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Virtually Unipotent Curves in Some Non-NPC

Graph Manifolds

Sami Douba

Abstract

Let M be a graph manifold containing a single JSJ torus T and whose JSJ blocks are
of the form Σ× S1, where Σ is a compact orientable surface with boundary. We show
that if M does not admit a Riemannian metric of everywhere nonpositive sectional
curvature, then there is an essential curve on T such that any finite-dimensional linear
representation of π1(M) maps an element representing that curve to a matrix all of
whose eigenvalues are roots of 1. In particular, this shows that π1(M) does not admit
a faithful finite-dimensional unitary representation, and gives a new proof that π1(M)
is not linear over any field of positive characteristic.

1. Introduction

A matrix P ∈ GL(n,F), where F is a field, is unipotent if 1 is the only eigenvalue of P over the
algebraic closure F of F. We say a matrix P ∈ GL(n,F) is virtually unipotent if some power of P
is unipotent, that is, if the eigenvalues of P are all roots of 1 in F. The only matrix in GL(n,F)
that is both unipotent and diagonalizable is the identity matrix; thus, a matrix in GL(n,F) that
is both virtually unipotent and diagonalizable has finite order.

We begin with an observation about a group consisting entirely of unipotent matrices: the
integral Heisenberg group H, defined as the subgroup of GL(3,R) consisting of the upper uni-
triangular integer matrices. One might ask if H can be realized as a subgroup of GL(n,F) for
some (possibly different) n and F that consists entirely of diagonalizable matrices. The following
remark contains an elementary argument that this is impossible. See the work of Button for a
proof of a more general result [But19, Theorem 3.2], and for a broader discussion on unipotent
matrices in matrix groups.

Remark 1.1. Let

x =

Ñ
1 1 0
0 1 0
0 0 1

é
, y =

Ñ
1 0 0
0 1 1
0 0 1

é
, z =

Ñ
1 0 1
0 1 0
0 0 1

é

and let ρ : H → GL(n,F) be any representation. Up to replacing F with its algebraic closure and
postconjugating ρ, we may assume that ρ(z) has a block-diagonal structure

ρ(z) = diag(Z1, . . . , Zk)

where Zr ∈ GL(nr,F) is upper triangular with a unique eigenvalue λr ∈ F
∗, and that λ1, . . . , λk

are distinct. Since ρ(x), ρ(y) commute with ρ(z), each of the former preserves the generalized
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eigenspaces of ρ(z) and thus has a block-diagonal structure

ρ(x) = diag(X1, . . . ,Xk)

ρ(y) = diag(Y1, . . . , Yk)

where Xr, Yr ∈ GL(nr,F). Since z = [x, y], we have Zr = [Xr, Yr], and so

λnr
r = detZr = 1

for r = 1, . . . , k. We conclude that ρ(z) is a virtually unipotent matrix. Since z has infinite order
(as does any nontrivial unipotent matrix with entries in a field of characteristic zero), it follows
that ρ(z) cannot be diagonalizable if ρ is to be faithful.

Remark 1.1 motivates the following definition.

Definition 1.2. An element γ of an arbitrary group Γ is virtually unipotent if any finite-
dimensional linear representation of Γ maps γ to a virtually unipotent matrix.

Remark 1.3. If Γ is a residually finite group, as are many groups of interest and, in particular,
as is the fundamental group of any closed 3-manifold [Hem87], then for any nontrivial element
γ ∈ Γ, there is a finite-dimensional unitary representation ρ of Γ such that ρ(γ) is nontrivial and
hence, by diagonalizability of unitary matrices, not unipotent. Thus, for our purposes, it is not
sensible to omit the word “virtually” in Definition 1.2.

Remark 1.4. If γ is a virtually unipotent element of a group Γ, then any element in the conjugacy
class of γ is virtually unipotent in Γ. Moreover, if Γ0 is an abelian subgroup of Γ generated by
virtually unipotent elements of Γ, then any element of Γ0 is virtually unipotent in Γ. The latter
follows from the fact that an abelian subgroup of GL(n,F), where F is an algebraically closed
field, is conjugate to an upper triangular subgroup of GL(n,F) [RR00, Theorem 1.1.5].

Remark 1.5. Suppose Γ0 is a finite-index normal subgroup of a group Γ, and that γ is a virtually
unipotent element of Γ. Then a generator γ0 of 〈γ〉 ∩ Γ0 is a virtually unipotent element of Γ0.
Indeed, let ρ0 be a finite-dimensional linear representation of Γ0. Then ρ0 is a direct summand of
the restriction ρ

∣

∣

Γ0

, where ρ is the representation induced by ρ0 on Γ. Since ρ(γ0) is a virtually

unipotent matrix, it follows that the same is true for ρ0(γ0).

Remark 1.6. Lubotzky–Mozes–Raghunathan [LMR00, Prop. 2.4] showed that an element gener-
ating a distorted cyclic subgroup of a finitely generated group is virtually unipotent.

