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PROPERTIES OF SYMBOLIC POWERS OF EDGE IDEALS OF

WEIGHTED ORIENTED GRAPHS

MOUSUMI MANDAL∗ AND DIPAK KUMAR PRADHAN

Abstract. LetD be a weighted oriented graph and I(D) be its edge ideal. We provide

one method to find all the minimal generators of I⊆C , where C is a maximal strong

vertex cover of D and I⊆C is the intersections of irreducible ideals associated to the

strong vertex covers contained in C. If D′ is an induced digraph of D, under a certain

condition on the strong vertex covers of D′ and D, we show that I(D′)
(s)
≠ I(D′)

s
for

some s ≥ 2 implies I(D)(s) ≠ I(D)s. We provide the necessary and sufficient condition

for the equality of ordinary and symbolic powers of edge ideal of the union of two

naturally oriented paths with a common sink vertex. We characterize all the maximal

strong vertex covers of D such that at most one edge is oriented into each of its vertices

and w(x) ≥ 2 if degD(x) ≥ 2 for all x ∈ V (D). Finally, if D is a weighted rooted tree

with the degree of root is 1 and w(x) ≥ 2 when degD(x) ≥ 2 for all x ∈ V (D), we show

that I(D)(s) = I(D)s for all s ≥ 2.

Keywords: Weighted oriented graph, induced digraph, edge ideal, symbolic power, tree,

path.

1. Introduction

Let k be a field and R = k[x1, . . . , xn] be a polynomial ring in n variables. Let I be

a homogeneous ideal of R. Then for s ≥ 1, the s-th symbolic power of I is defined

as I(s) = ⋂
P ∈Ass I

(IsRP ∩R). We refer [5] to the reader to survey some known results of

symbolic powers of ideals.

A weighted oriented graph D with underlying graph G, is a triplet (V (D),E(D),w)
whose vertex set is V (D) = V (G), edge set is E(D) = {(xi, xj) ∣ {xi, xj} ∈ E(G)} and

the weight function w ∶ V (D) Ð→ N. If e = (x, y) ∈ E(D), then x is the initial vertex

and y is the terminal vertex of the directed edge e. The weight of a vertex xi ∈ V (D)
is w(xi) denoted by wi or wxi

. If a vertex xi of D is a source (i.e., has only arrows

leaving xi), we fix wi = 1. The edge ideal of D is denoted by I(D) and is defined as

I(D) = (xixwj

j ∣(xi, xj) ∈ E(D)). This ideal was first studied in [6, 12]. Recently in [7],

the authors give the classification of some normally torsion-free edge ideals of weighted
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2 M. MANDAL AND D.K. PRADHAN

oriented graphs, where the s−th symbolic power of I defined using the associated minimal

primes of I.

The difficulty in the study of symbolic powers of edge ideals of weighted oriented graphs

depends upon the structures of irreducible ideals associated to the strong vertex covers

and the number of strong vertex covers. In general, the number of strong vertex covers

of a weighted oriented graph is greater than the number of minimal vertex covers of

its underlying graph and it occurs due to the weights on its vertices and orientation of

its edges. So the study of symbolic powers of edge ideals of weighted oriented graphs

is harder than simple graphs. In this paper, we provide some methods to study the

symbolic powers of their edge ideals. In [9], we see that, if the set of all vertices of

a weighted oriented graph forms a strong vertex cover, all the ordinary and symbolic

powers of its edge ideal coincide. Comparision of ordinary and symbolic powers has been

done for several classes of weighted oriented graphs in [1], [2] and [10]. In all those papers,

to compute the symbolic powers, the authors always find the minimal generators of the

intersections of irreducible ideals associated to the strong vertex covers contained in a

maximal strong vertex cover. In this paper, we give a direct formula for that in Theorem

3.5 and it works for any weighted oriented graph. We compare the ordinary and symbolic

powers of edge ideals of weighted oriented graphs by studying the ordinary and symbolic

powers of edge ideals of their induced digraphs. In [11], if H is an induced subgraph of

G, it is known that I(H)(s) ≠ I(H)s for some s ≥ 2 implies I(G)(s) ≠ I(G)s. We extend

this result to weighted oriented graphs. If D′ is an induced digraph of D, under a certain

condition on the strong vertex covers of D′ and D, we show that I(D′)(s) ≠ I(D′)s for

some s ≥ 2 implies I(D)(s) ≠ I(D)s (see Theorem 4.3). We apply this result to compare

the ordinary and symbolic powers of edge ideals of weighted oriented paths (see Theorem

4.5). In Theorem 5.12, we give the necessary and sufficient condition for the equality

of ordinary and symbolic powers of edge ideal of union of two naturally oriented paths

with a common sink.

The main problem in the computation of symbolic power is to find all the maximal strong

vertex covers. In [12, Lemma 47], Pitones et al. proved that {xi1 , . . . , xis} is a vertex

cover of D if I(D) ⊆ (xa1i1 , . . . , xasis ). We identify that, if aj = w(xij ) and s is the least

possible value, then {xi1 , . . . , xis} is a maximal strong vertex cover of D (see Lemma 6.2).

In Theorem 6.5, we prove the converse of Lemma 6.2 is also true under the assumption

“ at most one edge is oriented into each vertex of D and w(x) ≥ 2 if degD(x) ≥ 2 for all

x ∈ V (D)”. Recently in [1], Banerjee et al. prove the equality of ordinary and symbolic

powers of a certain class of weighted rooted trees. In Theorem 6.6, we extend this result

to prove that “ if D is a weighted rooted tree with degree of root is 1 and w(x) ≥ 2

whenever degD(x) ≥ 2 for all x ∈ V (D), then I(D)(s) = I(D)s for all s ≥ 2”.
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2. Preliminaries

In this section, we provide some definitions and results for the weighted oriented graphs.

By the result of Ha, Nguyen, Trung, and Trung in [8], we may assume that the underlying

graph G of the weighted oriented graph D is connected.

Definition 2.1. A vertex cover C of D is a subset of V (D) such that if (x, y) ∈ E(D),
then x ∈ C or y ∈ C. A vertex cover C of D is minimal if each proper subset of C is not

a vertex cover of D. We set (C) to be the ideal generated by the vertices of C.

Definition 2.2. Let x be a vertex of a weighted oriented graphD, then the sets N+D(x) ={y ∣ (x, y) ∈ E(D)} and N−D(x) = {y ∣ (y,x) ∈ E(D)} are called the out-neighbourhood

and the in-neighbourhood of x, respectively. Moreover, the neighbourhood of x is the set

ND(x) = N+D(x)∪N−D(x) and denote ND[x] = ND(x)∪{x}. Define degD(x) = ∣ND(x)∣ for
x ∈ V (D) and degD(x) is known as the degree of the vertex x in D. A vertex x ∈ V (D)
is called a source vertex if ND(x) = N+D(x). A vertex x ∈ V (D) is called a sink vertex

if ND(x) = N−D(x). We assume that the weights of source vertices are trivial. We set

V +(D) as the set of vertices of D with non-trivial weights.

Definition 2.3. For T ⊂ V (D), we define the induced digraph DT = (V (DT ),E(DT ),w)
of D on T to be the weighted oriented graph such that V (DT ) = T and for any u, v ∈

V (DT ), (u, v) ∈ E(DT ) if and only if (u, v) ∈ E(D). Here DT = (V (DT ),E(DT ),wT ) is
a weighted oriented graph with the same orientation as in D and for any u ∈ V (DT ), if
u is not a source in DT , then its weight equals to the weight of u in D, otherwise, its

weight in DT is 1. For a subset W ⊂ V (D), we define D ∖W to be the induced digraph

of D on V (D) ∖W .

Definition 2.4. [12, Definition 4] Let C be a vertex cover of a weighted oriented graph

D. We define the following three sets that form a partition of C

LD
1 (C) = {x ∈ C ∣ N+D(x) ∩Cc ≠ φ},

LD
2 (C) = {x ∈ C ∣ x ∉ LD

1 (C) and N−D(x) ∩Cc ≠ φ} and
LD
3 (C) = C ∖ (LD

1 (C) ∪LD
2 (C)),

where Cc is the complement of C, i.e., Cc = V (D) ∖C.
Lemma 2.5. [12, Proposition 5] If C is a vertex cover of D, then LD

3
(C) = {x ∈

C ∣ ND(x) ⊂ C}.
Definition 2.6. [12, Definition 7] A vertex cover C of D is strong if for each x ∈ LD

3 (C)
there is (y,x) ∈ E(D) such that y ∈ LD

2 (C) ∪LD
3 (C) with y ∈ V +(D) (i.e., w(y) ≠ 1).
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Remark 2.7. [12, Remark 8, Proposition 5] A vertex cover C of D is strong if and only

if for each x ∈ LD
3 (C), we have N−D(x) ∩ V +(D) ∩ [C ∖LD

1 (C)] ≠ φ.
Definition 2.8. A strong vertex cover C of D is said to be a maximal strong vertex

cover of D if it is not contained in any other strong vertex cover of D.

Definition 2.9. [12, Definition 19] Let C be a vertex cover of D. The irreducible ideal

associated to C is the ideal IC ∶= (LD
1 (C) ∪ {xw(xj)

j ∣xj ∈ LD
2 (C) ∪LD

3 (C)}).
Lemma 2.10. [12, Lemma 20] Let D be a weighted oriented graph. Then I(D) ⊆ IC ,

for each vertex cover C of D.

The next lemma gives us the irreducible decomposition of the edge ideal of a weighted

oriented graph D in terms of irreducible ideals associated with the strong vertex covers

of D.

Lemma 2.11. [12, Theorem 25, Remark 26] Let D be a weighted oriented graph and

C1, . . . ,Cs are the strong vertex covers of D, then the irredundant irreducible decompo-

sition of I(D) is
I(D) = IC1

∩⋯∩ ICs

where each ICi
= (LD

1 (Ci) ∪ {xw(xj)
j ∣ xj ∈ LD

2 (Ci) ∪LD
3 (Ci)}), rad(ICi

) = Pi = (Ci).
Corollary 2.12. [12, Remark 26] Let D be a weighted oriented graph. Then P is an

associated prime of I(D) if and only if P = (C) for some strong vertex cover C of D.

Let I ⊂ R and I = Q1∩⋯∩Qm be a primary decomposition of ideal I. For P ∈ Ass(R/I),
we denote Q⊆P to be the intersection of all Qi with

√
Qi ⊆ P. If C is a strong vertex cover

of a weighted oriented graph D, then (C) ∈ Ass(R/I(D)). We denote I⊆C as I⊆(C). In

the following lemma, we express the [4, Theorem 3.7] for edge ideals of weighted oriented

graphs.

Lemma 2.13. [4, Theorem 3.7] Let I be the edge ideal of a weighted oriented graph D

and C1, . . . ,Cr be the maximal strong vertex covers of D. Then

I(s) = (I⊆C1
)s ∩⋯∩ (I⊆Cr)s.

