Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

Sami Douba

Abstract

Let M be a graph manifold containing a single JSJ torus T and whose JSJ blocks are of the form $\Sigma \times S^{1}$, where Σ is a compact orientable surface with boundary. We show that if M does not admit a Riemannian metric of everywhere nonpositive sectional curvature, then there is an essential curve on T such that any finite-dimensional linear representation of $\pi_{1}(M)$ maps an element representing that curve to a matrix all of whose eigenvalues are roots of 1 . In particular, this shows that $\pi_{1}(M)$ does not admit a faithful finite-dimensional unitary representation, and gives a new proof that $\pi_{1}(M)$ is not linear over any field of positive characteristic.

1. Introduction

A matrix $P \in \operatorname{GL}(n, \mathbb{F})$, where \mathbb{F} is a field, is unipotent if 1 is the only eigenvalue of P over the algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}. We say a matrix $P \in \mathrm{GL}(n, \mathbb{F})$ is virtually unipotent if some power of P is unipotent, that is, if the eigenvalues of P are all roots of 1 in $\overline{\mathbb{F}}$. The only matrix in GL $(n, \overline{\mathbb{F}})$ that is both unipotent and diagonalizable is the identity matrix; thus, a matrix in $\operatorname{GL}(n, \overline{\mathbb{F}})$ that is both virtually unipotent and diagonalizable has finite order.

We begin with an observation about a group consisting entirely of unipotent matrices: the integral Heisenberg group H, defined as the subgroup of $G L(3, \mathbb{R})$ consisting of the upper unitriangular integer matrices. One might ask if H can be realized as a subgroup of $\mathrm{GL}(n, \mathbb{F})$ for some (possibly different) n and \mathbb{F} that consists entirely of diagonalizable matrices. The following remark contains an elementary argument that this is impossible. See the work of Button for a proof of a more general result But19, Theorem 3.2], and for a broader discussion on unipotent matrices in matrix groups.

Remark 1.1. Let

$$
x=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad y=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad z=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and let $\rho: H \rightarrow \mathrm{GL}(n, \mathbb{F})$ be any representation. Up to replacing \mathbb{F} with its algebraic closure and postconjugating ρ, we may assume that $\rho(z)$ has a block-diagonal structure

$$
\rho(z)=\operatorname{diag}\left(Z_{1}, \ldots, Z_{k}\right)
$$

where $Z_{r} \in \mathrm{GL}\left(n_{r}, \mathbb{F}\right)$ is upper triangular with a unique eigenvalue $\lambda_{r} \in \mathbb{F}^{*}$, and that $\lambda_{1}, \ldots, \lambda_{k}$ are distinct. Since $\rho(x), \rho(y)$ commute with $\rho(z)$, each of the former preserves the generalized

Sami Douba

eigenspaces of $\rho(z)$ and thus has a block-diagonal structure

$$
\begin{aligned}
& \rho(x)=\operatorname{diag}\left(X_{1}, \ldots, X_{k}\right) \\
& \rho(y)=\operatorname{diag}\left(Y_{1}, \ldots, Y_{k}\right)
\end{aligned}
$$

where $X_{r}, Y_{r} \in \operatorname{GL}\left(n_{r}, \mathbb{F}\right)$. Since $z=[x, y]$, we have $Z_{r}=\left[X_{r}, Y_{r}\right]$, and so

$$
\lambda_{r}^{n_{r}}=\operatorname{det} Z_{r}=1
$$

for $r=1, \ldots, k$. We conclude that $\rho(z)$ is a virtually unipotent matrix. Since z has infinite order (as does any nontrivial unipotent matrix with entries in a field of characteristic zero), it follows that $\rho(z)$ cannot be diagonalizable if ρ is to be faithful.

Remark 1.1] motivates the following definition.
Definition 1.2. An element γ of an arbitrary group Γ is virtually unipotent if any finitedimensional linear representation of Γ maps γ to a virtually unipotent matrix.
Remark 1.3. If Γ is a residually finite group, as are many groups of interest and, in particular, as is the fundamental group of any closed 3 -manifold Hem87, then for any nontrivial element $\gamma \in \Gamma$, there is a finite-dimensional unitary representation ρ of Γ such that $\rho(\gamma)$ is nontrivial and hence, by diagonalizability of unitary matrices, not unipotent. Thus, for our purposes, it is not sensible to omit the word "virtually" in Definition 1.2,

Remark 1.4. If γ is a virtually unipotent element of a group Γ, then any element in the conjugacy class of γ is virtually unipotent in Γ. Moreover, if Γ_{0} is an abelian subgroup of Γ generated by virtually unipotent elements of Γ, then any element of Γ_{0} is virtually unipotent in Γ. The latter follows from the fact that an abelian subgroup of $\operatorname{GL}(n, \mathbb{F})$, where \mathbb{F} is an algebraically closed field, is conjugate to an upper triangular subgroup of $\operatorname{GL}(n, \mathbb{F})$ RR00, Theorem 1.1.5].

Remark 1.5. Suppose Γ_{0} is a finite-index normal subgroup of a group Γ, and that γ is a virtually unipotent element of Γ. Then a generator γ_{0} of $\langle\gamma\rangle \cap \Gamma_{0}$ is a virtually unipotent element of Γ_{0}. Indeed, let ρ_{0} be a finite-dimensional linear representation of Γ_{0}. Then ρ_{0} is a direct summand of the restriction $\left.\rho\right|_{\Gamma_{0}}$, where ρ is the representation induced by ρ_{0} on Γ. Since $\rho\left(\gamma_{0}\right)$ is a virtually unipotent matrix, it follows that the same is true for $\rho_{0}\left(\gamma_{0}\right)$.
Remark 1.6. Lubotzky-Mozes-Raghunathan LMR00, Prop. 2.4] showed that an element generating a distorted cyclic subgroup of a finitely generated group is virtually unipotent.

Note that a finite-order element of any group is virtually unipotent. From Remark 1.1 (or Remark (1.6), one observes that the integer Heisenberg group H, viewed as an abstract group, contains an infinite-order virtually unipotent element (namely, a generator of the center of H), and hence by Remark 1.5 so does the fundamental group of any closed 3-manifold with Nil geometry. In fact, the argument in Remark 1.1 shows that if an element γ of a group Γ is a product of commutators of elements $\gamma_{i} \in \Gamma$ such that γ commutes with the γ_{i}, then γ is a virtually unipotent element of Γ. Thus, for example, an element of $\pi_{1}(M)$ representing a Seifert fiber of a closed 3 -manifold M with $\overline{\mathrm{SL}(2, \mathbb{R})}$ geometry is virtually unipotent in $\pi_{1}(M)$.

A manifold is said to be nonpositively curved (NPC) if it admits a Riemannian metric of everywhere nonpositive sectional curvature. Closed 3-manifolds locally modeled on Nil or $\overline{\mathrm{SL}(2, \mathbb{R})}$ are not NPC [GW71, Yau71, Ebe82]. The purpose of this article is to exhibit nontrivial virtually unipotent elements within fundamental groups of non-NPC 3-manifolds of a different nature.

Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

Theorem 1.7. Let M be a connected closed orientable irreducible 3-manifold containing exactly one JSJ torus, and each of whose JSJ blocks is a product of S^{1} with a surface. If M is not NPC, then $\pi_{1}(M)$ contains a nontrivial virtually unipotent element.