Note that a finite-order element of any group is virtually unipotent. From Remark 1.1 (or
Remark 1.6), one observes that the integer Heisenberg group H, viewed as an abstract group,
contains an infinite-order virtually unipotent element (namely, a generator of the center of H),
and hence by Remark 1.5 so does the fundamental group of any closed 3-manifold with Nil
geometry. In fact, the argument in Remark 1.1 shows that if an element γ of a group Γ is a
product of commutators of elements γi ∈ Γ such that γ commutes with the γi, then γ is a
virtually unipotent element of Γ. Thus, for example, an element of π1(M) representing a Seifert

fiber of a closed 3-manifold M with ‚�SL(2,R) geometry is virtually unipotent in π1(M).

A manifold is said to be nonpositively curved (NPC) if it admits a Riemannian metric of

everywhere nonpositive sectional curvature. Closed 3-manifolds locally modeled on Nil or‚�SL(2,R)
are not NPC [GW71, Yau71, Ebe82]. The purpose of this article is to exhibit nontrivial virtually
unipotent elements within fundamental groups of non-NPC 3-manifolds of a different nature.
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Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

Theorem 1.7. Let M be a connected closed orientable irreducible 3-manifold containing exactly
one JSJ torus, and each of whose JSJ blocks is a product of S1 with a surface. If M is not NPC,
then π1(M) contains a nontrivial virtually unipotent element.

We use a necessary and sufficient condition (Theorem 2.3) for such 3-manifolds M to be NPC
due to Buyalo–Kobel’skii [BK95], and independently Kapovich–Leeb [KL96] in the case that M
has two JSJ blocks. Our argument is similar to Button’s proof that Gersten’s free-by-cyclic group
contains a nontrivial virtually unipotent element [But17a, Theorem 4.5]. We remark that if M
is a 3-manifold as in the statement of Theorem 1.7 that is not the mapping torus of an Anosov
homeomorphism of the 2-torus, then it follows from [KL98] that all cyclic subgroups of π1(M)
are undistorted.

An example of a 3-manifold M as in the statement of Theorem 1.7 is the mapping torus
of a Dehn twist about an essential simple closed curve on a closed orientable surface of genus
at least 2 [KL96, Theorem 3.7]. In this case, our proof in fact shows that an element of π1(M)
representing that curve is virtually unipotent.

Since a 3-manifold M as in the statement of Theorem 1.7 is aspherical, any nontrivial element
of π1(M) has infinite order. We are interested in infinite-order virtually unipotent elements,
since the existence of such an element within a group has interesting representation theoretic
consequences for the group. The following definition is due to Button [But17a, Definition 2.2].

Definition 1.8. A group Γ is NIU-linear if there is a faithful finite-dimensional linear represen-
tation ρ of Γ such that ρ(Γ) does not contain unipotent matrices of infinite order.

Since unitary matrices are diagonalizable, any group admitting a faithful finite-dimensional
unitary representation is NIU-linear (in fact, the image of such a representation will contain no
nontrivial unipotent matrices). Furthermore, if F is a field of positive characteristic, then every
unipotent element of F has finite order [But17a, Proposition 2.1], and so any group admitting a
faithful finite-dimensional linear representation over such F is NIU-linear. Since a group contain-
ing an infinite-order virtually unipotent element is evidently not NIU-linear, such a group neither
admits a faithful finite-dimensional unitary representation, nor a faithful finite-dimensional rep-
resentation over a field of positive characteristic.

As a consequence of Theorem 1.7 and the work of several others, we obtain the following
corollary.

Corollary 1.9. Let M be as in the statement of Theorem 1.7 and let Γ = π1(M). Then the
following are equivalent:

(i) M is NPC;

(ii) Γ virtually embeds in a finitely generated right-angled Artin group;

(iii) Γ admits a faithful finite-dimensional unitary representation;

(iv) Γ admits a faithful finite-dimensional linear representation over a field of positive charac-
teristic;

(v) Γ is NIU-linear;

(vi) Γ does not contain a nontrivial virtually unipotent element.

We explain how Corollary 1.9 can be established using Theorem 1.7. For us, a graph manifold
is a connected closed orientable irreducible non-Seifert 3-manifold all of whose JSJ blocks are
Seifert. The manifolds described in the statement of Theorem 1.7 can be thought of as the

3



Sami Douba

simplest examples of graph manifolds. That (i) implies (ii) in Corollary 1.9 is due to Liu [Liu13],
who showed that the fundamental group of any NPC graph manifold is virtually a subgroup of
a finitely generated right-angled Artin group (RAAG). Agol [Ago18] showed that such a RAAG
embeds in U(n) for some n, so that (ii) implies (iii). Moreover, the work of Berlai–de la Nuez
González [BG19] implies that a finitely generated RAAG admits a faithful finite-dimensional
linear representation over a field of positive characteristic (indeed, any prime characteristic), and
so (ii) also implies (iv). It was discussed before the statement of Corollary 1.9 that each of (iii)
and (iv) imply (v), and that (v) implies (vi). Finally, the fact that (vi) implies (i) is precisely
the statement of Theorem 1.7.