The following three lemmas are useful to get the necessary and sufficient condition for

the equality of ordinary and symbolic powers of edge ideals of weighted oriented paths.

Definition 2.14. A path is said to be naturally oriented, if all of its edges are oriented

in one direction.
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Lemma 2.15. [10, Lemma 3.8] Let D be a weighted oriented graph such that at most one

edge is oriented into each vertex. Let D′ be an induced weighted naturally oriented path

of length 3 of D with V (D′) = {xi−1, xi, xi+1, xi+2}, E(D′) = {(xj , xj+1) ∣ i−1 ≤ j ≤ i+1},
w(xi) ≥ 2 and w(xi+1) = 1. Then I(D)(3) ≠ I(D)3.
Theorem 2.16. [1, Theorem 3.6] Let D be a weighted naturally oriented path with

V (D) = {x1, x2, x3, . . . , xn} and E(D) = {(xi, xi+1) ∣ 1 ≤ i ≤ n−1}. Then I(D)(s) = I(D)s
for all s ≥ 2 if and only if it satisfies the condition “if w(xj) ≥ 2 for some 1 < j < n then

w(xi) ≥ 2 for some j ≤ i ≤ n − 1”.

Lemma 2.17. [10, Corollary 4.6] Let D be a weighted oriented graph. Let D′ be the

weighted oriented graph obtained from D after replacing the non-trivial weights of sink

vertices by trivial weights. Then I(D)(s) = I(D)s if and only if I(D′)(s) = I(D′)s for

each s ≥ 1.

Notation 2.18. Let I ⊂ k[x1, . . . , xn] be a monomial ideal. We set G(I) be the set of

minimal generators of the ideal I. If J is a set of some elements of I, then ⟨J⟩ denoted
as the ideal generated by the elements of J .

Notation 2.19. Let g ∈ k[x1, . . . , xn] be a monomial. We define support of g = {xi ∶ xi ∣
g} and we denote it by supp(g).

3. Symbolic powers of weighted oriented graphs

In this section, we give one method to find all the minimal generators of I⊆C , where C

is any maximal strong vertex cover of a weighted oriented graph D.

Let C be a vertex cover ofD. We call that a vertex x ∈ LD
3 (C) satisfies the SVC condition

on C if and only if N−D(x)∩V +(D)∩ [LD
2
(C)∪LD

3
(C)] ≠ φ. By Remark 2.7, C is strong

if and only if each x ∈ LD
3 (C) satisfies the SVC condition on C.

Next we give some lemmas, which are useful to prove our main results.

Lemma 3.1. Let D be a weighted oriented graph. Let C1 and C2 be two vertex covers of

D such that C1 ⊂ C2. If x ∈ LD
3 (C1) satisfies the SVC condition on C1, then x ∈ LD

3 (C2)
and it satisfies the SVC condition on C2.

Proof. Since x ∈ LD
3
(C1), by Lemma 2.5, we have x ∈ LD

3
(C2). Given that x ∈ LD

3
(C1)

satisfies the SVC condition on C1. That means there exists y ∈ N−D(x) ∩ V +(D) ∩
[LD

2
(C1) ∪ LD

3
(C1)]. Here y ∉ LD

1
(C1) implies N+D(y) ∩Cc

1
= φ. Since C1 ⊂ C2, we have

N+D(y) ∩ Cc
2 = φ and so y ∉ LD

1 (C2). Then y ∈ N−D(x) ∩ V +(D) ∩ [LD
2 (C2) ∪ LD

3 (C2)].
Hence x satisfies the SVC condition on C2. �
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Lemma 3.2. Let D be a weighted oriented graph. Let C be a vertex cover of D. Then

there exists a strong vertex cover C ′ ⊆ C of D such that there is no strong vertex cover

C ′′ ⊆ C of D with C ′ ⊊ C ′′.

Proof. Let C be a vertex cover of D. Let J ⊆ LD
3 (C) be the set of vertices which does not

satisfy the SVC condition on C. If J = φ, then we take C ′ = C. Now we assume J ≠ φ. Let

J = {xl1 , . . . , xlr}. Choose one element xj1 ∈ J∩L
D
3 (C) and set C1 = C∖{xj1}. By Remark

2.5, ND[xj1] ⊆ C and so C1 is a vertex cover of D. Now, we suppose that there are vertex

covers C0, . . . ,Ck such that Ci = Ci−1∖{xji} and xji ∈ J ∩L
D
3 (Ci−1) for i = 1, . . . , k, where

C0 = C and we give the following recursively process: If J ∩LD
3
(Ci−1) = φ, then we take

C ′ = Ci−1. Since ∣V (D)∣ is finite, the process is finite. Hence there exists m ≤ r such that

J ∩LD
3
(Cm) = φ. Then we take C ′ = Cm = C ∖ {xj1 , . . . , xjm}, where {xj1 , . . . , xjm} ⊆ J .

Now we claim that C ′ is strong. Let xp ∈ L
D
3
(C ′). By Lemma 2.5, xp ∈ L

D
3
(C) because

C ′ ⊆ C. Since J ∩LD
3 (C ′) = φ, we have xp ∉ J . Then xp satisfies the SVC condition on

C. Thus there is some yp ∈N
−
D(xp)∩V +(D)∩ [LD

2
(C)∪LD

3
(C)]. Note that yp ∉ L

D
1
(C).

Suppose yp ∈ L
D
1 (C ′). That means xji ∈N

+
D(yp)∩C ′c for some i ∈ [m]. Now yp ∈ N

−
D(xji)∩

V +(D)∩[LD
2
(C)∪LD

3
(C)] and so xji ∈ L

D
3
(C) satisfies the SVC condition on C, which is

a contradiction. Therefore yp ∉ L
D
1 (C ′) and yp ∈ N

−
D(xp) ∩ V +(D) ∩ [LD

2 (C ′) ∪LD
3 (C ′)],

i.e., xp ∈ L
D
3
(C ′) satisfies the SVC condition on C ′. Hence C ′ is strong.

Suppose there exists a strong vertex cover C ′′ ⊆ C such that C ′ ⊊ C ′′. This implies

xji ∈ C
′′ for some i ∈ [m]. Since xji ∉ C

′, we have ND(xji) ⊂ C ′. By Lemma 2.5,

xji ∈ L
D
3
(C ′′) and it satisfies the SVC condition on C ′′ because C ′′ is strong. By Lemma

3.1, xji ∈ L
D
3 (C) and it satisfies the SVC condition on C, which is a contradiction. Hence

the proof follows. �

Lemma 3.3. Let D be a weighted oriented graph. Let C be a vertex cover of D . Then

there exists a strong vertex cover C ′ ⊆ C of D, where x ∉ LD
1 (C) with w(x) ≠ 1 implies

x ∉ LD
1
(C ′).

Proof. By Lemma 3.2, there exists a strong vertex cover C ′ ⊂ C of D whose each element

of C ∖ C ′ does not satisfy the SVC condition on C. We may assume that C ′ = C ∖

{x1, . . . , xm} of D. Let x ∉ LD
1 (C) with w(x) ≠ 1. Suppose x ∈ LD

1 (C ′). That means

xj ∈ N
+
D(x) ∩ C ′c for some j ∈ [m]. Then x ∈ N−D(xj) ∩ V +(D) ∩ [LD

2
(C) ∪ LD

3
(C)]

and so xj ∈ L
D
3 (C) satisfies the SVC condition on C, which is a contradiction. Hence

x ∉ LD
1
(C ′). �

Corollary 3.4. Let D be a weighted oriented graph. Let C be a vertex cover of D with

xi ∉ L
D
3 (C). Then there exists a strong vertex cover C ′ ⊆ C of D such that xi ∈ C

′.
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Proof. By Lemma 3.2, there exists a strong vertex cover C ′ ⊆ C of D. By Lemma 2.5,

ND(xi) ⊈ C and so ND(xi) ⊈ C ′. Since C ′ is a vertex cover of D, we have xi ∈ C
′. �

We are now ready for the main result of this section which describes the minimal gener-

ators of I⊆C for a maximal strong vertex cover C.

Theorem 3.5. Let D be a weighted oriented graph on the vertex set {x1, . . . , xn}. Let

I = I(D) and wi = w(xi) for all xi ∈ V (D). Let C be a maximal strong vertex cover

of D. Then I⊆C = (LD
1 (C)) + (xwi

i ∣ xi ∈ LD
2 (C)) + (xixwj

j ∣ (xi, xj) ∈ E(D), xi ∈

LD
2 (C) ∪LD

3 (C) and xj ∈ L
D
3 (C)).

Proof. Suppose xi ∈ L
D
1 (C). Then for any strong vertex cover C ′ ⊆ C, N+D(xi) ∩C ′c ≠ φ

and so xi ∈ L
D
1
(C ′). Thus LD

1
(C) ⊆ LD

1
(C ′) and hence (LD

1
(C)) ⊆ I⊆C . Note that each

element of LD
1 (C) is a minimal generator of I⊆C .

Suppose xi ∈ L
D
2
(C). Then for any strong vertex cover C ′ ⊆ C, N−D(xi) ∩C ′c ≠ φ and so

xi ∈ L
D
1 (C ′)∪LD

2 (C ′). Thus LD
2 (C) ⊆ LD

1 (C ′)∪LD
2 (C ′) and hence (xwi

i ∣ xi ∈ LD
2 (C)) ⊆

I⊆C . Notice that that each element of the set {xwi

i ∣ xi ∈ LD
2
(C)} is a minimal generator

of I⊆C .

Suppose (xi, xj) ∈ E(D) where xj ∈ L
D
3 (C). By Lemma 2.5, ND[xj] ⊆ C and so C1 =

C ∖ {xj} is a vertex cover of D. By Lemma 2.5, xi ∉ L
D
3
(C1) and hence by Corollary

3.4, there exists a strong vertex cover C ′ ⊆ C1 such that xi ∈ C
′. Here xj ∈N

+
D(xi)∩C ′c.

Thus xi ∈ L
D
1
(C ′) and so xi ∈ G(IC′). Note that xi ∉ IC , x

wj

j ∈ G(IC) and x
wj

j ∉ IC′ .

Then xix
wj

j ∈ G(IC∩IC′). By Lemma 2.10, for any strong vertex cover C ′′ ⊆ C, xix
wj

j ∈ IC′′

and hence xix
wj

j ∈ G(I⊆C). If wj ≠ 1, we have xixj ∉ I⊆C and so xix
wj

j is the only minimal

generator of I⊆C , which involves both xi and xj . If wj = 1, xixj is the only minimal

generator of I⊆C , which involves both xi and xj .

