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Abstract

In the present paper we develop a small cancellation theory for
associative algebras with a basis of invertible elements. Namely, we
study quotients of a group algebra of a free group and introduce three
axioms for the corresponding defining relations. We show that the
obtained ring is non-trivial. Moreover, we show that this ring enjoys a
global filtration that agrees with relations, find a basis of the ring as a
vector space and establish the corresponding structure theorems. We
also provide a revision of a concept of Grobner basis for our rings and
establish a greedy algorithm for the Ideal Membership Problem.
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1 Introduction

For any variety of algebraic systems, one can define a specific algebraic system
by generators and defining relations [7]. When the free algebra of this variety
is well enough understood, we may pose the following (vague) question:

If the interactions among the defining relations are weak in a certain
sense, will the resulting algebra bear some resemblance to the free algebra?

For instance, may it be non-trivial, may it have a reasonable structure
theory, may it have a solvable equality problem or even may its equality
problem enjoy a greedy algorithm.

In the case of groups (or semigroups and monoids) the Small Cancellation
Theory provides an answer to this question. In the present paper we develop
a similar theory for associative algebras with a basis of invertible elements.
In fact, in course of studying the question:

“what is a small cancellation associative ring?"

we axiomatically define a ring, which can reasonably be called a ring with
small cancellation. We also determine the structure and properties of this
ring.

General theory presented in this paper is modeled after a particular case
we have treated in our previous paper [2].

1.1 Motivation, objectives, results

The motivation for developing a ring-theoretical analog of small cancella-
tion comes from the fact that small cancellation for groups and, especially,
its more far-reaching versions, provides a very powerful technique for con-
structing groups with unusual, and even exotic, properties, like for example,
infinite Burnside groups [21]-[23], [1], [26],[15], [20],[8],|7], Tarski monster
[25], finitely generated infinite divisible groups [12], and many others [24].

On the other hand, there is a conceptual desire to understand what neg-
ative curvature could mean for ring theory.

For any group with the fixed system of generators, its Cayley graph can
be considered as a metric space. This leads to Gromov’s program “Groups
as geometric objects" [10], see also [11]. In particular, a finitely generated
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group is word-hyperbolic when its Cayley graph is d-hyperbolic for 6 > 0
(see [6], [9] for modern exposition and references).

So far, we do not know a way to associate a geometric object to a ring.
Thus, having in mind the negative curvature as a heuristic and indirect hint
for our considerations, we, nevertheless, follow a more accessible combina-
torial line of studying rings. Therefore, small cancellation groups appear
naturally on the stage.

Finitely generated small cancellation groups turned out to be word hyper-
bolic (when every relation needs at least 7 pieces). So, if we could generalize
small cancellation to the ring theoretic situation, it would provide examples
to the yet undefined concept of a ring with a negative curvature. Another
source of potential examples should be group algebras of hyperbolic groups.

Following this reasoning, we introduce in the paper the small cancellation
axioms for rings. We develop the theory of rings that satisfy these axioms.
It is a major problem to establish that the resulting quotient is non-zero.
Only in the end of the paper we are in a position to verify this claim. We
also construct an explicit linear basis for such rings. In parallel we show that
the equality problem in our ring is solvable. In fact it possesses algorithmic
properties similar to ones for groups with small cancellation.

Group algebras of groups can be defined by ring presentations in which
all polynomials are in fact binomials. If we take small cancellation groups
with appropriate constants then their group algebras satisfy Small Cancella-
tion Axioms, see Subsection [[I.1l Surface groups are among the well-known
examples of small cancellation groups and, therefore, their group algebras
provide examples of rings with small cancellation.

We do hope that being of interest as a ring of new type by itself, this ring
will inherit useful practical properties known for small cancellation groups
and, thus, it can be used for obtaining complicated algebras with the very
specific properties.

We shall note another direction in the construction of algebras with un-
usual properties. This refers to the breakthrough made by A. Smoktunowicz.
Her innovatory approach to controlling relations in rings led to the construc-
tion of a simple nil-ring and other important examples of nil algebras (see

[29], [30], [16],[17]).



1.2 Overview of the work

In the present paper we develop a small cancellation theory for associative
algebras with a basis of invertible elements. In this introductory overview
we explain why such a generalization exists at all, why it turns out to be so
technical and difficult, and what is the strategy to overcome difficulties.

1.2.1 Small cancellation for groups

The small cancellation theory for groups, in its simplest version, is quite an
elementary theory (see [19]), and let us shortly outline it here. Consider a
group presentation G = (X | R) where we assume that the set of relations
R is closed under cyclic permutations and inverses.

The interaction between the defining relations is described in terms of
small pieces (see the definition below).

Throughout the paper we use the following notations. Let F be the free
group with the set of free generators X'. Assume A and B are two elements
of F. We write the product of the monomials A and B as A - B. There may
occur cancellations between A and B in A - B. We write the product of A
and B in the form AB when there are no cancellations in A - B.

A word s € F is called a small piece with respect to R if there are relations
of the form [;sry and lysry in R such that rl; # rols as words in the free
group, and any conjugate of (ril;) - (I;'r; ') is not contained in R, after
possible cancellations (cf. [27]).

Remark 1.1. The geometric way to think about small pieces is seeing them
as words that may appear on the common boundary between two cells in the
van Kampen diagram [19], [24]. In particular, if (r1l1) - (I;'r; ') € R, then



we can substitute these cells by a simple cell, so we are entitled to assume
from the beginning that (ryl;) - (I;'r; ") ¢ R.

The small cancellation condition says that any relation in R cannot be
written as a product of too few small pieces. For most of purposes seven
small pieces suffice, since the discrete Euler characteristic per cell becomes
negative [19], [18].

To ensure this, we can assume that the length of any small piece is less
than one sixth of the length of the whole relation in which it appears.

Note that in the simpler version of the Small Cancellation Theory the
last condition (r11;)- (I;'ry ') ¢ R is omitted. So in the simpler version more
words are qualified as small pieces and, correspondingly, this class is smaller.

Every element of G can be presented by a word in the generators X
that does not contain occurrences of more than a half of one of the relations
(otherwise there is a shorter word presenting the same element). However
this presentation need not be unique. The question is to which extent it is
not unique. The Main Theorem of Small Cancellation Theory provides the
following answer.

Let w1, wa be two words that do not contain occurrences of more than a
half of a relation. They represent the same element of G if and only if they
can be connected by a one-layer diagram ([19], especially see Greendlinger’s
Lemma).

As an illustration, consider the following example

az ) C2 do ©2 f2
l :: my ma r
S1 52 53
a by 1 dy el fi

wy = la1b1m101m2d161f1r,

W9 = la2b2m102m2d262f2’r.

and alslagl, blbglsfl, 0102_1, dlsgdgl, 618362_182_1, flfglsgl are relations,
and sq, s9, s3 are small pieces.

The transition from w; to ws can be divided into a sequence of elementary
steps called turns (|21]—[23]). Each turn reverses just one cell. For example,

W1 =Yg > V1 > Vg = V3 > Vg > U5 = Vg = U,
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where

vg = w1 = laybymicimadye fir,
-1
v = la281 b1m101m2d161f17’,

Vg = la2bzm101m2d161f17”7

etc. The turns can be performed in any order.

In general, if m = pg € R, w = lpr, then w = lpr s lg~*

r =w' is a turn.

1.2.2 Main definitions and examples for the ring case

Since we start with small cancellation of groups (or, not, say, of semigroups
and monoids, see for example [14], [13], [28]), we deal with quotients of the
group algebra of a free group and not with quotients of a free associative
algebra.

Given a field k& and the free group F, denote by kF the corresponding
group algebra. Let a set of polynomials R from kF be fixed. Define Z to be
the ideal generated by the elements of R as an ideal.

As above, we fix the following notations. Assume X and Y are two
elements of kF. We write their product as X - Y. Assume A and B are two
elements of F. We write the product of the monomials A and B as A - B.
There may occur cancellations between A and B in A - B. We write the
product of A and B in the form AB when there are no cancellations in A- B.

First of all we introduce three types of conditions on elements of R called
Compatibility Axiom, Small Cancellation Axiom and Isolation Axiom. These
restrictions are our analogue of Small Cancellation Condition for group pre-
sentations (see [19]).

Now we indicate counterparts of the notions of a small piece and of a
turn.

Our definition of a small piece for presentations of associative algebras
with a basis of invertible elements is based on the definition of a small piece
for group presentations mentioned above. However, this generalization is not
at all straightforward; rather it constitutes a major conceptual novelty (see
Definition 2.T]).

The notion of turn is replaced by the notion of multi-turn (Definition [3.5]).
Throughout the paper we reserve small Greek letters for non-zero elements of
the field k. Let Z;‘:l a;m; € R, with all o; # 0 given. Let v be a monomial
of the form v = Imy,r for some h, 1 < h < n. The transition from v = Imy,r



to S 1 (—a; ta;)lm,r is called a multi-turn. Tt is extended by linearity to
JF#h

fv, and then extended to polynomials, such that one of their terms is of the
form pfv. The corresponding polynomial Z;L=1 ajlm;r is called the layout of
this multi-turn.

Examples. In our examples we assume for simplicity that the ground field
is the field with two elements.

A. Let v = layr and let our polynomial be a; + as from R. In this case
we have a transition from la;r to lasr (see the picture)

a2

a

The transition from la;r to lasr shows that a turn is a particular case of a
multi-turn.

B. Let v = la;r and let our polynomial be a; + as + a3 from R. Then we
have a transition from la,7 to lasr 4 lasr. We use the picture

C. Let the monomial v = lga;q~'r be given, and let our polynomial be
a; + as + 1 from R. Then the multi-turn is a transition from lga;q~'r to
lgasq~'r+1-r. Note that after insertion of 1 instead of a; the factor ¢ cancels
out with ¢=!. The 1 is not reflected in the picture.

a2
N RN S
I T 1 al T T 1
D. Let the monomial v = la;b;r be given. Consider the polynomials

a, + as + CL381_1 and by + by + 1 from R. We have two adjacent multi-turns:
ay is replaced by as + ClgSl_l and by is replaced by s1b; + 1. We have a picture



as b2

l ag S1 T
I 1 1 T 1

aq bl

Performing both multi-turns, we obtain that la,by7 is replaced by lasbir +
lagsflblr and then by la231b27‘+la2-7‘+la3b27‘+la331_1~r. There may be further
cancellations in the monomials lasr and lCLgSl_l’f’. Performing the multi-turns
in the opposite order, we obtain that la,b;r is replaced by la;sibsr + laq - 7,
and then by lassi1bar+lasbor+las -r+la331_1 -r, also with further cancellations.
Notice that we needed to modify the second multi-turn before applying it,
and notice that the result does not depend on the order of performing the
multi-turns.

These examples show that, in comparison with the group case, a number
of new phenomena occur. For instance, in Examples C and D unavoidable
cancellations may happen. Occurrences of short words cause additional dif-
ficulties.

Now let us explain how we cope with this situation. Like in the group
case, we introduce the notion of the chart of a monomial. The chart of a
monomial is a distinguished set of occurrences of its submonomials from a
given set. In this paper, unless specified otherwise, all these occurrences
are maximal occurrences of monomials from the set M of the monomials
appearing in the set R of polynomial relations (see page 25). Notice that
according to the Compatibility Axiom, the set M is closed under taking
submonomials. In our setting, the multi-turns we consider always start with
an appropriate member of the chart of the monomial. Given a monomial,
its chart, and a set of multi-turns applicable to this monomial, we define a
new central notion of the space of linear dependencies associated with this
monomial and the set of multi-turns. If we apply one multi-turn generated
by Z?:l a;m; € R to the monomial v = lmyr, then we consider the linear
subspace of kF spanned by the monomials im;r, j = 1,...,n, after possible
cancellations. In the image of this subspace in £F/Z, the linear dependence
Z;‘:l a;lm;r holds. If we apply several multi-turns to the monomial v, then
we consider all monomials we obtain from v, and the linear dependencies
between them in kF /Z induced by all these multi-turns. In our last example
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D, we have the monomials

laybyr,  lasbyr, lagsl_lblr,
lalslbﬂ, la2slb2r, lCLngT,

lay -r, lag-r, la381_1 7

after appropriate cancellations in the last three monomials and the linear
dependencies

laibyr + laghir + lagsflblr =0,
lays1bor + lassibar + lasbyr = 0,
lay -r +lag - r +lags;' -r =0,
larbir + lags1bor + lay -1 =0,
lagbir + lagsiber + lag - 7 =0,

lagsy 'bir + lasbyr + lassy' -1 = 0.

Notice that here we have only 5 linear constraints (and not 6), so the resulting
linear space is (at most) 4-dimensional. It is easy to see that in the group
case the corresponding linear space is 1-dimensional, and so this phenomenon
degenerates in the group case.

1.2.3 Structure of small cancellation algebras

Like in the group case, starting with small pieces, we introduce a A-measure
on the monomials from M. If a monomial v can be written as a product
of small pieces, then A(v) is the minimal number of small pieces needed for
such presentation, otherwise A(v) = oco.

We fix a threshold constant 7 and say that kF/Z is C(1)-small cancella-
tion ring if it satisfies Compatibility Axiom, Small Cancellation Axiom with
respect to 7 + 1 small pieces and Isolation Axiom. In the further argument
we require 7 > 10.