Remark 1.10. Note that if γ is an infinite-order virtually unipotent element of a group Γ, then
〈γ〉 ⊂ Γ is not a virtual retract of Γ by Remark 1.5. Thus, the fact that statement (ii) in Corollary
1.9 implies statement (vi) also follows from work of Minasyan [Min19].

Remark 1.11. It was already known that statement (iv) in Corollary 1.9 does not hold for the
fundamental group Γ of any non-NPC graph manifold. Indeed, Button [But19] proved that any
finitely generated group Γ satisfying (iv) acts properly by semisimple isometries on a complete
CAT(0) metric space, and Leeb [Lee92] showed that if the fundamental group of a graph manifold
M admits such an action, then M is NPC. At the time of writing of this article, it is not known
if a single non-NPC graph manifold without Sol geometry admits a faithful finite-dimensional
linear representation over a field of characteristic zero.

Remark 1.12. It follows from the Lie–Kolchin–Mal’cev theorem that if Γ is a polycyclic group
then Γ is NIU-linear if and only if Γ is virtually abelian [But17b]. Thus, for example, closed
3-manifolds with Nil or Sol geometry do not have NIU-linear fundamental groups. However, this
handy obstruction to NIU-linearity is not useful for dealing with most 3-manifolds M as in the
statement of Theorem 1.7 since, for all such M apart from the mapping torus of an Anosov
homeomorphism of the 2-torus, any subgroup of π1(M) lacking a nonabelian free subgroup is in
fact abelian [FLS11].

Statements (i)-(v) in Corollary 1.9 were known to be equivalent for M a closed aspherical
geometric 3-manifold and Γ = π1(M) [But17a]. It is also true that (vi) is equivalent to (i)-(v)
in this case. Indeed, to argue this, it suffices to show that if M is a closed aspherical geometric

non-NPC 3-manifold, that is, if M is a closed 3-manifold with Nil, ‚�SL(2,R), or Sol geometry,
then π1(M) contains a nontrivial virtually unipotent element. This was already justified for the
first two geometries, and closed Sol 3-manifolds are handled by Theorem 1.7.

We conjecture the following.

Conjecture 1.13. Statements (i)-(vi) in Corollary 1.9 are equivalent for any closed aspherical
3-manifold M and Γ = π1(M).

By work of Agol [AGM13] and Przytycki–Wise [PW18], and the aforementioned work of Liu
[Liu13], the fundamental group Γ of any closed NPC 3-manifold satisfies (ii) and hence (iii)-(vi)
in Corollary 1.9. Furthermore, a closed aspherical non-geometric non-NPC 3-manifold is (up to
passing to its orientation cover) a graph manifold [Lee92]. Thus, Conjecture 1.13 amounts to the
claim that the fundamental group of any non-NPC graph manifold contains a nontrivial virtually
unipotent element.
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Organization

In Section 2, we fix the language in which we prove Theorem 1.7, and also present two lemmas
that will be useful in the proof. The proof of Theorem 1.7 is contained in Section 3 and is divided
into two cases: the case that there is a single block in the JSJ decomposition of the 3-manifold M

(Theorem 3.1), and the case that there are two (Theorem 3.2). The two proofs are very similar
and are somewhat technical, but involve only elementary linear algebra.
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I am grateful to my supervisor Piotr Przytycki for his encouragement and guidance, and in
particular for suggesting elegant techniques for taming large systems of equations. I also thank
Jack Button for helpful discussions.

2. Preliminaries

2.1 Definitions

If S is a (not necessarily connected) closed surface embedded in a 3-manifold M , we denote
by M

∣

∣S the complement in M of a small open tubular neighborhood of S. If M is a connected
closed orientable irreducible 3-manifold, then there is, up to isotopy, a unique minimal collection
E of disjoint embedded incompressible tori such that each component of M

∣

∣

⋃

E is either Seifert
or atoroidal (see, for example, [Kap01, Thm 1.41] and the references therein). The decomposition
of M into the components of M

∣

∣

⋃

E is called the Jaco–Shalen–Johannson (JSJ) decomposition
of M . If E = ∅, we say M has trivial JSJ decomposition. Note that if M is the mapping torus of
an Anosov homeomorphism of the 2-torus, then M has nontrivial JSJ decomposition.

Let G denote the class of all connected closed orientable irreducible non-Seifert 3-manifolds M
such that each component Mv of M

∣

∣

⋃

E , where E is the collection of JSJ tori in M , is a trivial
S1-bundle over a compact orientable surface Σv with boundary. The manifolds Mv are the blocks
of M . The underlying graph G = G(M) of M is the graph dual to the JSJ decomposition of M ;
the graph G is well-defined since the collection E is unique up to isotopy. We identify the vertex
set V of G with the set of blocks of M , and the set of unoriented edges of G with E . Denote by W
the set of oriented edges of G. We identify W with the set of boundary components of M

∣

∣

⋃

E by
assigning to each oriented edge w ∈ ∂v ⊂ W the corresponding boundary component Tw of Mv .