Suppose xi ∈ L
D
3
(C). Suppose (xi, xj) ∈ E(D) where xj ∈ L

D
3
(C). By the previous

argument, C1 = C ∖ {xj} and C2 = C ∖ {xi} are vertex covers of D. By Lemma 2.5,

xi ∉ L
D
3
(C1). Thus by Corollary 3.4, there exists a strong vertex cover C ′ ⊆ C1 such that

xi ∈ C
′. Here xj ∈ N

+
D(xi) ∩C ′c and so xi ∈ L

D
1 (C ′). Thus xi ∈ G(IC′). By Lemma 2.5,

ND(xj) ⊂ C. Since (xi, xj) ∈ E(D), we have N+D(xj) ∩C2
c = φ and xi ∈ N

−
D(xj) ∩C2

c.

Then xj ∈ L
D
2 (C2). Here xj ∉ L

D
1 (C2) ∪LD

3 (C2). By Corollary 3.4, there exists a strong

vertex cover C ′′ ⊆ C2 such that xj ∈ C
′′. If wj = 1, then xj ∈ G(IC′′). If wj ≠ 1, by Lemma

3.3, we get xj ∉ L
D
1 (C ′′) and so x

wj

j ∈ G(IC′′). In both cases x
wj

j ∈ G(IC′′). Note that

xi ∈ G(IC′), xi ∉ IC′′ and x
wj

j ∉ IC′ . Then xix
wj

j ∈ G(IC′ ∩ IC′′). By Lemma 2.10, for any

strong vertex cover C ′′′ ⊆ C, xix
wj

j ∈ IC′′′ and hence xix
wj

j ∈ G(I⊆C). Note that there is

no other minimal generator of I⊆C , which involves both xi and xj.
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Hence (LD
1 (C))+(xwi

i ∣ xi ∈ LD
2 (C))+(xixwj

j ∣ (xi, xj) ∈ E(D), xi ∈ LD
2 (C)∪LD

3 (C) and xj ∈

LD
3 (C)) ⊆ I⊆C .

To complete the proof, it is enough to prove the following two statements:

(1) There is no minimal generator of I⊆C , which involves more than two vertices.

(2) There is no minimal generator of I⊆C , which involves two non-adjacent vertices.

(1) Suppose there exists a minimal generator f of I⊆C , which involves more than two

vertices. Since f is minimal, we can assume that no element of supp(f) ∈ LD
1 (C) and no

element of supp(f) with trivial weight ∈ LD
2
(C). Let f = xa1

1
⋯xarr yb1

1
⋯ybss zc1

1
⋯zctt where

{x1, . . . , xr} ⊆ LD
2 (C), {y1, . . . , ys, z1, . . . , zt} ⊆ LD

3 (C), ai = 1 or wxi
for 1 ≤ i ≤ r, bi = 1 or

wyi for 1 ≤ i ≤ s, ci = 1 or wzi for 1 ≤ i ≤ t and r+s+t ≥ 3. Without loss of generality we can

assume that bi = 1 with wyi ≠ 1 for 1 ≤ i ≤ s and ci = wzi for 1 ≤ i ≤ t. By our assumption

wxi
≠ 1 and so x

wxi

i ∈ G(I⊆C) for 1 ≤ i ≤ r. Since f is minimal, ai = 1 for 1 ≤ i ≤ r. Hence

f = x1⋯xry1⋯ysz
wz1

1
⋯z

wzt
t . If t = 0, f ∉ IC , which is a contradiction. Now we assume

t ≠ 0. If two zi’s (say zk and zl) are adjacent, zkz
wzl

l
or zlz

wzk

k
∈ G(I⊆C) and so f is not

minimal. Therefore no two zi’s are adjacent. By Lemma 2.5, ND[zi] ⊂ C for 1 ≤ i ≤ t.

Thus C1 = C ∖ {z1, . . . , zt} is a vertex cover of D. If xi ∈ L
D
1
(C1) for some i ∈ [r], that

means there exists some zj ∈ N
+
D(xi) ∩ C1

c. Since (xi, zj) ∈ E(D), xizwj

j ∈ G(I⊆C) and
it contradicts the fact that, f is minimal. By the similar argument, if yi ∈ L

D
1
(C1) for

some i ∈ [s], we get a contradiction. Therefore each of xi and yi ∉ L
D
1 (C1). By Lemma

3.3, there exists a strong vertex cover C ′ ⊆ C1, where each of xi and yi ∉ L
D
1 (C ′). So

IC′ = (xwx1

1
, . . . , x

wxr
r , y

wy1

1
, . . . , y

wys
s , . . .). Note that f ∉ IC′ , which is a contradiction.

Hence there does not exist any minimal generator of I⊆C , which involves more than two

vertices.

(2) By the similar argument as in (1), we can show that there is no minimal generator

of I⊆C , which involves two non-adjacent vertices of D. �

Next we see some applications of the above theorem.

Definition 3.6. A rooted tree is an oriented tree in which all edges are oriented away

from the root.

Example 3.7. Consider the weighted rooted tree D with degree of root is 1, as in

Figure 1. Let I = I(D). Note that C = V (D) ∖ {x1} is a vertex cover of D. Here

LD
1 (C) = {x0}, LD

2 (C) = {x2, x3} and LD
3 (C) = V (D)∖{x0, x1, x2, x3}. By the definition

of D, we can see that each element of LD
3
(C) satisfies the SVC condition on C and so C

is strong in D. Notice that V (D) is a vertex cover of D and LD
3 (V (D)) = V (D). Since

N−D(x0) = φ, x0 does not satisfy the SVC condition on V (D). Therefore V (D) is not

strong in D. Hence C is maximal. Let D1 = D ∖ {x0, x1}. Then by Theorem 3.5, we

have I⊆C = (x0, xw2

2
, xw3

3
) + I(D1).
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x0 x1

x2

x3

w = 1 w ≠ 1

w ≠ 1

w ≠ 1

w ≠ 1

w ≠ 1

w ≠ 1

w ≠ 1

D

Figure 1. A weighted rooted tree D

Remark 3.8. In a weighted oriented graph, if we know all the maximal strong vertex

covers, then by the Theorem 3.5 and Lemma 2.13, we can find the symbolic powers of

its edge ideal.

4. Symbolic powers of induced weighted oriented graphs

In this section, we see that, by studying the symbolic powers of edge ideal of an induced

digraph of a weighted oriented graph D, we can get information about the symbolic

powers of edge ideal of D.

By [11, Corollary 2.7], if H be an induced subgraph of a simple graph G, then I(H)(s) ≠
I(H)s for some s ≥ 2, implies I(G)(s) ≠ I(G)s. In general, this property may not hold

for weighted oriented graphs. But under certain condition on the strong vertex covers,

we extend this result for weighted oriented graphs in Theorem 4.3.

Remark 4.1. Let D′ is an induced digraph of D. If one source vertex of D′ is not

source in D, then I(D′)(s) ≠ I(D′)s for some s ≥ 2, may not imply I(D)(s) ≠ I(D)s.
For example consider the weighted oriented paths D and D′ as in Figure 2. Then

I(D) = (x1x32, x2x3, x3x4, x34x5) and I(D′) = (x1x32, x2x3, x3x4). Note that D′ is an

induced path of D. Here w(x4) = 1 in D′ but w(x4) = 3 in D. Using Macaulay 2, we see

that I(D′)(2) ≠ I(D′)2, but I(D)(2) = I(D)2.
x1 x2 x3 x4 x5

1 3 1 3 1

x1 x2 x3 x4

1 3 1 1

D D′

Figure 2. A weighted oriented path D containing an induced weighted

oriented path D′.
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If all source vertices of D′ are source in D, we may have I(D′)(s) ≠ I(D′)s, but
I(D)(s) = I(D)s for some s > 1. For example consider the weighted oriented paths

D and D′ as in Figure 3. Then I(D) = (x1x22, x2x3, x3x24, x5x24, x6x25) and I(D′) =
(x1x22, x2x3, x3x24). Note that D′ is an induced path of D. Using Macaulay 2, we see

that I(D′)(2) ≠ I(D′)2 and I(D)(2) = I(D)2.
x1 x2 x3 x4 x5 x6

1 2 1 2 2 1

x1 x2 x3 x4

1 2 1 2

D D′

Figure 3. A weighted naturally oriented path D containing an induced

weighted oriented path D′.

If D′ is an induced digraph of D and C is a maximal strong vertex cover of D, we see

that C ∩ V (D′) may not contain any maximal strong vertex cover of D′ in the next

example.

Example 4.2. Consider the weighted oriented paths D and D′ as in Figure 4. Note

that D′ is an induced path of D. Using Macaulay 2, the strong vertex covers of D are

{x1, x3, x5}, {x2, x3, x5}, {x2, x4, x5}, {x2, x4, x6}, {x1, x3, x4, x6}, {x2, x3, x4, x6} and the

strong vertex covers of D′ are {x2}, {x1, x3}, {x2, x3}. Note that C = {x2, x4, x5} is a

maximal strong vertex cover of D, but C ∩ V (D′) = {x2} does not contain any maximal

strong vertex cover of D′.

x1 x2 x3 x4 x5 x6

1 7 1 1 1 1

x1 x2 x3

1 7 1

D D′

Figure 4. A weighted naturally oriented path D containing an induced

weighted oriented path D′.

Theorem 4.3. Let D be a weighted oriented graph. Let D′ be an induced digraph of D

and it satisfies the condition “if C is a maximal strong vertex cover of D, then every

strong vertex cover of D′ contained in C, is subset of at most one maximal strong vertex

cover of D′ contained in C”. If I(D′)(s) ≠ I(D′)s for some s ≥ 2, then I(D)(s) ≠ I(D)s.
Proof. Let I = I(D) and Ĩ = I(D′). Since I(D′)s is the restriction of I(D)s to D′, it

suffices to show that Ĩ(s) ⊆ I(s). Equivalently, by Lemma 2.13, it suffices to show that
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“if f is a minimal generator of Ĩ(s), then f ∈ Is⊆C for each maximal strong vertex cover

C of D.”

Let C be a maximal strong vertex cover of D. If C contains two maximal strong vertex

covers of D′, then those two maximal strong vertex covers can not be subset of one

maximal strong vertex cover of D′ contained in C, by our assumption. Therefore the

proof follows from the following two cases.

Case-I: C contains exactly one maximal strong vertex cover of D′.

Let C̃ be the maximal strong vertex cover of D′ contained in C. First we claim that

Ĩ⊆C̃ ⊆ I⊆C .

Case (1) Let xi ∈ L
D′

1 (C̃).
Case (1.a) Assume that wi = 1 in D′.

Case (1.a.i) Assume wi = 1 in D. We claim xi ∈ L
D
1 (C)∪LD

2 (C). Suppose xi ∈ LD
3 (C).

