1. Using the induction hypothesis, there exists
g0 · · · gn−1 ∈ L+

1 (X) such that all gi ∈ ǫ(gl) for 0 ≤ i ≤ n − 1, g0 = h and
gn−1 = gl. Clearly u = g0 · · · gn−1g is now an uphill satisfying the conditions
stated in (ii). �

We write h � g if h ∈ ǫ(g), or equivalently, if ǫ(h) ⊆ ǫ(g). Note that � is
a partial order on G(X) since all letters form ǫ(g) have height less than g,
except g itself.

We extend the notion of ground to any landscape as follows: if u =
g0 · · · gn ∈ L(X), then ǫ(u) = ∪n

i=0ǫ(gi). Clearly, ǫ(u) is the union of the
grounds of its ridges, and the highest letters of ǫ(u) are the peaks of u. In
particular, if u ∈ M1(X), then ǫ(u) = ǫ(κ(u)) and all letters from ǫ(u) have
height less than υ(κ(u)), except κ(u) of course. By definition, both ǫ(u) and
ǫ(v) are contained in ǫ(u∗v) if u and v are landscapes such that τ(u) = σ(v).
If u and v are mountain ranges such that u → v, then either ǫ(u) = ǫ(v) or
ǫ(v) has one more letter from G(X) than ǫ(u), namely the new ridge formed
in v by uplifting a river of u. Thus ǫ(u) ⊆ ǫ(β(u)) = ǫ(κ(β(u))) for any
u ∈ L(X).

Given u ∈ MR(X), let λl(u) and λr(u) be the maximal initial uphill
and the maximal final downhill of u, respectively (or λl(u) = 1 = λr(u)
if u = 1). Thus λl(β(g)) = λl(g) and λr(β(g)) = λr(g). By definition of
uplifting of rivers, if v is another mountain range, then λl(u) is a prefix of
λl(β(u)); λl(β(u)) is a prefix of λl(β(u ∗ v)); λr(v) is a suffix of λr(β(v));
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and λr(β(v)) is a suffix of λr(β(u ∗ v)). Note also that u1 = λl(u1) ∗ λr(u1)
for any u1 ∈ M1(X).

We include some particular cases of the conclusions taken above in the
following lemma for future reference.

Lemma 4.2. Let u, v, w ∈ M1(X) such that w = u⊙ v.

(i) λl(u) is a prefix of λl(w), while λr(v) is a suffix of λr(w).
(ii) υ(w) ≥ max{υ(u), υ(v)}, and υ(w) = υ(u) [υ(w) = υ(v)] if and only

if κ(w) = κ(u) [κ(w) = κ(v)].
(iii) ǫ(u) ∪ ǫ(v) ⊆ ǫ(w).

Proof. (i) and (iii) are just particular cases of the observations made above,
and (ii) follows obviously from (i). �

Proposition 4.3. Let u, v ∈ M1(X). Then:

(i) u ≤R v if and only if λl(v) is a prefix of λl(u). Thus v covers u for
≤R if and only if λl(u) = λl(v)κ(u).

(ii) u ≤L v if and only if λr(v) is a suffix of λr(u). Thus v covers u for
≤L if and only if λr(u) = κ(u)λr(v).

(iii) u ≤J v if and only if κ(v) � κ(u). Thus v covers u for ≤J if and

only if κ(v) ∈ {(κ(u))l, (κ(u))r}.

Proof. Note that, in the three items of this proposition, the second part of
each one is an immediate consequence of the first part. Furthermore, (ii) is
the dual of (i). Hence, we shall prove only the first part of (i) and (iii).

(i). Assume that u ≤R v. Thus u = v ⊙ w for some w ∈ M1(X). By
Proposition 4.2.(i), λl(v) is a prefix of λl(u). Assume now that λl(v) is a
prefix λl(u). Then u = λl(v) ∗ u1 for some landscape u1 with τ(λl(v)) =
κ(v) = σ(u1). Let v1 = λr(v) and consider w =

←

v1 ∗ u1. Clearly w ∈ M1(X)

and v1 ∗ (
←

v1)
∗
−→ κ(v). Hence

v ∗ w = λl(v) ∗ v1 ∗
←

v1 ∗ u1
∗
−→ λl(v) ∗ κ(v) ∗ u1 = λl(v) ∗ u1 = u ,

that is, u = v ⊙ w and u ≤R v.
(iii). If u ≤J v, then u = w1 ⊙ v ⊙ w2 for two mountains w1 and w2.

By Lemma 4.2.(iii), ǫ(κ(v)) = ǫ(v) ⊆ ǫ(u) = ǫ(κ(u)) and κ(v) � κ(u).
Conversely, if κ(v) � κ(u), then let u1 be an uphill such that σ(u1) = κ(v)
and τ(u1) = κ(u), whose existence is guaranteed by Lemma 4.1.(ii). Observe

that w1 = λl(u) ∗
←

u1 ∗
←−

λl(v) and w2 =
←−

λr(v) ∗ u1 ∗ λr(u) are well defined
mountains. Further,

w1 ∗ v ∗ w2 = λl(u) ∗
←

u1 ∗ (
←−

λl(v) ∗ λl(v)) ∗ (λr(v) ∗
←−

λr(v)) ∗ u1 ∗ λr(u)

∗
−→ λl(u) ∗

←

u1 ∗ κ(v) ∗ κ(v) ∗ u1 ∗ λr(u)

∗
−→ λl(u) ∗ κ(u) ∗ λr(u) = u ,

and w1 ⊙ v ⊙w2 = u. Consequently, u ≤J v. �

Corollary 4.4. Let u, v ∈ M1(X). Then
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(i) u R v if and only if λl(u) = λl(v).
(ii) u L v if and only if λr(u) = λr(v).
(iii) u J v if and only if κ(u) = κ(v).
(iv) u H v if and only if u = v.
(v) D=J .

Proof. The first three statements follow from the corresponding statements
of Proposition 4.3. (iv) is a consequence of (i) and (ii). So, we only need to
prove that J⊆D . Assume that u J v. Then w = λl(u) ∗ λr(v) ∈ M1(X)
since κ(u) = κ(v) by (iii). Now, by (i) and (ii), we conclude that u R w L
v, whence u D v. �

The previous corollary tells us that the D=J -classes of FI1(X) are in
one-to-one correspondence with the elements of G(X), and that the set
{[g] | g ∈ G(X)} is a transversal (or cross-section) for the set of D-classes
of FI1(X). The next result gives us the size of each R, L and D-class of
FI1(X).

Corollary 4.5. If g ∈ Gi(X) for i ≥ 1, then |R[g]| = 2i−1 = |L[g]| and

|D[g]| = 22i−2. Further, D[g] has 2i−1 R-classes and 2i−1 L -classes.

Proof. We only need to prove that |R[g]| = 2i−1 since |L[g]| = 2i−1 follows
by duality and the statements about D follow from the statements about R
and L and from Corollary 4.4.(iv).

From Corollary 4.4.(i), the size of R[g] is equal to the number of downhills
from g to 1. Since g ∈ Gi(X), each downhill from g to 1 is of the form
g0g1 · · · gi where g0 = g, gi = 1 and gj ∈ {glj−1, g

r
j−1} for 1 ≤ j ≤ i − 1.

Moreover, glj−1 6= grj−1 for 1 ≤ j ≤ i− 1 by definition of G(X). Hence, there

are 2i−1 downhills from g to 1, and |R[g]| = 2i−1. �

We have already seen that [g] ∈ S([grgc], [gcgl]) in Lemma 3.1.(iv). The
next result tells us more. It tells us that S([grgc], [gcgl]) has no other ele-
ments.

Lemma 4.6. Let g ∈ G(X) such that υ(g) ≥ 2. Then

S([grgc], [gcgl]) = {[g]}

in FI1(X).

Proof. Let u ∈ M1(X) be such that [u] ∈ S([grgc], [gcgl]). Then κ(u) = g by
Corollary 4.4 and since [u] D [g]. Let v be the mountain λl(g

c)λr(g
l). By

Lemma 3.7.(iii), β1(g
cgl)

∗
−→ v, and so gcgl ≈ v. Hence,

u ≈ gcglu ≈ vu ≈ v ⊙ u ,

and by Lemma 4.2.(i) and Proposition 3.8.(iii), λl(v) = λl(g
c)gl is a prefix of

λl(u). Therefore, λl(u) = λl(g
c)glg because κ(u) = g. We have shown that

λl(u) = λl(g). Dually, we conclude also that λr(u) = λr(g). Consequently,
u = β1(g) ≈ g and S([grgc], [gcgl]) = {[g]}. �
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We have now all the ingredients necessary to show that FI(X) is weakly
idempotent generated by X.

Proposition 4.7. FI(X) is weakly idempotent generated by X.

Proof. Let S be a regular subsemigroup of FI(X) containing [X]. Since
[G(X)] generates FI1(X) and [1] is the identity element of FI1(X), it is
enough to prove that [G(X)] ⊆ S∪{[1]} to conclude that S = FI(X) and that
FI(X) is weakly idempotent generated by X. We show that [Gi(X)] ⊆ S,
for i ≥ 1, by induction on i.