In our paper, we perform a very detailed study of the influence of multi-
turns on members of the charts of monomials. Here we have to treat several
caveats. When we define members of a chart in the terms of their SPM-
measure, such definition is not stable enough under multi-turns. So, we have
to define a very delicate notion of a virtual member of the chart (Section [6).
In order to do this, one has to verify that the cumulative influence of a long
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sequence of multi-turns has no adverse effects. In the course of this verifica-
tion, we introduce several invariants of the chart, and finally, we introduce
the notion of f-characteristic (Definition [[.2]). Using the f-characteristic, we
introduce a global increasing filtration F,,(kF), n > 0, on kF, which gives
rise to the filtration on the quotient algebra kF/Z, and then consider the
corresponding graded objects. All the members of our filtration are spanned
by monomials. Hence, we can define the space of dependencies of a given
member of the filtration as a linear subspace spanned by the spaces of depen-
dencies of all its monomials. It is important to stress that when multi-turns
cause degeneracies, like it happened in our Example C, the corresponding
monomials descend to the lower members of the filtration, so that they dis-
appear in the graded objects. It turns out, that it is sufficient to study
dependencies in the following particular local situation. Namely, our Main
Lemma [8.4] describes the interaction between the filtration and the spaces of
linear dependencies:

Dp((U)q) NL((U)a) C Fry(kF),

where U is a monomial from F,,(kF)\ F,—1(kF), (U)q stands for the current
level of the filtration, L((U),) denotes the next level of the filtration (in the
descending order), and Dp denotes the spaces of dependencies (see Section [§
for precise definitions).

Here is the place to make some comments. In essence, the main result
above claims that in the quotient algebra kF/Z there are no unexpected
linear dependencies. But, first, one has to explain what are the expected
linear dependencies.

Consider the filtration F,(kF), n > 0, on kF introduced above. Let
U € F,(kF) be a monomial such that its chart has m virtual members, U =
LOy@OR® 4 =12 ... ,m. Forany p € R of the form p = au® +Z?Zl aja;,
a # 0, we consider the polynomial L® - p- R® € kF. All such polynomials
obviously belong to F,,(kF) NZ and are regarded as expected dependencies.

In fact, our main result claims that the opposite is also true.

Theorem 1. F,(kF) NZ is linearly spanned by all the polynomials of the
form LW.p-RY i =1,... m for all monomials U € F,,(kF) and polynomials
p € R as above, n > 0.

Given the theorem, the graded object Gr(kF/Z) can be explicitly deter-
mined by local calculations (see, in particular, Proposition RI1]). This allows
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us to show that the quotient algebra kF/Z is non-trivial, construct a linear
basis of kF/Z, and prove that the equality problem in kF/Z is solvable by
a counterpart of Dehn’s algorithm.

1.2.4 A posteriori insight. Grobner basis

With the benefit of hindsight, we observe that our theory bears an intimate
relation to the theory of Grébner basis and Diamond Lemma (see, e.g., [3],
[5], [31], [4] and references therein). In particular, the polynomial relations R
satisfying our Small Cancellation axioms form a Grébner basis of the ideal
Z. Moreover, Main Lemma [8.4] can be considered as a sophisticated analog
of Diamond Lemma.

One should emphasize that Grobner basis philosophy was not a ruling
engine of the calculations. Nevertheless, it seems that it sheds a lot of light
on what is going on behind the technicalities of proofs. We recall here some
known facts in order to make the exposition self-contained.

Let us start with the classical setting. Let K{ay,...,a,) be the free asso-
ciative algebra with generators ay, . .., a,. Elements of the algebra K {(ay, ..., a,)
are polynomials with non-commutative monomials. The elements of the cor-
responding monoid are called monomials. We fix a linear ordering of the
monomials. Usually the monomials are ordered by length, and then lexico-
graphically. This ordering is called DegLex. Take the ideal Z generated as
an ideal by elements { f;}. Let g denote the highest monomial of a polynomial
¢ in this order.

We consider the following natural greedy algorithm. Its steps are as fol-
lows: given a polynomial g in K{ay,...,a,), we take its highest monomial g.
If § contains a submonomial of the form f; for some i, then g has the form
g = Lf,r. Then subtract from g the product - f;-r with an appropriate coeffi-
cient, thus cancelling the highest term of g. If we come to a polynomial such
that its highest monomial cannot be cancelled using this procedure, then the
algorithm terminates; otherwise we continue reduction. By definition of the
greedy algorithm, termination at zero means that the element g belongs to
ideal 7.

The family {f;} is called a Grébner Basis of the ideal T if the following
property holds: if the greedy algorithm which starts at some g in K{ay, ..., a,)
terminates at some non-zero element gq, then g does not belong to ideal Z.

Not every system of generators of an ideal is a Grobner basis. Moreover,
in general the ideal membership problem is not algorithmically solvable and,
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in particular, not every ideal has a finite Grobner basis. However, there is
a criterion for a set of generators of the ideal to be a Grobner basis. This
criterion is provided by Bergman’s Diamond Lemma [4]. It works as follows.
Suppose we are given a finite set of polynomials {f;} of the ideal Z and a
greedy reduction algorithm. We want to check if {f;} is a Grobner basis.
Fix two monomials f; and f; from our set. Look at all monomials M such
that ?j is a prefix of M and f, is a suffix of M, that is M = hf, = ?jhr.
Then M can be reduced to a polynomial with smaller highest monomials
in two ways, namely using the reduction via the submonomial ?j or via the
submonomial f,. Take the difference f;z of the results. Clearly, f;x € Z.
The set of polynomials {f;} is a Grobner basis if and only if every difference
can be reduced to zero by the greedy algorithm.

If the overlap of 7]- and f, is empty, then fj;, is reduced to zero by the
greedy algorithm in a trivial way. Suppose that 7]- and f, have a non-empty
overlap. Clearly, there is a finite number of such M. So, in order to show that
a finite family {f;} is a Grobner basis we need to check only the possibility
of reduction to 0 of a finite number of polynomials. This criterion is called
Bergman’s Diamond Lemma.

One can look at the condition in Diamond Lemma from the following
point of view. Assume we have two polynomials T; = ;- f;-rj, Ty, = - fx 7k,
where [;,7;, l, ), are monomials, such that the highest monomials of 7} and
T} are equal and have equal coefficients. Clearly, this highest monomial
cancels in T, = T; — Ty. The condition of Diamond Lemma (aka Diamond
Condition) states that every Tj; can be reduced to 0. This condition can
be replaced by a stronger one. Namely, instead of two polynomials we take
a number of polynomials T4,...,T,, T; = l; - f; - r;. Let m be the biggest
monomial among all T;. We consider linear combinations > ~T; such that
the monomial m cancels out. The new condition states that ) ~,T; can be
reduced to 0. Then it is easy to see that {f;} is a Grobner basis if and only
if the new condition holds. In particular, this means that the new stronger
condition is, in fact, equivalent to the initial condition of Diamond Lemma.

The above modification of Diamond Condition allows us to consider
our Main Lemma as a verification of this modified condition for a certain
set of generators of the space Dp(U),. Indeed, consider a linear combi-
nation of layouts of multi-turns > ~;7; that belongs to F,_1(kF), where
U e F,(kF)\ F,_1(kF). This means that all monomials of 7; that do not
belong to F,,_1(kJF) cancel out in this sum. This is exactly a particular form
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of cancelling of the highest monomial. Main Lemma [B.4] states that such
> T, can be represented as a linear combination of layouts of multi-turns
of the monomials from F,_;(kF). This is an analogue of the possibility of
reduction.

Let us notice that inside the proof of our Main Lemma B4 we use a
machinery which is very similar to the one from Diamond Lemma in the
classical sense. In particular, using the small cancellation conditions, we
introduce a linear ordering on monomials of (U), that do not belong to
F._1(kF). Moreover, using the same ideas that we use in the argument of
Main Lemma B4 we can introduce a linear ordering for all monomials and
prove a classic version of Diamond Lemma for layouts of multi-turns and this
ordering. Thereby, one can show that R is a Grobner basis of the ideal Z
with respect to this special linear ordering.

1.3 Route map of the paper

For the general idea of the paper we refer to the preceding Subsection
“Overview of the work”. We study the quotient ring kF/Z, where kF is the
group algebra over the free finitely generated group F, k is a field, and 7 is
an ideal of kF generated as an ideal by set of polynomials R that satisfies
certain conditions (Axioms [T} 2], 3a, 3b in Section [2]).

Since the paper is long and technical we aim to provide the reader of
“Route map” with some familiarity with the essential notions and results.

Numbering of statements is as follows. Theorems have through numbers
throughout the paper. Lemmas, propositions, corollaries, definitions, exam-
ples and remarks are enumerated within every section. Lemmas, propositions
and corollaries have through numbers within every section. Definitions, ex-
amples and remarks are enumerated independently.

In Section [2] we fix our setting. We develop a ring-theoretic counterpart
of the group-theoretic Small Cancellation theory, so a part of our axioms is
modeled after the corresponding group-theoretic axioms. Condition [, the
Compatibility Axiom, corresponds to group-theoretic condition that a set of
relations is closed under cyclic shifts. Condition [2] called Small Cancellation
Axiom is a counterpart of the group-theoretic Small Cancellation Axiom. To
state it we define for rings the notion of a small piece (Definition 2T]). The
connection to the corresponding group-theoretic notion of a small piece is
not obvious, so we recommend to look at the example from Subsection [1.]
and Remark from Section 2 that may clarify the relations between these
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notions.

Elements of F and kF are called monomials (or words) and polynomials,
respectively. We denote by M the set of all monomials that are non-zero
summands of polynomials from the set of relations R. Polynomials from
R generate 7 as an ideal and, as it was said, are subject to three axioms
mentioned above.

We introduce a measure on the monomials from M defined as the minimal
number of small pieces needed to represent the monomial as their product.
We call it A-measure.

Next we define incident monomials. Monomials a; and a; are incident if
they appear with non-zero coefficients in some polynomial p € R.

Section [3] deals with other basic definitions. We start with the notion
of occurrence of a submonomial in a given monomial. We are interested in
occurrences of monomials from the set M and define maximal occurrences
of such monomials. In what follows we call them for short mazimal occur-
rences. Then we consider overlaps of occurrences and show the important
property that maximal occurrences from M can overlap only via a small
piece. Throughout the paper we graphically represent monomials as seg-
ments and their subwords as subsegments.

Definition [3.4] is devoted to the notion of the chart of a monomial and
members of the chart. We postulate a threshold value 7 of the A-measure of
the monomials. The chart of a monomial U is defined to be the set of all
maximal occurrences of monomials of M in U. The maximal occurrences
m € M in U such that A(m) > 7 are called members of the chart.

It follows from Small Cancellation Axiom that the ideal Z is linearly gen-
erated by the polynomials such that some of their monomials have maximal
occurrences with A-measure > 7 (see Proposition [.1]).

Definition introduces an operation on monomials and polynomials
which we call multi-turn. This operation is identical modulo ideal Z. On the
other hand, Compatibility Axiom guarantees that any two polynomials equal
modulo ideal Z can be transformed one to the other by a finite sequence of
multi-turns. .

Let p = > aja; be a polynomial from R. For h, 1 < h < n, the

j=1

transformation
n

an — Y (= oy)a
j=1
J#h

16



is called an elementary multi-turn. Let U = La, R be a monomial with the
maximal occurrence a;. The transformation

n
U=LayR v+ (—0; o) La;R,
j=0
J#h
with the further cancellations if there are any, is called a multi-turn of the
occurrence ay, in U. Given a polynomial we apply a multi-turn to one of its
components. The transformations of individual monomials U, = LapR —
U; = La;R are called replacements. In the end of this section we introduce
the notion of a layout. Given a monomial U = La,R and a multi-turn as
above, we call the polynomial L-p- R the layout of this multi-turn. Obviously,
a layout of a multi-turn always belongs to the ideal Z.

We have set the stage for the central topic of this paper: the interplay
between the charts of monomials and sequences of multi-turns.

Section []is devoted to description of the ideal Z as a linear subspace in
kF. For every monomial of F we do all multi-turns of all members of the
chart and take the set T of all layouts of these multi-turns. Denote by (T)
the linear span of 7. The main result of this chapter states that our ideal Z
coincides with (7). From the point of view of the ring kF/Z the elements
of T can be considered as linear dependencies and (7T) as the space of linear
dependencies.

In Section [5] we figure out how a multi-turn influences on the chart of
a monomial. So, consider replacement U, = La,R — U; = La;R under
condition A(a,) > 3, where aj, and a; are incident monomials. To every
maximal occurrence in Uj, there corresponds the set of images in U; under
the given replacement. In most cases of interest there is precisely a unique
image or no images. In this section we describe how the images look like.

We consider three variants for the resulting monomial U; = La;R: a;
is not a small piece; a; is a small piece; a; is 1. We show that in the first
case the structure of the chart remains almost stable after a multi-turn. In
particular, only maximal occurrences that are not separated from a; may
change at most by one small piece. In the second case the replacement ay,
by a; can cause merging and restructuring of the chart, and in the third
case massive cancellations resulting in complete modification of the chart are
possible.

We produce the full list of all possible changes of maximal occurrences.
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The calculations are based on thorough analysis of all combinatorial possi-
bilities.