Since xi ∈ L
D′

1 (C̃), N+D′(xi) ∩ C̃c ≠ φ and so ND′(xi) ∩ C̃c ≠ φ. Let ND′(xi) ∩ C̃c =

{xj1 , xj2 , . . . , xjq}. Note that ND′(xi) ⊆ ND(xi) and by Lemma 2.5, ND(xi) ⊂ C. Then

{xj1 , xj2 , . . . , xjq} ⊂ C. Let C1 = C̃ ∪ {xj1 , xj2 , . . . , xjq}. Since ND′[xi] ⊂ C1, C1 ∖ {xi}
is a vertex cover of D′. Observe that xj1 ∉ L

D′

3
(C1 ∖ {xi}) and hence by Corollary 3.4,

there exists a strong vertex cover ˜̃
C ⊆ [C1 ∖ {xi}] of D′ such that xj1 ∈

˜̃
C. Here ˜̃

C ⊂ C,

xi ∈ C̃, xi ∉
˜̃
C, xj1 ∈

˜̃
C and xj1 ∉ C̃. Since C̃ is maximal, C̃ and ˜̃

C can not be subsets

of at most one maximal strong vertex cover of D′ contained in C. So it contradicts our

assumption. Thus the claim follows.

Case (1.a.ii) Assume wi ≠ 1 in D. That means N−D(xi) ≠ φ. Since wi = 1 in D′,

N−D′(xi) = φ. We claim xi ∈ L
D
1 (C). Suppose xi ∈ L

D
2 (C) ∪ LD

3 (C). Here N+D′(xi) ∩
C̃c ≠ φ. Let N+D′(xi) ∩ C̃c = {xj1 , xj2 , . . . , xjr} and we know N−D′(xi) = φ. Note that

N+D′(xi) ⊆ N+D(xi), and N+D(xi) ⊂ C because xi ∉ L
D
1 (C). Then {xj1 , xj2 , . . . , xjr} ⊂ C.

Let C1 = C̃ ∪{xj1 , xj2 , . . . , xjr}. Since ND′[xi] ⊂ C1, C1 ∖{xi} is a vertex cover of D′. By

the similar argument as in Case (1.a.i), every strong vertex cover of D′ contained in C,

is not subset of at most one maximal strong vertex cover of D′ contained in C, which

contradicts our assumption. Thus the claim follows.

Case (1.b) Assume that wi ≠ 1 in D′. We claim xi ∈ L
D
1
(C). Suppose xi ∈ L

D
2
(C) ∪

LD
3
(C). Here N+D′(xi) ∩ C̃c ≠ φ. Let N+D′(xi) ∩ C̃c = {xj1 , xj2 , . . . , xjr}. Note that

{xj1 , xj2 , . . . , xjr} ⊂ C because xi ∉ LD
1 (C). Let C1 = C̃ ∪ {xj1 , xj2 , . . . , xjr}. Then

xi ∉ L
D′

1
(C1) and by Lemma 2.5, we have LD′

3
(C̃) ∪ {xj1 , xj2 , . . . , xjr} ⊆ LD′

3
(C1). Let

xl ∈ L
D′

3 (C̃). Then xl satisfies SVC condition on C̃ because C̃ is strong. By Lemma

3.1, xl ∈ L
D′

3
(C1) and xl satisfies SVC condition on C1. Since xi ∈ N

−
D′(xjt) ∩ V +(D′) ∩[LD′

2 (C1) ∪ LD′

3 (C1)], xjt satisfies SVC condition on C1 for 1 ≤ t ≤ r. If LD′

3 (C̃) ∪{xj1 , xj2 , . . . , xjr} = LD′

3
(C1), then each element of LD′

3
(C1) satisfies SVC condition on

C1. So C1 is a strong vertex cover ofD′. But it contradicts the fact that C̃ is one maximal
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strong vertex cover of D′. Now we assume that LD′

3 (C̃) ∪ {xj1 , xj2 , . . . , xjr} ⊊ LD′

3 (C1).
Let xk ∈ L

D′

3
(C1) ∖ [LD′

3
(C̃) ∪ {xj1 , xj2 , . . . , xjr}]. That means xk lies in the neighbour-

hood of xjt for some t ∈ [r]. Without loss of generality let xk ∈ ND′(xj1). By Lemma

2.5, C1 ∖ {xk} is a vertex cover of D′. Then xj1 ∉ L
D′

3
(C1 ∖ {xk}) and so by Corollary

3.4, there exists a strong vertex cover ˜̃
C ⊆ [C1 ∖ {xk}] of D′ such that xj1 ∈

˜̃
C. Here

xk ∈ C̃, xk ∉
˜̃
C, xj1 ∈

˜̃
C and xj1 ∉ C̃. Then by the same argument as in Case (1.a.i), it

contradicts our assumption. Thus the claim follows.

Case (2) Let xi ∈ L
D′

2
(C̃).

We claim xi ∈ LD
1 (C) ∪ LD

2 (C). Suppose xi ∈ LD
3 (C). Since xi ∈ LD′

2 (C̃), we have

N+D′(xi) ∩ C̃c = φ and N−D′(xi) ∩ C̃c ≠ φ. Let N−D′(xi) ∩ C̃c = {xj1 , xj2 , . . . , xjr}. Note

that {xj1 , xj2 , . . . , xjr} ⊂ C because xi ∈ L
D
3 (C). Let C1 = C̃ ∪ {xj1 , xj2 , . . . , xjr}. Since

ND′[xi] ⊂ C1, C1∖{xi} is a vertex cover of D′. By the similar argument as in Case (1.a.i),

we get a contradiction. Thus xi ∈ L
D
1 (C) ∪LD

2 (C).
Case (3) Let xi ∈ L

D′

3 (C̃). Then xi ∈ L
D
1 (C) ∪LD

2 (C) ∪LD
3 (C).

Here Ĩ⊆C̃ = (LD′

1 (C̃)) + (xwi

i ∣xi ∈ LD′

2 (C̃)) + (xixwj

j ∣ (xi, xj) ∈ E(D′), xi ∈ LD′

2 (C̃) ∪
LD′

3 (C̃) and xj ∈ L
D′

3 (C̃)) and I⊆C = (LD
1 (C)) + (xwi

i ∣ xi ∈ LD
2 (C)) + (xixwj

j ∣ (xi, xj) ∈
E(D), xi ∈ L

D
2 (C) ∪LD

3 (C) and xj ∈ L
D
3 (C)). Hence Ĩ⊆C̃ ⊆ I⊆C .

If f ∈ G(Ĩ(s)), by Lemma 2.13, we have f ∈ Ĩs
⊆C̃

, and so f ∈ Is⊆C .

Case-II: C contains no maximal strong vertex cover of D′.

Since D′ is an induced digraph of D, C ∩ V (D′) is a vertex cover of D′. By Lemma 3.2,

there exists a strong vertex cover C ′ ⊆ [C ∩ V (D′)] of D′. By our assumption, C ′ is not

a maximal strong vertex cover of D′. Thus there exists a maximal strong vertex cover

C̃ of D′ such that C ′ ⊊ C̃. Again by our assumption, C̃ ⊈ C. We claim Ĩ⊆C̃ ⊆ I⊆C .

Consider one element x ∈ C̃ ∖C. Since x ∉ C, we have x ∉ C ′. This implies ND′(x) ⊂ C ′
and so ND′(x) ⊂ C̃ because C ′ ⊂ C̃. Thus by Lemma 2.5, x ∈ LD′

3 (C̃). Hence if

x ∈ LD′

1
(C̃) ∪LD′

2
(C̃), then x ∈ C.

Case (1) Let xi ∈ L
D′

1 (C̃). Then xi ∈ C.

Case (1.a) Assume that wi = 1 in D′.

Case (1.a.i) Assume wi = 1 in D. We claim xi ∈ LD
1 (C) ∪ LD

2 (C). Suppose xi ∈

LD
3 (C). Since C ′ ⊂ C̃, xi ∈ L

D′

1 (C̃) implies xi ∈ L
D′

1 (C ′). Note that ND′(xi) ∩ C̃c ≠ φ

and ND′(xi) ∩ C̃c ⊆ ND′(xi) ∩ C ′c. Let ND′(xi) ∩ C ′c = {xj1 , xj2 , . . . , xjq}. Without

loss of generality we can assume that xj1 ∈ ND′(xi) ∩ C̃c. Since xi ∈ L
D
3 (C), we have

{xj1 , xj2 , . . . , xjq} ⊂ C. Let C1 = C
′ ∪ {xj1 , xj2 , . . . , xjq}. Since ND′[xi] ⊂ C1, C1 ∖ {xi}

is a vertex cover of D′. Observe that xj1 ∉ L
D′

3 (C1 ∖ {xi}) and hence by Corollary 3.4,

there exists a strong vertex cover ˜̃
C ⊆ [C1 ∖ {xi}] of D′ such that xj1 ∈

˜̃
C. Here C ′ ⊂ C̃,

˜̃
C ⊂ C, xi ∈ C

′, xi ∉
˜̃
C, xj1 ∈

˜̃
C and xj1 ∉ C

′. If C ′ and ˜̃
C are subset of one maximal
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strong vertex cover C ′′ of D′ contained in C, then C ′ ⊊ C ′′ and it is a contradiction by

Lemma 3.2. Thus the claim follows.

Case (1.a.ii) Assume wi ≠ 1 in D. We claim xi ∈ L
D
1
(C). Suppose xi ∈ LD

2
(C)∪LD

3
(C).

Note that xi ∈ L
D′

1
(C ′). Then by the similar argument as in (1.a.i) of Case-II and Case

(1.a.ii) of Case-I, our claim follows.

Case (1.b) Assume that wi ≠ 1 in D′. We claim xi ∈ L
D
1
(C). Suppose xi ∈ L

D
2
(C) ∪

LD
3
(C). Note that xi ∈ L

D′

1
(C ′). Then by the similar argument as in (1.a.i) of Case-II

and Case (1.b) of Case-I, our claim follows.

Case (2) Let xi ∈ L
D′

2
(C̃). Then xi ∈ C.

We claim xi ∈ L
D
1 (C) ∪ LD

2 (C). Suppose xi ∈ L
D
3 (C). Since C ′ ⊂ C̃, xi ∈ L

D′

1 (C ′) ∪
LD′

2
(C ′). If xi ∈ LD′

1
(C ′), by the similar argument as in Case (1.a.i) of Case-II, we get a

contradiction. If xi ∈ L
D′

2 (C ′), by the similar argument as in Case (1.a.i) of Case-II and

Case (2) of Case-I, we get a contradiction. Thus the claim follows.

Case (3) Let xi ∈ L
D′

3 (C̃). Then xi ∈ L
D
1 (C) ∪LD

2 (C) ∪LD
3 (C).

By the similar argument as in Case-I, we have Ĩ⊆C̃ ⊆ I⊆C .

If f ∈ G(Ĩ(s)), by Lemma 2.13, we have f ∈ Ĩs
⊆C̃

, and so f ∈ Is⊆C . �

Remark 4.4. The above theorem may not be true if we remove the given condition.