Clearly [G1(X)] = [X] ⊆ S by definition of S. Let i ≥ 2 and assume that
[Gj(X)] ⊆ S for all 1 ≤ j < i. So, if g ∈ Gi(X), then [gl], [gc], [gr ] ∈ S∪{[1]}.
Consequently, also [gcgl] and [grgc] belong to S. Now, since S is a regular
semigroup, S([grgc], [gcgl]) ∩ S 6= ∅. By the previous lemma, [g] ∈ S and
[Gi(X)] ⊆ S. �

Corollary 4.8. Let φ′ : X → FI(X) be the “identity” mapping. Then

(FI(X), φ′ : X → FI(X)) ∈ WIG(X) .

We have already remarked that regular semigroups weakly generated by
a set of idempotents are idempotent generated. However, we cannot guar-
antee that they are generated by a finite set of idempotents even if they
are weakly generated by a finite set of idempotents. For example, FIn is
weakly generated by n idempotents, but it is not generated by any finite set
of idempotents if n ≥ 2.

Let us turn now to the identification of idempotents and of inverses of
elements of FI1(X). For that purpose we need the notion of a gorge.

Gorge: canyon w such that w
∗
−→ σ(w) = τ(w).

Note that we have already encounter gorges earlier. For example, in Lemma
3.5, we prove that u

�

u is a gorge for every downhill u. Another example
appears in Lemma 3.7.(i), where we prove that λr(g) ∗ λl(g) is a gorge too.

Note also that if w is a gorge and w
∗
−→ w1, then w1

∗
−→ σ(w), but we cannot

guarantee that w1 is a gorge since it may not be a valley. In the next result
we characterize the idempotents, the inverses of an element, and the natural
partial order on M1(X) using this notion of a gorge.

Proposition 4.9. If u, v ∈ M1(X), then:

(i) u is an idempotent if and only if the canyon λr(u) ∗λl(u) is a gorge.
(ii) v is an inverse of u if and only if λr(u) ∗ λl(v) and λr(v) ∗ λl(u) are

both gorges.
(iii) v < u if and only if λl(v) = λl(u)u1 and λr(v) = u2 λr(u) for some

u1, u2 ∈ G(X)+ such that u2 κ(u)u1 is a gorge.

Proof. (i). Since u = λl(u) ∗ λr(u) and u2 = λl(u) ∗ λr(u) ∗ λl(u) ∗ λr(u),

it is obvious that u2 ≈ u if and only if λr(u) ∗ λl(u)
∗
−→ κ(u), that is, if and

only if the canyon λr(u) ∗ λl(u) is a gorge.
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(ii). Note that if v is an inverse of u, then κ(v) = κ(u), and so λr(u)∗λl(v)
and λr(v) ∗ λl(u) are canyons. The proof of (ii) is now obvious as in (i).

(iii). Assume first that v < u. In particular, we have also v ≤R u and
v ≤L u. Thus λl(v) = λl(u)u1 and λr(v) = u2λr(u), for some u1, u2 ∈
G(X)+, by Proposition 4.3 and since u 6= v. But, there exists also another
mountain w ∈ M1(X) such that

w ∈ E(M1(X)), w L v and v = u⊙ w

as v ≤ u. Hence, λr(w)∗λl(w) is a gorge by (i), λr(w) = λr(v) by Corollary

4.4.(ii), and λr(u) ∗ λl(w)
∗
−→ κ(u)u1. Therefore

λr(w) ∗ λl(w) = u2 λr(u) ∗ λl(w)
∗
−→ u2 κ(u)u1 ,

and consequently u2 κ(u)u1 is a gorge because λr(w) ∗ λl(w) is a gorge too
(note that u2 κ(u)u1 is a canyon).

Assume now that λl(v) = λl(u)u1 and λr(v) = u2 λr(u) for some u1, u2 ∈
G(X)+ such that u2 κ(u)u1 is a gorge. In particular u 6= v. Note also that

wr =
←−

λr(u) u1 ∗ λr(v) and wl = λl(v) ∗ u2
←−

λl(u)

are well defined mountains. In fact, they are both idempotents of M1(X).
For example,

λr(v) ∗
←−

λr(u) u1 = u2 λr(u) ∗
←−

λr(u) u1
∗
−→ u2 κ(u)u1 ;

thus λr(v) ∗
←−

λr(u) u1 is a gorge and so wr is an idempotent. Finally, observe
that u⊙ wr = v and wl ⊙ u = v, whence v < u. �

Identifying which canyons are gorges is not an easy task. We leave a
deeper study of the gorges for later. Some more information about the
structure of FI(X) will be gathered from that study. Meanwhile, let us
analyze, in the next section, some universal properties that FI(X) has in
relation with the category WIG(X).

5. Some universal properties of FI(X)

Let S be a semigroup. A skeleton mapping is a mapping φ : G(X) →
E(S1) such that

(i) φ|X is a one-to-one mapping such that Xφ ⊆ E(S);
(ii) (1φ)(gφ) = gφ = (gφ)(1φ) for all g ∈ G1(X);
(iii) gφ ∈ S((grφ)(gcφ), (gcφ)(glφ)) for all g ∈ Gi(X) with i ≥ 2.

Note that, by (iii), gφ = (gcφ)(glφ)(gφ) = (gφ)(grφ)(gcφ) for any g ∈ Gi(X)
with i ≥ 2. It is now trivial to conclude that (1φ)(gφ) = gφ = (gφ)(1φ), for
any g ∈ Gi(X) with i ≥ 0, by induction on i.

Proposition 5.1. If φ : G(X) → E(S1) is a skeleton mapping, then there
is a unique (semigroup) homomorphism ϕ : FI1(X) → S1 extending φ (that
is, such that gφ = [g]ϕ for all g ∈ G(X)). Furthermore, 〈(G(X))φ〉 =
(FI1(X))ϕ is a regular monoid with identity element 1φ.
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Proof. Let φ1 be the unique homomorphism φ1 : G(X)+ → S1 that extends
φ. Note that φ1 exists, and it is unique, since G(X)+ is freely generated
by G(X). Moreover, ρe is contained in the kernel of φ1 by the observation
made above and since (G(X))φ ⊆ E(S1), while ρs is contained in the kernel
of φ1 by (iii). Thus, if ϕ1 denotes the natural quotient homomorphism ϕ1 :
G(X)+ → FI1(X), then there exists a homomorphism ϕ : FI1(X) → S1 such
that φ1 = ϕ1ϕ. Hence, ϕ is a homomorphism extending φ. If ϕ′ : FI1(X) →
S1 is another homomorphism extending φ, then ϕ1ϕ

′ = φ1 = ϕ1ϕ, and so
ϕ′ = ϕ since ϕ1 is surjective. Finally, the second part of this result follows
immediately from the fact that FI1(X) is a regular monoid with identity
element [1] (this property is inherited by homomorphic images). �

We remark that, in the previous proposition, FI1(X)ϕ is a regular monoid
and a subsemigroup of S1. However, it may not be a submonoid of S1.
Notice that [1]ϕ may not be the identity of element of S1, but it works as
an identity element for the subsemigroup (FI1(X))ϕ.

Note that Xφ ⊆ E(S) by definition of skeleton mapping. Now, by (iii),
we can conclude that gφ ∈ E(S) for any g ∈ Gi(X) with i ≥ 1. Thus
(G(X) \ {1})φ ⊆ E(S). A skeleton of S is the image of G(X) \ {1} under
some skeleton mapping φ : G(X) → E(S1). Hence, a skeleton of S is a
subset of E(S) with “some structure”.

Corollary 5.2. If A is a skeleton of S, then 〈A〉 is a regular subsemigroup
of S.

Proof. Let X be a nonempty set and let φ : G(X) → S1 be a skeleton
mapping such that A = (G(X) \ {1})φ. By the previous proposition, T =
〈(G(X))φ〉 is a regular subsemigroup of S1 with an identity element 1φ. Thus
〈A〉 = T or 〈A〉 = T \ {1φ}. Consequently, 〈A〉 is a regular subsemigroup of
S. �

Lemma 5.3. If S is a regular semigroup, then each one-to-one mapping
φ′ : X → E(S) can be recursively extended into a skeleton mapping φ :
G(X) → E(S1).

Proof. We define φ recursively as follows. We begin by setting 1φ = 1
and xφ = xφ′ for all x ∈ X. Let i ≥ 2 and assume that φ is already
well defined for all g1 ∈ Gj(X) with j < i. Let g ∈ Gi(X). By our

assumption, glφ, gcφ and grφ are already well defined. Since S is a regular
semigroup, the sandwich set S((grφ)(gcφ), (gcφ)(glφ)) is nonempty. Hence,
choose h ∈ S((grφ)(gcφ), (gcφ)(glφ)) and set gφ = h. By construction, the
mapping φ : G(X) → S1 becomes a skeleton mapping. �

The construction procedure described in the previous proof has a choice
factor and, therefore, we usually have many distinct skeleton mappings ex-
tending φ′. In terms of skeletons, if S is regular and φ′ : X → E(S) is a
one-to-one mapping, then S has at least one skeleton A = (G(X) \ {1})φ
obtained from a skeleton mapping φ : G(X) → E(S1) extending φ′, but
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usually it has more. We shall say that A is a skeleton induced by φ′ (or by
φ).