We use a necessary and sufficient condition (Theorem 2.3) for such 3-manifolds M to be NPC due to Buyalo-Kobel'skii BK95, and independently Kapovich-Leeb [KL96] in the case that M has two JSJ blocks. Our argument is similar to Button's proof that Gersten's free-by-cyclic group contains a nontrivial virtually unipotent element [But17a, Theorem 4.5]. We remark that if M is a 3 -manifold as in the statement of Theorem 1.7 that is not the mapping torus of an Anosov homeomorphism of the 2-torus, then it follows from KL98 that all cyclic subgroups of $\pi_{1}(M)$ are undistorted.

An example of a 3 -manifold M as in the statement of Theorem 1.7 is the mapping torus of a Dehn twist about an essential simple closed curve on a closed orientable surface of genus at least 2 [KL96, Theorem 3.7]. In this case, our proof in fact shows that an element of $\pi_{1}(M)$ representing that curve is virtually unipotent.

Since a 3-manifold M as in the statement of Theorem 1.7 is aspherical, any nontrivial element of $\pi_{1}(M)$ has infinite order. We are interested in infinite-order virtually unipotent elements, since the existence of such an element within a group has interesting representation theoretic consequences for the group. The following definition is due to Button But17a, Definition 2.2].

Definition 1.8. A group Γ is NIU-linear if there is a faithful finite-dimensional linear representation ρ of Γ such that $\rho(\Gamma)$ does not contain unipotent matrices of infinite order.

Since unitary matrices are diagonalizable, any group admitting a faithful finite-dimensional unitary representation is NIU-linear (in fact, the image of such a representation will contain no nontrivial unipotent matrices). Furthermore, if \mathbb{F} is a field of positive characteristic, then every unipotent element of \mathbb{F} has finite order But17a, Proposition 2.1], and so any group admitting a faithful finite-dimensional linear representation over such \mathbb{F} is NIU-linear. Since a group containing an infinite-order virtually unipotent element is evidently not NIU-linear, such a group neither admits a faithful finite-dimensional unitary representation, nor a faithful finite-dimensional representation over a field of positive characteristic.

As a consequence of Theorem 1.7 and the work of several others, we obtain the following corollary.

Corollary 1.9. Let M be as in the statement of Theorem 1.7 and let $\Gamma=\pi_{1}(M)$. Then the following are equivalent:
(i) M is $N P C$;
(ii) Γ virtually embeds in a finitely generated right-angled Artin group;
(iii) Γ admits a faithful finite-dimensional unitary representation;
(iv) Γ admits a faithful finite-dimensional linear representation over a field of positive characteristic;
(v) Γ is NIU-linear;
(vi) Γ does not contain a nontrivial virtually unipotent element.

We explain how Corollary 1.9 can be established using Theorem 1.7. For us, a graph manifold is a connected closed orientable irreducible non-Seifert 3-manifold all of whose JSJ blocks are Seifert. The manifolds described in the statement of Theorem 1.7 can be thought of as the
simplest examples of graph manifolds. That (i) implies (ii) in Corollary 1.9 is due to Liu Liu13, who showed that the fundamental group of any NPC graph manifold is virtually a subgroup of a finitely generated right-angled Artin group (RAAG). Agol Ago18 showed that such a RAAG embeds in $\mathrm{U}(n)$ for some n, so that (ii) implies (iii). Moreover, the work of Berlai-de la Nuez González BG19] implies that a finitely generated RAAG admits a faithful finite-dimensional linear representation over a field of positive characteristic (indeed, any prime characteristic), and so (ii) also implies (iv), It was discussed before the statement of Corollary 1.9 that each of (iii) and (iv) imply (v), and that (v) implies (vi). Finally, the fact that (vi) implies (i) is precisely the statement of Theorem 1.7.

Remark 1.10. Note that if γ is an infinite-order virtually unipotent element of a group Γ, then $\langle\gamma\rangle \subset \Gamma$ is not a virtual retract of Γ by Remark [1.5. Thus, the fact that statement(ii) in Corollary 1.9 implies statement (vi) also follows from work of Minasyan Min19].

Remark 1.11. It was already known that statement (iv) in Corollary 1.9 does not hold for the fundamental group Γ of any non-NPC graph manifold. Indeed, Button But19 proved that any finitely generated group Γ satisfying (iv)] acts properly by semisimple isometries on a complete CAT(0) metric space, and Leeb [Lee92] showed that if the fundamental group of a graph manifold M admits such an action, then M is NPC. At the time of writing of this article, it is not known if a single non-NPC graph manifold without Sol geometry admits a faithful finite-dimensional linear representation over a field of characteristic zero.

Remark 1.12. It follows from the Lie-Kolchin-Mal'cev theorem that if Γ is a polycyclic group then Γ is NIU-linear if and only if Γ is virtually abelian [But17b]. Thus, for example, closed 3-manifolds with Nil or Sol geometry do not have NIU-linear fundamental groups. However, this handy obstruction to NIU-linearity is not useful for dealing with most 3-manifolds M as in the statement of Theorem 1.7 since, for all such M apart from the mapping torus of an Anosov homeomorphism of the 2-torus, any subgroup of $\pi_{1}(M)$ lacking a nonabelian free subgroup is in fact abelian [FLS11].

Statements (i) $f(\mathrm{v})$ in Corollary 1.9 were known to be equivalent for M a closed aspherical geometric 3-manifold and $\Gamma=\pi_{1}(M)$ But17a. It is also true that (vi) is equivalent to (i) (v) in this case. Indeed, to argue this, it suffices to show that if M is a closed aspherical geometric non-NPC 3 -manifold, that is, if M is a closed 3-manifold with Nil, $\widehat{\operatorname{SL}(2, \mathbb{R}) \text {, or Sol geometry, }}$ then $\pi_{1}(M)$ contains a nontrivial virtually unipotent element. This was already justified for the first two geometries, and closed Sol 3-manifolds are handled by Theorem 1.7 .

We conjecture the following.
Conjecture 1.13. Statements (i) (vi) in Corollary 1.9 are equivalent for any closed aspherical 3 -manifold M and $\Gamma=\pi_{1}(M)$.

By work of Agol AGM13 and Przytycki-Wise PW18, and the aforementioned work of Liu [Liu13, the fundamental group Γ of any closed NPC 3-manifold satisfies (ii) and hence (iii) (vi) in Corollary 1.9, Furthermore, a closed aspherical non-geometric non-NPC 3-manifold is (up to passing to its orientation cover) a graph manifold Lee92. Thus, Conjecture 1.13 amounts to the claim that the fundamental group of any non-NPC graph manifold contains a nontrivial virtually unipotent element.

Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

Organization

In Section 2, we fix the language in which we prove Theorem 1.7, and also present two lemmas that will be useful in the proof. The proof of Theorem 1.7 is contained in Section 3 and is divided into two cases: the case that there is a single block in the JSJ decomposition of the 3-manifold M (Theorem 3.1), and the case that there are two (Theorem 3.2). The two proofs are very similar and are somewhat technical, but involve only elementary linear algebra.

Acknowledgements

I am grateful to my supervisor Piotr Przytycki for his encouragement and guidance, and in particular for suggesting elegant techniques for taming large systems of equations. I also thank Jack Button for helpful discussions.