Let us compare our general situation with the case of the group alge-
bra, where the group relations may be expressed as binomials (see Subsec-
tion [[T.1]). Hence, we have a unique resulting monomial U; of every multi-
turn, where the merging either happens or not. In the ring case a multi-turn
is associated with a polynomial relation and the structure of an emerging
chart depends on the particular resulting monomial U;. Thus, one and the
same multi-turn can produce significantly different charts of resulting mono-
mials.

In Section [6] we apply the results of the previous sections to introduce
numerical invariants of the charts. We define the notions of a minimal cov-
ering, of an admissible replacement and of virtual members of the chart of
a monomial. The number of elements of a minimal covering and the num-
ber of virtual members of a chart turn out to be useful numerical invari-
ants of a monomial that interact in a satisfactory way with replacements
Un = LapR — U; = La;R.

Recall that a member of a chart is a maximal occurrence with A-measure
> 7. Example shows that the total number of members of the chart does
not behave in a satisfactory way with replacements U, = LayR — U; =
La;R. So, we have to look on more subtle invariants. One such invariant
is the number of elements in a minimal covering of Uy, (see Subsection [6.2)).
Let Max(Uy) be the set of all maximal occurrences in Uj,. Consider subsets of
Max(U},) that cover the same letters in U, as the whole Max(Uy,). A covering
of such type consisting of the smallest number of elements is called a minimal
covering. Of course, such covering is not, necessarily, unique. We denote the
size of the minimal covering by MinCov(U;). The precise behavior of the
minimal covering number is stated in Lemma [6.3] which is the main result
of Subsection

Now we replace the notion of a member of the chart by a quite delicate
notion of a virtual member of the chart. First, we introduce the notion of an
admissible replacement. We say the replacement U, = LapR +— U; = La; R
is admissible if A(a;) > 7 — 2 and a; # 1 and q; is not fully covered by the
images of the elements of Max(Uy) \ {an} with A-measure > 3. So, this is
a rather technical notion. Roughly speaking, virtual members of the chart
are those maximal occurrences which originally are not necessarily members
of the chart, but under a series of admissible replacements their images are
members of the chart (see Definition [6.5]). Denote the number of virtual
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members of U by NVirt(U).

It is worth mentioning that while member of a chart is a local notion,
a virtual member of a chart is a global notion, that is, by changing one
single letter at the end of a monomial some maximal occurrences inside the
monomial may become (or seize to be) a virtual member of the chart.

Corollary claims that the behavior of virtual members of charts is
good enough, namely NVirt(U;) < NVirt(U,,) for an admissible replacement
Up = LapR — U; = LajR. If a; is not a virtual member of the chart of
U;, then NVirt(U;) < NVirt(Uy). Moreover, given a replacement ay +— aj,
where ay, is a virtual member of the chart of Uy, a; is a virtual member of
the chart of Uj, taking images gives a bijective correspondence between all
virtual members of the chart of U, and all virtual members of the chart of
U;. In particular, NVirt(U,) = NVirt(U;), see Corollary 6.200 That is, the
number of virtual members of the chart can not increase after an admissible
replacement, unlike the number of members of the chart.

Now, exactly in the same way as in Sectiond] we define the linear subspace
(T") of kF of linear dependencies induced by multi-turns of virtual members
of the chart of monomials. Proposition states that (T) = (T") =TI, i.e.,
all layouts of multi-turns of virtual members generate linearly the same ideal
as all layouts of multi-turns of members of the chart (cf. Proposition FE.T]).

Next Proposition aggregates all properties of the numerical charac-
teristics MinCov(Uj,) and NVirt(Uj) obtained before. Assume Uj, is a mono-
mial, aj, is a virtual member of the chart of U,. Let a5 and a; be incident
monomials. Consider the replacement U, = LapR — U; = La;R in U,. If
a; is a virtual member of the chart of U, then MinCov(U,,) = MinCov(U;)
and NVirt(Uy,) = NVirt(U;). If a; is not a virtual member of the chart of Uj,
then either MinCov(U;) < MinCov(Uy), or MinCov(U;) = MinCov(U;,) and
NVirt(U;) < NVirt(Uy).

In fact, Section [ and Section [0 lay ground for constructing a special
partial ordering on monomials. This order relation is introduced in Subsec-
tion [1] via the invariant called f-characteristic, but, in fact, all necessary
results are formulated in Subsection [6.4] Proposition In what follows
it serves as a background of a special total order, which is introduced in
Section [0l Once Proposition is proven, we will start the second part of
the paper devoted to combinatorial structure of our ring.

In Section [7] we look for further details of transformation of monomials.
It consists of three parts described below.

Subsection [7.1] is devoted solely to definition of two notions. First, we
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define derived monomials of U as a result of application of a sequence of
replacements of virtual members of the chart by incident monomials, start-
ing from a given monomial U. Second, in Definition we introduce the
important f-characteristic of a monomial. Given a monomial U we define
f(U) to be the pair (MinCov(U),NVirt(U)). Then we have a partial order
on monomials defined by f(U;) < f(Us) if and only if either MinCov(U;) <
MinCov(Us), or MinCov(U;) = MinCov(Us) and NVirt(U;) < NVirt(Us). The
next Lemma[7.T] explains that f-characteristic works properly with respect to
transformation of the monomials, i.e., the f-characteristic of a derived mono-
mial is less than or equal to f-characteristic of the original one. Moreover,
we know effectively when we have inequality.

Subsection and Subsection [7.3] are devoted to further thorough
study of the replacements of virtual members of the chart by incident mono-
mials. This study is a quite long series of technical statements used in the
next section in order to describe linear spaces generated by derived mono-
mials in terms of tensor products. In particular, we introduce the notion of
U-incident monomials widely used in Section [8l

In Section [8 we define a filtration and a corresponding grading on kJF
that agrees with layouts of multi-turns. We describe the corresponding ho-
mogeneous components in terms of tensor products of some smaller spaces.
This is the place where we start constructing the combinatorial structure
of kF/I.

In particular, in Subsection [8.1] we define an increasing filtration on k.F,
using f-characteristic of monomials introduced in Subsection [[.Jl Namely,
the f-characteristic gives rise to a certain function ¢ on natural numbers
defined as follows. We put ¢(0) = (0,0). Assume t(n) = (r, s), then we put

(r,s+1) ifr>s,

tn+1)= {(7‘+1,0) if r =s.

We define an increasing filtration on £F by the rule:
Fn(kF)=(Z | Z e F,[(Z) <tn)).

That is, the space F,,(kJF) is generated by all monomials with f-characteristics
not greater than ¢t(n). We show that each F,,(kF) is closed under taking de-
rived monomials.

We need a set of new notions. Let U be a monomial. By (U); we denote
a linear subspace of F, (kF) generated by all derived monomials of U. By
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L(U),4 we denote the subspace generated by all derived monomials of U with
f-characteristic smaller than f(U). The next principal object is the space of
dependencies, defined in Definition 8.3 as follows. Suppose Y is a subspace
of kF linearly generated by a set of monomials and closed under taking
derived monomials. We take the set of all the layouts of multi-turns of virtual
members of the chart of monomials of Y and look at its linear envelope
Dp(Y'), which is our set of dependencies related to Y. Note that in this
terms Proposition claims that Dp(kF) = Z. The key statement of
Subsection 8] is Proposition 85l It describes the nice interaction between
dependencies and filtration:

DD(F,(kF)) N Fy1 (kF) = Dp(Fo1 (kF)).

Its proof is based on Main Lemma 8.4] which deals with a linear space gener-
ated by a single monomial and its derived monomials. Namely, let U be an
arbitrary monomial, U € F,(kF)\ F,_1(kF). Then Main Lemma [84] claims
that

Dp(U)y NL{(U)q € Dp(F,,_1(kF)).

The proof of Main Lemma is postponed till the next Subsection B2 since
we need first to introduce some calculations related to tensor products.

In the end of this subsection we obtain the following important exten-
sion of Proposition B.4l Suppose X,Y are subspaces of kF generated by
monomials and closed under taking derived monomials, ¥ C X. Then
Dp(X)NY = Dp(Y) (see Proposition B.6)).

In Subsection we study tensor products of special linear spaces
which are tightly related to the charts of monomials. The idea behind that
is as follows. Assume U is a monomial. Derived monomials of U are defined
with the use of certain sequences of replacements of virtual members of the
chart (see Definition [Z.1]). When we perform replacements that preserve f-
characteristics of monomials, they preserve, roughly speaking, the structure
of the chart. Moreover, there is no interaction between the replaced occur-
rence and the separated virtual members of the chart and there is a very
small interaction between the replaced occurrence and its neighbours. This
kind of behaviour gave rise the idea of considering a tensor product of linear
spaces that correspond to each place of the chart of U.

Assume a monomial U has m virtual members of the chart, that is,
NVirt(U) = m. We enumerate all the virtual members of the chart of U
from left to right. Let u(® be the i-th virtual member of the chart of U. We
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define a linear space A;[U] by the following formula
AilU] = (a | uD and a' are U-incident monomials) .

Then, given U € F,,(kF) \ F,,_1(kF), we construct in Definition 8.4 a linear
mapping
plU] : A1lUl @ ... @ ApU] = (U)g + Fnoa (kF).

Lemma states important properties of the mapping p[U]. Here is the
unique place where we use Isolation Axiom. Now we are in a position to prove
Main Lemma R4l The proof of Main Lemma B.4] completes Subsection B2

The next Subsection is devoted to grading of the space kF /Z. First
we define the corresponding filtration on kF/Z in the following way:

Fn(kF/I) = (Fn(kF) + Dp(kF))/Dp(kF) = (Fn(kF) +1)/1.
We define a grading on kF /Z by the rule:

Gr(kF/T) = é Gr,(kF/T) = é F,(kF/T)/Fp1(kF/T).

n=0

Theorem [2] establishes the compatibility of the filtration and the correspond-
ing grading on kJF/Z with the space of dependencies Dp(kF). Namely, it
states that

Cro(kF/T) = Fo(kF) ) (Dp(F(kF)) + Fo1 (kF)).

Proposition BIT]in the end of the section provides a kind of semi-simplicity
property for Gr,.

Section [9 contains the main results that summarize all previous work.
In Subsection we show that the ring £F/Z is non-trivial. First, we
notice that the space (X)q/(Dp(X)q+ L(X)4), where X is a monomial with
no virtual members of the chart, is always non-trivial, and of dimension 1
(Lemma [0.1]). By definition the empty monomial 1 is always a small piece
and thus it has no virtual members of the chart. Then Corollary [0.2] stating
that kF/Z is non-trivial, is just a simple combination of Proposition and
Lemma 0.1

In Subsection we are able, at last, to describe a basis of kF/Z as a
vector space. This is done in two steps. First, we construct in Proposition 0.3
a basis for non-trivial graded components of our filtration on kF/Z:

Gro(kF/T) = Fo(kF)T)/For(kF)T).
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Given n we consider the set of spaces {(Z)y | Z € F,Z € F,(kF) \
F,_1(kF)}, such that (Z)q/(Dp(Z)q + L{(Z)q) # 0. Let {V;"™ V. 0 be all
different spaces from this set. Then, the semi-simplicity property from Sub-
section B3] implies that

Gr,(kF/T) = P Vi /(Dp(V™) + LV;™)).

iel(n)
Assume {Wgzn)}] is a basis of V;"/(Dp(V{"™) + L(V,"™)), i € I™. Let

Wj(i’") € Vi(") be an arbitrary representative of the coset Wﬁln) Then

U {Wji’"’ T+ Fn_1(k.7-"/I)}

iel(n)

J

is a basis of Gr,,(kF/Z). Finally, Theorem [3 describes a basis of kF/Z. Let
{Vi}ier be all different spaces {(Z)4 | Z € F}. We have

kF/T = @D Vi/(Dp(Vi) + L(V3),

el

as vector spaces, and the right-hand side is explicitly described in Propo-
sition B.I0l Assume {Wﬁ-z)}j is a basis of V;/(Dp(V;) + L(V;)), i € I. Let
Wj(i) € V; be an arbitrary representative of the coset W;Z). Then

U{Wj(“ +I}'

iel J

is a basis of kF/T.

In Section [10 we study algorithmic properties of our ring. We show that
they are similar in a sense to the ones valid for small cancellation groups.
However, in the ring case the essential differences arise everywhere.

Recall that small cancellation groups enjoy Dehn’s algorithm [19]. In this
section we define and study a greedy algorithm for rings which plays a similar
role as Dehn’s algorithm does for groups.

Let a ring kF/Z with small cancellation conditions be given. First of all
we need to extend a bit our set of relations R to a certain additive closure
Add(R). It is important that for the natural examples of Section [I1] we
have R = Add(R). Then we define a linear order on all monomials, based on
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f-characteristic and the description in terms of tensor products (see Subsec-
tions [T.I] and B.2)), and denote it by < (see Definition [I0.1]). Then given the
order <y and the set Add(R), we define a non-deterministic greedy algorithm
with external source of knowledge and denote it by GreedyAlg(<y, Add(R))
(see Definition [[0.2]).

Recall that given a small cancellation group G = (X | Rg), a word
W from a free group is equal to 1 in G if and only if Dehn’s algorithm,
starting from W, terminates at 1, [19]. Our Theorem [Hlestablishes the similar
properties of GreedyAlg(<;, Add(R)) in much more complicated situation of
rings.