Choose an orientation of M , thereby inducing an orientation on each block Mv of M , and
hence on each component of ∂Mv . For each v ∈ V, choose an orientation of the fibers in
Mv, as well as a Waldhausen basis for H1(∂Mv ;Z); that is, a basis {(fw, zw) | w ∈ ∂v} for
H1(∂Mv ;Z) =

⊕

w∈∂v H1(Tw;Z) such that the elements fw represent oriented fibers, the alge-

braic intersection number î(zw, fw) on Tw is +1, and the sum ⊕w∈∂vzw lies in the kernel of the
map H1(∂Mv ;Z) → H1(Mv ;Z) induced by inclusion. We call the additional structure on M

given by the choices made in this paragraph a framing of M .

An oriented edge w ∈ W corresponds to a gluing homeomorphism T−w → Tw, which induces

an isomorphism φw : H1(T−w;Z) → H1(Tw;Z). Define Bw =

Å
aw bw
cw dw

ã
∈ GL(2,Z) to be the

matrix whose entries satisfy

φw(f−w) = awfw + bwzw

φw(z−w) = cwfw + dwzw

5
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Note that detBw = −1 since M is orientable, that B−w = B−1
w , and that bw 6= 0 by minimality

of E .

This article is concerned with the subclasses E,L of G consisting of all manifolds M in G

whose underlying graph is a single edge (joining distinct vertices) or a loop, respectively. We
call B ∈ GL(2,Z) a gluing matrix for such a manifold M if B = Bw for an oriented edge w

of G(M) with respect to some framing of M .

The fundamental group π1(M) of a manifold M ∈ E with gluing matrix B =

Å
a b

c d

ã
and

whose blocks Mv,Mv′ have base surfaces Σ,Σ′ of genus g, g′, respectively, is isomorphic to the
group ΓE

g,g′,B given by the presentation with generators

x1, y1, . . . , xg, yg, z, f,

x′1, y
′

1, . . . , x
′

g′ , y
′

g′ , z
′, f ′

subject to the relations

(I) z =
∏g

i=1[xi, yi],

(II) [xi, f ] = [yi, f ] = 1 for i = 1, . . . , g,

(III) z′ =
∏g′

i=1[x
′

i, y
′

i],

(IV) [x′i, f
′] = [y′i, f

′] = 1 for i = 1, . . . , g′,

(V) f ′ = fazb,

(VI) z′ = f czd,

where the subgroup 〈x1, y1, . . . , xg, yg〉 (resp., 〈x
′

1, y
′

1, . . . , x
′

g, y
′

g〉) is the image of the map π1(Σ) →
π1(M) (resp., π1(Σ

′) → π1(M)) induced by the inclusions Σ ⊂ Mv ⊂ M (resp., Σ′ ⊂ Mv′ ⊂ M),
and the element f (resp., f ′) represents an oriented fiber of Mv (resp., Mv′).

Remark 2.1. Note that if C is obtained from B by negating a row or a column of B, then
ΓE

g,g′,B
∼= ΓE

g,g′,C . Note also that ΓE

g,g′,B
∼= ΓE

g,g′,B−1 .

The fundamental group π1(M) of a manifold M ∈ L with gluing matrix B =

Å
a b

c d

ã
and

the base surface Σ of whose unique block Mv has genus g is isomorphic to the group ΓL

g,B given
by the presentation with generators

x1, y1, . . . , xg, yg, z, z
′, f, t

subject to the relations

(1) zz′ =
∏g

i=1[xi, yi],

(2) [xi, f ] = [yi, f ] = [z, f ] = 1 for i = 1, . . . , g,

(3) tft−1 = fazb,

(4) tz′t−1 = f czd,

where the subgroup 〈x1, y1, . . . , xg, yg, z〉 is the image of the map π1(Σ) → π1(M) induced by
the inclusion Σ ⊂ Mv ⊂ M , and the element f represents an oriented fiber of Mv.

Remark 2.2. Note that ΓL

g,B
∼= ΓL

g,B−1 .

The following theorem is a special case of a result of Buyalo–Kobel’skii [BK95], and was
proved independently by Kapovich–Leeb [KL96] in the case M ∈ E.

6
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Theorem 2.3. Let M ∈ E (resp., M ∈ L) and let B =

Å
a b

c d

ã
∈ GL(2,Z) be a gluing matrix

for M . Then M is NPC if and only if a = d = 0 (resp., if and only if |a− d| > 2).

2.2 Basic lemmas

The following lemma will allow us to conjugate a representation ρ of the appropriate group Γ in a
manner that makes the interactions between generalized eigenspaces of certain elements of ρ(Γ)
more apparent.