From Lemma 5.3 and Proposition 5.1, it is also obvious that for any
(S, φ′ : X → S) ∈ WIG(X), there exists a morphism ϕ : FI(X) → S
extending φ′ (note that φ′ is a one-to-one mapping such that Xφ′ ⊆ E(S)).
The next corollary gives us a slightly stronger result.

Corollary 5.4. Let S be a semigroup and let T be a regular subsemigroup
of S weakly generated by Xφ′ for some one-to-one mapping φ′ : X → E(S).
Then T is the image of FI(X) under some homomorphism ϕ : FI(X) → S
that extends φ′.

Proof. Note that φ′ is also a one-to-one mapping from X into E(T ). Ap-
plying Lemma 5.3 and Proposition 5.1 to the mapping φ′ : X → E(T ), we
obtain a homomorphism ϕ : FI1(X) → T 1 extending φ′. Then (FI(X))ϕ is a
regular subsemigroup of T containing Xφ′, and consequently (FI(X))ϕ = T
since T is weakly generated by Xφ′. Finally, observe that ϕ|FI(X) can be
viewed as a homomorphism from FI(X) to S. �

The next proposition is now an obvious consequence of the previous corol-
lary.

Proposition 5.5. All objects from WIG(X) are morphic images of FI(X) ∈
WIG(X).

It is natural to ask now if the converse of the last proposition holds also.
In other words,

if ϕ : FI(X) → S is a homomorphism whose restriction to
[X] is a one-to-one mapping such that [X]ϕ ⊆ E(S), then
((FI(X))ϕ,ϕ|X ) ∈ WIG(X)?

Unfortunately, the answer to this question is negative for any nontrivial set
X. In the next example we construct a semigroup T1 that shows the answer
is negative for |X| = 2. The construction process can be easily adapted for
any X with more than two elements.

Example 1: Let X = {e, f} and recall the sets G1(X), G2(X) and G3(X)
from page 7. Consider now the two sets

R = [X] ∪D[e1] ∪D[f1] ∪D[h] and I = FI2 \R .

Since [u] = [β(u)] D [κ(β(u))], then [u] ∈ I if and only if κ(β(u)) = g for
some g ∈ G(X) such that υ(g) ≥ 3 and g 6= h. Thus ǫ(β(u)) = ǫ(g), and
so [u] ∈ I if and only if ǫ(β(u)) ∩ {h1, h2, h3} 6= ∅ (note that υ(g) ≥ 3 with
g 6= h if and only if ǫ(g) ∩ {h1, h2, h3} 6= ∅). We can now conclude that I is
an ideal of FI2 since ǫ(v) ∪ ǫ(w) ⊆ ǫ(vw).

Consider the quotient semigroup FI2 /I. Then FI2 /I is obtained from
FI2 by setting [h1] ≈ [h2] ≈ [h3] ≈ 0, where 0 represents a zero element
for the new semigroup. In fact, we can consider instead [f1e1] ≈ [e1f1] ≈
[fef ] ≈ 0 since one can check that [f1e1] ∈ D[h1], [e1f1] ∈ D[h2] and [fef ] ∈
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D[h3]. Therefore, FI2 /I is isomorphic to the semigroup T generated by five
idempotents {e, f, e1, f1, h} subject to the following relations:

e1 ∈ S(f, e), f1 ∈ S(e, f), h ∈ S(f1f, fe1) and f1e1 = e1f1 = fef = 0.

We present the “Egg-box” diagram of the D-classes of T in Figure 1 (we
can compute it either manually or with the GAP software [11, 20]; as usual,
the symbol ∗ identifies the idempotents).

e ∗ f ∗

e1e
∗ e1

∗

fe fe1
∗

ef1
∗ ef

f1
∗ f1f

∗

e1he
∗ e1he1

∗ e1hf1 e1h
∗

he he1
∗ hf1

∗ h ∗

efe efe1 ehf1
∗ eh

f1fe f1fe1 f1hf1
∗ f1h

∗

0 ∗

Figure 1. “Egg-box” diagram of the D-classes of T .

Let T1 = T/θ where θ is the congruence on T generated by

{(fe, he), (ef, eh)} .

The “Egg-box” diagram of the D-classes of T1 is depicted in Figure 2 (left
diagram). Basically, T1 is obtained from T by “merging” De1 and Df1 into
Dh. Then T1 is a homomorphic image of FI2 under a homomorphism whose
restriction to X is the identity mapping. However, T1 is not weakly gen-
erated by X. The subsemigroup T2 of T1 generated by {e, f, e1hf1} is a
proper regular subsemigroup containing X. In fact, T2 is obtained from T1

by deleting Le1 and Rf1 . See the “Egg-box” diagram representation for the
D-classes of T2 in Figure 2 (right diagram). �

The semigroup T1 of the previous example also show us that being gen-
erated by a skeleton, induced by a one-to-one mapping φ′ : X → E(S), is
not sufficient for a semigroup S to be weakly generated by X. The next
result tells us that if φ′ induces a unique skeleton A and A generates S, then
S is weakly generated by X. In particular, if φ′ induces a unique skeleton
mapping and its image generates S, then S is weakly generated by X. Note
that having a unique skeleton is a weaker condition than having a unique
skeleton mapping: in the Example 2 below there are four possible skeleton
mappings and we can easily find two of them giving rise to the same skeleton.
However, the Example 2 is constructed with a different purpose: to show
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e ∗ f ∗

e1e
∗ e1

∗ e1hf1 e1h
∗

fe fe1
∗ hf1

∗ h ∗

efe efe1 ef1
∗ ef

f1fe f1fe1 f1
∗ f1f

∗

0 ∗

e ∗ f ∗

e1e
∗ e1hf1 e1h

∗

fe hf1
∗ h ∗

efe ef1
∗ ef

0 ∗

Figure 2. “Egg-box” diagrams of the D-classes of T1 (left)
and T2 (right).

that there are regular semigroups S weakly generated by Xφ′, for some one-
to-one mapping φ′ : X → E(S), with more than one skeleton induced by φ′.
In other words, having a unique skeleton induced by φ′ : X → E(S), and
obviously being generated by that skeleton, is not a necessary condition for
being weakly generated by the set of idempotents Xφ′.

Proposition 5.6. Let S be a semigroup and φ′ : X → E(S) be a one-to-one
mapping. If φ′ induces a unique skeleton A, then S has the smallest regular
subsemigroup containing Xφ′, namely the subsemigroup 〈A〉 generated by A.
In particular, if 〈A〉 = S also, then (S, φ′) ∈ WIG(X).

Proof. Note that 〈A〉 is a regular subsemigroup of S containing Xφ′ by
Corollary 5.2. Let T be another regular subsemigroup of S containing Xφ′.
Since T is regular, there exists a skeleton mapping φ : G(X) → T 1 extending
φ′ : X → E(T ) by Lemma 5.3. Thus (G(X)\{1})φ = A since (G(X)\{1})φ
is also a skeleton of S induced by φ′. Consequently 〈A〉 ⊆ T . In particular,
〈A〉 is weakly generated by the idempotents Xφ′, and the second part of
this proposition is now obvious. �

Example 2: Let R be the semigroup generated by the set {e, f, g, g1} of
four idempotents subject to the relations

g ∈ S(f, e), g1 ∈ S(e, f), efe = geg1, fef = g1ge and efg = gg1f .

The “Egg-box” diagram representation of the D-classes of R is depicted in
Figure 3. Clearly, R is weakly idempotent generated by X = {e, f}.

Let φ : G(X) → R1 be a skeleton mapping extending the identity mapping
φ′ : X → E(R), and recall the notations G2(X) = {e1, f1} and G3(X) =
{h, h1, h2, h3}. Note that e1φ = g and f1φ = g1 since S(f, e) = {g} and
S(e, f) = {g1}, respectively, in R. Further, h2φ = g1g and h3φ = efe
because S(gf, fg1) = {g1g} and S(ge, eg1) = {efe}, respectively. However,
we have two possible choices for both hφ and h1φ:

hφ ∈ S(g1f, fg) = {g1g, fef} and h1φ ∈ S(g1e, eg) = {efe, gg1} .

If we choose hφ = g1g and h1φ = efe, then (G2(X))φ = {efe, g1g} and
it is trivial to check that (G3(X))φ = {fef, efg, fgg1}. Then, by induction



24 LUÍS OLIVEIRA

e ∗ f ∗

ge ∗ g ∗

fe fg ∗
eg1

∗ ef
g1

∗ g1f
∗

efe ∗ efg ∗ gg1
∗

fef ∗ g1g
∗ fgg1

∗

Figure 3. “Egg-box” diagram of the D-classes of R.

on i ≥ 2, we can easily prove that

(Gi(X))φ =

{

{efe, g1g} if i even

{fef, efg, fgg1} if i odd,

since Defe is a rectangular band. Therefore,

A = {e, f, g, g1, efe, efg, fef, g1g, fgf1}

is a skeleton of R. But now, if we choose hφ = fef and h1φ = gg1 instead, we
get another skeleton: A∪{gg1}. Hence, R is weakly generated by X = {e, f}
but has more than one skeleton. �

From the previous results and examples, some questions arise naturally.
When does an image of FI(X), under a homomorphism whose restriction
to [X] is an idempotent one-to-one mapping, belong to WIG(X)? Is this
question decidable? Is there any necessary and sufficient condition for a
semigroup to be weakly idempotent generated by X? Is it decidable if a
semigroup is weakly idempotent generated byX, even if we restrict ourselves
to finite semigroups? If S is a finitely idempotent generated semigroup, can
we find (good bounds for) the size of a minimal setX that weakly idempotent
generates S? These are just some examples of questions that now can be
posed and are still open.