Namely, assume W7y, . .., Wy are different monomials. We take an element
Zle viW; € kF, v; # 0. Then the following statements are equivalent:

e some branch of the algorithm GreedyAlg(<;, Add(R)), starting from
Zle ~v:Wi, terminates at 0;

i Zf:l Wi € I;

e every branch of the algorithm GreedyAlg(<y, Add(R)), starting from
Zle ~v;W;, terminates at 0.

Hence,
e GreedyAlg(<s, Add(R)) solves the Ideal Membership Problem for Z,

e Add(R) is a Grobner basis of the ideal Z with respect to monomial
ordering <.

In Section [I1] we give two examples of small cancellation rings. First,
in Subsection [I11.1] we check that the group algebra of a small cancellation
group that satisfies condition C(m) for m > 22 is a small cancellation ring.
Here the small cancellation property appears twice and, correspondingly, has
two faces. The first one is group theoretic while the second one is, of course,
ring theoretic. In this case we show that there is no need to distinguish
between small pieces in a group sense and in a ring sense.

Another example is a ring constructed in [2], see Subsection [T1.21
This is a quotient ring kF/Z, where kF is the group algebra of the free
group F over the field k£, and the ideal Z is generated by a single trinomial
v~! — (1 + w), where v is a complicated word depending on w. The ring
kJF /T is of special interest because in this ring we have (14 w)~! = v. Thus,
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1 + w becomes invertible. Here we show how to construct a set of defining
relations equivalent to the relation v=! = 1 + w in kF/Z, that satisfies our
three axioms.

2 Group-like small cancellation axioms

Let kF be the group algebra of a free group F over some field k. Assume
F has a fixed system of generators. Then its elements are reduced words in
these generators and their inverses. We call these words monomials. Then the
elements of the group algebra are linear combinations of monomials. We call
them polynomials. Let Z be an ideal of kF generated by a set of polynomials
and let kF/Z be the corresponding quotient algebra.

We state conditions on these polynomials that will enable a combinatorial
description of the quotient algebra similar to small cancellation quotients of
a free group. These axioms emerged when we studied the particular case
described in [2].

Let us move on to formal definitions. Let the free group F be freely
generated by an alphabet S. Assume

R = pi:Zaijm,-j|oz,-j€k,mij€]:,i€[

i=1

is a (finite or infinite) set of polynomials that generates the ideal Z (as an
ideal). We denote this way of generating by ();. So,

n(z)
I: <R>z: <pi:Zaijmij | Oéij € k,m,-j Ef,i€I> .

Jj=1 i

We assume that the monomials m,; are reduced, the polynomials p; are ad-
ditively reduced, I C N is some index set. In particular, we assume that all
the coefficients «;; are non-zero. Denote the set of all monomials m;; of R
by M.

Throughout the paper we reserve small Greek letters for non-zero ele-
ments of the field k.

Throughout the paper we use the following notations. Assume X and Y
are two elements of kF. We write their product as X - Y. Assume A and B
are two elements of F. We write the product of the monomials A and B as
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A-B. There may occur cancellations between A and B in A- B. We write the
product of A and B in the form AB when there are no cancellations in A- B.

Condition 1 (Compatibility Axiom). The axiom consists of the following
two conditions.

1. If p= > ajm; € R, then fp =
=1 i

J

Baym; € R for every B € k, 3 # 0.
-1

n
2. Letx € SUS™ p= > a;m; € R. Suppose there exists jo € {1,...,n}
j=1

such that 7! is the initial symbol of mj,. Then

a:-p:Zajat-mjeR

i=1

(after the cancellations in the monomials x - m;).

We require the same condition from the right side as well. Suppose
there exists jo € {1,...,n} such that 7! is the final symbol of mj,,
then

n
p-x:Zajmj~x€R

J=1

(after the cancellations in the monomials m; - ).

Notice that taking any set of polynomials Ry, (Ro); = Z, one can con-
struct a set of polynomials R O R, that satisfies Compatibility Axiom and
generates the same ideal Z.

From the second condition of Compatibility Axiom it immediately follows
that the set M is closed under taking subwords. In particular, 1 always
belongs to M.

Let p = Z?:l a;m; € R. Assume c is a monomial and there exists
jo € {1,...,n} such that ¢~" is a prefix of m,, that is, m;, = ¢~'m/, (¢7'is
a suffix of m,, that is, m;, = m/ ¢™"). Then it easily follows from the second
condition of Compatibility Axiom that c-p € R (p-c € R).

Now we state a definition of a small piece. It plays a central role in the
further argument.
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Definition 2.1. Let ¢ € M. Assume there exist two polynomials

ni
p:Zajaj+oza€'R,

j=1

g=Y Bibj+BbeER,
j=1

such that ¢ is a subword of a and a subword of b. Namely,

a = /dlC/dg,
b= blcbg,

where @, as, 31, 32 are allowed to be empty. Assume that

ni ni
T ~—1 T ~—1 o~ o~ T ~—1 T o~
bl-al -p:bl-al . ( E ajaj+aalca2) = E Oéjbl'a,l -aj+ablca2§é7€
j=1

Jj=1

(even after the cancellations), or

ni ni
p'/a\Q_l'bQZ <E ajaj+aalcag)-az_l-b2: E ajaj-agl-bg+aalcb2¢7€
Jj=1

j=1

(even after the cancellations). Then the monomial ¢ is called a small piece
with respect to R.

We denote the set of all small pieces with respect to R by §. Clearly,
S € M. From the definition it follows that the set S is closed under taking
subwords. In particular, if the set S is non-empty, the monomial 1 is always
a small piece. If the set S is turned out to be empty, then we still assign 1
to be a small piece.

The key property of monomials of M \ S is the following:

Lemma 2.1. Let c € M\ S, p = }7_ vjc; +vc € R. Assume a,b are
monomials such that the monomial ac has no cancellations, ac € M, and
the monomial cb has no cancellations, cb € M. Then a-p-b € R (possibly
after the cancellations). In particular, acb € M.
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Proof. Since ac € M, there exists a polynomial ¢; € R such that ac is s
monomial in ¢;. That is, ¢; = 251:1 n;d; +nac. Since ac has no cancellations,
¢ is a subword of monomials in the polynomials p € R and ¢; € R. Assume
a-p=>_ 5 7a-c;+yac g R. Then, by definition, c is a small piece. This
contradicts the conditions of Lemma 2.1l Hence, a-p € R.

Since cb € M, there exists a polynomial ¢, € R such that cb is s monomial
in qo. That is, ¢o = 252:1 0;t; + dcb. Since cb and ac have no cancellations, ¢
is a subword of monomials in the polynomials a-p € R and ¢ € R. Assume
a-p-b=737"_ vja-cj-b+~yach ¢ R. Then again, by definition, c is a small
piece. This contradicts the conditions of Lemma 2.1l Thus, we finally obtain
a-p-beR. O

Corollary 2.2. Let c € M\ S, p= 37, vjc; +yc € R. Assume a,b are
monomials such that the monomial acb has no cancellations and acb € M.
Then a-p-b € R (possibly after the cancellations).

Proof. Assume acb has no cancellations and acb € M. Since M is closed
under taking subwords, we obtain ac € M and cb € M. Hence, we can apply
Lemma 2.1 and obtain a-p-b € R. O

In Subsection we widely use the following obvious corollary of Com-
patibility Axiom and Corollary

Corollary 2.3. Letp = Z;‘:l V¢ +vc € R. Assume that c = amb, where a
is a prefix of ¢, b is a suffiz of ¢, and m is not a small piece. Assume that a
amib are monomials such that t@/e monomial amb has no cancellations and

ambe M. Thena-a t-p-b=t-beR.

Proof. Since ¢ = amb, it follows from Compatibility Axiom that a=-p-b=! €
R. So, we have a='-p- 071 =370 vjiz_l ~¢j b7t +ym € R. We assumed
that amb has no cancellations and amb € M. Since m is not a small piece,
Corollary [2.2 implies that

a-at-p-b7t b= Zyj'd-a_1~cj-b_1 -g+75mg€R.
j=1
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Let u € M. Then either u = p; - - - p,, where py, ..., p, are small pieces,
or u can not be represented as a product of small pieces. We introduce a
measure on monomials of M (aka A-measure). We say that

A(u) =n if u can be represented as a product of small pieces
and minimal possible number of small pieces

in such representation is equal to n.
We say that
A(u) = 00 if u can not be represented as a product of small pieces.
Remark 2.1. We assume standard arithmetic rules for co. Namely,

n < oo for every n € 7,
00 +n=n+4+ oo =00 for every n € 7,

o0+ 00 = 0.

Lemma 2.4. Let a € M. Assume c is a prefiz of a, that is, a = cd. Then
we always have either A(a) = A(c) + A(d), or Ala) = A(e) + A(d) — 1. In
particular, if ¢ € S, then either A(a) = A(d) + 1, or A(a) = A(d); if d € S,
then either A(a) = A(c) + 1, or A(a) = A(c).

If m is some subword of a, then A(m) < A(a). In particular, if A(a) is
finite, then A(m) is finite as well; if A(a) = oo, then A(m) may be both finite
or infinite.

Proof. Assume A(a) =n < oo, then a = p; - - - p,,, where py, ..., p, are small
pieces. Let m be a subword of a. Then, clearly,

/ /
m:pll 'pll'f‘l'.'plg?

where p;, is a suffix of p;, and p;, is a prefix of p;,. Hence, A(m) < lp—l1+1 <
A(a).

Assume a = ¢d and A(a) = n < co. Then a = p; - - - p,, where p1,...,p,
are small pieces. Hence,

/
C=pDP1 Dy
1

d=mp; - pn,
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where p; = pjp/, one of pj or p] can be empty. Then A(c) < I, A(d) < n—I+1.
Hence, A(c) + A(d) <l+n—1+1=A(a) + 1.
On the other hand, if A(c) = n; and A(d) = ngy, then

CZSI"'STLU
d:tl"'tn27

where s1,...,8,,,t1,...,t,, are small pieces. So,
a=cd=381"Sp t1 - ln,.

Hence, A(a) < ny +ne = Alc) + A(d).
So, finally we obtain

A+ Ad) — 1 < Ala) < A(e) + A(d).
Since values of A-measure are natural numbers, we obtain
either A(a) = A(c) + A(d), or Ala) = Ac) + A(d) — 1. (1)

From the above argument it is clear that if A(c) < oo and A(d) < oo,
then also A(a) < co. So, if A(a) = oo, then at least one of A(c) and A(d) is
infinite. So, formula () is applicable for this case as well. O

We fix a constant 7 € N. In the further argument we require 7 > 10.

Condition 2 (Small Cancellation Axiom). Assume ¢i,...,¢, € R and a
linear combination )", v¢ is non-zero after additive cancellations. Then
there exists a monomial a in Y, | ¢ with a non-zero coefficient after addi-
tive cancellations such that either a can not be represented as a product of
small pieces or every representation of a as a product of small pieces contains
at least 7 + 1 small pieces. That is, A(a) > 7 + 1, including A(a) = co.

Remark 2.2. We want to explain informally a source of a concept of a small
piece in the ring case (see Definition 2.T]).

Let G = (X | Ra), Re = {R;}jes be a group given by generators and
defining relations. Assume R is closed under taking inverses and cyclic
shifts of relators, and every relator R; is a cyclically reduced word. Basically,
we take the idea of Definition 2] of a small piece from the following concept.
Let s be a prefix of R;, € Rg and of Rj, € Ra, R;, = sR), R;, = sR),.

717
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Then s is called a small piece (in a generalized group sense) if R, -R}z_l #1
and R - R;»Q_l is not a conjugate of a relator from R¢ in the corresponding
free group (even after the cancellations) (see [19], page 240 and page 271,
condition (1), and [27], page 5). That is, if s is not a small piece, we obtain
that either R;, = R;,, or R}, - R;z_l is equal to a conjugate of a relator from
R in the corresponding free group (possibly after the cancellations).

We consider the Cayley graph of the group G with respect to the set
of generators X. Then every R; € R corresponds to a closed path in
the Cayley graph. Assume s is a maximal common prefix of R; = sR
and Rj, = s} , and s is a maximal common suffix of R} s and R} s. Then
R R, ~! has no cancellations. If we glue together the graphs that correspond
to Rj, and Rj, by s, then R} R;;l corresponds to the path around the outer
bypass of the obtained graph.

R

J2

R’

J1

However, in Definition 2.1] there are certain modifications comparatively
with small pieces in a generalized group sense. Now we want to compare
informally Definition 2] of a small piece in the ring case with the given
above definition of a small piece in the group case.

1. Let us analyze Definition 2.1l Assume ¢ € M is not a small piece in a
sense of Definition 21l Let

ni
51062 + g a;a; € R,

j=1

ng
c—+ Z ijj eR.
j=1
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Clearly, ¢ = — Z;Lil Bjb; mod Z. We want to replace ¢ by the linear

combination (— Z;Lil ﬁjbj> in the monomial @,ca,. If we follow the

group analogue completely, we should require that
ng ni
61 . <— Z 5jbj) . 62 + Zajaj =
Jj=1 Jj=1
ni n2
= 61052 + Z ;a5 — 61 . (C + Zﬂﬂ%) . 62 €R.
j=1

J=1

But this condition is not convenient for the further work for some rea-
sons. So, in Definition 2.1l we require its modification

n2 n2
ay - <c+25jbj) SGy =aicy+ Y By by -Gy €R
j=1

Jj=1

instead.