2. Preliminaries

2.1 Definitions

If S is a (not necessarily connected) closed surface embedded in a 3 -manifold M, we denote by $M \mid S$ the complement in M of a small open tubular neighborhood of S. If M is a connected closed orientable irreducible 3 -manifold, then there is, up to isotopy, a unique minimal collection \mathcal{E} of disjoint embedded incompressible tori such that each component of $M \mid \cup \mathcal{E}$ is either Seifert or atoroidal (see, for example, Kap01, Thm 1.41] and the references therein). The decomposition of M into the components of $M \mid \bigcup \mathcal{E}$ is called the Jaco-Shalen-Johannson (JSJ) decomposition of M. If $\mathcal{E}=\emptyset$, we say M has trivial JSJ decomposition. Note that if M is the mapping torus of an Anosov homeomorphism of the 2-torus, then M has nontrivial JSJ decomposition.

Let \mathfrak{G} denote the class of all connected closed orientable irreducible non-Seifert 3-manifolds M such that each component M_{v} of $M \mid \bigcup \mathcal{E}$, where \mathcal{E} is the collection of JSJ tori in M, is a trivial S^{1}-bundle over a compact orientable surface Σ_{v} with boundary. The manifolds M_{v} are the blocks of M. The underlying graph $\mathcal{G}=\mathcal{G}(M)$ of M is the graph dual to the JSJ decomposition of M; the graph \mathcal{G} is well-defined since the collection \mathcal{E} is unique up to isotopy. We identify the vertex set \mathcal{V} of \mathcal{G} with the set of blocks of M, and the set of unoriented edges of \mathcal{G} with \mathcal{E}. Denote by \mathcal{W} the set of oriented edges of \mathcal{G}. We identify \mathcal{W} with the set of boundary components of $M \mid \cup \mathcal{E}$ by assigning to each oriented edge $w \in \partial v \subset \mathcal{W}$ the corresponding boundary component T_{w} of M_{v}.

Choose an orientation of M, thereby inducing an orientation on each block M_{v} of M, and hence on each component of ∂M_{v}. For each $v \in \mathcal{V}$, choose an orientation of the fibers in M_{v}, as well as a Waldhausen basis for $H_{1}\left(\partial M_{v} ; \mathbb{Z}\right)$; that is, a basis $\left\{\left(f_{w}, z_{w}\right) \mid w \in \partial v\right\}$ for $H_{1}\left(\partial M_{v} ; \mathbb{Z}\right)=\bigoplus_{w \in \partial v} H_{1}\left(T_{w} ; \mathbb{Z}\right)$ such that the elements f_{w} represent oriented fibers, the algebraic intersection number $\hat{i}\left(z_{w}, f_{w}\right)$ on T_{w} is +1 , and the sum $\oplus_{w \in \partial v} z_{w}$ lies in the kernel of the map $H_{1}\left(\partial M_{v} ; \mathbb{Z}\right) \rightarrow H_{1}\left(M_{v} ; \mathbb{Z}\right)$ induced by inclusion. We call the additional structure on M given by the choices made in this paragraph a framing of M.

An oriented edge $w \in \mathcal{W}$ corresponds to a gluing homeomorphism $T_{-w} \rightarrow T_{w}$, which induces an isomorphism $\phi_{w}: H_{1}\left(T_{-w} ; \mathbb{Z}\right) \rightarrow H_{1}\left(T_{w} ; \mathbb{Z}\right)$. Define $B_{w}=\left(\begin{array}{ll}a_{w} & b_{w} \\ c_{w} & d_{w}\end{array}\right) \in \operatorname{GL}(2, \mathbb{Z})$ to be the matrix whose entries satisfy

$$
\begin{aligned}
\phi_{w}\left(f_{-w}\right) & =a_{w} f_{w}+b_{w} z_{w} \\
\phi_{w}\left(z_{-w}\right) & =c_{w} f_{w}+d_{w} z_{w}
\end{aligned}
$$

Note that $\operatorname{det} B_{w}=-1$ since M is orientable, that $B_{-w}=B_{w}^{-1}$, and that $b_{w} \neq 0$ by minimality of \mathcal{E}.

This article is concerned with the subclasses $\mathfrak{E}, \mathfrak{L}$ of \mathfrak{G} consisting of all manifolds M in \mathfrak{G} whose underlying graph is a single edge (joining distinct vertices) or a loop, respectively. We call $B \in \mathrm{GL}(2, \mathbb{Z})$ a gluing matrix for such a manifold M if $B=B_{w}$ for an oriented edge w of $\mathcal{G}(M)$ with respect to some framing of M.

The fundamental group $\pi_{1}(M)$ of a manifold $M \in \mathfrak{E}$ with gluing matrix $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and whose blocks $M_{v}, M_{v^{\prime}}$ have base surfaces Σ, Σ^{\prime} of genus g, g^{\prime}, respectively, is isomorphic to the group $\Gamma_{g, g^{\prime}, B}^{\mathcal{E}}$ given by the presentation with generators

$$
\begin{aligned}
& x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z, f \\
& x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{g^{\prime}}^{\prime}, y_{g^{\prime}}^{\prime}, z^{\prime}, f^{\prime}
\end{aligned}
$$

subject to the relations
(I) $z=\prod_{i=1}^{g}\left[x_{i}, y_{i}\right]$,
(II) $\left[x_{i}, f\right]=\left[y_{i}, f\right]=1$ for $i=1, \ldots, g$,
(III) $z^{\prime}=\prod_{i=1}^{g^{\prime}}\left[x_{i}^{\prime}, y_{i}^{\prime}\right]$,
(IV) $\left[x_{i}^{\prime}, f^{\prime}\right]=\left[y_{i}^{\prime}, f^{\prime}\right]=1$ for $i=1, \ldots, g^{\prime}$,
(V) $f^{\prime}=f^{a} z^{b}$,
(VI) $z^{\prime}=f^{c} z^{d}$,
where the subgroup $\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right\rangle$ (resp., $\left.\left\langle x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{g}^{\prime}, y_{g}^{\prime}\right\rangle\right)$ is the image of the map $\pi_{1}(\Sigma) \rightarrow$ $\pi_{1}(M)$ (resp., $\left.\pi_{1}\left(\Sigma^{\prime}\right) \rightarrow \pi_{1}(M)\right)$ induced by the inclusions $\Sigma \subset M_{v} \subset M$ (resp., $\Sigma^{\prime} \subset M_{v^{\prime}} \subset M$), and the element f (resp., f^{\prime}) represents an oriented fiber of M_{v} (resp., $M_{v^{\prime}}$).
Remark 2.1. Note that if C is obtained from B by negating a row or a column of B, then $\Gamma_{g, g^{\prime}, B}^{\mathfrak{E}} \cong \Gamma_{g, g^{\prime}, C}^{\mathcal{E}}$. Note also that $\Gamma_{g, g^{\prime}, B}^{\mathfrak{E}} \cong \Gamma_{g, g^{\prime}, B^{-1}}^{\mathfrak{E}}$.