For example consider the weighted oriented paths D and D′ as in Figure 4. Here

I(D) = (x1x32, x2x3, x3x4, x34x5) and I(D′) = (x1x32, x2x3, x3x4). Using Macaulay 2, the

strong vertex covers of D are {x2, x4}, {x1, x3, x4}, {x1, x3, x5}, {x2, x3, x4}, {x2, x3, x5}
and the strong vertex covers of D′ are {x1, x3}, {x2, x3}, {x2, x4}. Let C = {x2, x3, x4}.
Note that C contains the two maximal strong vertex covers {x2, x3} and {x2, x4} of D′.
Those two maximal strong vertex covers are not subset of one strong vertex cover of D′

contained in C. Using Macaulay 2, we see that I(D′)(2) ≠ I(D′)2 but I(D)(2) = I(D)2.
Next we see some applications of Theorem 4.3 for induced weighted oriented paths.

Theorem 4.5. Let D be a weighted oriented path with V (D) = {x1, x2, . . . , xn, y1, y2,
. . . , ym}. Let D′ be the induced weighted oriented path of D with V (D′) = {x1, x2, . . . , xn}
and N−D(xn−1) ∩ V +(D) = φ. If I(D′)(s) ≠ I(D′)s for some s ≥ 2, then I(D)(s) ≠ I(D)s.
Proof. Let C be a maximal strong vertex cover of D. We claim every strong vertex

cover of D′ contained in C, is subset of at most one maximal strong vertex cover of D′

contained in C. Since N−D(xn−1) ∩ V +(D) = φ, by Remark 2.7, we have xn−1 ∉ L
D
3 (C).

Then by Lemma 2.5, one of xn−2, xn−1 and xn ∉ C. Therefore we consider the following

three cases.

Case (1) Assume that xn ∉ C. We claim C1 = C ∩ V (D′) is a strong vertex cover of

D′. Note that C1 is a vertex cover of D′. Since xn ∉ C1, xn−1 ∈ C1. Let xi ∈ L
D′

3 (C1).
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Then by Lemma 2.5, xi ∈ {x1, x2, . . . , xn−2} and xi ∈ L
D
3 (C). Since C is strong in D,

there exists some xj ∈ N
−
D(xi) ∩ V +(D) ∩ [LD

2 (C) ∪ LD
3 (C)]. Note that orientations of

edges from x1 to xn and weights of vertices from x1 to xn−1 are same in both the paths

D and D′. Here xj ∉ L
D
1 (C) implies N+D(xj) ∩Cc = φ and xj ∈ {x1, x2, . . . , xn−1}. Since

C1 = C ∩ V (D′), we have N+D′(xj) ∩ C1
c = N+D(xj) ∩ Cc = φ. Thus xj ∉ L

D′

1
(C1). So

xj ∈ N
−
D′(xi) ∩ V +(D′) ∩ [LD′

2 (C1) ∪ LD′

3 (C1)]. Hence C1 is a strong vertex cover of D′

and it contains each strong vertex cover of D′ contained in C. Therefore every strong

vertex cover of D′ contained in C, is subset of one strong vertex cover of D′ contained

in C.

Case (2) Assume that xn−1 ∉ C. We claim C1 = C ∩ V (D′) is a strong vertex cover of

D′. Note that C1 is a vertex cover of D′. Here xn−1 ∉ C1. This implies xn−2 and xn ∈ C1.

Let xi ∈ L
D′

3 (C1). By Lemma 2.5, xi ∈ {x1, x2, . . . , xn−3}. Then by the same argument

as in Case (1), our claim follows and every strong vertex cover of D′ contained in C, is

subset of one strong vertex cover of D′ contained in C.

Case (3) Assume that xn−2 ∉ C. If xn ∉ C, then by Case (1), every strong vertex cover

of D′ contained in C, is subset of one strong vertex cover of D′ contained in C. Now we

assume xn ∈ C.

Case (3.a) Suppose N−D′(xn) ∩ V +(D′) ∩ [LD′

2 (C1) ∪ LD′

3 (C1)] ≠ φ. We claim C1 =

C ∩ V (D′) is a strong vertex cover of D′. Note that C1 is a vertex cover of D′. Here

xn−2 ∉ C1. This implies xn−3 and xn−1 ∈ C1. Let xi ∈ L
D′

3 (C1). By Lemma 2.5, xi ∈{x1, x2, . . . , xn−4, xn}. If xi ∈ {x1, x2, . . . , xn−4}, then by the similar argument as in Case

(1), xi satisfies SVC condition on C1. Also xn ∈ L
D′

3 (C1) satisfies SVC condition on

C1, by our assumption. Hence C1 is strong in D′ and every strong vertex cover of D′

contained in C, is subset of one strong vertex cover of D′ contained in C.

Case (3.b) Suppose N−D′(xn) ∩ V +(D′) ∩ [LD′

2
(C1) ∪ LD′

3
(C1)] = φ. Let C ′ is a strong

vertex cover of D′ contained in C. Suppose xn ∈ C
′. Since xn−2 ∉ C

′, we have xn−1 ∈ C
′

and so by Lemma 2.5, xn ∈ L
D′

3
(C ′). Since C ′ is strong, xn satisfies SVC condition on

C ′. By Lemma 3.1, xn ∈ L
D′

3 (C1) and it satisfies SVC condition on C1, i.e., N
−
D′(xn) ∩

V +(D′)∩[LD′

2
(C1)∪LD′

3
(C1)] ≠ φ. But it contradicts our assumption. Therefore xn ∉ C

′.

Hence we can say that xn does not belong to any strong vertex cover of D′ contained in

C. Let C2 = [C ∩V (D′)] ∖ {xn}. We claim that C2 is a strong vertex cover of D′. Since

[C ∩V (D′)] is a vertex cover of D′ and xn−2 ∉ [C ∩V (D′)], we have xn−1 ∈ [C ∩V (D′)]
and so C2 is a vertex cover of D′. Here xn−2 ∉ C2 implies xn−3 and xn−1 ∈ C2. Let

xi ∈ L
D′

3 (C2). By Lemma 2.5, xi ∈ {x1, x2, . . . , xn−4}. By the similar argument as in Case

(1), we can show C2 is strong and every strong vertex cover of D′ contained in C, is

subset of one strong vertex cover of D′ contained in C.

In all the cases, our claim follows and the proof follows from Theorem 4.3. �
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Corollary 4.6. Let D be a weighted oriented path with V (D) = {x1, x2, . . . , xn, y1, y2, . . . ,
ym}. Let D′ be the induced weighted oriented path of D with V (D′) = {y1, y2, . . . , ym}
and N−D(y2) ∩ V +(D) = φ. If I(D′)(s) ≠ I(D′)s for some s ≥ 2, then I(D)(s) ≠ I(D)s.

Proof. It follows by the similar argument as in Theorem 4.5. �

Corollary 4.7. Let D be a weighted oriented path with V (D) = {x1, x2, . . . , xn, y1, y2, . . . ,
ym, z1, z2, . . . , zl}. Let D′ be the induced weighted oriented path of D with V (D′) =
{y1, y2, . . . , ym}, where N−D(y2) ∩ V +(D) = φ and N−D(ym−1) ∩ V +(D) = φ. If I(D′)(s) ≠
I(D′)s for some s ≥ 2, then I(D)(s) ≠ I(D)s.

Proof. Let D1 be the induced weighted oriented path of D with V (D1) = {x1, x2, . . . , xn,
y1, y2, . . . , ym}. Here D′ is an induced weighted oriented path of D1. Assume that

I(D′)(s) ≠ I(D′)s for some s ≥ 2. Since N−D(y2)∩V +(D) = φ, by Corollary 4.6, I(D1)(s) ≠
I(D1)s. Note that N−D(ym−1) ∩ V +(D) = φ. Then by Theorem 4.5, I(D1)(s) ≠ I(D1)s
implies I(D)(s) ≠ I(D)s. �

Remark 4.8. When we try to find the necessary and sufficient condition for the equality

of ordinary and symbolic powers of edge ideals of weighted oriented paths, using the

above results, we can show the inequality of ordinary and symbolic powers of edge ideals

of a larger class of weighted oriented paths by studying the inequality of ordinary and

symbolic powers of edge ideals of a smaller class of weighted oriented paths.

For example consider the weighted oriented path D′ as in Figure 5. Then I(D′) =
(x1xw2

2
, x2x3, x3x4, x4x5). By Lemma 2.15, I(D′)(3) ≠ I(D′)3. Now consider the follow-

ing three class of paths:

Class (1): Set of all weighted oriented paths on the vertex set {x1, x2, . . . , x5, y1, y2, . . . , ym}
containing the induced weighted oriented path D′ (as in Figure 5),

Class (2): Set of all weighted oriented paths on the vertex set {zl, . . . , z2, z1, x1, x2, . . . , x5}
containing the induced weighted oriented path D′ (as in Figure 5),

Class (3): Set of all weighted oriented paths on the vertex set {zl, . . . , z2, z1, x1, x2, . . . , x5,
y1, y2, . . . , ym} containing the induced weighted oriented path D′ (as in Figure 5),

and in Figure 5, where the directions are not mentioned, it can be any direction.

Let D1,D2 and D3 be any weighted oriented paths of class (1), (2) and (3), respectively.

By Theorem 4.5, Corollary 4.6 and Corollary 4.7, I(D′)(3) ≠ I(D′)3 implies I(D1)(3) ≠
I(D1)3, I(D2)(3) ≠ I(D2)3 and I(D3)(3) ≠ I(D3)3, respectively.



16 M. MANDAL AND D.K. PRADHAN

x1 x2 x3 x4 x5

1 w2 ≠ 1 1 1 1

D′

x1 x2 x3 x4 x5 y1 y2 ym−1 ym

1 w2 ≠ 1 1 1 1 w ≥ 1 w ≥ 1 w ≥ 1 w ≥ 1(1)
zl zl−1 z2 z1 x1 x2 x3 x4 x5

w ≥ 1 w ≥ 1 w ≥ 1 w ≥ 1 1 w2 ≠ 1 1 1 1(2)
zl zl−1 z2 z1 x1 x2 x3 x4 x5 y1 y2 ym−1 ym

w ≥ 1 w ≥ 1 w ≥ 1 w ≥ 1 1 w2 ≠ 1 1 1 1 w ≥ 1 w ≥ 1 w ≥ 1 w ≥ 1(3)
Figure 5. Three classes of weighted oriented paths with common in-

duced weighted oriented path D′.

5. Symbolic powers of union of two naturally oriented paths with a

common sink vertex

In this section, we give the necessary and sufficient condition for the equality of ordinary

and symbolic powers of edge ideal of union of two naturally oriented paths with a common

sink vertex.