Now let us show that in the above condition we still follow the same
ideology as in the case of groups. Let us explain this in more detail.
Assume AsBD € Rq, sE € Rg, and s is not a small piece in gener-
alized group sense. Consider the prefix AsB of AsBD. Let us replace
s by E~! in AsB, then we obtain AE~'B as a result. Assume the
word AE~!B has no cancellations. Obviously, AE~'B is a subword of
AE~'BD. Since s is not a small piece, we get that AE~'BD € R.
Therefore, the resulting word AE~!B is a subword of a relator from Rg
as the initial word AsB.
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Similar situation happens for the case of rings. Assume ¢ € M is not
a small piece in the sense of Definition 2.1 We replace ¢ by the linear

combination (— >z 5jbj> in a;ca,. By Definition 2.1]

n2 n2
a - <c+2ﬁjbj) LGy =dicy+ Y Byds by -Gz € R.
j=1 j=1

Therefore, we do not obtain any completely new resulting monomials
in Z;Lil Bjay - b; - @2, which means that all monomials a,b;a, € M
(possibly after the cancellations).

2. Assume ¢ € M is not a small piece in the sense of Definition 2.1l Let

ni
ajc+ Z aa; € R,

j=1
no

CbQ + Zﬁjbj eR.
j=1

Then in Definition [2.I] we require that

n1
/dlch + Z Q;a; - by € R,

j=1
no

alcbg + Z ﬁ]@l . bj €R.
j=1

This allows us to glue via ¢ the monomials @;c € M and c@z e M
to one monomial a;chy from M. Notice that this property does not
necessarily hold in the case of groups for subwords of relators from R¢.
For example, looking at picture (2)), AsE is not necessarily a subword
of a relator from Rg.

The reader will notice wide applications of this property already in
Section [3] when we start to discuss overlaps of occurrences.

The group G = (X | Rq) satisfies small cancellation condition C(m) in
a generalized sense if every R; € R¢ can not be written as a product of less
than m small pieces (in a generalized group sense). One can see that Small
Cancellation Axiom stated above is an analogue of condition C(m).
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The next lemma follows from Compatibility Axiom and Small Cancella-
tion Axiom.

Lemma 2.5. Let p = Z?:l%'cj € R, a, b be some monomials. Assume
a-cj-be M forallj=1,...,n (possibly after the cancellations). Then
a-p-beR.

Proof. First assume a and b have no cancellation with all monomials c;,
j=1,...,n. From Small Cancellation Axiom it follows that there exists a
monomial ¢;, that is not a small piece. Therefore, since ac;,b € M and ac;,b
have no cancellations, Lemma 2.1l implies a - p - b € R.

Further we argue by induction on |a|+ |b|, where | -| is number of symbols
of SUS~!in a reduced word. Assume a = a1z, x € SUS™!, 2 cancels with
at least one monomial in p. Let p; = x - p, then p; € R, by Compatibility
Axiom. Since a; - p;-b = a-p-b (after the cancellations from both sides), all
monomials of a; - py - b belong to M. Hence, a; - p; - b € R, by the induction
hypothesis. Clearly, if a is empty or does not cancel with all monomials ¢;,
J=1,...,n, we can argue in the same way with b. O

Definition 2.2. Let p = 22:1 aja; € R. Then we call the monomials
aj,, Gy, 1 < J1,j2 < n, incident monomials (including the case aj, = aj,).
Recall that a; #0, 7 =1,...,n.

The next straightforward lemma follows directly from Compatibility Ax-
iom and Lemma 2.1

Lemma 2.6. Let m,m' € M be incident monomials, ¢ be some monomial.

1. Ifc™tis a suffix of m or m’ (a prefiz of m orm’), thenm-c,m’-c € M
(c-m,c-m' € M) andm-c,m'-c (c-m,c-m’) are incident monomials
after the cancellations.

2. If m is not a small piece and ¢ has no cancellations with m from the
right side (from the left side) and mc € M (cm € M), thenm/-c € M
(c-m’ € M) and me,m’ - ¢ (em,c-m') are incident monomials possibly
after the cancellations.

Proof. Since m and m’ are incident monomials, there exists p = 22:1 aja; €
R such that m = aj, and m’ = aj,, j1,j2 € {1,...,n}. If ¢! is a suffix
of m or m’ (a prefix of m or m’), then, by Compatibility Axiom, we obtain
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p-c € R (cp € R) after the cancellations. In particular, m - c¢,m'-c € M
(c-m,c-m' e M).

If m is not a small piece, ¢ has no cancellations with m from the right
side (from the left side) and mc € M (em € M), then Lemma 211 implies
that p-c € R (¢-p € R). In particular, m'-c € M (¢-m' € M).

So, in both cases p-c € R (¢p € R). Clearly, a;,-c = m-cand a;,-¢c =m/-c
(¢c-a;;, =c-mand c-aj, =c-m') are monomials in p-c € R (c-p € R).
Therefore, by definition, m-c and m'-c¢ (¢-m and ¢-m’) are incident monomials
after the cancellations. O

Now we introduce the last condition, we call it Isolation Axiom. Unlike
previous two axioms, this is entirely ring-theoretic condition. Here we use
notions of a maximal occurrence and an overlap that we introduce in Section 3]
(see Definition 3.2 Definition 3.3l and the list of possibilities I3l on page [d2).
We wish to draw the reader’s attention to the fact that Isolation Axiom is
used only in order to prove statement of Lemma in Subsection 8.2
Before this place we develop the theory without this condition. We urge the
reader to skip the statement of Isolation Axiom for the first reading and to
return to it when it becomes necessary.

Condition 3a (Isolation Axiom, left-sided). Let mq,ms,...,my be a se-
quence of monomials of M such that m; # my and m;, m;,, are incident
monomials for all ¢ = 1,...,k — 1, and A(m;) > 7 —2foralli =1,... k.
Let us take a monomial a € M with the following properties.

o Aa) >7-2;
e amy,amy ¢ M, am; has no cancellations, amy has no cancellations;

e m; is a maximal occurrence in am,, my is a maximal occurrence in
amy.

e Let api(a) be a maximal occurrence in am; that contains a, let apg(a)
be a maximal occurrence in amy, that contains a (that is, pi(a) is the
overlap of ap;(a) and mq, p;(a) may be empty, and pi(a) is the overlap
of ap(a) and my, pr(a) may be empty). Assume that there exist
monomials [, I € M such that

— 1, " are small pieces;

— la,l'a € M, la has no cancellations, ’a has no cancellations;

35



— there exists a sequence of monomials by, ..., b, from M such that
by = lapi(a), b, = l'api(a), b;, b1 are incident monomials for all
i=1,...,n—1,and A(b;)) =27 —2foralli=1,... ,n.

L
pi(a)

a

U : mi.

pr(a)

Notice that since a is not a small piece, by Lemma B4 we get
that lap;(a),l'api(a) € M, and lap,(a) is a maximal occurrence
in lapy(a)my, l'apy(a) is a maximal occurrence in 'apg(a)my,.

Then we require that py(a)”" - my # pe(a) ™" - my, for every such a € M.

Condition 3b (Isolation Axiom, right-sided). Let my,ms,..., my be a se-
quence of monomials of M such that m; # my and m;, m;,; are incident
monomials for all i = 1,...,k — 1, and A(m;) > 7 —2foralli =1,... k.
Let us take a monomial a € M such that

e Na) =1 -2
e mia, mpa ¢ M, mya has no cancellations, mya has no cancellations;

e m; is a maximal occurrence in mja, my is a maximal occurrence in
mra.

e Let s1(a)a be a maximal occurrence in mja that contains a, let s(a)a
be a maximal occurrence in mya that contains a (that is, s1(a) is the
overlap of my and s;(a)a, s;(a) may be empty, and si(a) is the over-
lap of my and si(a)a, sy(a) may be empty). Assume that there exist
monomials r, " € M such that

— r, r’ are small pieces;
— ar,ar’ € M, ar has no cancellations, ar’ has no cancellations;

— there exists a sequence of monomials by, ..., b, from M such that
by = s1(a)ar, b, = sg(a)ar’, b;, bi+1 are incident monomials for all
i=1,....,n—1,and A(b;) >7—2foralli=1,...,n.
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s1(a)
M 7
sk(a)

Notice that since a is not a small piece, by Lemma B4, we get
that s1(a)ar, sp(a)ar’ € M, and s;(a)ar is a maximal occurrence
in mysy(a)ar, si(a)ar’ is a maximal occurrence in mysy(a)ar’.

Then we require that my - s1(a)”" # my, - sg(a)”" for every such a € M.

Remark 2.3. We shall informally explain the essence of Isolation Axioms.
Given a monomial U, consider the set of its non-degenerate derived mono-
mials (see Subsection [1] for the definition of derived monomials). Every
derived monomial can be imagined as a result of a sequence of replacements
of virtual members of the chart by U-incident monomials (see Subsection [7.3]
for the definition of U-incident monomials). If two essentially different se-
quences of replacements result in one and the same derived monomial, the
exotic dependencies appear in the ideal Z. Isolation Axiom guarantees that
essentially different sequences of replacements result in different monomials.
Hence, exotic dependencies are not present in Z.

3 Basic definitions

In this section we introduce notions of the chart of a monomial and a multi-
turn. Both notions play an important role in the further argument.

Let U be a word and U be its subword. We call the triple that consists
of U, U and the position of Uin U an occurrence of UinU.

Let U be a monomial, a € M be an occurrence in U, that is, U = LaR,
where L, R can be empty. Since a € M, there exists a polynomial p € R such
that a is a monomial of p. Assume L is not empty, X isasuffixof L, L = L1 X,
Ly is possibly empty. If X - p € R (possibly after the cancellations), then
we say that X prolongs a in U from the left with respect to p. In particular,
Xa € M in this case. Assume R is not empty, Y is a prefix of R, R = Y Ry,
R; is possibly empty. If p-Y € R (possibly after the cancellations), then we
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say that Y prolongs a in U from the right with respect to p. In particular,
aY € M in this case.

Remark 3.1. Let U be a monomial, a € M be an occurrence in U, U = LaR.
Let a be a monomial in a polynomial p € R and in some other polynomial
qeR.

Assume a is not a small piece. Assume X is a suffix of L such that X
prolongs a from the left with respect to p (that is, X - p € R). Since a is
not a small piece and Xa € M and Xa has no cancellations, it follows from
Lemma 2.1l that X - ¢ € R. That is, X also prolongs a from the left with
respect to ¢q. So, if a is not a small piece, its possible prolongations in U from
the left do not depend on a particular relation in which a is a monomial.
Similarly, if a is not a small piece, its possible prolongations in U from the
right do not depend on a particular relation in which a is a monomial.

On the contrary, if a is a small piece, then it may happen that a is
prolonged in U with respect to p and is not prolonged in U with respect to q.

Now we give a definition of a maximal occurrence of a monomial of M
mn U.

Definition 3.1. Let U be a monomial, a € M be an occurrence in U. Let
p € R, a be a monomial in p. The occurrence a is called maximal in U with
respect to p if a can not be prolonged neither to the left nor to the right (even
by a single letter) in U with respect to p.

Let p = Z?:l aja; +aa € R, U = LaR. In more detail, this definition
means the following.

1. If both L and R are not empty, L = Lz, R = yRy, z,y € SUS™!,
then both

x~p:Zaj:c-aj+oz:ca¢R,

=1

p-y:Zajaj-y+aay§éR.

i=1

2. If L is not empty and R is empty, that is, U = La, L = Lix, x € SUS™!,
then

a:-p:Zajx-aj—l—axagéR.

=1
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3. If L is empty and R is not empty, that is, U = aR, R = yRy, y €
SUSTL then

p~y:Zajaj-y+aay¢R.
j=1

4. If both L and R are empty, that is, U = a, then there are no additional
conditions, a is always a maximal occurrence in U with respect to p.

Definition 3.2. Let U be a monomial, a € M be an occurrence in U. The
occurrence a is called mazimal in U if for every p € R such that a is a
monomial in p the occurrence a is maximal in U with respect to p.

The following lemma gives a very natural characterisation of maximal
occurrences of monomials of M.

Lemma 3.1. Let U be a monomial, a € M be an occurrence in U. Then
a is a mazximal occurrence of a monomial of M in U if and only if a is not
properly contained in any other occurrence of a monomial of M in U.

Proof. Assume b € M is an occurrence in U, a is properly contained inside
b. That is b = cad, where ¢ is a prefix of b, d is a suffix of d, one of
c or d can be empty. Since b € M, there exists p = 22:1 Bib; + pb €
R. Since b = cad, it follows from Compatibility Axiom that ¢! -p € R,
p-d*e€Randc!-p-d! € R. Denotec!-p-d*bygq, g€ R. Then
q= 22:1 Bic™t - b; - d~! + Ba, that is, a is a monomial in ¢ € R. We have
c-gq=p-dte€Rand q-d=c'-pe R, hence, by definition, ¢ prolongs
a from the left in U with respect to ¢ and d prolongs a from the right in U
with respect to ¢. Thus, a is not a maximal occurrence of a monomial of M
in U. This contradiction completes the proof. O

Remark 3.2. Let U be a monomial, a € M be an occurrence in U. We
proved that a is a maximal occurrence of a monomial of M in U if and only
if a is not properly contained in any other occurrence of a monomial of M
in U. It can also be stated in the following way.