The fundamental group $\pi_{1}(M)$ of a manifold $M \in \mathfrak{L}$ with gluing matrix $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and the base surface Σ of whose unique block M_{v} has genus g is isomorphic to the group $\Gamma_{g, B}^{\mathfrak{L}}$ given by the presentation with generators

$$
x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z, z^{\prime}, f, t
$$

subject to the relations
(1) $z z^{\prime}=\prod_{i=1}^{g}\left[x_{i}, y_{i}\right]$,
(2) $\left[x_{i}, f\right]=\left[y_{i}, f\right]=[z, f]=1$ for $i=1, \ldots, g$,
(3) $t f t^{-1}=f^{a} z^{b}$,
(4) $t z^{\prime} t^{-1}=f^{c} z^{d}$,
where the subgroup $\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z\right\rangle$ is the image of the map $\pi_{1}(\Sigma) \rightarrow \pi_{1}(M)$ induced by the inclusion $\Sigma \subset M_{v} \subset M$, and the element f represents an oriented fiber of M_{v}.
Remark 2.2. Note that $\Gamma_{g, B}^{\mathfrak{L}} \cong \Gamma_{g, B^{-1}}^{\mathfrak{L}}$.
The following theorem is a special case of a result of Buyalo-Kobel'skii BK95, and was proved independently by Kapovich-Leeb [KL96] in the case $M \in \mathfrak{E}$.

Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

Theorem 2.3. Let $M \in \mathfrak{E}$ (resp., $M \in \mathfrak{L}$) and let $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{Z})$ be a gluing matrix for M. Then M is NPC if and only if $a=d=0$ (resp., if and only if $|a-d| \geqslant 2$).

2.2 Basic lemmas

The following lemma will allow us to conjugate a representation ρ of the appropriate group Γ in a manner that makes the interactions between generalized eigenspaces of certain elements of $\rho(\Gamma)$ more apparent.

Lemma 2.4. Let \mathbb{F} be an algebraically closed field, let $P, P^{\prime}, Q \in \mathrm{M}_{n \times n}(\mathbb{F})$, and let $\lambda_{1}, \ldots, \lambda_{k}$ (resp. $\lambda_{1}^{\prime}, \ldots, \lambda_{\ell}^{\prime}$) be the distinct eigenvalues of P (resp. P^{\prime}). If P, P^{\prime}, Q pairwise commute, then there is a single matrix $C \in \mathrm{GL}(n, \mathbb{F})$ such that

$$
\begin{aligned}
C P C^{-1} & =\operatorname{diag}\left(P_{1,1}, \ldots, P_{1, \ell}, \ldots, P_{k, 1}, \ldots, P_{k, \ell}\right) \\
C P^{\prime} C^{-1} & =\operatorname{diag}\left(P_{1,1}^{\prime}, \ldots, P_{1, \ell}^{\prime}, \ldots, P_{k, 1}^{\prime}, \ldots, P_{k, \ell}^{\prime}\right) \\
C Q C^{-1} & =\operatorname{diag}\left(Q_{1,1}, \ldots, Q_{1, \ell}, \ldots, Q_{k, 1}, \ldots, Q_{k, \ell}\right)
\end{aligned}
$$

where $P_{r, s}, P_{r, s}^{\prime}, Q_{r, s}$ are (possibly empty) upper triangular matrices and the only eigenvalue of $P_{r, s}\left(\right.$ resp., $\left.P_{r, s}^{\prime}\right)$ is $\lambda_{r}\left(\right.$ resp., $\left.\lambda_{s}^{\prime}\right)$.

Proof. For $r=1, \ldots, k$, let W_{r} be the generalized λ_{r}-eigenspace of P, and let $n_{r}=\operatorname{dim} W_{r}$. We index the standard ordered basis for \mathbb{F}^{n} as follows:

$$
\left(e_{1,1}, \ldots, e_{1, n_{1}}, \ldots, e_{k, 1}, \ldots, e_{k, n_{k}}\right)
$$

We may assume that $W_{r}=\operatorname{Span}\left(e_{r, 1}, \ldots, e_{r, n_{r}}\right)$. Since each of P^{\prime}, Q commutes with P, we have that P^{\prime}, Q preserve the generalized eigenspaces of P, so P, P^{\prime}, Q share a block-diagonal structure

$$
\begin{aligned}
P & =\operatorname{diag}\left(P_{1}, \ldots, P_{k}\right) \\
P^{\prime} & =\operatorname{diag}\left(P_{1}^{\prime}, \ldots, P_{k}^{\prime}\right) \\
Q & =\operatorname{diag}\left(Q_{1}, \ldots, Q_{k}\right)
\end{aligned}
$$

where $P_{r}, P_{r}^{\prime} \in \mathrm{M}_{n_{r} \times n_{r}}(\mathbb{F})$. We may also assume that for some indexing

$$
\left(e_{r, 1,1}, \ldots, e_{r, 1, n_{r, 1}}, \ldots, e_{r, \ell, 1}, \ldots, e_{r, \ell, n_{r, \ell}}\right)
$$

of the ordered basis $\left(e_{r, 1}, \ldots, e_{r, n_{r}}\right)$ for W_{r}, where the $n_{r, s}$ are nonnegative integers satisfying $\sum_{s=1}^{\ell} n_{r, s}=n_{r}$, we have that $\operatorname{Span}\left(e_{r, s, 1}, \ldots, e_{r, s, n_{r, s}}\right)$ is the generalized λ_{s}^{\prime}-eigenspace of P_{r}^{\prime}. Since each of P_{r}, Q_{r} commutes with P_{r}^{\prime}, we have that P_{r}, Q_{r} preserve the generalized eigenspaces of P_{r}^{\prime}, so $P_{r}, P_{r}^{\prime}, Q_{r}$ share a block-diagonal structure

$$
\begin{aligned}
P_{r} & =\operatorname{diag}\left(P_{r, 1}, \ldots, P_{r, \ell}\right) \\
P_{r}^{\prime} & =\operatorname{diag}\left(P_{r, 1}^{\prime}, \ldots, P_{r, \ell}^{\prime}\right) \\
Q_{r} & =\operatorname{diag}\left(Q_{r, 1}, \ldots, Q_{r, \ell}\right)
\end{aligned}
$$

Now since $P_{r, s}, P_{r, s}^{\prime}, Q_{r, s}$ pairwise commute, they are simultaneously upper triangularizable RR00, Theorem 1.1.5], and Lemma 2.4 follows.

The following lemma will allow us to reduce systems of equations whose unknowns lie in \mathbb{F}^{*}, where \mathbb{F} is some field, to systems of linear equations with integer unknowns. It is a step in the proof of Theorem 4.5 in But17a. We include Button's argument for the convenience of the reader.

Sami Douba

Lemma 2.5. Let M be an integer matrix with L columns and suppose there is a subset $I \subset$ $\{1, \ldots, L\}$ such that for any $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{L}\right)^{T} \in \mathbb{Z}^{L}$ satisfying $M \boldsymbol{\alpha}=0$, we have $\alpha_{i}=0$ for $i \in I$. Let A be a torsion-free abelian group, and suppose $\mathbf{a}=\left(a_{1}, \ldots, a_{L}\right)^{T} \in A^{L}$ satisfies $M \mathbf{a}=0$. Then $a_{i}=0$ for $i \in I$.
Proof. Let $A_{0}=\left\langle a_{1}, \ldots, a_{L}\right\rangle \subset A$. Then A_{0} is a finitely generated torsion-free abelian group, so there is an isomorphism $\varphi: A_{0} \rightarrow \mathbb{Z}^{K}$ for some K. For each $j=1, \ldots, K$, we have

$$
M\left(\varphi_{j}\left(a_{1}\right), \ldots, \varphi_{j}\left(a_{L}\right)\right)^{T}=0
$$

where $\varphi_{j}=p_{j} \circ \varphi$ and $p_{j}: \mathbb{Z}^{K} \rightarrow \mathbb{Z}$ is the projection onto the j th coordinate, so that $\varphi_{j}\left(a_{i}\right)=0$ for $i \in I$. We conclude that $\varphi\left(a_{i}\right)=0$, and hence $a_{i}=0$, for $i \in I$.