6. weakly finitely idempotent generated semigroups

Let m,n ≥ 2. In this section we prove, somehow surprising, that FIm
can be embedded into FIn even if m > n. Note that FIm is obviously a
subsemigroup of FIn if m ≤ n. In fact, we shall prove that the monoid FI1m
is isomorphic to a subsemigroup of FIn. In particular, all monoids FI1m and
all semigroups FIm are isomorphic to subsemigroups of FI2. As a conse-
quence, we show that all regular semigroups weakly generated by a finite
set of idempotents (which includes all finitely idempotent generated regular
semigroups) strongly divide FI2, that is, they are homomorphic images of
regular subsemigroups of FI2.

For each g ∈ Gi(X) with i ≥ 1, let

G(g) = {g1 ∈ G(X) : gl1 = g or gr1 = g} .
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Note that G(g) is a subset of Gi+1(X). We begin by computing the cardi-
nality of each sets G(g) and use this computation to calculate, recursively,
the cardinality of each Gi(X).

Lemma 6.1. Let X be a set of cardinality n ≥ 2 and let g ∈ Gi(X) for some

i ≥ 1. Then |G(g)| = 22i−1(3n−5)+4
3 and |Gi+1(X)| = 4i−1(3n−5)+2

3 |Gi(X)|.

Proof. We use induction on i ≥ 1 to prove the first part of this lemma. If
i = 1, then g ∈ X and

G(g) = {(g, 1, g1), (g1, 1, g) | g1 ∈ X \ {g}} ;

whence |G(g)| = 2n − 2, which is the desired value for i = 1.
Let now i ≥ 2 and g ∈ Gi(X), and assume that

|G(g1)| = (22j−1(3n − 5) + 4)/3

for all g1 ∈ Gj(X) with 1 ≤ j < i. Consider the following two sets:

G(g, l) = {g1 ∈ G(X) | g ∈ {gl1, g
r
1} and gc1 = gl}

and

G(g, r) = {g1 ∈ G(X) | g ∈ {gl1, g
r
1} and gc1 = gr} .

Then G(g) is the disjoint union of G(g, l) and G(g, r) (note that this con-
clusion is only true since i ≥ 2; it fails for i = 1 as gl = 1 = gr in that case).
Further, |G(g, l)| = 2(|G(gl)| − 1) and |G(g, r)| = 2(|G(gr)| − 1). Thus

|G(g)| = 4(|G(gl)| − 1) = 4

(

22i−3(3n− 5) + 1

3

)

=
22i−1(3n− 5) + 4

3
.

We have shown the first equality.
For the second equality, begin by observing that |G2(X)| = n(n − 1)

since the elements of G2(X) are the triples (g, 1, g1) with g and g1 distinct
elements of X. Thus, the equality given is verified for i = 1. Let now i ≥ 2.
Note that each element of Gi+1(X) belongs to precisely two sets of the form
G(g), with g ∈ Gi(X). Thus,

|Gi+1(X)| =
1

2
|G(g)| |Gi(X)| =

4i−1(3n− 5) + 2

3
|Gi(X)|

for any i ≥ 2. �

Let g ∈ Gi(X) for some i ≥ 1 and let A be a subset of k distinct elements
of G(g). In what follows, we prove a sequence of results that culminates
with Proposition 6.8, where we conclude that FI(X) has a subsemigroup
isomorphic to FI1k and with identity element [g]. So, up to Proposition 6.8,
g will be a fixed element of Gi(X) and A will be a fixed subset {g1, · · · , gk}
of k elements of G(g). Then, no two elements of [A] are D-related.

Set A0 = {g}, A1 = A, and A2 = {h ∈ Gi+2(X) | hl, hr ∈ A1 and hc = g}.
Set also

Aj = {h ∈ Gi+j(X) | hl, hr ∈ Aj−1}
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recursively for j ≥ 3. Note that, if h ∈ Aj with j ≥ 3, then hl ∈ Aj−1 and

hc ∈ {hl
2

, hlr} ⊆ Aj−2. Let A = ∪j≥0Aj and

LA(X) = {u ∈ L(X) | σ(u) = g = τ(u) and c(u) ⊆ A} .

Lemma 6.2. If u ∈ LA(X) and u → v, then v and β2(u) belong to LA(X).

Proof. Let u = gh1 · · · hng ∈ LA(X) and assume that u
hj
−→ v for a river

hj of u. Then 1 < j < n since c(u) ⊆ A. If hj−1 = hj+1, then v =
gh1 · · · hj−1hj+2 · · · hng and, obviously, v ∈ LA(X). So, assume that hj−1 6=
hj+1. Then v = gh1 · · · hj−1h

′
jhj+1 · · · hng for h′j = (hj+1, hj , hj−1). If

hj = g, then hj−1, hj+1 ∈ A1 and h′j ∈ A2; whence v ∈ LA(X). If hj 6= g,

then hj−1, hj+1 ∈ Aj′ for some j′ ≥ 2, and so h′j ∈ Aj′+1; whence v ∈ LA(X)

also. We have proved that v ∈ LA(X). Now, β2(u) also belongs to LA(X)

since u
∗
−→ β2(u). �

Let u ∈ LA(X). By Lemma 3.7.(iii),

u ≈ λl(g) ∗ u ∗ λr(g) ≈ λl(g) ∗ β2(u) ∗ λr(g) ∈ M1(X) ,

and λl(g)∗β2(u)∗λr(g) is the canonical form of u. Hence, u ≈ v for another
v ∈ LA(X) if and only if β2(u) = β2(v). Consequently, [u] has a unique
representative in the set LA(X) ∩ (L+

2 (X) ∪ {g}), namely β2(u). Let T be
the subset

T = {[u] ∈ FI(X) | u ∈ LA(X)}

of FI(X). Let also Bj = Aj if j even, or let Bj = {ghg | h ∈ Aj} otherwise;

and set B = ∪j≥0Bj

Proposition 6.3. T is a regular subsemigroup of FI(X), it is generated by
the set of idempotents [B], and [g] is an identity element for T .

Proof. Note that u ∗ v ∈ LA(X) if u, v ∈ LA(X). Thus T is a subsemigroup

of FI(X). In fact, since
←−

β2(u) ∈ LA(X) for any u ∈ LA(X), T is a regular
subsemigroup by Proposition 3.6. Clearly, [g] is also an identity element for
T : g ∗ u = u = u ∗ g for any u ∈ LA(X).

Let h ∈ Aj for some j ≥ 2 and set

u = hc
j1
hc

j1−1lhc
j1−1

· · · hchlhhrhc · · · hc
j1−1

hc
j1−1rhc

j1
,

where j1 is such that j ∈ {2j1, 2j1 +1}. Note that hl, hr ∈ Aj−1, h
c ∈ Aj−2,

and hchlh ≈ h ≈ hhrhc. Thus, recursively, we conclude that h ≈ u, c(u) ⊆

A, and either hc
j1 = g if j = 2j1, or h

cj1 ∈ A1 if j = 2j1+1. If j is even, then
u ∈ LA(X); whence [h] = [u] ∈ T . If j is odd, then ghg ≈ gug ∈ LA(X);
whence [ghg] = [gug] ∈ T . We can now conclude that [B] is a set of elements
from T . Further, [h] ≤ [g] if j is even. Thus, if h1h2 is a hill with h1, h2 ∈ A,
then h1h2 ≈ h1gh2 (note that either h1 or h2 belong to some Aj with j
even). Hence, if gh1 · · · hng ∈ LA(X), then

gh1 · · · hng ≈ (gh1g)h2(gh3g) · · · hn−1(ghng) ∈ 〈[B]〉 .
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We have shown that [B] generates T .
Finally, let us prove that all elements from [B] are idempotents. Clearly,

the elements from [Bj ] are idempotents if j even or j = 1. We prove that

all other elements from [B] are also idempotents by induction on j odd.
Let ghg ∈ Bj for some odd number j greater than 1 and assume that all
elements from [Bj−2] are idempotents. In particular, we are assuming that
[ghcg] is an idempotent. Hence,

(ghg)2 ≈ ghhrhcghchlhg ≈ ghhr(ghcg)2hlhg ≈ ghhrghcghlhg ≈ ghg .

Thus, all elements from [B] are idempotents. �

Lemma 6.4. Let h ∈ Aj for some j ≥ 2. Then

S([(ghrg)hc], [hc(ghlg)]) = {[h]} and S([hr(ghcg)], [(ghcg)hl]) = {[ghg]} .

Proof. Clearly,

S([(ghrg)hc], [hc(ghlg)]) = S([ghrhc], [hchlg]) = S([hrhc], [hchl]) = {[h]}

and

S([hr(ghcg)], [(ghcg)hl]) = S([hrhcg], [ghchl])

= [ghchl]V ([hrhcghchl]) [hrhcg]

= [g] ([hchl]V ([hrhchl]) [hrhc]) [g]

= [g]S([hrhc], [hchl]) [g] = {[ghg]} .
�

An immediate consequence of the previous lemma is that any regular
subsemigroup of FI(X) containing [B1], contains also [B \ {g}]. Hence,

Corollary 6.5. T \ {[g]} is the smallest regular subsemigroup of FI(X)
containing [B1], while T is the smallest regular subsemigroup of FI(X) con-
taining [B1 ∪ {g}].