1. If both L and R are not empty, L = Lz, R = yR;, z,y € SUS™!, then
a is a maximal occurrence in U if and only if za ¢ M and ay ¢ M.

2. If L is not empty and R is empty, that is, U = La, L = Lix, x € SUS™!,
then a is a maximal occurrence in U if and only if xa ¢ M.
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3. If L is empty and R is not empty, that is, U = aR, R = yRy, y €
S U ST then a is a maximal occurrence in U if and only if ay ¢ M.

4. If both L and R are empty, that is, U = a, then there are no additional
conditions, a is always a maximal occurrence in U.

Lemma 3.2. Let U be a monomial, a € M be an occurrence in U. Assume
a is not a small piece, a s a monomial in p € R. Let a be a mazimal
occurrence of a monomial of M in U with respect to p. Then a is a mazximal
occurrence of a monomial of M in U (that is, a is a mazimal occurrence in
U with respect to every q € R such that a is a monomial in q).

Proof. Let U = LaR. Let a be a monomial of a polynomial ¢ € R different
from p. Assume a is not a maximal occurrence of a monomial of M in U with
respect to q. Assume a can be prolonged in U from the left with respect to q.
That is, L = L1z, v € SUS™!, 2 - ¢ € R. In particular, we obtain xa € M.
Since a is not a small piece, from Lemma 2.1]it follows that = - p € R. This
contradicts the assumption that a is a maximal occurrence in U with respect
to p. The case when a can be prolonged in U from the right with respect
to q is considered in the same way. Thus, a is a maximal occurrence in U
with respect to ¢q. Since ¢ is an arbitrary polynomial of R such that a is a
monomial of ¢, finally we obtain that a is a maximal occurrence in U. O

Remark 3.3. Let U be a monomial, a € M be an occurrence in U. If a is a
small piece, the situation is different. Let a be a monomial in p € R and in
q € R. Then it is possible that a can not be prolonged in U with respect to p
and can be prolonged in U with respect to ¢. Then a is a maximal occurrence
in U with respect to p and is not a maximal occurrence in U with respect
to q. Hence, if a is a maximal occurrence in U with respect to p and a is a
small piece, a can be contained in some different occurrence of a monomial

of M in U.

Further we speak only about maximal occurrences of monomials of M
in U. We call them for short “maximal occurrences in U”.

Definition 3.3. Let U be a monomial. Let a and b be two different occur-
rences of monomials of M in U. Assume a is not contained inside b, b is not
contained inside a, and a and b have a non-empty common subword in U.
Then we call this common subword an overlap of a and b.
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Remark 3.4. Let U be a monomial. Let a and b be two different maximal
occurrences of monomials of M in U. Then, by Lemmal3.1] a is not contained
inside b and b is not contained inside a. Hence, if a and b have a non-empty
common subword in U, then a and b have an overlap.

We denote by & the set of all overlaps of maximal occurrences in all
monomials, including the empty word.

Lemma 3.3. Let U be a monomial. Let a be a maximal occurrence of a
monomial of M in U, b be some occurrence of a monomial of M in U (not
necessarily maximal). If a and b have an overlap, then this overlap is a small
piece.

Proof. Assume a starts from the left of the beginning of b. The case when
a starts from the right of the beginning of b is considered in the same way.
Assume a and b have an overlap ¢ in U. That is, a = ci¢, b = cco, where
¢ and ¢y are non-empty. Assume c is not a small piece. Assume a is a

monomial in a polynomial p € R, b is a monomial in a polynomial ¢ € R.
Let

ni ni
p= g oja; + oa = g aja; + acc,
J=1 J=1

a= Bibj+ b= Bib; + feca.

Jj=1 Jj=1

Then, since c is not a small piece, by definition, we obtain p - c; € R. Since
this holds for every polynomial p € R such that a is a monomial of p, we
obtain that a is not a maximal occurrence in U. A contradiction. O

Corollary 3.4. Let U be a monomial. Let a and b be two different mazimal
occurrences of monomials of M in U. If a and b have an overlap, then this
overlap 1s a small piece.

Proof. The proof is trivial. 0

Corollary 3.5. Let U be a monomial. Let a be a maximal occurrence of a
monomial of M in U, b be some occurrence of a monomial of M in U (not
necessarily mazimal). Assume a and b have a non-empty common subword
and this subword is not a small piece. Then b is contained inside a (not
necessarily properly, b = a is also possible).
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Proof. Since a and b have a non-empty common subword and this subword
is not a small piece, it follows from Lemma [3.3] that this subword is not an
overlap of a and b. Therefore, either a is properly contained inside b, or b
is properly contained inside a, or a = b. Since a is a maximal occurrence,
Lemma [3. Tl implies that the first variant is not possible. Thus, b is contained
inside a. O

Corollary 3.6. Let U be a monomial. Let a and b be two maximal occur-
rences of monomials of M wn U. If a and b have a non-empty common
subword in U and this subword is not a small piece, then the occurrences a
and b coincide.

Proof. Tt follows directly from Lemma [3.1] and Corollary O

Throughout the paper we graphically represent monomials as segments
and their subwords as subsegments. In particular, we represent maximal
occurrences in a monomial as its subsegments.

Assume «a is a maximal occurrence of a monomial of M in U, b is some
occurrence of a monomial of M in U (not necessarily maximal), b is not
contained in a (in particular, b # a). To be definite, assume that a starts
from the left of the beginning of b. Lemma B and Lemma [3.3] imply that
possible configurations of a and b are the following:

1. There exists some non empty subword between a and b in U.

non empty
subword

In this case we say that a and b are separated.

2. a and b are adjacent and have no common non empty subword.

U a b

In this case we say that a and b touch at a point.

3. a and b have a non empty common subword, wherein b is not contained
inside a.
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overlap

I I—I 1
U b

In this case we say that a and b have an overlap. Then, by Lemma [3.3]
the overlap is a small piece.

So, one can see that the positions of maximal occurrences in U are linearly
ordered.

Definition 3.4. Let U be a monomial. We define the chart of U as the set of
all maximal occurrences of monomials of M in U. The maximal occurrences
m; € M in U such that A(m;) > 7 are called members of the chart.

Remark 3.5. Assume U is a monomial. Note that the notion of members
of the chart of U in Definition B.4] in fact depends on two parameters: the
measure A and the constant 7. So, formally they should be called the (A, 7)-
members of the chart of U. However, since A and 7 are fixed throughout the
paper, we omit these parameters and call them members of the chart of U.

Let G be a small cancellation group, R; = MM, "' be a relator of its
small cancellation presentation. Assume LM;R and LM>R are two words,
then the transition from LM;R to LMsR

My
L : : R
M,

is called @ turn of an occurrence of the subrelation M; (to its complement
M,), see [21]. Analogously, in our case we define a multi-turn.

Definition 3.5. Let p = Z?:l aja; € R. For every h =1,...,n we call the

transition
n

an — > (—ay aja;)
=1
j#h

an elementary multi-turn of a with respect to p.
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Let p = Z;L:1 aja; € R. Let ap be a maximal occurrence in U, U = Lay, R.
The transformation

U= LapR —> g (—aj'a;L - aj - R), (3)
—
j#h

with the further cancellations if there are any, is called a multi-turn of the
maximal occurrence ay in U that comes from an elementary multi-turn ay, —
S i (—a; taga;). Obviously,

J#h

U— Z(—a,:lozjl} caj-R)=L-(a;'p)- RET.
=0
i#h

In this case the polynomial L-p-R = Z?:l a;L-a;- R (after the cancellations)
is called a layout of the multi-turn (3)).

We will show in Section [l that if a; # 1, then the monomial L - a; - R has
no cancellations. So, cancellations are possible only in the monomial L - R if
a; = 1 is a monomial of p. That is, in fact we can write the multi-turn above
in the way

U= LaR+— Z(—a;lajLajR),
=0
j#h
and its layout L - p- R in the form

L-p-R=> a;La;R.

j=1
4 The description of the ideal 7 as a linear sub-
space of kF
Let us define a subspace of kF of linear dependencies induced by multi-turns

of members of the chart of monomials. For every monomial of F we do all
multi-turns of all members of the chart and we consider all layouts of these

44



multi-turns. As a result, we obtain the set of expressions

T = {ZajUj | U; € F, there exists an index 1 < h < n such that

Jj=1

Uy, — Z(—a;lajUj) is a multi-turn of a member of the chart of Uh}.
j=1

i#h

(4)

Assume U runs through all monomials of F with non-empty charts, a runs
through all members of the chart of U. Clearly, for every fixed U and a we
can write U = Lyq,aRy,, where Ly, is a prefix of U and Ry, is a suffix
of U. Then T consists of all polynomials of the form "7 | a;jLyqa; Ry, for
different U and a, where 22:1 aja; runs through all polynomials of R such
that a is a monomial in these polynomials. We denote the linear span of 7

by (T).
Proposition 4.1. The linear subspace (T) C kF is equal to the ideal T.

Proof. First we will show that (7)) is an ideal of kF. Let T' € 7. We have
to check that if Z is a monomial, then ZT € (T) and TZ € (T). Clearly,
it is sufficient to check this property only for a monomial Z that consists of
only one symbol of S U S™!. In this particular case denote it by 2. We will
show an even stronger property, namely that z- T € T and T -z € T.

Assume U, = La,R, aj, is a member of the chart of Uj,. Assume T is a
layout of a multi-turn of a;, in U}, that comes from an elementary multi-turn
an — > j=1 a; ‘o a;. That is,

i#h

T= i OéjUj = i&jLa]‘R.
j=1 j=1

First consider the case when L is not empty. Since L is not empty, a
remains unchanged in z - U, = (2 - L)ap R both when z does not cancel out
with L, or when it does. Since a; is a member of the chart of Uy, ay, is a
maximal occurrence in Uy, and A(ay) > 7. Then, clearly, aj, is also a maximal
occurrence in z - Uy,. Therefore, since A(ay,) > 7, ap, is a member of the chart
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of 2-Uy. So, z- Uy = (z- LYap R+ Y j=1 a; 'a;(2 - L)a; R is a multi-turn of
j#h

a member of the chart of z - Uj. Clearly,
z-T = Zajz : Uj = ZO&j(Z'L)GjR
j=1 g=1

is a layout of this multi-turn. Hence, z - T € T.
Now consider the case when L is empty, that is, U; = a; R and

n
z-T = E a;z - a;R.
j=1

First assume z does not cancel with a;, and za, ¢ M. Clearly, in this case
ayp is a maximal occurrence in zU), = za, R. Since A(ay) > 7, ap, is a member

of the chart of za,R. Hence, zapR — Y j=1 o 'a;za; R is a multi-turn of a
i#h
member of the chart of zUj,. Since z - T is its layout, we have z - T € T.

Assume z does not cancel with a;, and za; € M. Then za; is a maximal
occurrence of a monomial of M in zU;, = za,R. It follows from Lemma [2.4]
that A(zan) > A(ap) > 7. Therefore, zay, is a member of the chart of zUj,.
Since aj, is not a small piece, by Lemma 2.} we obtain » 7 ajza; € R
(after the cancellations if there are any). Hence, za,R — > iz a; 'ajza; R

=1

is a multi-turn of a member of the chart of zU;, and z - T is {ts layout. So,
z2-TeT.

Assume z cancels with a;. Then, by Compatibility Axiom, we obtain
> i1 a2 - a; € R (after the cancellations). Since A(z - as) < A(an), we
distinguish two possibilities: A(z-ap) > 7 and A(z - ap) < 7.

Consider the case A(z - ap) > 7. Then z - a; is a member of the chart of
z- Uy, after the cancellations. So, z-apR — > 71 o 'aj2-a; R is a multi-turn

i#h

of a member of the chart of z- U, and z-T is] its layout. Hence, z-T € T.
Now consider the case A(z - a,) < 7. In this case z - a; is not a member
of the chart of z - U,. However, from Small Cancellation Axiom it follows
that in the polynomial Z?Zl a;z - a; there exists a monomial z - ap, such
that A(z - ap,) = 7+ 1 (possibly after the cancellations). Then z - ap, is a
member of the chart of z - ap, R (possibly after the cancellations). Hence,
2 apy R 21371 a;olajz -a; R is a multi-turn of a member of the chart of

J
z-ap,R. Clearly, ; layout of this multi-turn is also z-T. Therefore, z-T € T.
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Summarising all of the above, we obtain z - 7T € T in all cases. Clearly,
for the same reason we obtain 7" - z € T. Hence, (T) is an ideal of kF.

Consider a polynomial 7, a;U; = 7 a;La;R € T that comes from
an elementary multi-turn a, — Y.7=1 a; 'aja;. Since R C Z, we have

" J#h
> j=1@ja; € T. Hence,

iajUj =L- (iajaj) ‘R GI.
j=1

Jj=1

So, T CZ and (T) C Z.

Assume p = Z;;l aja; € R. By Small Cancellation Axiom, in this
polynomial there exists a monomial ay, such that A(ap,) > 7+ 1. Hence,
ap, is the single member of the chart of the monomial ap,. Then a, —

S Qo 'aja; is a multi-turn of the member of the chart of ay,. Clearly,

3#ho
the polynomlal p is a layout of this multi-turn, so, p € T. Therefore, R C T.