3. Proof of Theorem 1.7

We divide Theorem 1.7 into Theorem 3.1 (the loop case) and Theorem 3.2 (the edge case), and prove each separately.
Theorem 3.1. Suppose $M \in \mathfrak{L}$ is not $N P C$, and let $\Gamma=\pi_{1}(M)$. Then Γ contains a nontrivial virtually unipotent element.
Proof. By Remark 2.2 and Theorem [2.3, we have $\Gamma=\Gamma_{g, B}^{\mathfrak{L}}$ for some $g \geqslant 0$ and $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{GL}(2, \mathbb{Z})$ with det $B=-1, b \neq 0$, and $a-d \geqslant 2$. We show that $f^{a-1} z^{b} \in \Gamma$ is virtually unipotent.

Let \mathbb{F} be an algebraically closed field, $n \geqslant 1$, and $\rho: \Gamma \rightarrow \mathrm{GL}(n, \mathbb{F})$ any representation. We may assume that ρ is indecomposable. Let $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}^{*}$ be the distinct eigenvalues of $\rho(f)$, and let $f^{\prime}=t f t^{-1}$. By Lemma 2.4 and relation (3) in the presentation of Γ, we may assume further that

$$
\begin{aligned}
\rho(f) & =\operatorname{diag}\left(F_{1,1}, \ldots, F_{1, k}, \ldots, F_{k, 1}, \ldots, F_{k, k}\right) \\
\rho\left(f^{\prime}\right) & =\operatorname{diag}\left(F_{1,1}^{\prime}, \ldots, F_{1, k}^{\prime}, \ldots, F_{k, 1}^{\prime}, \ldots, F_{k, k}^{\prime}\right) \\
\rho(z) & =\operatorname{diag}\left(D_{1,1} Z_{1,1}, \ldots, D_{1, k} Z_{1, k}, \ldots, D_{k, 1} Z_{k, 1}, \ldots, D_{k, k} Z_{k, k}\right)
\end{aligned}
$$

where $F_{r, s}, F_{r, s}^{\prime}, Z_{r, s} \in \mathrm{GL}\left(n_{r, s}, \mathbb{F}\right)$ are (possibly empty) upper triangular matrices, $D_{r, s}$ is a (possibly empty) diagonal matrix in $\mathrm{GL}\left(n_{r, s}, \mathbb{F}\right)$ whose diagonal entries are $|b|^{\text {th }}$ roots of 1 in \mathbb{F}, and the only eigenvalue of $F_{r, s}$ (resp., $F_{r, s}^{\prime}, Z_{r, s}$) is λ_{r} (resp., $\lambda_{s}, \mu_{r, s}$), with $\mu_{r, s} \in \mathbb{F}^{*}$ satisfying

$$
\begin{equation*}
\lambda_{s}=\lambda_{r}^{a} \mu_{r, s}^{b} . \tag{3.1}
\end{equation*}
$$

Since, by relation (2) in the presentation of Γ, each of $\rho\left(z^{\prime}\right), \rho\left(x_{1}\right), \rho\left(y_{1}\right), \ldots, \rho\left(x_{g}\right), \rho\left(y_{g}\right)$ commutes with $\rho(f)$, each preserves the generalized eigenspaces of $\rho(f)$, and so

$$
\begin{aligned}
\rho\left(z^{\prime}\right) & =\operatorname{diag}\left(Z_{1}^{\prime}, \ldots, Z_{k}^{\prime}\right) \\
\rho\left(x_{i}\right) & =\operatorname{diag}\left(X_{1}^{(i)}, \ldots, X_{k}^{(i)}\right) \\
\rho\left(y_{i}\right) & =\operatorname{diag}\left(Y_{1}^{(i)}, \ldots, Y_{k}^{(i)}\right)
\end{aligned}
$$

for some $Z_{r}^{\prime}, X_{r}^{(i)}, Y_{r}^{(i)} \in \mathrm{GL}\left(n_{r}, \mathbb{F}\right)$, where $n_{r}=\sum_{s=1}^{k} n_{r, s}$ is the dimension of the generalized λ_{r}-eigenspace of $\rho(f)$.

Let V_{r} be the generalized λ_{r}-eigenspace of $\rho\left(f^{\prime}\right)$. Then $\rho(t)^{-1} V_{r}$ is the generalized λ_{r}-eigenspace of $\rho(t)^{-1} \rho\left(f^{\prime}\right) \rho(t)=\rho(f)$, and the characteristic polynomial of

$$
\left.\rho\left(z^{\prime}\right)\right|_{\rho(t)^{-1} V_{r}}=\left.\rho(t)^{-1} \rho\left(f^{c} h^{d}\right) \rho(t)\right|_{\rho(t)^{-1} V_{r}}
$$

Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

coincides with the characteristic polynomial of $\left.\rho\left(f^{c} z^{d}\right)\right|_{V_{r}}$. Thus, up to multiplying each root by a root of 1 , the characteristic polynomial of the block Z_{r}^{\prime} is

$$
\left(x-\lambda_{1}^{c} \mu_{1, r}^{d}\right)^{n_{1, r}} \ldots\left(x-\lambda_{k}^{c} \mu_{k, r}^{d}\right)^{n_{k, r}} .
$$

Now let $Z_{r}=\operatorname{diag}\left(D_{r, 1} Z_{r, 1}, \ldots, D_{r, k} Z_{r, k}\right)$. Then, by relation (1) in the presentation of Γ, we have $Z_{r} Z_{r}^{\prime}=\prod_{i=1}^{g}\left[X_{r}^{(i)}, Y_{r}^{(i)}\right]$, so that $\operatorname{det}\left(Z_{r} Z_{r}^{\prime}\right)=1$. It follows that

$$
\begin{equation*}
\prod_{s=1}^{k} \mu_{r, s}^{n_{r, s}}\left(\lambda_{s}^{c} \mu_{s, r}^{d}\right)^{n_{s, r}}=1 \tag{3.2}
\end{equation*}
$$

in the quotient A of the group of units \mathbb{F}^{*} by its torsion subgroup. Viewing (3.1) also as equations in A and switching to additive notation within A, we obtain the equations

$$
\begin{align*}
& \lambda_{s}=a \lambda_{r}+b \mu_{r, s} \tag{3.3}\\
& \sum_{s=1}^{k}\left(n_{r, s} \mu_{r, s}+n_{s, r}\left(c \lambda_{s}+d \mu_{s, r}\right)\right)=0 . \tag{3.4}
\end{align*}
$$

Multiplying (3.4) by b and substituting $\lambda_{s}-a \lambda_{r}$ for $b \mu_{r, s}$, we have

$$
\sum_{s=1}^{k}\left(n_{r, s}\left(\lambda_{s}-a \lambda_{r}\right)+n_{s, r}\left(b c \lambda_{s}+d\left(\lambda_{r}-a \lambda_{s}\right)\right)\right)=0
$$

and so

$$
\begin{equation*}
\sum_{s=1}^{k}\left(n_{r, s}+(b c-a d) n_{s, r}\right) \lambda_{s}=\lambda_{r} \sum_{s=1}^{k}\left(a n_{r, s}-d n_{s, r}\right) \tag{3.5}
\end{equation*}
$$

Since $b c-a d=-\operatorname{det} B=1$, the left-hand side of (3.5) is equal to $\sum_{s=1}^{k}\left(n_{r, s}+n_{s, r}\right) \lambda_{s}$. On the other hand, since $\sum_{s=1}^{k} n_{s, r}=\sum_{s=1}^{k} n_{r, s}=n_{r}$, the right-hand side of (3.5) is equal to $(a-d) n_{r} \lambda_{r}$.