Lemma 2.4. Let F be an algebraically closed field, let P,P ′, Q ∈ Mn×n(F), and let λ1, . . . , λk

(resp. λ′

1, . . . , λ
′

ℓ) be the distinct eigenvalues of P (resp. P ′). If P,P ′, Q pairwise commute, then
there is a single matrix C ∈ GL(n,F) such that

CPC−1 = diag (P1,1, . . . , P1,ℓ, . . . , Pk,1, . . . , Pk,ℓ)

CP ′C−1 = diag
(

P ′

1,1, . . . , P
′

1,ℓ, . . . , P
′

k,1, . . . , P
′

k,ℓ

)

CQC−1 = diag (Q1,1, . . . , Q1,ℓ, . . . , Qk,1, . . . , Qk,ℓ)

where Pr,s, P
′

r,s, Qr,s are (possibly empty) upper triangular matrices and the only eigenvalue
of Pr,s (resp., P ′

r,s) is λr (resp., λ′

s).

Proof. For r = 1, . . . , k, let Wr be the generalized λr-eigenspace of P , and let nr = dimWr. We
index the standard ordered basis for Fn as follows:

(e1,1, . . . , e1,n1
, . . . , ek,1, . . . , ek,nk

)

We may assume that Wr = Span(er,1, . . . , er,nr). Since each of P ′, Q commutes with P , we have
that P ′, Q preserve the generalized eigenspaces of P , so P,P ′, Q share a block-diagonal structure

P = diag(P1, . . . , Pk)

P ′ = diag(P ′

1, . . . , P
′

k)

Q = diag(Q1, . . . , Qk)

where Pr, P
′

r ∈ Mnr×nr(F). We may also assume that for some indexing

(er,1,1, . . . , er,1,nr,1
, . . . , er,ℓ,1, . . . , er,ℓ,nr,ℓ

)

of the ordered basis (er,1, . . . , er,nr) for Wr, where the nr,s are nonnegative integers satisfying
∑ℓ

s=1 nr,s = nr, we have that Span(er,s,1, . . . , er,s,nr,s) is the generalized λ′

s-eigenspace of P ′

r.
Since each of Pr, Qr commutes with P ′

r, we have that Pr, Qr preserve the generalized eigenspaces
of P ′

r, so Pr, P
′

r, Qr share a block-diagonal structure

Pr = diag(Pr,1, . . . , Pr,ℓ)

P ′

r = diag(P ′

r,1, . . . , P
′

r,ℓ)

Qr = diag(Qr,1, . . . , Qr,ℓ)

Now since Pr,s, P
′

r,s, Qr,s pairwise commute, they are simultaneously upper triangularizable [RR00,
Theorem 1.1.5], and Lemma 2.4 follows.

The following lemma will allow us to reduce systems of equations whose unknowns lie in F
∗,

where F is some field, to systems of linear equations with integer unknowns. It is a step in the
proof of Theorem 4.5 in [But17a]. We include Button’s argument for the convenience of the
reader.

7
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Lemma 2.5. Let M be an integer matrix with L columns and suppose there is a subset I ⊂
{1, . . . , L} such that for any α = (α1, . . . , αL)

T ∈ Z
L satisfying Mα = 0, we have αi = 0

for i ∈ I. Let A be a torsion-free abelian group, and suppose a = (a1, . . . , aL)
T ∈ AL satisfies

Ma = 0. Then ai = 0 for i ∈ I.

Proof. Let A0 = 〈a1, . . . , aL〉 ⊂ A. Then A0 is a finitely generated torsion-free abelian group, so
there is an isomorphism ϕ : A0 → Z

K for some K. For each j = 1, . . . ,K, we have

M(ϕj(a1), . . . , ϕj(aL))
T = 0

where ϕj = pj ◦ϕ and pj : Z
K → Z is the projection onto the jth coordinate, so that ϕj(ai) = 0

for i ∈ I. We conclude that ϕ(ai) = 0, and hence ai = 0, for i ∈ I.

3. Proof of Theorem 1.7

We divide Theorem 1.7 into Theorem 3.1 (the loop case) and Theorem 3.2 (the edge case), and
prove each separately.

Theorem 3.1. Suppose M ∈ L is not NPC, and let Γ = π1(M). Then Γ contains a nontrivial
virtually unipotent element.

Proof. By Remark 2.2 and Theorem 2.3, we have Γ = ΓL

g,B for some g > 0 and B =

Å
a b

c d

ã
∈

GL(2,Z) with detB = −1, b 6= 0, and a−d > 2. We show that fa−1zb ∈ Γ is virtually unipotent.