Let X1 = {e1, · · · , ek} be a set of k distinct elements. Define φ1 :
G(X1) → A as follows:

hφ1 =











g if h = 1 ;

gj if h = ej ∈ X1 ;

((hl)φ1, (h
c)φ1, (h

r)φ1) if h ∈ Gj(X1) for some j ≥ 2 .

Lemma 6.6. The mapping φ1 is a well defined bijection.

Proof. We begin by showing inductively on j that not only φ1 is well defined,
but also that (Gj(X1))φ1 ⊆ Aj . Clearly 1φ1 = g ∈ A0 and hφ1 ∈ A1 for any
h ∈ X1. If h ∈ G2(X1), then h = (ej1 , 1, ej2) for some ej1 , ej2 ∈ X1 such that
j1 6= j2. Hence, gj1 and gj2 are distinct elements of A1, (gj1 , g, gj2) ∈ A2,
and hφ1 is defined as (gj1 , g, gj2). So, hφ1 is well defined and it belongs to
A2.



28 LUÍS OLIVEIRA

Let now h ∈ Gj(X1) for some j > 2, and assume that h1φ1 is well defined
and it belongs to Aj1 , for any h1 ∈ Gj1(X1) with j1 < j. In particu-

lar, (hl)φ1, (h
r)φ1 and (hc)φ1 are well defined, (hl)φ1, (h

r)φ1 ∈ Aj−1, and
(hc)φ1 ∈ Aj−2. Further, by definition of φ1,

(hl)φ1 = ((hl
2

)φ1, (h
lc)φ1, (h

lr)φ1)

and
(hr)φ1 = ((hrl)φ1, (h

rc)φ1, (h
r2)φ1) .

Since hc ∈ {hl
2

, hlr} ∩ {hrl, hr
2

}, we conclude that

((hl)φ1, (h
c)φ1, (h

r)φ1) ∈ Aj .

Thus hφ1 is well defined and it belongs to Aj .
Now that we have shown that φ1 is well defined, let us prove that φ1

is a bijection. Clearly, φ1|G0(X1) is a bijection from G0(X1) = {1} onto
A0 = {g}, while φ1|G1(X1) is a bijection from G1(X1) = X1 onto A1 = A.
Let j ≥ 2 and assume that for all j1 < j, φ1|Gj1

(X1) is a bijection from

Gj1(X1) onto Aj1 .

If φ1(h1) = φ1(h2) ∈ Aj, then h1, h2 ∈ Gj(X1), and so hl1, h
l
2, h

r
1, h

r
2 ∈

Gj−1(X1) and hc1, h
c
2 ∈ Gj−2(X1). Further,

(hl1)φ1 = (hl2)φ1, (hc1)φ1 = (hc2)φ1 and (hr1)φ1 = (hr2)φ1 .

Consequently, by the induction hypothesis, hl1 = hl2, h
c
1 = hc2 and hr1 = hr2;

whence h1 = h2. We have shown that φ1|Gj(X1) is a one-to-one mapping.

Let h ∈ Aj . By the induction hypothesis, there exist h1, h2 ∈ Gj−1(X1)
and h3 ∈ Gj−2(X1) such that

h1φ1 = hl, h3φ1 = hc and h2φ1 = hr .

Hence, h3φ1 ∈ {(hl1)φ1, (h
r
1)φ1} ∩ {(hl2)φ1, (h

r
2)φ1}. But since φ1|Gj−2(X1) is

one-to-one, then
h3 ∈ {hl1, h

r
1} ∩ {hl2, h

r
2} .

Therefore, (h1, h3, h2) ∈ Gj(X1) and (h1, h3, h2)φ1 = h. We can now con-
clude that φ1|Gj(X1) is a bijection from Gj(X1) onto Aj , as wanted. �

Next, consider the mapping φ : G(X1) → FI(X) defined by

hφ =

{

[hφ1] if υ(h) is even;

[g(hφ1)g] if υ(h) is odd.

Lemma 6.7. Then φ is a skeleton mapping whose image is [B]. Thus
[B \ {g}] is a skeleton of FI(X) (with respect to X1).

Proof. By the previous lemma, φ is a well defined mapping whose image
is [B] and φ|X1

is a one-to-one mapping. By Proposition 6.3, [B] is a set

of idempotents of FI(X) and [g][h] = [h] = [h][g] for any h ∈ B. Hence φ
is a mapping from G(X1) to E(FI(X)) satisfying conditions (i) and (ii) of
the definition of skeleton mapping. Finally, By Lemma 6.4, φ also satisfies
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the condition (iii) of the definition of skeleton mapping. Therefore, φ is a
skeleton mapping and [B \ {g}] is a skeleton of FI(X). �

Proposition 6.8. T is isomorphic to FI1(X1).

Proof. Using Proposition 5.1, let ϕ : FI1(X1) → FI1(X) be the unique
homomorphism extending the skeleton mapping φ. Then (FI1(X1))ϕ = T
by Proposition 6.3.

Let u = 1h1 · · · h2j−11 ∈ M(X1). Note that 1φ = [g] and

hj1φ =

{

[g(hj1φ1)g] if j1 odd;

[hj1φ1] if j1 even.

Since g(hj1φ1) ≈ hj1φ1 ≈ (hj1φ1)g if j1 even, then

[u]ϕ = (1φ)(h1φ) · · · (h2j−1φ)(1φ) = [α(u)] ,

where α(u) = g(h1φ1) · · · (h2j−1φ1)g ∈ LA(X) ∩ (L+
2 (X) ∪ {g}). Thus, if u

and v are two mountains of FI1(X1) such that [u]ϕ = [v]ϕ, then α(u) = α(v)
since [u]φ and [v]φ have a unique representative in the set LA(X)∩(L+

2 (X)∪
{g}). Consequently, u = v because φ1 is a bijection from G(X1) onto A.
We have shown that ϕ is an isomorphism from FI1(X1) onto T ; whence T
is isomorphic to FI1(X1). �

We reinforce that we have shown that if g ∈ G(X) and {h1, · · · , hk} ⊆
G(g), then FI(X) has a regular subsemigroup weakly generated by

{[gh1g], · · · , [ghkg]}

isomorphic to FIk. By Lemma 6.1, we conclude also that FI(X) contains
infinite many distinct copies of FIk, for any k ∈ N, if |X| ≥ 2. The next
corollary combines Lemma 6.1 with the previous proposition.

Corollary 6.9. Let X and Y be two sets such that |X| = n and |Y | = m
with m > n > 1.

(i) If m ≤ 2n − 2 and g ∈ X, then there exists an embedding ϕ :
FI1(Y ) → FI(X) such that [1]ϕ = [g] and, for each y ∈ Y , [y]ϕ =
[ghg] ∈ D[h] for some h ∈ G2(X).

(ii) If i ≥ max
{

2, 1
2 log2

(

6m−8
3n−5

)}

and g ∈ Gi(X), then there exists an

embedding ϕ : FI1(Y ) → FI(X) such that [1]ϕ = [g] and, for each
y ∈ Y , [y]ϕ = [ghg] ∈ D[h] for some h ∈ Gi+1(X).

Proof. (i). Assume that n < m ≤ 2n − 2 and let g ∈ X. Note that G(g)
has 2n− 2 elements by Lemma 6.1. So, let A = {h1, · · · , hm} be a set of m
elements of G(g). By the previous results, FI(X) has the smallest regular
subsemigroup T containing {[g]} ∪ {[ghg] | h ∈ A}, and T is isomorphic to
FI1(Y ) under an isomorphism ϕ : FI1(Y ) → FI(X) such that [1]ϕ = [g] and,
for each y ∈ Y , [y]ϕ = [ghg] ∈ D[h] for some h ∈ A.
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(ii). Assume that i ≥ max
{

2, 1
2 log2

(

6m−8
3n−5

)}

and let g ∈ Gi(X). The

proof of (ii) is similar to the proof of (i) and we just need to show that G(g)
has, at least, m elements. But,

i ≥
1

2
log2

(

6m− 8

3n− 5

)

⇐⇒
22i−1(3n − 5) + 4

3
≥ m.

Hence, |G(g)| ≥ m and the embedding ϕ described in (ii) exists. �

Corollary 6.10. FI2 has a copy of FIm as a subsemigroup for all m ≥
2. Furthermore, all regular semigroups weakly generated by a finite set of
idempotents (including all finitely idempotent generated regular semigroups)
strongly divide FI2.

Proof. The first part of this corollary is just a particular case of the previous
corollary. The second part now follows from Proposition 5.5. �

Since every finite semigroup can be embedded into a finite idempotent
generated regular semigroup [16], we obtain also the following result:

Corollary 6.11. Every finite semigroup divides FI2.