In summary, $\lambda_{1}, \ldots, \lambda_{k}$ satisfy

$$
\begin{equation*}
\sum_{s=1}^{k}\left(n_{r, s}+n_{s, r}\right) \lambda_{s}=(a-d) n_{r} \lambda_{r} \tag{3.6}
\end{equation*}
$$

as elements of A. We now show that if we set $A=\mathbb{Z}$, then (3.6) implies $\lambda_{1}=\ldots=\lambda_{k}$, so that

$$
(a-1) \lambda_{r}+b \mu_{r, s}=a \lambda_{r}-\lambda_{s}+b \mu_{r, s}=0
$$

where the second equality follows from (3.3). By Lemma 2.5) it will follow that $(a-1) \lambda_{r}+b \mu_{r, s}=0$ in the original torsion-free abelian group A, thus completing the proof.

To that end, suppose for a contradiction that the integers $\lambda_{1}, \ldots, \lambda_{k}$ are not all equal. Then we may assume

$$
\lambda_{1}=\ldots=\lambda_{r_{0}}>\lambda_{r_{0}+1}, \ldots, \lambda_{k}
$$

for some $r_{0} \in\{1, \ldots, k-1\}$. Thus, for $r=1, \ldots, r_{0}$, either we have $n_{r, s}+n_{s, r}=0$ for $s>r_{0}$, or we obtain the contradiction

$$
2 n_{r} \lambda_{r}=\sum_{s=1}^{k}\left(n_{r, s}+n_{s, r}\right) \lambda_{r}>\sum_{s=1}^{k}\left(n_{r, s}+n_{s, r}\right) \lambda_{s}=(a-d) n_{r} \lambda_{r} \geqslant 2 n_{r} \lambda_{r}
$$

We conclude that $n_{r, s}=n_{s, r}=0$ for $r \leqslant r_{0}$ and $s>r_{0}$, so that $\rho(t)$ preserves the span of the first $\sum_{r=1}^{r_{0}} n_{r}$ standard basis vectors and the span of the last $\sum_{r=r_{0}+1}^{k} n_{r}$ standard basis vectors

Sami Douba

of \mathbb{F}^{n}. But then $\rho(\Gamma)$ also preserves each of these subspaces, contradicting the indecomposability of ρ.

Theorem 3.2. Suppose $M \in \mathfrak{E}$ is not NPC, and let $\Gamma=\pi_{1}(M)$. Then Γ contains a nontrivial virtually unipotent element.
Proof. We have $\Gamma=\Gamma_{g, g^{\prime}, B}^{\mathfrak{E}}$ for some $g, g^{\prime} \geqslant 1$, where $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a gluing matrix for M. Note that $b \neq 0$, and that, by Theorem [2.3, one of a, d is nonzero. By Remark [2.1, up to replacing B with its inverse, we may assume $a \neq 0$. Furthermore, by Remark 2.1] and the fact that $|\operatorname{det} B|=1$, up to negating rows and columns of B, we may assume $a, b, c, d \geqslant 0$. We show that if $c=0$ (resp., $c>0)$ then z (resp., f) is a virtually unipotent element of Γ.

Let \mathbb{F} be an algebraically closed field, $n \geqslant 1$, and $\rho: \Gamma \rightarrow \mathrm{GL}(n, \mathbb{F})$ any representation. Let $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}^{*}$ (resp., $\lambda_{1}^{\prime}, \ldots, \lambda_{\ell}^{\prime} \in \mathbb{F}^{*}$) be the distinct eigenvalues of $\rho(f)$ (resp., $\rho\left(f^{\prime}\right)$). By Lemma 2.4 and relation (V) in the presentation of Γ, we may assume that

$$
\begin{aligned}
\rho(f) & =\operatorname{diag}\left(F_{1,1}, \ldots, F_{1, \ell}, \ldots, F_{k, 1}, \ldots, F_{k, \ell}\right) \\
\rho\left(f^{\prime}\right) & =\operatorname{diag}\left(F_{1,1}^{\prime}, \ldots, F_{1, \ell}^{\prime}, \ldots, F_{k, 1}^{\prime}, \ldots, F_{k, \ell}^{\prime}\right) \\
\rho(z) & =\operatorname{diag}\left(D_{1,1} Z_{1,1}, \ldots, D_{1, \ell} Z_{1, \ell}, \ldots, D_{k, 1} Z_{k, 1}, \ldots, D_{k, \ell} Z_{k, \ell}\right)
\end{aligned}
$$

where $F_{r, s}, F_{r, s}^{\prime}, Z_{r, s} \in \mathrm{GL}\left(n_{r, s}, \mathbb{F}\right)$ are (possibly empty) upper triangular matrices, $D_{r, s}$ is a diagonal matrix in $\operatorname{GL}\left(n_{r, s}, \mathbb{F}\right)$ whose diagonal entries are $b^{\text {th }}$ roots of 1 in \mathbb{F}, and the only eigenvalue of $F_{r, s}$ (resp., $F_{r, s}^{\prime}, Z_{r, s}$) is λ_{r} (resp., $\lambda_{s}^{\prime}, \mu_{r, s}$), with $\mu_{r, s} \in \mathbb{F}^{*}$ satisying

$$
\begin{equation*}
\lambda_{s}^{\prime}=\lambda_{r}^{a} \mu_{r, s}^{b} . \tag{3.7}
\end{equation*}
$$