Notation 5.1. Let D be a weighted oriented path with V (D) = {y1, y2, . . . , ym, z1, xn, . . . ,

x2, x1}, E(D) = {(yi, yi+1) ∣ 1 ≤ i ≤m−1}∪{(ym, z1), (xn, z1)}∪{(xi, xi+1) ∣ 1 ≤ i ≤ n−1}
and w(z1) = 1 (see Figure 6).

y1 y2 yl yl+1 ym−1 ym z1 xn xn−1 xk+1 xk x2 x1

Figure 6. An oriented path which is union of two naturally oriented

paths joined at a sink vertex.

The following lemma is useful for the proof of Theorem 5.3.

Lemma 5.2. Let D be the weighted oriented path same as defined in Notation 5.1.

Assume that there exist two indices 1 < l < m and 1 < k < n such that the set of vertices

with non-trivial weights are precisely {yl, . . . , ym} ∪ {xk, . . . , xn}. Let D1 be the induced

path of D with V (D1) = {x1, x2, . . . , xn} and E(D1) = {(xi, xi+1) ∣ 1 ≤ i ≤ n − 1}. If C

is a maximal strong vertex cover of D, then prove that C ∩ V (D1) is a maximal strong

vertex cover of D1.
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Proof. Let C be a maximal strong vertex cover of D.

Suppose z1 ∉ C. We claim C ′ = C ∪ {z1} is strong. Since z1 ∉ C, ND(z1) ⊂ C. So by

Lemma 2.5, z1 ∈ L
D
3
(C ′). Here ym ∈ N−D(z1)∩V +(D)∩[LD

2
(C ′)∪LD

3
(C ′)]. So z1 satisfies

the SVC condition on C ′. If ym ∈ L
D
3 (C ′), then ym−1 ∈ N

−
D(ym) ∩ V +(D) ∩ [LD

2 (C ′) ∪
LD
3
(C ′)]. So ym satisfies the SVC condition on C ′. If xn ∈ LD

3
(C ′), by the similar

argument, xn satisfies the SVC condition on C ′. If v ∈ LD
3 (C ′), where v ∉ {ym, z1, xn},

then by Lemma 2.5, v ∈ LD
3
(C). Since C is strong, v satisfies the SVC condition on C

and so by Lemma 3.1, v satisfies the SVC condition on C ′. Hence C ′ is strong. It’s a

contradiction because C is maximal. Therefore z1 ∈ C.

Let C1 = C ∩ V (D1). Since z1 ∈ C, by Lemma 2.5, v ∈ LD
3 (C1) implies v ∈ LD

3 (C). By

the similar argument as in Case (1) of Theorem 4.5, we can show that C1 is strong in

D1.

Suppose C1 is not maximal in D1. That means there exists a strong vertex cover C2

of D1 such that C2 = C1 ⊔ {xi1 , . . . , xim}, where {xi1 , . . . , xim} ⊂ V (D1) for some m > 1.

Now we claim C ′′ = C ⊔ {xi1 , . . . , xim} is strong. By the similar argument as in Case (1)

of Theorem 4.5, we can show that C ′′ is strong in D. It’s a contradiction because C is

maximal. Hence C1 is a maximal strong vertex cover of D1. �

Theorem 5.3. Let D be the weighted oriented path same as defined in Notation 5.1.

Assume that there exist two indices 1 < l < m and 1 < k < n such that the set of vertices

with non-trivial weights are precisely {yl, . . . , ym} ∪ {xk, . . . , xn}. Then I(D)(s) = I(D)s
for all s ≥ 2.

Proof. Let D1 and D2 be the induced paths of D with V (D1) = {x1, x2, . . . , xn}, E(D1) ={(xi, xi+1) ∣ 1 ≤ i ≤ n−1}, V (D2) = {y1, y2, . . . , ym} and E(D2) = {(yi, yi+1) ∣ 1 ≤ i ≤m−1}.
By [1, Theorem 3.6], let {Cα},{Cβ} and {Cγ} be the collections of all maximal strong

vertex covers of D1, where

Cα ={C ′α∣C ′α is a minimal vertex cover of the induced path D(x1, . . . , xk−2)}
⋃{xk−1, xk+1, xk+2, xk+3, . . . , xn},

Cβ ={C ′β ∣C ′β is a minimal vertex cover of the induced path D(x1, . . . , xk−3)}
⋃{xk−2, xk, xk+1, xk+2, . . . , xn},

and Cγ ={C ′γ ∣C ′γ is a minimal vertex cover of the induced path D(x1, . . . , xk−4)}
⋃{xk−3, xk−1, xk, xk+2, xk+3, . . . , xn}.

By [1, Theorem 3.6], let {Cδ},{Cζ} and {Cν} be the collections of all maximal strong

vertex covers of D2, where
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Cδ ={C ′δ ∣C ′δ is a minimal vertex cover of the induced path D(y1, . . . , yl−2)}
⋃{yl−1, yl+1, yl+2, yl+3, . . . , ym},

Cζ ={C ′ζ ∣C ′ζ is a minimal vertex cover of the induced path D(y1, . . . , yl−3)}
⋃{yl−2, yl, yl+1, yl+2, . . . , ym},

and Cν ={C ′ν ∣C ′ν is a minimal vertex cover of the induced path D(y1, . . . , yl−4)}
⋃{yl−3, yl−1, yl, yl+2, yl+3, . . . , ym}.

Let C be a maximal strong vertex cover of D. Then by Lemma 5.2, C ∩ V (D1) is a

maximal strong vertex cover of D1 and similarly, C ∩V (D2) is a maximal strong vertex

cover of D2. From the proof of Lemma 5.2, we know z1 ∈ C. Therefore we can say that

{Ci,j} be the collection of all the maximal strong vertex covers of D, where i ∈ {δ, ζ, ν},
j ∈ {α,β, γ} and each Ci,j = Ci ∪ {z1} ∪Cj. By Theorem 2.13, we get

I(s) = ⋂
i∈{δ,ζ,ν}

and j∈{α,β,γ}

(I⊆Ci,j
)s.

By Theorem 3.5, we know that

I⊆Cδ,j
= I⊆Cδ

+ (ymz1, xnz1) + I⊆Cj
= (C ′δ) + J ′1 + (ymz1, xnz1) + Jk + (C ′j) for j = α,β, γ

when k = 1,2,3, respectively,

I⊆Cζ,j
= I⊆Cζ

+ (ymz1, xnz1) + I⊆Cj
= (C ′ζ) + J ′2 + (ymz1, xnz1) + Jk + (C ′j) for j = α,β, γ

when k = 1,2,3, respectively,

I⊆Cν,j
= I⊆Cν + (ymz1, xnz1) + I⊆Cj

= (C ′ν) + J ′3 + (ymz1, xnz1) + Jk + (C ′j) for j = α,β, γ

when k = 1,2,3, respectively,

where J ′1 = (yl−1, ywl+1

l+1 , yl+1y
wl+2

l+2 , . . . , ym−1y
wm
m ), J1 = (xk−1, xwk+1

k+1 , xk+1x
wk+2

k+2 , . . . , xn−1x
wn
n ),

J ′
2
= (yl−2, ywl

l
, yly

wl+1

l+1 , yl+1y
wl+2

l+2 , . . . , ym−1y
wm
m ), J2 = (xk−2, xwk

k
, xkx

wk+1

k+1 , xk+1x
wk+2

k+2 , . . . ,

xn−1x
wn
n ), J ′3 = (yl−3, yl−1, yl, ywl+2

l+2 , yl+2y
wl+3

l+3 , . . . , ym−1y
wm
m ), J3 = (xk−3, xk−1, xk, xwk+2

k+2 ,

xk+2x
wk+3

k+3 , . . . , xn−1x
wn
n ).

The rest of the proof follows with similar argument as in [1, Theorem 3.6]. �

Lemma 5.4. Let D be the weighted oriented path same as defined in Notation 5.1.

Assume that w(ym) ≥ 2 and w(xn) ≥ 2. If w(yl) ≥ 2 for some 1 < l ≤ m − 2 such

that w(yl+1) = 1 or w(xk) ≥ 2 for some 1 < k ≤ n − 2 such that w(xk+1) = 1, then

I(D)(s) ≠ I(D)s for some s ≥ 2.

Proof. Suppose w(yl) ≥ 2 for some 1 < l ≤m − 2 such that w(yl+1) = 1.
Case (1) Assume that 1 < l ≤m − 3.
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Let D′ be a weighted naturally oriented path with V (D′) = {y1, y2, . . . , yl, yl+1, yl+2, yl+3}
and E(D′) = {(yi, yi+1) ∣ 1 ≤ i ≤ l + 2}. Then by Theorem 2.16, I(D′)(s) ≠ I(D′)s for

some s ≥ 2 and so by Theorem 4.5, we have I(D)(s) ≠ I(D)s.
Case (2) Assume that l =m − 2.
Here w(ym−1) = 1. LetD′ be a weighted naturally oriented path with V (D′) = {y1, y2, . . . ,
ym−2, ym−1, ym, z1} and E(D′) = {(yi, yi+1) ∣ 1 ≤ i ≤m−1}∪{(ym, z1)}. Then by Theorem

2.16, I(D′)(s) ≠ I(D′)s for some s ≥ 2 and thus by Theorem 4.5, we get I(D)(s) ≠ I(D)s.
Similarly if w(xk) ≥ 2 for some 1 < k ≤ n − 2 such that w(xk+1) = 1, we can show that

I(D)(s) ≠ I(D)s for some s ≥ 2. �

Theorem 5.5. Let D be the weighted oriented path same as defined in Notation 5.1.

Assume that w(ym) ≥ 2 and w(xn) ≥ 2. Then I(D)(s) = I(D)s for all s ≥ 2 if and only

if D satisfies the condition “there exist two indices 1 < l <m and 1 < k < n such that the

set of vertices with non-trivial weights are precisely {yl, . . . , ym} ∪ {xk, . . . , xn}”.
Proof. It follows from Theorem 5.3 and Lemma 5.4. �

Remark 5.6. Let D be the weighted oriented path same as defined in Notation 5.1.

If w(xi) = 1 for 2 ≤ i ≤ n, then by changing the orientations of edges of the edge set

{(xi, xi+1) ∣ 1 ≤ i ≤ n − 1} ∪ {(xn, z1)}, we can think D as a weighted naturally oriented

path. Similarly if w(yi) = 1 for 2 ≤ i ≤ m, we can think D as a weighted naturally

oriented path.

Notation 5.7. Let D be a weighted oriented path with V (D) = {y1, y2, . . . , ym, z1, z2, xn,

. . . , x2, x1}, E(D) = {(yi, yi+1) ∣ 1 ≤ i ≤m− 1}∪{(ym, z1), (z1, z2), (xn, z2)}∪{(xi, xi+1) ∣
1 ≤ i ≤ n − 1}, w(z1) = 1 and w(z2) = 1 (see Figure 7).

y1 y2 yl yl+1 ym−1 ym z1 z2 xn xn−1 xk+1 xk x2 x1

Figure 7. An oriented path which is union of two naturally oriented

paths joined at a sink vertex.