7. The principal factors of FI(X)

In this last section, we are going to work with the model M(X) of FI(X)
instead of FI(X). Hence, in this section, Dg denotes the D-class of β(g) in
M(X) for any g ∈ G(X) \ {1}. Then Dg = {u ∈ M(X) | κ(u) = g}. Let
Fg denote the principal factor of β(g) in M(X), that is, Fg is the semigroup
Dg ∪ {0} with a zero element 0 and product · defined by

u · v =

{

u⊙ v if u⊙ v ∈ Dg

0 otherwise ,

for any mountains u, v ∈ Dg. In this section, we analyze and compare the
structure of these principal factors. We begin by studying the idempotents
of Dg.

7.1. Idempotents of Dg. Let u = gn · · · g0 ∈ L−
1 (X) with g0 6= 1, and

let qi ∈ {l, r} be such that gi−1 = gqii , for i ∈ {1, · · · , n}. Define α(u) =
qn · · · q1 ∈ {l, r}+. If g0 ∈ G1(X), define also α(u1) = α(u).

Let Si = {si,1, · · · , si,2i−1} be the list of all 2i−1 words of length i−1 from

{l, r}+, listed by increasing order with respect to the lexicographic order �.
For each g ∈ Gi(X) with i ≥ 1, let L−

1 (X, g) be the set of all downhills from
g to 1. Clearly, α defines a bijection from L−

1 (X, g) onto Si. Consider

L−
1 (X, g) = {vg,1, · · · , vg,2i−1}

such that α(vg,k) = si,k.
We now use the following notation to refer to the L -classes of Dg: Lg,k is

the L -class of Dg constituted by all mountains u such that λr(u) = vg,k, or
equivalently, constituted by all mountains u ∈ Dg such that α(λr(u)) = si,k.
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We introduce also a similar notation for the R-classes of Dg: Rg,k is the R-

class of Dg constituted by all mountains u such that
←−

λl(u) = vg,k. We define
the canonical “egg-box” representation of Dg as its “egg-box” representation

where the kth column is the L -class Lg,k and the kth row is the R-class
Rg,k. We denote this representation by Eg.

Note that
←−

vg,j∗vg,k is the only mountain in the H -class Hg,j,k = Rg,j∩Lg,k

of Eg. Thus, all H -classes Hg,k,k in the main diagonal of Eg are trivial
groups, that is, they are constituted by a single idempotent. Our intention
in this subsection is to prove that there are no idempotents below the main
diagonal of Eg.

Let u = gn · · · g0h1 · · · hm be a valley with river g0. Since β2(u) has no
rivers, β2(u) ∈ L+

2 (X) ∪ L1(X) ∪ G(X), σ(β2(u)) = gn and τ(β2(u)) = hm.
Further, if β2(u) ∈ L+

1 (X) then n < m; if β2(u) ∈ L−
1 (X) then n > m;

and if β2(u) ∈ G(X) then n = m and gn = hm. The next result give us
more details about the words β2(u), but we need to introduce the following
notions first.

Note that any hill from gn to hm (if it exists) has length |n −m|+ 1. If
n > m, then an u-hill is a downhill

gn · · · gkg
l
k · · · g

lk−m

k

for some m ≤ k ≤ n such that

gl
k−m

k = hm, glk 6= gk−1 (if k 6= m), and gl
i−2c
k 6= gl

i

k for 2 ≤ i ≤ k −m.

Thus, for n > m, an u-hill is a downhill from gn to hm with some extra
properties, and a particular case worth noticing occurs when gm = hm,
namely gn · · · gm.

Now, if n < m, we then define an u-hill dually, that is, as an uphill

hr
k−n

k · · · hrkhk · · · hm

for some n ≤ k ≤ m such that

hr
k−n

k = gn, hrk 6= hk−1 (if k 6= n), and hr
i−2c

k 6= hr
i

k for 2 ≤ i ≤ k − n .

We also define a (p, q)-landscape as a landscape

gr
p

gr
p−1

· · · grggl · · · gl
q−1

gl
q

∈ L+
2 (X) ,

for some g ∈ G(X) such that gr
i−2c 6= gr

i

for 2 ≤ i ≤ p and gl
j−2c 6= gl

j

for
2 ≤ j ≤ q.

Lemma 7.1. Let u = gn · · · g0h1 · · · hm be a valley with river g0. Then β2(u)
is either a (p, q)-landscape with p ≤ m and q ≤ n, an u-hill, or just gn with
n = m and gn = hm.

Proof. We prove this result by induction on the length of the valley u. If u =
g1g0h1, then either β2(u) = g1 if g1 = h1, or β2(u) = g1gh1 for g = (h1, g0, g1)
if g1 6= h1. Note that, in the latter case, β2(u) is a (1, 1)-landscape.
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Assume now that l(u) > 3 and that the result holds for any valley of length
less than l(u). If m = 1, then n ≥ 2 and let v be the valley gn−1 · · · g0h1.
We can apply the induction hypothesis to v and assume that β2(v) is either
a (1, q)-landscape with q ≤ n−1, a v-hill, or just g1 with n = 2 and g1 = h1.
In the latter two cases, β2(u) = gnβ2(v) and β2(u) is an u-hill. In the former
case, note that β2(v) is, in fact, a (1, n − 1)-landscape, that is,

β2(v) = grggl · · · gl
n−1

for gr = gn−1 6= gl, gl
n−1

= h1 and gl
i−2c 6= gl

i

for 2 ≤ i ≤ n − 1. If g = gn,

then β2(u) = ggl · · · gl
n−1

and β2(u) is an u-hill. If g 6= gn, then

β2(u) = gnhgg
l · · · gl

n−1

for h = (g, gn−1, gn). Hence g = hl, gn = hr, hc = gn−1 6= gl = hl
2

, and
β2(u) is a (1, n)-landscape. Note that we have proved that this result holds
for valleys gn · · · g0h1 with river g0.

Let us consider now the general case with m > 1, and let v be the valley

v = gn · · · g0h1 · · · hm−1

with river g0. Applying the induction hypothesis to v, we can assume that
β2(v) is either a (p, q)-landscape with p ≤ m− 1 and q ≤ n, a v-hill, or just
gn with n = m−1 and gn = hm−1. Note that β2(u) = β2(v)hm if β2(v) = gn
or if β2(v) is a v-hill with n < m−1. In both cases, β2(u) becomes an u-hill.

Assume that β2(v) is a v-hill with n > m− 1. Then β2(u) = β2(β2(v)hm)
and β2(v)hm is a valley with river hm−1. We can apply now the case m = 1
to the valley β2(v)hm and conclude that β2(u) = β2(β2(v)hm) is either a
(1, n−m+1)-landscape, a β2(v)hm-hill, or just gn with n = m and gn = hm.
If β2(u) is a β2(v)hm-hill, we need to consider two cases:

β2(v) = gn · · · gm−1 with gm−1 = hm−1 ,

or

β2(v) = gn · · · gkg
l
k · · · g

lk−m+1

k

for some m ≤ k ≤ n such that gl
k−m+1

k = hm−1, g
l
k 6= gk−1 and gl

i−2c
k 6= gl

i

k

for 2 ≤ i ≤ k −m+ 1. In the former case, β2(u) is clearly an u-hill also. In
the latter case, note that

β2(u) = gn · · · gk1g
l
k1

· · · gl
k1−m

k1

for some k ≤ k1 ≤ n such that gl
k1−m

k1
= hm, glk1 6= gk1−1 and gl

i−2c
k1

≥ gl
i

k1
for

2 ≤ i ≤ k1 −m. Thus β2(u) is again an u-hill. We have shown that β2(u)
is either a (1, n − m + 1)-landscape, an u-hill, or just gn with n = m and
gn = hm if β2(v) is a v-hill with n > m− 1.

Finally, assume that β2(v) is an (p, q)-landscape with p ≤ m − 1 and
q ≤ n, that is,

β2(v) = gr
p

· · · grggl · · · gl
q

∈ L+
2 (X) ,
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for some g ∈ G(X), p ≤ m − 1 and q ≤ n such that gr
i−2c 6= gr

i

for

2 ≤ i ≤ p and gl
j−2c 6= gl

j

for 2 ≤ j ≤ q. Note that gr
p

= gn and
v1 = ggl · · · gl

q

hm is a valley with river gl
q

= hm−1. If q = 1 and hm = g,

then β2(u) = gr
p

· · · grg and β2(u) is an u-hill. If q > 1 and hm = gl
q−1

,

then β2(u) = gr
p

· · · grβ2(v1) = gr
p

· · · grggl · · · gl
q−1

and β2(u) is a (p, q−1)-

landscape. If hm 6= gl
q−1

(or hm 6= g if q = 1), then observe that

β2(v1) = ghhl · · · hl
q

,

where hl
q

= hm and hl
i

= (hl
i+1

, gl
i+1

, gl
i

) for i ∈ {0, · · · , q − 1}. Therefore,

β2(u) = hr
p+1

· · · hrhhl · · · hl
q

and β2(u) is a (p + 1, q)-landscape with p+ 1 ≤ m and q ≤ n. �

Lemma 7.2. Let u = g0g1 · · · g2n−1g2n be a gorge with g0 = g = g2n. Then
α(w) � α(v) for v = g0 · · · gn and w = g2n · · · gn.

Proof. Fix i ∈ {1, · · · , n− 1} and let ui be the prefix g0 · · · gn+i of u. Thus
each ui is a valley with river gn and

g = β2(u) = β2(β2(ui)gn+i+1 · · · g2n) .