Since, by relation (II) in the presentation of Γ, the $\rho\left(x_{i}\right), \rho\left(y_{i}\right)$ commute with $\rho(f)$, each of the former preserves the eigenspaces of $\rho(f)$. Thus, we have

$$
\begin{aligned}
\rho\left(x_{i}\right) & =\operatorname{diag}\left(X_{1}^{(i)}, \ldots, X_{k}^{(i)}\right) \\
\rho\left(y_{i}\right) & =\operatorname{diag}\left(Y_{1}^{(i)}, \ldots, Y_{k}^{(i)}\right)
\end{aligned}
$$

for some $X_{r}^{(i)}, Y_{r}^{(i)} \in \operatorname{GL}\left(n_{r}, \mathbb{F}\right)$, where $n_{r}=\sum_{s=1}^{k} n_{r, s}$ is the dimension of the generalized $\lambda_{r^{-}}$ eigenspace of $\rho(f)$. Letting $Z_{r}=\operatorname{diag}\left(D_{r, 1} Z_{r, 1}, \ldots, D_{r, \ell} Z_{r, \ell}\right)$, we have by relation (I) in the presentation of Γ that

$$
Z_{r}=\prod_{i=1}^{g}\left[X_{r}^{(i)}, Y_{r}^{(i)}\right]
$$

for $r=1, \ldots, k$. Thus, $\operatorname{det} Z_{r}=1$, and so

$$
\begin{equation*}
\prod_{s=1}^{\ell} \mu_{r, s}^{n_{r, s}}=1 \tag{3.8}
\end{equation*}
$$

in the quotient A of \mathbb{F}^{*} by its torsion subgroup.
Since, by relation (IV) in the presentation of Γ, the $\rho\left(x_{i}^{\prime}\right), \rho\left(y_{i}^{\prime}\right)$ commute with $\rho\left(f^{\prime}\right)$, each of the former preserves the eigenspaces of $\rho\left(f^{\prime}\right)$. Thus, by a similar argument to the one given above, and by relation (VI) in the presentation of Γ, we have

$$
\begin{equation*}
\prod_{r=1}^{k}\left(\lambda_{r}^{c} \mu_{r, s}^{d}\right)^{n_{r, s}}=1 \tag{3.9}
\end{equation*}
$$

Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

in A for $s=1, \ldots, \ell$. Switching to additive notation within A, we obtain from (3.7), (3.8), (3.9) the equations

$$
\begin{align*}
& a \lambda_{1}+b \mu_{1, s}=\ldots=a \lambda_{k}+b \mu_{k, s} \text { for } s=1, \ldots, \ell, \tag{3.10}\\
& \sum_{s=1}^{\ell} n_{r, s} \mu_{r, s}=0 \text { for } r=1, \ldots, k \tag{3.11}\\
& \sum_{r=1}^{k} n_{r, s}\left(c \lambda_{r}+d \mu_{r, s}\right)=0 \text { for } s=1, \ldots, \ell \tag{3.12}
\end{align*}
$$

We now set $A=\mathbb{Z}$ and show that, in this context, equations (3.11), (3.12), and (3.10) imply that if $c=0$ (resp., $c>0$) then $\mu_{r, s}=0$ whenever $n_{r, s}>0$ (resp., then $\lambda_{r}=0$ for $r=1, \ldots, k$). By Lemma 2.5, the same statements will hold in the original torsion-free abelian group A, thus completing the proof.

Suppose first that $c=0$. Note that since $|\operatorname{det} B|=1$, this implies that $a=d=1$, so that equations (3.10), (3.12) are reduced to

$$
\begin{align*}
& \lambda_{1}+b \mu_{1, s}=\ldots=\lambda_{k}+b \mu_{k, s} \text { for } s=1, \ldots, \ell, \tag{3.13}\\
& \sum_{r=1}^{k} n_{r, s} \mu_{r, s}=0 \text { for } s=1, \ldots, \ell \tag{3.14}
\end{align*}
$$

We show by induction on $k+\ell$ that, in this case, $\mu_{r, s}=0$ if $n_{r, s}>0$. The base case $k+\ell=2$ is trivial. By the symmetry of equations (3.11), (3.14), (3.13), we may assume that $\mu_{k, 1} \geqslant \mu_{r, s}$ for all r and s, and that $\mu_{k, 1} \geqslant \ldots \geqslant \mu_{k, \ell}$. Note that the former implies that in particular $\mu_{k, 1} \geqslant \mu_{r, 1}$, so we obtain from (3.13) that $\mu_{k, \ell} \geqslant \mu_{r, \ell}$ for $r=1, \ldots, k$. If $\mu_{k, \ell} \geqslant 0$, then since $\sum_{s=1}^{\ell} n_{k, s} \mu_{k, s}=0$, we must have $n_{k, 1} \mu_{k, 1}=\ldots=n_{k, \ell} \mu_{k, \ell}=0$. This implies that $\mu_{k, s}=0$ if $n_{k, s}>0$, so we may apply the induction hypothesis to the system of equations

$$
\begin{aligned}
& \lambda_{1}+b \mu_{1, s}=\ldots=\lambda_{k-1}+b \mu_{k-1, s} \text { for } s=1, \ldots, \ell, \\
& \sum_{s=1}^{\ell} n_{r, s} \mu_{r, s}=0 \text { for } r=1, \ldots, k-1, \\
& \sum_{r=1}^{k-1} n_{r, s} \mu_{r, s}=0 \text { for } s=1, \ldots, \ell .
\end{aligned}
$$

Now suppose that $\mu_{k, \ell}<0$. Since $\mu_{k, \ell} \geqslant \mu_{r, \ell}$ for $r=1, \ldots, k$ and $\sum_{r=1}^{k} n_{r, \ell} \mu_{r, \ell}=0$, we have that $n_{1, \ell} \mu_{1, \ell}=\ldots=n_{k, \ell} \mu_{k, \ell}=0$. This implies that $\mu_{r, \ell}=0$ if $n_{r, \ell}>0$, so we may apply the induction hypothesis to the system of equations

$$
\begin{aligned}
& \lambda_{1}+b \mu_{1, s}=\ldots=\lambda_{k}+b \mu_{k, s} \text { for } s=1, \ldots, \ell-1, \\
& \ell-1 \\
& \sum_{s=1}^{\ell} n_{r, s} \mu_{r, s}=0 \text { for } r=1, \ldots, k \\
& \sum_{r=1}^{k} n_{r, s} \mu_{r, s}=0 \text { for } s=1, \ldots, \ell-1 .
\end{aligned}
$$

This completes the proof for the case $c=0$.

Sami Douba

We assume for the remainder of the proof that $c>0$. Define

$$
N=\left(\begin{array}{ccc}
n_{1,1} & \ldots & n_{k, 1} \\
\vdots & \ddots & \vdots \\
n_{1, \ell} & \ldots & n_{k, \ell}
\end{array}\right), \quad \mathbf{u}=\left(\begin{array}{c}
a \lambda_{1}+b \mu_{1,1} \\
\vdots \\
a \lambda_{1}+b \mu_{1, \ell}
\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{c}
c \lambda_{1} \\
\vdots \\
c \lambda_{k}
\end{array}\right)
$$

and let N_{r} be the $r^{\text {th }}$ column of N. We have

$$
\begin{aligned}
\mathbf{u}^{T} N_{r} & =\left(a \lambda_{r}+b \mu_{r, 1}, \ldots, a \lambda_{r}+b \mu_{r, \ell}\right) N_{r} \\
& =\left(a \lambda_{r}, \ldots, a \lambda_{r}\right) N_{r}+b\left(\mu_{r, 1}, \ldots, \mu_{r, \ell}\right) N_{r} \\
& =\left(a \lambda_{r}, \ldots, a \lambda_{r}\right) N_{r} \\
& =\sum_{s=1}^{\ell} n_{r, s} a \lambda_{r}
\end{aligned}
$$

where the first equality follows from (3.10) and the third follows from (3.11). Thus,

$$
\begin{equation*}
\mathbf{u}^{T} N \mathbf{w}=\left(\sum_{s=1}^{\ell} n_{1, s} a \lambda_{1}, \ldots, \sum_{s=1}^{\ell} n_{k, s} a \lambda_{k}\right) \mathbf{w}=\sum_{r, s} n_{r, s} a c \lambda_{r}^{2} . \tag{3.15}
\end{equation*}
$$