So, the ideal of kF generated by R is contained in the ideal of kF generated
by 7. Since (7) is an ideal of kF, we get that the ideal of £F generated
by T is equal to (7). By definition, Z = (R);. Combining these facts, we
obtain Z C (7). Thus, Z = (T). 0O

5 How multi-turns influence maximal occurrences

Let U, be a monomial, a;, € M be a maximal occurrence in U}, U;, = La,R.
We suppose that a, is not too short, namely, that A(a,) > 3. Assume U, —
ST J 1( a; 'a;U;) is a multi-turn that comes from an elementary multi-turn

ap |—> Mi—i(—a; taya; ), so, U; = LajR. Tt is intuitively clear that for every
i#h
maximal occurrence in Uy, there exists a corresponding maximal occurrence

in every U;. In this section we describe precisely how that corresponding
maximal occurrences look like.

Definition 5.1. Let U, be a monomial, b € M be a maximal occurrence
in Uy, A be an occurrence in U, (A does not necessarily belong to M). We
define the intersection of b and A in Uj, as the occurrence that consists of
letters that are contained both in b and in A.

Evidently, there are the following five possibilities:
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1. b and A have the empty intersection;

1 [| A [ [| [ ]
IUh T T T b T 1
1 [| b [ [| [ ]
IUh 1 1 1 A 1 1
| 1 A [ ] ] |
IUh 1 | | b 1 1
| 1 [ ] A ] |
IUh 1 b ] 1 1

There are the following four possibilities for ay:
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e there exist maximal occurrences in U, that begin from the left of the
beginning of a; and that begin from the right of the beginning of ay;

e there are no maximal occurrences in Uy, that begin from the left of the
beginning of ay;

e there are no maximal occurrences in Uj, that begin from the right of
the beginning of ay;

e ay is a single maximal occurrence in Uy,.

In this section we consider only the first possibility as the most interesting.
Other cases are treated in the similar (but simpler) way.

Let us fix the notations. Throughout this section we assume that b and
¢ are two maximal occurrences in U, such that b starts from the left of the
beginning of a; and ¢ starts from the right of the beginning of a;. Since
A(ap) = 3, b and ¢ are separated in U,.

| 1 b 1 ] 1 ¢ ] |
f Uh 1 — an 1 1 1 1
I [ b [ ] [ [ ¢ [ |
f U, 1 T an 1 1 1 1
| I—b|—| 1 1 ¢ 1 |
f Uh 1 an 1 1 1 1
I [ b [ [ [ ] ¢ [ |
f U, 1 — an T 1 1
| 1 b 1 1 ¢ ] |
f Uh 1 T an T 1 1
| I—b|—| 1 c ] |
f U, 1 an T 1 1
I } b —4 = s ! |
U, h ap
I } b i = : I I
U, h Qap
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Uy, ap

We distinguish three types of monomials in the sum

> (e 'eyUy) =Y (—a;'a;La;R) :
=1 =1
J#h j#h

1. La;R, j # h, such that a; is not a small piece;
2. LajR, j # h, such that a; is a small piece but a; # 1;
3. LajR, j # h, such that a; = 1.

Let U; = La;R be a monomial of type [l or 2 First of all notice that
the monomial U; = La;R is reduced. Indeed, assume U; = L - a; - R is not
reduced. Since L and R are reduced monomials and a; # 1, we obtain that
at least one of L -a; and a; - R is not reduced. Assume L - a; is not reduced,
so, L =L'X, aj = X'}, L-a; = ('X)- (X"'d}), where L', a} can be
empty.

Assume p is a layout of the elementary multi-turn aj, — > j—1(—a;, 'aja;).
i4h

Then p € R and aj, and a; are monomials in p. Since X! ié a prefix of a;,
it follows from Compatibility Axiom that X - p € R. Therefore, Xa, € M.
Since Uy, is of the form Uy, = L' Xay R, a, is not a maximal occurrence in U,
a contradiction.

The case when a; - R is not reduced is considered similarly.

Let b be the intersection of L and b in Uy, € be the intersection of R and
c in Up. Notice that since b begins from the left of the beginning of ay, b is
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not empty. Similarly, since ¢ begins from the right of the beginning of ay,
¢ is not empty. Then b and ¢ can be considered as occurrences in U; in a
natural way.

L R
L | L (] ] L L L (] ]
I Ij | | a,h 1 U}: Uh 1 a,h | | ~ 1 1
L | b [ | [ ] L | [ | /C\ [ ]
=t T S
L R

The occurrences b and ¢ do not have to be maximal in U;. We study only b
and ¢ such that b and ¢ are not small pieces. Then, by Corollary 3.6 there
exists a unique maximal occurrence in U; that contains b and there exists
a unique maximal occurrence in U; that contains ¢. We denote them by
b and ¢ respectively. So, it is natural to consider b in U and V' in U, as
maximal occurrences that correspond to each other and ¢ in Uj, and ¢’ in U;
as maximal occurrences that correspond to each other.

We study how b and ¢’ look like and how they are mutually arranged.
Assume b and a;, are separated in Uy,. Then b is contained inside L, so, b =10
in U, and b is separated from a; in U;. Clearly, in this case b itself is a
maximal occurrence in Uj, that is, V' = bin U;. Informally speaking, we can
say that b stays unchanged in U; in this case.

The same for c¢. Namely, if ¢ and a;, are separated in Uy, then c is contained
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inside R, ¢ = c in Uj, and ¢ is separated from a; in U;. Then ¢ itself is a
maximal occurrence in Uj, that is, ¢ = ¢ in Uj.

Assume b is not separated from ay, in Uy, Then b is a suffix of L, L= Lﬁ.
Let us show that V' is of the form ' = bY’, where Y is a suffix of &'. Indeed,
assume b’ = XbY', where X is a non-empty prefix of ¥’. First suppose b and
ay, touch at a point. Then b = b in U, and ¥/ = XbY.

b=b W Un

Hence, Xb € M, so, b is not a maximal occurrence in Uj. Contradiction.
Now let b and a;, have an overlap d, then b = bd and V' = XbY.

b
X~

So we have Xb € M and bd € M. Therefore, since b is not a small piece,
Lemma [2.1] implies that Xb = Xbd € M. This again contradicts with the
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assumption that b is a maximal occurrence in Uj,. Assume c is not separated
from ay in Uy,. Then ¢ is a prefix of R, R = ¢R;. By the same argument, we
obtain ¢’ = Z¢, where Z is a prefix of ¢.

Remark 5.1. On the other hand, if b (¢) is a small piece, then in general
it can be contained in several maximal occurrences in U;. Since we do not

need this for the further argument, we do not consider the case when b (¢)
is a small piece in detail in this section and state here this remark only for
general information.

The occurrence b (¢) can be considered as a maximal occurrence in Uy,
with respect to some fixed polynomial p = Z?:l Bib; € R, b=0by, 1 <h<n
(g = Z?Zlyjcj €R,c=cp 1 <h < k) Then, in fact, the situation is
the same as above. Namely, if we consider prolongations of b (¢) only with
respect to p (¢), then we obtain that b (¢) is contained in a unique maximal
occurrence in U; with respect to p (¢) and this occurrence is of the form
bY (Zc). However, in order to show this precisely, we need to use some
additional considerations. Since we do not use this for the further argument,
we do not prove this statement here.

Let my and my be maximal occurrences in U}, such that the intersection
of my; and L is not a small piece and the the intersection of my and L is not
a small piece. Let m; be the intersection of L and my, Mo be the intersection
of L and my. Assume both m; and msy are not separated from a, in Uj,.
Then, clearly, either m; is contained in My, or My is contained in m;.

Since my and my are not small pieces, by Corollary B.6], we obtain m; = ma.
Hence, there exists not more than one maximal occurrence in U} such that it
is not separated from a; from the left side and its intersection with L is not a
small piece. By the same argument, there exists not more than one maximal
occurrence in Uy, such that it is not separated from a; from the right side
and its intersection with R is not a small piece.
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We already showed what happens with maximal occurrences that are
separated from a;, in U,. So we have to study only what happens with
maximal occurrences that are not separated from a, in U,. There are the
following possibilities.

(a)

There does not exist a maximal occurrence in U}, such that it is not
separated from ay;, from the left side and such that its intersection with
L is not a small piece. And similarly, there does not exist a maximal
occurrence in Uy, such that it is not separated from a; from the right
side and such that its intersection with R is not a small piece.

There exists a maximal occurrence in Uy, such that it is not separated
from a;, from the left side and such that its intersection with L is not
a small piece. Let this be our b. As before, b is its intersection with
L. But there does not exist a maximal occurrence in U, such that it is
not separated from ay, from the right side and such that its intersection
with R is not a small piece.

L
A

( 1 \ ] |
1 | |

Uy, /b\ ap

There does not exist a maximal occurrence in U}, such that it is not
separated from a;, from the left side and such that its intersection with
L is not a small piece. But there exists a maximal occurrence in U
such that it is not separated from a; from the right side and such that
its intersection with R is not a small piece. Let this be our ¢. As before,
C is its intersection with R.

. , 0

I 1 1 T 1
U, Qh [

There exists a maximal occurrence in Uy, such that it is not separated
from a; from the left side and such that its intersection with L is not
a small piece. Let this be our b. As before, b is its intersection with
L. And there exists a maximal occurrence in U}, such that it is not
separated from a; from the right side and such that its intersection
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with R is not a small piece. Let this be our ¢. As before, ¢ is its
intersection with R.

L R
—— —
Uy 3 an e

We have already considered case[(a)], so, we have to study only cases[(b)|H(d)|

Now we treat monomials of types [[l and 2l separately (see page B0). First
consider a monomial U; = La;R of type [Il Let us study what happen with
a;. There is the only possibility:

Alll1l a; is a maximal occurrence in Uj.

Assume the contrary, that is, La;R = L'Xa;YR', Xa;Y € M, where
X is a suffix of L, Y is a prefix of R, at least one of X and Y is
non-empty. Since a; is not a small piece, we apply Corollary 2.2 and
obtain Xa,Y € M. Thus, a5 is not a maximal occurrence in Uj.
Contradiction.

Now let us study possible forms of & and ¢’ in a monomial of type [ in
detail. First we study what happens with b in cases @ and @ That is, b

is not separated from aj, L = L1b. Then there are the following possibilities
for &'. Notice that they do not depend on a configuration of ¢’ in the same
monomial.

L1 b is a maximal occurrence in U;, that is, V/ = b. If b and ay, touch at a
point in Uy, we obtain b = b and ¢ = b.

b=1b

If b and aj, have an overlap d; in Uy, then b :/l;dl, ¥ =b.
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b=v Y U

L2 b is prolonged from the right in U; by a small piece, that is, ¥ = /561,
where e; is a non-empty small piece. If e; is not a small piece, then,
by Lemma [2.1, we obtain that ba; € M. But this is not possible, since
a; is a maximal occurrence in Uj, a contradiction.

If b and a, touch at a point in U, we obtain b = band U = Zel.

1 1 B: b '] [l |

I 1 | | ah 1 U};
b/

1 { - aj [l |

' A U,
b 7

b
I b | N [ |
R ah Un
| /b\ €1 (Zj |
%//_/ Uj
b

Now consider what happens with ¢ in cases and @ That is, ¢ is not
separated from a;, R = ¢R;. Then we obtain the following possibilities for
c’. They do not depend on a configuration of ¥ in the same monomial.

RM1 ¢ is a maximal occurrence in Uy, that is, ¢ = ¢. If ¢ and aj, touch at a
point in Uy, then ¢ =¢ and ¢ =¢.
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o)
I
@)

Q)
Il
o

d ¢
I } I .I I I
U Uh S~
C
4 i : |
U a4 o=/

RI2 ¢ is prolonged from the left in U; by a small piece, that is, ¢ = esc,
where es is a non-empty small piece. If e; is not a small piece, then,
by Lemma 2., we obtain a;c € M. But this is not possible, since a;
is a maximal occurrence in Uj, a contradiction. Since a; is a maximal
occurrence in Uj, a; is not contained in es.

If ¢ and ay;, touch at a point in Uy, then ¢ = ¢ and ¢ = eyc.

—t HF—
Uh ap
C/
s X
| | J [ |
— et
Uj €2 c
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If both b and ¢ are not separated from a;, in Uy, L = Ll/b\, R = ¢Ry,
then any combination of configurations LOLI LOL2| from the left and ROL
ROL2 from the right is possible. Therefore, we obtain the following mutual
positions of ¥ and ¢ in case|(d)

1 bis a maximal occurrence in Uj, that is, b’ = b, € is a maximal occur-
rence in Uj, that is, ¢ =¢.

T g ~_
=0 ,Cc=c
1 | | | | 1 1

1
I
U, a;

M2 b is a maximal occurrence in Uj, that is, / = /Z;, ¢ is prolonged in U;
by a small piece, that is, ¢ = eyc, where e, is a non-empty small piece.
Since a; is not a small piece, b’ and ¢’ are separated in Uj.

=0 S

U,

M3 b is prolonged by a small piece in Uj, that is, ¥ = /Z;el, where ¢e; is a
non-empty small piece, ¢ is a maximal occurrence in U;, that is, ¢ =¢.
Since a; is not a small piece, b' and ¢’ are separated in Uj.

/

]  c=c

\ LI aj 1 1 1

ST

M4 both b and ¢ are prolonged by small pieces in Uj, that is, V' = Zel,
¢ = eyc, where e; and ey are non-empty small pieces, and b and ¢ are
separated in U;.