Let F be an algebraically closed field, n > 1, and ρ : Γ → GL(n,F) any representation. We
may assume that ρ is indecomposable. Let λ1, . . . , λk ∈ F

∗ be the distinct eigenvalues of ρ(f),
and let f ′ = tft−1. By Lemma 2.4 and relation (3) in the presentation of Γ, we may assume
further that

ρ(f) = diag(F1,1, . . . , F1,k, . . . , Fk,1, . . . , Fk,k)

ρ(f ′) = diag(F ′

1,1, . . . , F
′

1,k, . . . , F
′

k,1, . . . , F
′

k,k)

ρ(z) = diag(D1,1Z1,1, . . . ,D1,kZ1,k, . . . ,Dk,1Zk,1, . . . ,Dk,kZk,k)

where Fr,s, F
′

r,s, Zr,s ∈ GL(nr,s,F) are (possibly empty) upper triangular matrices, Dr,s is a

(possibly empty) diagonal matrix in GL(nr,s,F) whose diagonal entries are |b|th roots of 1 in F,
and the only eigenvalue of Fr,s (resp., F ′

r,s, Zr,s) is λr (resp., λs, µr,s), with µr,s ∈ F
∗ satisfying

λs = λa
rµ

b
r,s. (3.1)

Since, by relation (2) in the presentation of Γ, each of ρ(z′), ρ(x1), ρ(y1), . . . , ρ(xg), ρ(yg) com-
mutes with ρ(f), each preserves the generalized eigenspaces of ρ(f), and so

ρ(z′) = diag(Z ′

1, . . . , Z
′

k)

ρ(xi) = diag(X
(i)
1 , . . . ,X

(i)
k )

ρ(yi) = diag(Y
(i)
1 , . . . , Y

(i)
k )

for some Z ′

r,X
(i)
r , Y

(i)
r ∈ GL(nr,F), where nr =

∑k
s=1 nr,s is the dimension of the generalized

λr-eigenspace of ρ(f).

Let Vr be the generalized λr-eigenspace of ρ(f
′). Then ρ(t)−1Vr is the generalized λr-eigenspace

of ρ(t)−1ρ(f ′)ρ(t) = ρ(f), and the characteristic polynomial of

ρ(z′)
∣

∣

ρ(t)−1Vr
= ρ(t)−1ρ(f chd)ρ(t)

∣

∣

ρ(t)−1Vr

8
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coincides with the characteristic polynomial of ρ(f czd)
∣

∣

Vr
. Thus, up to multiplying each root by

a root of 1, the characteristic polynomial of the block Z ′

r is

(x− λc
1µ

d
1,r)

n1,r . . . (x− λc
kµ

d
k,r)

nk,r .

Now let Zr = diag(Dr,1Zr,1, . . . ,Dr,kZr,k). Then, by relation (1) in the presentation of Γ, we

have ZrZ
′

r =
∏g

i=1[X
(i)
r , Y

(i)
r ], so that det(ZrZ

′

r) = 1. It follows that

k
∏

s=1

µ
nr,s
r,s (λc

sµ
d
s,r)

ns,r = 1 (3.2)

in the quotient A of the group of units F∗ by its torsion subgroup. Viewing (3.1) also as equations
in A and switching to additive notation within A, we obtain the equations

λs = aλr + bµr,s (3.3)

k
∑

s=1

(nr,sµr,s + ns,r(cλs + dµs,r)) = 0. (3.4)

Multiplying (3.4) by b and substituting λs − aλr for bµr,s, we have

k
∑

s=1

Å
nr,s(λs − aλr) + ns,r

(

bcλs + d(λr − aλs)
)

ã
= 0

and so
k
∑

s=1

(

nr,s + (bc− ad)ns,r)λs = λr

k
∑

s=1

(anr,s − dns,r). (3.5)

Since bc− ad = − detB = 1, the left-hand side of (3.5) is equal to
∑k

s=1(nr,s + ns,r)λs. On the

other hand, since
∑k

s=1 ns,r =
∑k

s=1 nr,s = nr, the right-hand side of (3.5) is equal to (a−d)nrλr.

In summary, λ1, . . . , λk satisfy

k
∑

s=1

(nr,s + ns,r)λs = (a− d)nrλr (3.6)

as elements of A. We now show that if we set A = Z, then (3.6) implies λ1 = . . . = λk, so that

(a− 1)λr + bµr,s = aλr − λs + bµr,s = 0

where the second equality follows from (3.3). By Lemma 2.5, it will follow that (a−1)λr+bµr,s = 0
in the original torsion-free abelian group A, thus completing the proof.

To that end, suppose for a contradiction that the integers λ1, . . . , λk are not all equal. Then
we may assume

λ1 = . . . = λr0 > λr0+1, . . . , λk

for some r0 ∈ {1, . . . , k − 1}. Thus, for r = 1, . . . , r0, either we have nr,s + ns,r = 0 for s > r0, or
we obtain the contradiction

2nrλr =

k
∑

s=1

(nr,s + ns,r)λr >

k
∑

s=1

(nr,s + ns,r)λs = (a− d)nrλr > 2nrλr.

We conclude that nr,s = ns,r = 0 for r 6 r0 and s > r0, so that ρ(t) preserves the span of the

first
∑r0

r=1 nr standard basis vectors and the span of the last
∑k

r=r0+1 nr standard basis vectors

9
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of Fn. But then ρ(Γ) also preserves each of these subspaces, contradicting the indecomposability
of ρ.