On the other hand, we have

$$
N \mathbf{w}=\left(\begin{array}{c}
\sum_{r=1}^{k} n_{r, 1} c \lambda_{r} \\
\vdots \\
\sum_{r=1}^{k} n_{r, \ell} c \lambda_{r}
\end{array}\right)=-\left(\begin{array}{c}
\sum_{r=1}^{k} n_{r, 1} d \mu_{r, 1} \\
\vdots \\
\sum_{r=1}^{k} n_{r, \ell} d \mu_{r, \ell}
\end{array}\right)
$$

where the second equality follows from (3.12). It follows that

$$
-\mathbf{u}^{T} N \mathbf{w}=\mathbf{u}^{T}\left(\begin{array}{c}
\sum_{r=1}^{k} n_{r, 1} d \mu_{r, 1} \tag{3.16}\\
\vdots \\
\sum_{r=1}^{k} n_{r, \ell} d \mu_{r, \ell}
\end{array}\right)=\sum_{r, s} n_{r, s}\left(a \lambda_{1}+b \mu_{1, s}\right) d \mu_{r, s}=\sum_{r, s} n_{r, s}\left(a \lambda_{r}+b \mu_{r, s}\right) d \mu_{r, s}
$$

where the last equality follows from (3.10). Combining (3.15) and (3.16), we obtain

$$
\begin{equation*}
0=\sum_{r, s} n_{r, s} a c \lambda_{r}^{2}+\sum_{r, s} n_{r, s}\left(a \lambda_{r}+b \mu_{r, s}\right) d \mu_{r, s}=\sum_{r, s} n_{r, s}\left(b d \mu_{r, s}^{2}+a d \lambda_{r} \mu_{r, s}+a c \lambda_{r}^{2}\right) \tag{3.17}
\end{equation*}
$$

We claim that $b d \mu_{r, s}^{2}+a d \lambda_{r} \mu_{r, s}+a c \lambda_{r}^{2} \geqslant 0$ for any r and s. If $d=0$, this is clear. Otherwise, we may view $b d \mu_{r, s}^{2}+a d \lambda_{r} \mu_{r, s}+a c \lambda_{r}^{2}$ as a quadratic polynomial in $\mu_{r, s}$ with positive leading coefficient $b d$ and discriminant

$$
\Delta_{r}=(a d-4 b c) a d \lambda_{r}^{2}=(\operatorname{det} B-3 b c) a d \lambda_{r}^{2} .
$$

Since $|\operatorname{det} B|=1$, we have that $\Delta_{r} \leqslant 0$, and so $b d \mu_{r, s}^{2}+a d \lambda_{r} \mu_{r, s}+a c \lambda_{r}^{2} \geqslant 0$.
Now let $r \in\{1, \ldots, k\}$. We show that $\lambda_{r}=0$. Indeed, we have $n_{r, s}>0$ for some s since $\sum_{s=1}^{k} n_{r, s}=n_{r}>0$. Thus, by (3.17) and the previous paragraph, we have

$$
b d \mu_{r, s}^{2}+a d \lambda_{r} \mu_{r, s}+a c \lambda_{r}^{2}=0 .
$$

If $d=0$, this immediately implies that $\lambda_{r}=0$. Now suppose $d, \lambda_{r}>0$. Then $\Delta_{r}<0$ and so $b d \mu_{r, s}^{2}+a d \lambda_{r} \mu_{r, s}+a c \lambda_{r}^{2}>0$, a contradiction.

Virtually Unipotent Curves in Some Non-NPC Graph Manifolds

Remark 3.3. Note that if $c, d>0$, we also obtain that $\mu_{r, s}=0$ whenever $n_{r, s}>0$, so that $\rho(z)$ is also a virtually unipotent matrix. Thus, if all the entries of a gluing matrix for a manifold $M \in \mathfrak{E}$ are nonzero, then any element of $\pi_{1}(M)$ representing a curve on the JSJ torus of M is virtually unipotent.

References

AGM13 Ian Agol, Daniel Groves, and Jason Manning, The virtual Haken conjecture, Doc. Math 18 (2013), 1045-1087.

Ago18 Ian Agol, Hyperbolic 3-manifold groups that embed in compact Lie groups, MathOverflow, 2018, URL:https://mathoverflow.net/q/315430 (version: 2018-11-16).
BG19 Federico Berlai and Javier de la Nuez González, Linearity of graph products, arXiv preprint arXiv:1906.11958 (2019).
BK95 Sergey V Buyalo and Viktor L Kobel'skii, Geometrization of graph-manifolds. II. Isometric geometrization, Algebra i Analiz 7 (1995), no. 3, 96-117.
But17a Jack O Button, Free by cyclic groups and linear groups with restricted unipotent elements, Groups Complexity Cryptology 9 (2017), no. 2, 137-149.
But17b , Properties of linear groups with restricted unipotent elements, arXiv preprint arXiv:1703.05553 (2017).
But19 ——Aspects of non positive curvature for linear groups with no infinite order unipotents, Groups, Geometry, and Dynamics 13 (2019), no. 1, 277-293.
Ebe82 Patrick Eberlein, A canonical form for compact nonpositively curved manifolds whose fundamental groups have nontrivial center, Mathematische Annalen 260 (1982), no. 1, 23-29.
FLS11 Roberto Frigerio, Jean-François Lafont, and Alessandro Sisto, Rigidity of high dimensional graph manifolds, arXiv preprint arXiv:1107.2019 (2011).
GW71 Detlef Gromoll and Joseph A Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bulletin of the American Mathematical Society 77 (1971), no. 4, 545-552.
Hem87 John Hempel, Residual finiteness for 3-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) 111 (1987), 379-396.
Kap01 Michael Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhäuser, Boston, 2001.
KL96 Michael Kapovich and Bernhard Leeb, Actions of discrete groups on nonpositively curved spaces, Mathematische Annalen 306 (1996), no. 1, 341-352.
KL98 , 3-manifold groups and nonpositive curvature, Geometric \& Functional Analysis GAFA 8 (1998), no. 5, 841-852.
Lee92 Bernhard Leeb, 3-manifolds with(out) metrics of nonpositive curvature, Ph.D. thesis, University of Maryland, 1992.
Liu13 Yi Liu, Virtual cubulation of nonpositively curved graph manifolds, Journal of Topology 6 (2013), no. 4, 793-822.
LMR00 Alexander Lubotzky, Shahar Mozes, and Madabusi S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 91 (2000), no. 1, 5-53.
Min19 Ashot Minasyan, Virtual retraction properties in groups, International Mathematics Research Notices (2019), rnz249.
PW18 Piotr Przytycki and Daniel Wise, Mixed 3-manifolds are virtually special, Journal of the American Mathematical Society 31 (2018), no. 2, 319-347.
RR00 Heydar Radjavi and Peter Rosenthal, Simultaneous Triangularization, Springer, New York, 2000.

Yau71 Shing Tung Yau, On the fundamental group of compact manifolds of non-positive curvature, Annals of Mathematics (1971), 579-585.

Sami Douba sami.douba@mail.mcgill.ca
Department of Mathematics and Statistics, McGill University, Montreal, QC H3A 0B9