By Lemma 7.1, β2(ui) must be an ui-hill. Therefore,

vi = β2(ui)gn+i−1 · · · gn

is a downhill from g to gn. Note also that vn−1 = w since β2(un−1) =
g0g2n−1 = g2ng2n−1. Set v0 = v, another downhill from g to gn. Since all
words α(vi) have length n, this lemma becomes proved once we show that
α(vi) � α(vi−1) for all 1 ≤ i ≤ n− 1.

Note that v1 = β2(u1)gn = β2(v0gn+1)gn. If gn+1 = gn−1, then v1 = v0.
If gn+1 6= gn−1, then

β2(u1) = g0 · · · gkg
l
k · · · g

ln−1−k

k ,

for some 0 ≤ k < n− 1 such that gl
n−1−k

k = gn+1, g
l
k 6= gk+1 and gl

i−2c
k 6= gl

i

k

for 2 ≤ i ≤ n− 1− k, by Lemma 7.1. Hence, gk+1 = grk. If s = α(g0 · · · gk),
then sl is a prefix of α(v1), while sr is a prefix of α(v0). Thus α(v1) � α(v0)
as wanted.

Assume now that 1 < i < n. Then β2(ui) = β2(β2(ui−1)gn+i) is an ui-hill.
But then β2(ui) is also a β2(ui−1)gn+i-hill, again by Lemma 7.1. Similarly to
the previous case, we can now deduce that α(β2(ui)gn+i−1) � α(β2(ui−1));
whence α(vi) � α(vi−1). �

We have now all the ingredients necessary to prove that Eg has no idem-
potents below the main diagonal.

Proposition 7.3. The canonical “egg-box” representation Eg of Dg has
no idempotents below the main diagonal or, in other words, there are no

idempotents u in Dg such that α(λr(u)) ≺ α(
←−

λl(u)).
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Proof. If u = λl(u) ∗ λr(u) is an idempotent of Eg, then λr(u) ∗ λl(u) is a

gorge. By the previous lemma, α(
←−

λl(u)) � α(λr(u)) and u is not below the
main diagonal of Eg. �

About the H -classes above the main diagonal in Eg, it is not immedi-
ately which ones contain idempotents. However, since FI(X) is idempotent
generated, we can say something more in this regard. Note that if S idem-
potent generated and e and f are two D-related idempotents, then there
exists a sequence e0, e1, · · · , en of idempotents such that

e = e0 R e1 L e2 R · · · R en−1 L en = f .

Let Γg = (V,E) be the (non-oriented) graph with set of vertices

V = L−
1 (X, g) = {vg,1, · · · , vg,2i−1}

of all downhills from g to 1, and set of edges

E = {(vg,j , vg,k) | j < k and
←−

vg,k ∗ vg,j is an idempotent} .

Thus, the vertices of Γg can be seen as representing the idempotents
←−

vg,j∗vg,j
in the main diagonal of Eg, while the edges represent the idempotents of Eg

above the main diagonal. The next result is now a trivial consequence of
the observation made above about the D-related idempotents of idempotent
generated semigroups.

Proposition 7.4. The graph Γg is connected.

We can say something also about the product of two elements of M(X).
In the next result we prove that if u⊙ v ∈ E(M(X)) for u, v ∈ M(X), then
u R u⊙ v or v L u⊙ v.

Proposition 7.5. Let u, v ∈ M(X). If u ⊙ v ∈ E(M(X)), then u R u ⊙ v
or v L u⊙ v.

Proof. Assume that w = u ⊙ v ∈ Dg for some g ∈ G(X) and that u is not
R-related with w and v is not L -related with w. Note that

w = λl(u) ∗ β2(λr(u) ∗ λl(v)) ∗ λr(v) .

By Corollary 4.4 and Lemma 7.1, β2(λr(u)∗λl(v)) must be a (p, q)-landscape
since neither u is R-related with w, nor v is L -related with w. Consequently

grggl is a subword of w, l is a prefix of α(λr(w)) and r is a prefix of α(
←−

λl(w)).
We have shown that

α(λr(w)) ≺ α(
←−

λl(w)) ;

whence w is not an idempotent. �
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7.2. Comparing Dg with Dgl, Dgr and Dgc . Let g ∈ Gi(X) and let
s, t ∈ {l, r}∗ of length j and k, respectively, less than or equal to i. Note
that j or k are 0 if s or t are the empty word, respectively. For each
n ∈ {1, · · · , j} and each m ∈ {1, · · · , k}, let sn be the prefix of s of length
n and tm be the prefix of t of length m. Set

Ds,t
g = {u ∈ M | gsj · · · gs1ggt1 · · · gtk is a subword of u} ⊆ Dg .

Thus Ds,t
g is the set of all mountains u such that s and t are prefixes of

α(
←−

λl(u)) and α(λr(u)), respectively. Note further that Dl,l
g , Dl,r

g , Dr,l
g and

Dr,r
g are a partition of Dg into four parts if i ≥ 2.

Let F s,t
g denote the subsemigroup Ds,t

g ∪{0} of Fg. The next result gathers

information about Dr,l
g and F r,l

g already obtained in previous results.

Proposition 7.6. Let g ∈ Gi(X) with i ≥ 2 and u, v ∈ M(X).

(i) If u⊙ v ∈ Dg but u, v 6∈ Dg, then u⊙ v ∈ Dr,l
g .

(ii) F r,l
g is a zero semigroup, that is, u⊙ v = 0 for all u, v ∈ F r,l

g .

Proof. Note that (i) follows from the proof of Proposition 7.5, while (ii)
follows from Proposition 7.3. �

The next result is the key ingredient to prove that F l,l
g and F r,r

g are
isomorphic to Fgl and Fgr , respectively.

Lemma 7.7. Let u = gg1 · · · g2n−1g be a canyon with g1 = g2n−1. Then u
is a gorge if and only if n = 1 or v = g1 · · · g2n−1 is a gorge.

Proof. There are two cases to consider: g1 = g2n−1 = gl or g1 = g2n−1 = gr.
Since they are similar, we shall prove only the case g1 = g2n−1 = gl. So,
assume that g1 = g2n−1 = gl. Without loss of generality, we can assume also
that n > 1. Further, it is obvious that u is a gorge if v is a gorge. Hence, we
only need to prove that if u = gglg2 · · · g2n−2g

lg is a gorge for some n > 1,
then v = glg2 · · · g2n−2g

l is a gorge also.
By Lemma 7.1, β2(v) is either g

l or a (p, q)-landscape. However, ǫ(β2(v)) ⊆
ǫ(g) since g = β2(u) = β2(gβ2(v)g). Note now that there are no (p, q)-
landscapes v1 form gl to gl with ǫ(v1) ⊆ ǫ(g); whence β2(v) = gl and v is a
gorge. �

We introduce now the following two mappings:

ϕl
g : Dgl → Dl,l

g

u 7→ λl(u) g λr(u)
and

ϕr
g : Dgr → Dr,r

g

u 7→ λl(u) g λr(u)
.

They are well defined since κ(u) = gl if u ∈ Dgl , and κ(u) = gr if u ∈ Dgr .

We extend both ϕl
g and ϕr

g to mappings

ϕl
g : Fgl → F l,l

g and ϕr
g : Fgr → F r,r

g ,

respectively, by setting 0ϕl
g = 0 = 0ϕr

g.
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Proposition 7.8. The mappings ϕl
g : Fgl → F l,l

g and ϕr
g : Fgr → F r,r

g are

isomorphisms. Thus, a mountain u1g
lgglu2 [u1g

rggru2] is an idempotent if
and only if the mountain u1g

lu2 [u1g
ru2] is an idempotent too.

Proof. We shall prove only that ϕl
g is an isomorphism since the proof for ϕr

g

is similar and the second part of this proposition follows obviously from the
first part. Note also that ϕl

g is a bijection with inverse mapping

u1g
lgglu2 7→ u1g

lu2 .

So, we only need to prove that ϕl
g is a homomorphism.

Let u, v ∈ Dgl and let u1 = uϕl
g and v1 = vϕl

g. Then u1 = λl(u) g λr(u)
and v1 = λl(v) g λr(v). Note that u ⊙ v ∈ Dgl if and only if the canyon
λr(u)∗λl(v) is a gorge. By Lemma 7.7, λr(u)∗λl(v) is a gorge if and only if

g λr(u)∗λl(v) g is a gorge too. Hence, u⊙v ∈ Dgl if and only if u1⊙v1 ∈ Dl,l
g .

Consequently, if u⊙ v 6∈ Dgl , then

(u · v)ϕl
g = 0ϕl

g = 0 = u1 · v1 = (uϕl
g) · (vϕ

l
g) .

Assume now that u⊙ v ∈ Dgl . Then u · v = u⊙ v and u1 · v1 = u1 ⊙ v1.
Since u⊙ v = λl(u) ∗ λr(v) by Corollary 4.4, we conclude that

(u · v)ϕl
g = λl(u) g λr(v) ≈ λl(u) g λr(u) ∗ λl(v) g λr(v) = u1 ∗ v1

≈ u1 ⊙ v1 = (uϕl
g) · (vϕ

l
g) .