Theorem 5.8. Let D be the weighted oriented path same as defined in Notation 5.7.

Assume that there exist two indices 1 < l ≤ m and 1 < k ≤ n such that the set of vertices

with non-trivial weights are precisely {yl, . . . , ym} ∪ {xk, . . . , xn}. Then I(D)(s) = I(D)s
for all s ≥ 2.

Proof. This proof follows by the similar argument as in Theorem 5.3. �

Lemma 5.9. Let D be the weighted oriented path same as defined in Notation 5.7. If

w(yl) ≥ 2 for some 1 < l ≤m−1 such that w(yl+1) = 1 or w(xk) ≥ 2 for some 1 < k ≤ n−1
such that w(xk+1) = 1, then I(D)(s) ≠ I(D)s for some s ≥ 2.
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Proof. Suppose w(yl) ≥ 2 for some 1 < l ≤m − 1 such that w(yl+1) = 1.
Case (1) Assume that 1 < l ≤m − 2.
By the same argument as in Lemma 5.4, we can show that I(D)(s) ≠ I(D)s for some

s ≥ 2.

Case (2) Assume that l =m − 1.
Here w(ym) = 1. Let D′ be a weighted naturally oriented path with V (D′) = {y1, y2, . . . ,
ym−1, ym, z1, z2} and E(D′) = {(yi, yi+1) ∣ 1 ≤ i ≤ m − 1} ∪ {(ym, z1), (z1, z2)}. Then

by Theorem 2.16, I(D′)(s) ≠ I(D′)s for some s ≥ 2 and thus by Theorem 4.5, we get

I(D)(s) ≠ I(D)s.
Suppose w(xk) ≥ 2 for some 1 < k ≤ n − 1 such that w(xk+1) = 1. Since w(z1) =
w(z2) = 1, we can assume (z2, z1) ∈ E(D). Let D′′ be a weighted naturally oriented

path with V (D′′) = {x1, x2, . . . , xn−1, xn, z2, z1} and E(D′′) = {(xi, xi+1) ∣ 1 ≤ i ≤ n − 1} ∪
{(xn, z2), (z2, z1)}. By the similar argument as forD′, we can show that I(D)(s) ≠ I(D)s,
for some s ≥ 2. �

Theorem 5.10. Let D be the weighted oriented path same as defined in Notation 5.7.

Assume that w(xi) ≥ 2 and w(yj) ≥ 2 for some i and j. Then I(D)(s) = I(D)s for

all s ≥ 2 if and only if D satisfies the condition “there exist two indices 1 < l ≤ m and

1 < k ≤ n such that the set of vertices with non-trivial weights are precisely {yl, . . . , ym}∪{xk, . . . , xn}”.
Proof. It follows from Theorem 5.8 and Lemma 5.9. �

Theorem 5.11. Let D be the weighted oriented path same as defined in Notation 5.1.

Assume that w(xi) ≥ 2 and w(yj) ≥ 2 for some i and j. Then I(D)(s) = I(D)s for all

s ≥ 2 if and only if

(1) When w(xn) = 1, D satisfies the condition “there exist two indices 1 < l ≤ m

and 1 < k < n such that the set of vertices with non-trivial weights are precisely

{yl, . . . , ym} ∪ {xk, . . . , xn−1}”.
(2) When w(ym) = 1, D satisfies the condition “there exist two indices 1 < l < m

and 1 < k ≤ n such that the set of vertices with non-trivial weights are precisely

{yl, . . . , ym−1} ∪ {xk, . . . , xn}”.
(3) When w(ym) ≠ 1 and w(xn) ≠ 1, D satisfies the condition “there exist two indices

1 < l < m and 1 < k < n such that the set of vertices with non-trivial weights are

precisely {yl, . . . , ym} ∪ {xk, . . . , xn}”.
Proof. (1) Since w(xn) = 1, we can assume (z1, xn) ∈ E(D). If we rename the vertex xn

by z2, then the proof follows from Theorem 5.10.

(2) Note that w(ym) = 1. If we rename the vertices ym and z1 by z1 and z2, respectively,

then the proof follows from Theorem 5.10.
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(3) It follows from Theorem 5.5. �

Theorem 5.12. Let D be a weighted oriented path with V (D) = {y1, y2, . . . , ym, z1, xn, . . . ,

x2, x1} and E(D) = {(yi, yi+1) ∣ 1 ≤ i ≤ m − 1} ∪ {(ym, z1), (xn, z1)} ∪ {(xi, xi+1) ∣ 1 ≤ i ≤
n − 1}. Assume that w(xi) ≥ 2 and w(yj) ≥ 2 for some i and j. Then I(D)(s) = I(D)s
for all s ≥ 2 if and only if

(1) When w(xn) = 1, D satisfies the condition “there exist two indices 1 < l ≤ m

and 1 < k < n such that the set of vertices except z1 with non-trivial weights are

precisely {yl, . . . , ym} ∪ {xk, . . . , xn−1}”.
(2) When w(ym) = 1, D satisfies the condition “there exist two indices 1 < l < m

and 1 < k ≤ n such that the set of vertices except z1 with non-trivial weights are

precisely {yl, . . . , ym−1} ∪ {xk, . . . , xn}”.
(3) When w(ym) ≠ 1 and w(xn) ≠ 1, D satisfies the condition “there exist two indices

1 < l < m and 1 < k < n such that the set of vertices except z1 with non-trivial

weights are precisely {yl, . . . , ym} ∪ {xk, . . . , xn}”.
Proof. Here z1 is the only sink vertex in D. If w(z1) = 1, the proof follows from Theorem

5.11 and if w(z1) ≥ 2, then the proof follows from Lemma 2.17 and Theorem 5.11. �

6. Symbolic powers of weighted rooted trees

In the computation of symbolic powers of edge ideals of weighted oriented graphs, we

always need to know all the maximal strong vertex covers. In this section, we give a new

technique to find all the maximal strong vertex covers of a particular class of weighted

oriented graphs. Finally, we show the equality of ordinary and symbolic powers of edge

ideals of certain class of weighted rooted trees.

Lemma 6.1. [12, Lemma 47] Let D be a weighted oriented graph such that I(D) ⊆
(xa1i1 , . . . , xasis ). Then {xi1 , . . . , xis} is a vertex cover of D.

After fixing the value of each ai with its corresponding weight, we get strong vertex cover

in the following result.

Lemma 6.2. Let D be a weighted oriented graph such that I(D) ⊆ (xwi1

i1
, . . . , x

wis

is
),

where s is the least possible value. Then {xi1 , . . . , xis} is a maximal strong vertex cover

of D.

Proof. Let C = {xi1 , . . . , xis}. By Lemma 6.1, C is a vertex cover of D. Let xij ∈ L
D
3 (C).

By Lemma 2.5, ND(xij) ⊂ C. If N−D(xij ) = φ, then I(D) ⊆ (xwi1

i1
, . . . , x

wij−1

ij−1
, x

wij+1

ij+1
, . . . ,

x
wis

is
). Since s is the least possible value, its a contradiction. Therefore N−D(xij) ≠ φ. Let

N−D(xij) = {xk1 , . . . , xkt}. If wk1 = ⋯ = wkt = 1, then I(D) ⊆ (xwi1

i1
, . . . , x

wij−1

ij−1
, x

wij+1

ij+1
, . . . ,
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x
wis

is
) and its a contradiction by the previous argument. Thus at least one of xk1 , . . . , xkt

has non-trivial weight. Without loss of generality let wk1 ≠ 1. Suppose xk1 ∈ L
D
1 (C).

That means there is some xl1 ∈ N
+
D(xk1) ∩ Cc. Here (xk1 , xl1) ∈ E(D). Since xk1 ∉(xwi1

i1
, . . . , x

wis

is
) and xl1 ∉ C, we have xk1x

wl1

l1
∉ (xwi1

i1
, . . . , x

wis

is
). Thus I(D) ⊈ (xwi1

i1
, . . . ,

x
wis

is
), which is a contradiction. Therefore xk1 ∈ LD

2
(C) ∪ LD

3
(C). Note that xk1 ∈

N−D(xij)∩V +(D)∩ [LD
2 (C)∪LD

3 (C)], i.e., xij satisfies SVC condition on C. Hence C is

strong. SupposeC is not maximal. That means, there exists a strong vertex cover C ′ ofD

such that C ⊊ C ′. Let xq ∈ C
′∖C. Since xq ∉ C and C is a vertex cover of D, ND(xq) ⊂ C.

Here ND(xq) ⊂ C ′ and so by Lemma 2.5, xq ∈ L
D
3
(C ′). Since C ′ is strong, there is some

xp ∈ N
−
D(xq) ∩ V +(D) ∩ [LD

2 (C ′) ∪ LD
3 (C ′)]. Note that xp ∈ C, w(xp) ≥ 2, xq ∉ C and

(xp, xq) ∈ E(D). Then xpx
wq
q ∉ (xwi1

i1
, . . . , x

wis

is
) and so I(D) ⊈ (xwi1

i1
, . . . , x

wis

is
), which is

a contradiction. Hence C is maximal. �

Remark 6.3. Converse of the above lemma need not be true in general.

For example consider the weighted oriented path D as in Figure 8. Then I(D) =
(x1x72, x2x3, x3x4). Using Macaulay 2, the strong vertex covers of D are {x1, x3}, {x2, x3}
and {x2, x4}. Note that {x2, x4} is a maximal strong vertex cover, but I(D) ⊈ (x72, x4)
because x2x3 ∉ (x72, x4).

x1 x2 x3 x4

1 7 1 1

D

Figure 8. A weighted oriented path D of length 3.

We see that the converse of Lemma 6.2 is true under certain condition on weights of

vertices and orientation of edges of D. To prove the converse part, the following lemma

is important.

Lemma 6.4. Let D be a weighted oriented graph such that at most one edge is oriented

into each vertex and w(x) ≥ 2 if degD(x) ≥ 2 for all x ∈ V (D). Let C be a strong vertex

cover of D with xi ∈ L
D
1
(C) and w(xi) ≠ 1. Then there exists a strong vertex cover C ′

of D such that C ⊊ C ′.

Proof. Let L = {x ∣ x ∈ LD
1 (C) ∩ V +(D)} = {xi1 , xi2 , . . . , xil}. By our assumption L ≠ φ.