Theorem 3.2. Suppose M ∈ E is not NPC, and let Γ = π1(M). Then Γ contains a nontrivial
virtually unipotent element.

Proof. We have Γ = ΓE

g,g′,B for some g, g′ > 1, where B =

Å
a b

c d

ã
is a gluing matrix for M . Note

that b 6= 0, and that, by Theorem 2.3, one of a, d is nonzero. By Remark 2.1, up to replacing B

with its inverse, we may assume a 6= 0. Furthermore, by Remark 2.1 and the fact that |detB| = 1,
up to negating rows and columns of B, we may assume a, b, c, d > 0. We show that if c = 0 (resp.,
c > 0) then z (resp., f) is a virtually unipotent element of Γ.

Let F be an algebraically closed field, n > 1, and ρ : Γ → GL(n,F) any representation. Let
λ1, . . . , λk ∈ F

∗ (resp., λ′

1, . . . , λ
′

ℓ ∈ F
∗) be the distinct eigenvalues of ρ(f) (resp., ρ(f ′)). By

Lemma 2.4 and relation (V) in the presentation of Γ, we may assume that

ρ(f) = diag(F1,1, . . . , F1,ℓ, . . . , Fk,1, . . . , Fk,ℓ)

ρ(f ′) = diag(F ′

1,1, . . . , F
′

1,ℓ, . . . , F
′

k,1, . . . , F
′

k,ℓ)

ρ(z) = diag(D1,1Z1,1, . . . ,D1,ℓZ1,ℓ, . . . ,Dk,1Zk,1, . . . ,Dk,ℓZk,ℓ)

where Fr,s, F
′

r,s, Zr,s ∈ GL(nr,s,F) are (possibly empty) upper triangular matrices, Dr,s is a

diagonal matrix in GL(nr,s,F) whose diagonal entries are bth roots of 1 in F, and the only
eigenvalue of Fr,s (resp., F ′

r,s, Zr,s) is λr (resp., λ′

s, µr,s), with µr,s ∈ F
∗ satisying

λ′

s = λa
rµ

b
r,s. (3.7)

Since, by relation (II) in the presentation of Γ, the ρ(xi), ρ(yi) commute with ρ(f), each of
the former preserves the eigenspaces of ρ(f). Thus, we have

ρ(xi) = diag(X
(i)
1 , . . . ,X

(i)
k )

ρ(yi) = diag(Y
(i)
1 , . . . , Y

(i)
k )

for some X
(i)
r , Y

(i)
r ∈ GL(nr,F), where nr =

∑k
s=1 nr,s is the dimension of the generalized λr-

eigenspace of ρ(f). Letting Zr = diag(Dr,1Zr,1, . . . ,Dr,ℓZr,ℓ), we have by relation (I) in the
presentation of Γ that

Zr =

g
∏

i=1

[X(i)
r , Y (i)

r ]

for r = 1, . . . , k. Thus, detZr = 1, and so

ℓ
∏

s=1

µ
nr,s
r,s = 1 (3.8)

in the quotient A of F∗ by its torsion subgroup.

Since, by relation (IV) in the presentation of Γ, the ρ(x′i), ρ(y
′

i) commute with ρ(f ′), each
of the former preserves the eigenspaces of ρ(f ′). Thus, by a similar argument to the one given
above, and by relation (VI) in the presentation of Γ, we have

k
∏

r=1

(λc
rµ

d
r,s)

nr,s = 1 (3.9)

10
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in A for s = 1, . . . , ℓ. Switching to additive notation within A, we obtain from (3.7), (3.8), (3.9)
the equations

aλ1 + bµ1,s = . . . = aλk + bµk,s for s = 1, . . . , ℓ, (3.10)

ℓ
∑

s=1

nr,sµr,s = 0 for r = 1, . . . , k, (3.11)

k
∑

r=1

nr,s(cλr + dµr,s) = 0 for s = 1, . . . , ℓ. (3.12)

We now set A = Z and show that, in this context, equations (3.11), (3.12), and (3.10) imply
that if c = 0 (resp., c > 0) then µr,s = 0 whenever nr,s > 0 (resp., then λr = 0 for r = 1, . . . , k).
By Lemma 2.5, the same statements will hold in the original torsion-free abelian group A, thus
completing the proof.