We have shown that ϕl
g is a homomorphism as wanted. �

We have seen so far that Dr,l
g has no idempotents and that Dl,l

g and Dr,r
g

are copies of Dgl and Dgr , respectively. Let us look now to Dl,r
g , and assume

that g ∈ Gi(X) with i ≥ 3. Note that Dl,r
g is partitioned into the four sets

Dlc,rc
g , Dlo,rc

g , Dlc,ro
g and Dlo,ro

g .

Lemma 7.9. Let u = ggrgc · · · g2n−2g
lg and v = glgc · · · g2n−2g

l be two
canyons. The following conditions are equivalent:

(i) u is a gorge.
(ii) v is a gorge.
(iii) gvg is a gorge.

Proof. The equivalence between (ii) and (iii) follows from Lemma 7.7. So,
we only need to prove the equivalence between (i) and (ii). Assume first
that v is a gorge and let v1 = gc · · · g2n−2g

l. Since gl = β2(v) = β2(g
lβ2(v1)),

then β2(v1) = gcgl by Lemma 7.1. Hence

u
∗
−→ ggrβ2(v1)g = ggrgcglg

gc

−→ ggrgglg
∗
−→ g ,

and u is a gorge.
Assume now that u is a gorge. By Lemma 7.1, either β2(v1) = gcgl or

β2(v1) is a (p, q)-landscape. Since g = β2(u) = β2(gg
rβ2(v1)g), we also know

that ǫ(β2(v1)) ⊆ ǫ(g). However, observe that there is no (p, q)-landscape w
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from gc to gl such that ǫ(w) ⊆ ǫ(g). Consequently β2(v1) = gcgl, and so
β2(v) = gl and v is a gorge. �

We have now the following corollary.

Corollary 7.10. (i) A mountain v1g
lgglgcv2 ∈ Dl,lc

g is an idempotent

if and only if the mountain v1g
lggrgcv2 ∈ Dl,rc

g is an idempotent.
(ii) A mountain v1g

cgrggrv2 ∈ Drc,r
g is an idempotent if and only if the

mountain v1g
cglggrv2 ∈ Dlc,r

g is an idempotent.

Proof. The first statement follows from Lemma 7.9 and Proposition 4.9. The
second statement is the dual of the first; whence it follows from the dual of
Lemma 7.9. �

Let φl
g : F l,lc

g → F l,rc
g be the mapping defined by

0φl
g = 0 and (v1g

lgglgcv2)φ
l
g = v1g

lggrgcv2 ,

for each mountain v1g
lgglgcv2 ∈ Dl,lc

g . Analogously, consider the mapping

φr
g : F

rc,r
g → F lc,r

g defined by

0φr
g = 0 and (v1g

cgrggrv2)φ
r
g = v1g

cglggrv2 ,

for each mountain v1g
cgrggrv2 ∈ Drc,r

g . In the next result we show that
these two mappings are isomorphisms.

Proposition 7.11. The mappings φl
g and φr

g are isomorphisms. Further,

in M(X), u R (uφl
g) for any mountain u ∈ Dl,lc

g and v L (vφr
g) for any

mountain v ∈ Drc,r
g .

Proof. The proof that φl
g is an isomorphism is similar to the proof of Propo-

sition 7.8 using Lemma 7.9 instead of Lemma 7.7. We omit the details here.
We can show that φr

g is a homomorphism too using a similar strategy based

on the dual of Lemma 7.9. Thus both φl
g and φr

g are isomorphisms since,
clearly, they are bijections. The second statement is just a consequence of
Corollary 4.4. �

There are four other isomorphisms that can be obviously derived from
restriction of φl

g and φr
g. We list them in the following corollary:

Corollary 7.12. The following mappings are isomorphisms:

φl
g|F lc,lc

g
: F lc,lc

g → F lc,rc
g ; φl

g|F lo,lc
g

: F lo,lc
g → F lo,rc

g ;

φr
g|F rc,rc

g
: F rc,rc

g → F lc,rc
g ; φr

g|F rc,ro
g

: F rc,ro
g → F lc,ro

g .

Furthermore, the semigroups F lc,lc
g , F lc,rc

g and F rc,rc
g are isomorphic to the

completely 0-simple semigroup Fgc .
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Proof. These four mappings are clearly isomorphisms. Thus F lc,lc
g , F lc,rc

g

and F rc,rc
g are isomorphic semigroups. If gc = gl

2

, then ϕl
gl

: Fgc → F l,l

gl
is

an isomorphism by Proposition 7.8. Hence ϕl
gl
◦ ϕl

g is a one-to-one homo-

morphism whose image is F lc,lc
g . Therefore,

ϕl
gl ◦ ϕ

l
g : Fgc → F lc,lc

g

is an isomorphism. If gc = glr, then we can show similarly that ϕr
gl
◦ ϕl

g :

Fgc → F lc,lc
g is an isomorphism. �

We point out that the previous two results allow us to identify the idem-
potents of Dg if we know the idempotents of Dgl and Dgr , except for the

idempotents in Dlo,ro
g . More research is needed to identify these latter idem-

potents. Although Dlo,ro
g sometimes has idempotents, it is very common for

Dlo,ro
g not to have idempotents. For example, only two of the twenty-four

D-classes of FI2 corresponding to elements g of height 4 have idempotents

in Dlo,ro
g .

8. Some considerations for future research

The structure of the semigroups FI(X) is not yet fully understood and
more research is needed. For example, as it becomes clear from the previous
section, the identification of idempotents is not immediate, which makes it
difficult to understand the structure of the biordered set of idempotents of
FI(X). Also, working with triples nested inside triples is not an easy task.
So, the pursue of better, alternative ways to represent and work with the
elements of FI(X) is advisable. There are also decidability and other ques-
tions, some of them stated at the end of Section 5, related to the fact that all
regular semigroups weakly generated by |X| idempotents are homomorphic
images of FI(X). Such questions can now be addressed.

Dolinka and Ruškuc [8] proved that every finitely presented group G
(which includes all finite groups) is a maximal subgroup of a free regular
idempotent generated semigroup RIG(BG) on some finite band BG. Note
that RIG(BG) is a homomorphic image of FIk for k = |BG| since RIG(BG)
is generated by the idempotents of the biordered set BG. Thus RIG(BG)
also strongly divides FI2. One can ask now which finitely presented groups
and which finite groups appear as maximal subgroups of free regular idem-
potent generated semigroups also weakly generated by k idempotents. In
particular, one can investigate (i) what kind of finite groups can we get as
maximal subgroups of free regular idempotent generated semigroups weakly
generated by two idempotents? (ii) Can we get all of them? If not, we
may consider a hierarchy of classes of finite groups, each class defined by
the finite groups which are maximal subgroups of free regular idempotent
generated semigroups weakly generated by at most k idempotents.
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To address the previous questions it will be important to study the ho-
momorphic images of FI2. In particular, we should investigate which semi-
groups are regular subsemigroups of homomorphic images of FI2. Note
that we have already proved that each weakly finitely idempotent generated
semigroups strongly divides FI2, that is, it is a homomorphic image of a reg-
ular subsemigroup of FI2. Thus, it is natural to conjecture that all weakly
finitely idempotent generated semigroups are regular subsemigroups of ho-
momorphic images of FI2. A positive answer to this conjecture is related to
a positive answer to the following question: can any surjective homomor-
phism ϕ : T → S, where T is a regular subsemigroup of FI2, be extended
to a homomorphism φ : FI2 → S1? Can we choose S1 to be weakly gener-
ated by two idempotents? Note that not all homomorphic images of FI2 are
weakly generated by two idempotents (see Example 1).

A different line of research is the attempt to generalize the results pre-
sented here for the non-idempotent case. In other words, is there a regular
semigroup F (X) weakly generated by a set X such that all other regular
semigroups weakly generated by X are homomorphic images of F (X)? Of
course, we should start with the case X = {x}, but we should not expect
a simple structure for F ({x}), if F ({x}) exists. Most certainly, F ({x}) will
contain a copy of FI2 weakly generated by the set of idempotents {xx′, x′x}.

The generalization of the results obtained here for the non-idempotent
case may be of interest for the theory of e-varieties of regular semigroups.
This theory began in the 1990s [15, 17] and a great effort was made on the
development of a Birkhoff-type theorem for e-varieties of regular semigroups.
Unfortunately, only partial results were found, namely for the e-varieties of
locally inverse semigroups [1, 2] and for the e-varieties of regular E-solid
semigroups [18], and the interest on general e-varieties of regular semigroups
diminished considerably. These partial results were based on the concepts
of ‘bifree objects’ and ‘biequational classes’.

Now, if one can show that F (X) exists, then one should explore if its
universal properties make it a good candidate for the development of a
Birkhoff-type theorem that works for all e-varieties of regular semigroups.
In this regard, we should point out that, for e-varieties V with bifree objects
on a set X, the concept of bifree object could be alternatively defined as
follows: it is a semigroup FV(X) ∈ V weakly generated by X such that
all mappings θ : X → S ∈ V can be extended to a homomorphism ϕ :
FV(X) → S. Concerning the usual concept of bifree object, we add the
condition of FV(X) being weakly generated by X, but drop the necessity
of the mappings θ being matched and the uniqueness in the homomorphism
extensions ϕ.
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