Let J = [N+D(xi1) ∩Cc] ∪⋯ ∪ [N+D(xil) ∩Cc] = {xj1 , xj2 , . . . , xjr}. Let C ′ = C ∪ J . Then

xim ∉ L
D
1 (C ′) because N+D(xim) ∩C ′c = φ for 1 ≤ m ≤ l. Since J ⊂ Cc and C is a vertex

cover of D, ND(xjn) ⊆ C ⊂ C ′ for each xjn ∈ J . By Lemma 2.5, J ⊂ LD
3 (C ′). We claim

C ′ is a strong vertex cover of D. Note that LD
3 (C) ∪ {xj1 , xj2 , . . . , xjr} ⊆ LD

3 (C ′). Let
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xl ∈ L
D
3 (C). Then xl satisfies SVC condition on C because C is strong. By Lemma

3.1, xl ∈ L
D
3 (C ′) and xl satisfies SVC condition on C ′. Without loss of generality let

xj1 ∈ N
+
D(xi1). Since xi1 ∈ N

−
D(xj1) ∩ V +(D) ∩ [LD

2
(C ′) ∪ LD

3
(C ′)], xj1 satisfies SVC

condition on C ′. By the similar argument, we can show xjt satisfies SVC condition

on C ′ for 2 ≤ t ≤ r. If LD
3
(C) ∪ {xj1 , xj2 , . . . , xjr} = LD

3
(C ′), then each element of

LD
3 (C ′) satisfies SVC condition on C ′ and hence C ′ is strong. Now we assume that

LD
3
(C) ∪ {xj1 , xj2 , . . . , xjr} ⊊ LD

3
(C ′). Let xk ∈ L

D
3
(C ′) ∖ [LD

3
(C) ∪ {xj1 , xj2 , . . . , xjr}].

Then xk lies in the neighbourhood of xjt for some t ∈ [r]. Without loss of generality we

can assume that xjt ∈N
+
D(xi1). By definition of D, N−D(xjt) = {xi1}.

Case (1) Suppose xk ∈N
−
D(xjt). Then xk = xi1 .

Since w(xi1) ≥ 2, there is (xp, xi1) ∈ E(D) for some xp ∈ V (D). If degD(xp) = 1, then
ND(xp) = {xi1}. Since xi1 ∈ L

D
3 (C ′), by Lemma 2.5, ND(xi1) ⊂ C ′ and so xp ∈ C

′.

Here xp ∉ J because N−D(xp) = φ. This implies xp ∈ C. We know xi1 ∈ C. Then by

Lemma 2.5, xp ∈ L
D
3 (C). Since N−D(xp) = φ, xp does not satisfy the SVC condition

on C. Its a contradiction because C is strong. Therefore degD(xp) ≥ 2 and by the

definition of D, w(xp) ≥ 2. Suppose xp ∈ LD
1 (C ′). That means there exists some

xq ∈ N
+
D(xp) ∩ C ′c. Since C ⊊ C ′, xq ∈ N

+
D(xp) ∩ Cc. Thus xp ∈ L

D
1
(C) and so xp ∈ L,

which is a contradiction because each element of L ∉ LD
1 (C ′). Therefore xp ∉ L

D
1 (C ′).

Then xp ∈ N
−
D(xi1) ∩ V +(D) ∩ [LD

2
(C ′) ∪ LD

3
(C ′)], i.e., xi1 = xk satisfies SVC condition

on C ′.

Case (2) Suppose xk ∈N
+
D(xjt). Then xk ≠ xi1 .

Note that (xi1 , xjt) and (xjt , xk) ∈ E(D). Since degD(xjt) ≥ 2, by the definition of D,

w(xjt) ≥ 2. This implies xjt ∈ N
−
D(xk)∩V +(D)∩LD

3
(C ′), i.e., xk satisfies SVC condition

on C ′.

Therefore each element of LD
3
(C ′) satisfies SVC condition on C ′. Hence C ′ is strong. �

Theorem 6.5. Let D be a weighted oriented graph such that at most one edge is ori-

ented into each vertex and w(x) ≥ 2 if degD(x) ≥ 2 for all x ∈ V (D). Then I(D) ⊆
(xwi1

i1
, . . . , x

wis

is
), where s is the least possible value if and only if {xi1 , . . . , xis} is a max-

imal strong vertex cover of D.

Proof. If I(D) ⊆ (xwi1

i1
, . . . , x

wis

is
), where s is the least possible value, then by Lemma 6.2,

{xi1 , . . . , xis} is a maximal strong vertex cover of D.

Now we assume that C = {xi1 , . . . , xis} is a maximal strong vertex cover of D. We

claim I(D) ⊆ (xwi1

i1
, . . . , x

wis

is
), where s is the least possible value. Let xix

wj

j ∈ I(D).
If xj ∈ C, then xix

wj

j ∈ (xwi1

i1
, . . . , x

wis

is
). Suppose xj ∉ C. Since (xi, xj) ∈ E(D), xj ∈

N+D(xi) ∩ Cc and it implies xi ∈ L
D
1 (C). If w(xi) ≠ 1, by Lemma 6.4, there exists a

strong vertex cover C ′ of D such that C ⊊ C ′, which is a contradiction because C is

maximal. So w(xi) = 1 and xix
wj

j ∈ (xwi1

i1
, . . . , x

wis

is
). Therefore I(D) ⊆ (xwi1

i1
, . . . , x

wis

is
).
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Suppose s is not the least possible value. That means, I(D) ⊆ (xwj1

j1
, . . . , x

wjr

jr
) for some

{xj1 , . . . , xjr} ⊊ {xi1 , . . . , xis}, where r < s and r is the least possible value. Then by

Lemma 6.2, {xj1 , . . . , xjr} is a maximal strong vertex cover of D, which is a contradiction

because C is maxmal. �

Next we prove the equality of ordinary and symbolic powers of edge ideals of some class

of weighted rooted trees.

Theorem 6.6. Let D be a weighted rooted tree with root x0, degD(x0) = 1 and w(x) ≥ 2
if degD(x) ≥ 2 for all x ∈ V (D). Then I(D)(s) = I(D)s for all s ≥ 2.

Proof. Let ND(x0) = {x1} and by definition of D, (x0, x1) ∈ E(D). Here N−D(x1) = {x0}.
Let N+D(x1) = {x2, x3, . . . , xr}. Note that I(D) ⊆ ({xwi

i ∣ xi ∈ V (D) ∖ {x0}}) and I(D) ⊈
({xwi

i ∣ xi ∈ V (D) ∖ {x0, xp}}) for any xp ∈ V (D) ∖ {x0}. Thus by Theorem 6.5, V (D) ∖
{x0} is a maximal strong vertex cover of D. Also I(D) ⊆ ({xwi

i ∣ xi ∈ V (D)∖{x1}}) and
I(D) ⊈ ({xwi

i ∣ xi ∈ V (D) ∖ {x1, xq}}) for any xq ∈ V (D) ∖ {x1}. Thus by Theorem 6.5,

V (D) ∖ {x1} is a maximal strong vertex cover of D. Let C1 = V (D) ∖ {x0} and C2 =

V (D)∖{x1}. Suppose there exists a maximal strong vertex cover C of D, which contains

both x0 and x1. Then we can write C = {x0, x1, xi1 , . . . , xis−2}, where {xi1 , . . . , xis−2} ⊆[V (D)∖{x0, x1}] is some vertex set. By Theorem 6.5, I(D) ⊆ (x0, xw1

1
, x

wi1

i1
, . . . , x

wis−2
is−2
),

where ∣C ∣ = s is the least possible value. Since x0x
w1

1
is the only minimal generator of

I(D), which involves the vertex x0, we have I(D) ⊆ (xw1

1
, x

wi1

i1
, . . . , x

wis−2
is−2
). That means

s is not the least possible value and by Theorem 6.5, its a contradiction. Hence C is not

a maximal strong vertex cover of D. Thus C1 and C2 are the only maximal strong vertex

covers of D. Let D′ =D∖{x0} and D′′ =D∖{x0, x1} be the induced digraphs of D. Here

LD
2 (C1) = {x1}, LD

3 (C1) = V (D) ∖ {x0, x1} and w(xi) ≥ 2 if degD(x) ≥ 2 for all xi ∈ C1.

Then by Theorem 3.5, I⊆C1
= (xw1

1
)+I(D′). Here LD

1
(C2) = {x0}, LD

2
(C2) = {x2, . . . , xr},

LD
3 (C2) = V (D)∖{x0, x1, x2, . . . , xr} and w(xi) ≥ 2 if degD(x) ≥ 2 for all xi ∈ C2. Then by

Theorem 3.5, I⊆C2
= (x0, xw2

2
, . . . , xwr

r ) + I(D′′). Let I(D′′) = (f1, . . . , ft). Hence I⊆C1
=

(xw1

1
)+I(D′) = (xw1

1
, x1x

w2

2
, . . . , x1x

wr
r , f1, . . . , ft) and I⊆C2

= (x0, xw2

2
, . . . , xwr

r , f1, . . . , ft).
By Lemma 2.13, we have I(D)(s) = (I⊆C1

)s ∩ (I⊆C2
)s. It is enough to prove that

I(D)(s) = (I⊆C1
)s ∩ (I⊆C2

)s ⊆ I(D)s. We prove this by induction on s. The case

for s = 1 is trivial. Let m ∈ G(I(D)(s)). Then m = lcm(m1,m2) for some m1 ∈

G((xw1

1
, x1x

w2

2
, . . . , x1x

wr
r , f1, . . . , ft) andm2 ∈ G((x0, xw2

2
, . . . , xwr

r , f1, . . . , ft)). Thusm1 =(xw1

1
)a1(x1xw2

2
)a2 . . . (x1xwr

r )ar(f1)ar+1⋯(ft)ar+t andm2 = (x0)b1(xw2

2
)b2 . . . (xwr

r )br(f1)br+1
⋯(ft)br+t for some ai, bi ≥ 0 with

r+t∑
i=1

ai = s and
r+t∑
i=1

bi = s.

Case (1) Assume that a1 ≠ 0.
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If b1 ≠ 0, then x0x
w1

1
is divisible by m and notice that m

x0x
w1

1

∈ (xw1

1
, x1x

w2

2
, . . . , x1x

wr
r , f1,

. . . , ft)s−1 ∩ (x0, xw2

2
, . . . , xwr

r , f1, . . . , ft)s−1 = I(D)(s−1). Hence by induction hypothesis
m

x0x
w1

1

∈ I(D)s−1 and so m ∈ I(D)s.
If b2 ≠ 0, then x1x

w2

2
is divisible by m and observe that m

x1x
w2

2

∈ (xw1

1
, x1x

w2

2
, . . . , x1x

wr
r , f1,

. . . , ft)s−1 ∩ (x0, xw2

2
, . . . , xwr

r , f1, . . . , ft)s−1 = I(D)(s−1). Hence by induction hypothesis
m

x1x
w2

2

∈ I(D)s−1 and so m ∈ I(D)s. Similarly if bi ≠ 0 for some i ∈ {3, . . . , r}, we can show

m ∈ I(D)s. If b1 = ⋯ = br = 0, then m2 ∈ I(D)s and hence m ∈ I(D)s.
Case (2) Assume that a1 = 0. Then m1 ∈ I(D)s and so m ∈ I(D)s. �
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