Suppose first that c = 0. Note that since |detB| = 1, this implies that a = d = 1, so that
equations (3.10), (3.12) are reduced to

λ1 + bµ1,s = . . . = λk + bµk,s for s = 1, . . . , ℓ, (3.13)

k
∑

r=1

nr,sµr,s = 0 for s = 1, . . . , ℓ. (3.14)

We show by induction on k + ℓ that, in this case, µr,s = 0 if nr,s > 0. The base case k + ℓ = 2
is trivial. By the symmetry of equations (3.11), (3.14), (3.13), we may assume that µk,1 > µr,s

for all r and s, and that µk,1 > . . . > µk,ℓ. Note that the former implies that in particular
µk,1 > µr,1, so we obtain from (3.13) that µk,ℓ > µr,ℓ for r = 1, . . . , k. If µk,ℓ > 0, then since
∑ℓ

s=1 nk,sµk,s = 0, we must have nk,1µk,1 = . . . = nk,ℓµk,ℓ = 0. This implies that µk,s = 0 if
nk,s > 0, so we may apply the induction hypothesis to the system of equations

λ1 + bµ1,s = . . . = λk−1 + bµk−1,s for s = 1, . . . , ℓ,

ℓ
∑

s=1

nr,sµr,s = 0 for r = 1, . . . , k − 1,

k−1
∑

r=1

nr,sµr,s = 0 for s = 1, . . . , ℓ.

Now suppose that µk,ℓ < 0. Since µk,ℓ > µr,ℓ for r = 1, . . . , k and
∑k

r=1 nr,ℓµr,ℓ = 0, we have
that n1,ℓµ1,ℓ = . . . = nk,ℓµk,ℓ = 0. This implies that µr,ℓ = 0 if nr,ℓ > 0, so we may apply the
induction hypothesis to the system of equations

λ1 + bµ1,s = . . . = λk + bµk,s for s = 1, . . . , ℓ− 1,

ℓ−1
∑

s=1

nr,sµr,s = 0 for r = 1, . . . , k,

k
∑

r=1

nr,sµr,s = 0 for s = 1, . . . , ℓ− 1.

This completes the proof for the case c = 0.

11



Sami Douba

We assume for the remainder of the proof that c > 0. Define

N =

Ö
n1,1 . . . nk,1
...

. . .
...

n1,ℓ . . . nk,ℓ

è
, u =

Ö
aλ1 + bµ1,1

...
aλ1 + bµ1,ℓ

è
, w =

Ö
cλ1
...

cλk

è

and let Nr be the rth column of N . We have

uTNr = (aλr + bµr,1, . . . , aλr + bµr,ℓ)Nr

= (aλr, . . . , aλr)Nr + b(µr,1, . . . , µr,ℓ)Nr

= (aλr, . . . , aλr)Nr

=

ℓ
∑

s=1

nr,saλr

where the first equality follows from (3.10) and the third follows from (3.11). Thus,

uTNw =

(

ℓ
∑

s=1

n1,saλ1, . . . ,

ℓ
∑

s=1

nk,saλk

)

w =
∑

r,s

nr,sacλ
2
r. (3.15)

On the other hand, we have

Nw =

Ö
∑k

r=1 nr,1cλr

...
∑k

r=1 nr,ℓcλr

è
= −

Ö
∑k

r=1 nr,1dµr,1
...

∑k
r=1 nr,ℓdµr,ℓ

è

where the second equality follows from (3.12). It follows that

−uTNw = uT

Ö
∑k

r=1 nr,1dµr,1
...

∑k
r=1 nr,ℓdµr,ℓ

è
=
∑

r,s

nr,s(aλ1 + bµ1,s)dµr,s =
∑

r,s

nr,s(aλr + bµr,s)dµr,s

(3.16)

where the last equality follows from (3.10). Combining (3.15) and (3.16), we obtain

0 =
∑

r,s

nr,sacλ
2
r +

∑

r,s

nr,s(aλr + bµr,s)dµr,s =
∑

r,s

nr,s(bdµ
2
r,s + adλrµr,s + acλ2

r). (3.17)

We claim that bdµ2
r,s + adλrµr,s+ acλ2

r > 0 for any r and s. If d = 0, this is clear. Otherwise,
we may view bdµ2

r,s + adλrµr,s + acλ2
r as a quadratic polynomial in µr,s with positive leading

coefficient bd and discriminant

∆r = (ad− 4bc)adλ2
r = (detB − 3bc)adλ2

r .

Since |detB| = 1, we have that ∆r 6 0, and so bdµ2
r,s + adλrµr,s + acλ2

r > 0.

Now let r ∈ {1, . . . , k}. We show that λr = 0. Indeed, we have nr,s > 0 for some s since
∑k

s=1 nr,s = nr > 0. Thus, by (3.17) and the previous paragraph, we have

bdµ2
r,s + adλrµr,s + acλ2

r = 0.

If d = 0, this immediately implies that λr = 0. Now suppose d, λr > 0. Then ∆r < 0 and so
bdµ2

r,s + adλrµr,s + acλ2
r > 0, a contradiction.
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Remark 3.3. Note that if c, d > 0, we also obtain that µr,s = 0 whenever nr,s > 0, so that ρ(z) is
also a virtually unipotent matrix. Thus, if all the entries of a gluing matrix for a manifold M ∈ E

are nonzero, then any element of π1(M) representing a curve on the JSJ torus of M is virtually
unipotent.
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