: b I€1 €2I C :
U; S~ 4
v c
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M5 both b and ¢ are prolonged by small pieces in Uj;, that is, V/ = /Z;el,
¢ = eyC, where e; and ey are non-empty small pieces, and ¥ and ¢
touch at a point in Uj.

ST
m— =
[Sb-

This may happen only if A(a;) < 2.

M6 both b and ¢ are prolonged by small pieces in Uj, that is, V' = /561,
¢ = eyc, where e; and ey are non-empty small pieces, and ¥ and ¢
have an overlap in Uj.

a;
| Tt
U] /b\ 1 e9 E

This may happen only if A(a;) < 2.

Consider a monomial U; = La; R of type [ (see page b0). Let us study
what happens with b in cases @ and @ That is, b is not separated from
ap, L = ng. First we enumerate possibilities that do not depend on ¢’. They
can be obtained together in cases @ and @ Then there are the following
configurations for o'

LEL1 b is a maximal occurrence in Uj, that is, ' = b.
| b — b/ [ |

1
I
U, a;

LEL2 b is prolonged in U; by a small piece, that is, b’ = Zel, where e; is a
non-empty small piece, wherein b does not cover a;.
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LEL3 b is prolonged in U; by a small piece, v/ = Eaj.

LE4 b is prolonged in Uj, b covers a;, V' = gajel, where e; is a non-empty
small piece.

Remark 5.2. Assume V' = gajel and ey is not a small piece.

e

R NG
U = \'/ l !
J b/

Since e; is contained inside R, e; can be considered as an occurrence in Uj,.

)
)

>
Q)

S,

Since e is not a small piece, there exists a unique maximal occurrence e in
U}, that contains e;. Clearly, e is not separated from a; and its intersection
with R is equal to e;. There are two possibilities:

| 1 /b\ 1 ﬂ |

i
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Then, since e; is not a small piece, we obtain e = ¢, e = ¢ and V/ = ba;c.

Le1=¢C
R Rl
IU' — \'/' _ '
J b’

Therefore, b = gajel, where e; is not a small piece, can be obtained only
in case [(d)}, and moreover b’ = EajE in this case. So, LBII}LPI4] exhaust all
possibilities that can be obtained both in cases @ and @

Clearly, the same argument is applicable for configurations RRIIHRP2L4]
and LB LB RBI-RB2L

Now we consider what happens with ¢ in cases and @ So ¢ is
not separated from aj, R = ¢R;. Let us enumerate possibilities that can be
obtained together in casesand@ They do not depend on a configuration
of V/ in the same monomial U;. Then there are the following configurations
for ¢ (see Remark [5.2)):

R[2l1 ¢ is a maximal occurrence in Uj, that is, ¢ = €.

~__
1 IC_CI |
1 | | 1 1

1
I
U, a

R212 ¢ is prolonged in Uj, that is, ¢’ = eyc, where ey is a non-empty small
piece, wherein ¢’ does not cover a;.

e

I } 2| : | |
U; aj~—~—"

C/

RE13 ¢ is prolonged in Uj, ¢ = a;c.
aj E

I [ |
U ~—~—

/

c
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R[2l4 ¢ is prolonged in Uj, ¢ covers a;, ¢ = esa;c, where ey is a non-empty
small piece.
Qa; ; C

e
2

Uj Hl/_/
C

Assume both b and ¢ are not separated from ay in Uy, L = ng, R =C¢R,;
(case|(d)). Then we can have any combination of configurations L2124
for v and configurations RRII-REI4 for ¢/. In these cases V' and ¢ are
different maximal occurrences in U; and they may have any mutual position:
be separated, touch at a point or have an overlap. If they have an overlap,
then their overlap may contain or may not contain a;. But here we have an
extra possibility. Unlike monomials of type[I], " and ¢’ may also be the same
maximal occurrence in Uj:

21 b and ¢ merge to the maximal occurrence Eajf in Uj, that is, V/ = ¢ =

ba;c.

. L SRR
I 1 ] 1
— _/
U, g
bV =¢

We continue to study a monomial U; = La; R of type 2l Let us consider
what happens with a;. Assume a;- is a maximal occurrence in U; such that
a;- contains a;. Clearly, a;- is not necessarily unique. The first option is

ARl a; = a;.

Let a; # aj. Almost all configurations are already described above, namely,
cases L3l LBI4 RPI3 RE4] The rest of the possibilities are the
following;:

ARL2 a} = ajey, where e, is a non-empty small piece.

a; €2
f I_'_'. |
Uj R/_/
/

a;

62



ARL3 @ = eja;, where e; is a non-empty small piece.

€1 aj
==

TS SR
a’
J

A4 a;- = eja ez, where e; and ey are non-empty small pieces.

€1 a; €2
=L

Now we study a monomial of type 3] that is, a; = 1, U; = L- R. In
this case cancellations between L and R may occur. Suppose L = L'C,
R = C7'R and L'R’ does not have further cancellations.

L R
1 1 C '] '] C_l [l |
- L m Un,
" ~
L R

If both L' and R’ are empty, then U; = 1 and there are no maximal oc-
currences to study. From now on we assume that at least one of L’ and
R’ is non-empty. If some maximal occurrence in Uy is fully contained in
C, then, clearly, it is cancelled in U;. If some maximal occurrence in Uy,
is fully contained in C~', then it is cancelled in U;. We have the following
possibilities:

e there exist maximal occurrences in U, that have a non-empty intersec-
tion with L’ and that have a non-empty intersection with R';

e there are no maximal occurrences in U, that have a non-empty inter-
section with L;

e there are no maximal occurrences in U, that have a non-empty inter-
section with R’;
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e there are neither maximal occurrences in Uj, that have a non-empty
intersection with L', nor maximal occurrences in U, that have a non-
empty intersection with R'.

We consider only the first possibility as the most interesting. Other cases are
considered in the similar (but simpler) way.

We consider b such that it has a non trivial intersection with L" and ¢ such
that it has a non trivial intersection with R’. Denote by b the intersection of
b and L’ and by ¢ the intersection of ¢ and R’. Clearly, as above, b and ¢ can
be considered as occurrences in U; = L'R'.

L/ Rl
/_/H /_/H
I 1 /l; | | O | | ah | | C—l 1 Uhl
1 1 /b\ ] UJI

1 1

L R

L R
/_/H /_/H
I Uh 1 C | | ah | | C—l | | /C\ 1 1

1 UJ 1 /C\ ] |
1 1
L R

The occurrences b and @ do not have to be maximal occurrences in Uj. As
above, we consider only b and ¢ such that both b and € are not small pieces.
Then, by Corollary [3.6] there exists a unique maximal occurrence in U; that
contains 3, we denote it by ¢/, and there exists a unique maximal occurrence
in U; that contains ¢, we denote it by ¢'.

Similar to the above, if b is not a terminal subword of L', then b=bin
Uy, and bis separated from the end of L' in U;. So, b is a maximal occurrence
in U;. Hence, b stays unchanged in U;.
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b=1b ¢ ah c! Uh
1 IB: b/ [ | UJI
I 1 1 T 1
L R

If € is not an initial subword of R’, then ¢ = ¢ in U, and ¢ is separated from
the end of L' in U;. So, ¢ is a maximal occurrence in U;. Therefore, ¢ stays
unchanged in Uj.

L/ R/
/_/H /_/H
IUh 1 C | | a/h | | O*l 1 1 /C\: c 1 1

1 U] | ] /C\: C, ] |
1 1
L R

If b is a terminal subword of L' , then, using the same argument as we
used for monomials of types [Il and 2] we can show that & = bY’, where Y is
a suffix of . The same for ¢, if ¢ is an initial subword of R’, then we obtain
' = Z¢, where Z is a prefix of ¢.

Using the same argument as above, we can show that there exists no
more than one maximal occurrence in U, such that it is not separated from
the end of L' from the left side and its intersection with L’ is not a small
piece. The same from the right side, namely, there exists no more than one
maximal occurrence in Uj, such that it is not separated from the beginning
of R from the right side and its intersection with R’ is not a small piece.

We already described what happened with maximal occurrences that are
separated from the end of L. So we have to study what happens with
maximal occurrences that are not separated from the end of L’. There are
the following possibilities.
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(a)

(d)

There does not exist a maximal occurrence in Uj, such that it is not
separated from the end of L' from the left side and such that its in-
tersection with L' is not a small piece. And similarly, there does not
exist a maximal occurrence in Uy such that it is not separated from the
beginning of R’ from the right side and such that its intersection with
R’ is not a small piece.

There exists a maximal occurrence in Uy, such that it is not separated
from the end of L’ from left side and such that its intersection with L
is not a small piece. Let this be our b. As before, b is its intersection
with L’. At the same time there does not exist a maximal occurrence
in U, such that it is not separated from the beginning of R’ from the
right side and such that its intersection with R’ is not a small piece.

L R
— —

7 C an 1 Un

There does not exist a maximal occurrence in Uj, such that it is not
separated from the end of L’ from the left side and such that its in-
tersection with L’ is not a small piece. But there exists a maximal
occurrence in Uy, such that it is not separated from the beginning of R’
from the right side and such that its intersection with R’ is not a small
piece. Let this be our ¢. As before, ¢ is its intersection with R’

C an c-! c U

There exists a maximal occurrence in Uy such that it is not separated
from the end of L from the left side and such that its intersection with
L' is not a small piece. Let this be b. As before, b is its intersection
with L/. But there exists a maximal occurrence in U}, such that it is
not separated from the end of L’ from the right side and such that its
intersection with R’ is not a small piece. Let this be c¢. As before, ¢ is
its intersection with R'.
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7 C an ct e U,

We have already considered case @ so, we have to consider only cases @
@NOW let us study " and ¢ in a monomial of type [l in detail. Consider
cases @ and @ That is, b is a terminal subword of L', L' = L}b. First
we describe possibilities that can be obtained together in cases @ and @
They do not depend on a configuration of ¢ in the same monomial U;. Then
there are the following configurations for & (see Remark [5.2)):

LBL1 b is a maximal occurrence in U;, that is ¥/ = b.

L R
AL N

| N 2
1 1

b=V

ST

LBL2 b can be prolonged in U; by a small piece, that is, b’ = Zel, where e; is
a non-empty small piece.

L/ R/

N N
o X A
I(]j T /b\ |€1l

bl

Let us treat cases|[(d)|and[(d")} So @is an initial subword of R/, R’ = CR}.
We enumerate configurations that can be obtained together in cases @
and @ They do not depend on a configuration of ¢’ in the same monomial
U;. Then there are the following possibilities for ¢’ (see Remark [.2):

RBl1 ¢is a maximal occurrence in Uj, that is, ¢ =¢.
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RBl2 ¢ can be prolonged in Uj, that is, ¢ = eyc, where ey is a non-empty
small piece.

L R
_N— _N—
Ve ~ ~
| H ——
U; €2 T
Cl

Now we will finish with case . So, we assume that b is a terminal
subword of L', L' = L’lg, ¢ is an initial subword of R, R = ¢R}. Then
we can have any combination of configurations LB LBI2| for 4" and RBLI]
RBI2 for ¢’ in the monomial U;. In these cases b’ and ¢ are different maximal
occurrences in U;. The last possibility is that b and ¢ is the same maximal
occurrence in Uj:

Bl1 b and ¢ merge to one maximal occurrence be, that is, b’ = ¢ = be.
]
. N— _/
U; ~
b =¢

6 Virtual members of the chart

Let Uy, be a monomial. We denote by Max(Uy,) the set of all maximal occur-
rences of monomials of M in Uj. Assume ay, is a member of the chart of Uj,

(see Definition B4)), U, = LapR. Consider a multi-turn U, — Y j=1 U; that
i#h

comes from an elementary multi-turn aj, — Y j—1 a;. That is,
i#h

n n
Up=LapR— Y U;=> LajR.
Jj=1 J=1
i#h j#h
In Section [§ we employ an inductive argument for U, and U;. For the sake
of this argument, we need a numerical parameter of a monomial that does
not increase when we go from Uy, to U;. The following examples show that

neither the number of maximal occurrences in a monomial, nor the number
of members of the chart of a monomial do not suite this purpose.
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Example 6.1. Let a; be a member of the chart of U,. Assume b,c €
Max(Up,), b starts from the left of the beginning of ay, ¢ starts from the right
of the beginning of a;. Assume b and a; touch at a point, and a, and ¢
also touch at a point. Let A(b) < 7 and A(c) < 7. Then b and ¢ are not
members of the chart of U,. According to the previous section, the element
b may be prolonged in U; and the A-measure of the corresponding prolonged
element V' in U; may increase and become > 7. The same may happen with
¢, that is, the element ¢ may be prolonged in U; and the A-measure of the
corresponding prolonged element ¢’ in U; may increase and become > 7. If
this happens simultaneously, then both " and ¢’ are members of the chart of
U;. In this case, the number of members of the chart of U; becomes greater
than the number of members of the chart of U, even if A(a;) < 7.

Example 6.2. Let a; be a member of the chart of Uj,. Assume b € Max(Uy,),
b starts from the left of the beginning of a,. Assume b and a; touch at a
point. Assume b is the only element of Max(Uj) that is not separated from
an from the left side. Let b = bd’, where d’ is a proper suffix of b, d’ is
a small piece. Let a; = d”a;, where d” is a proper prefix of a;, d’ is a
small piece. It may happen that d = d'd” is a maximal occurrence in Uj.
If this happens, we obtain a new element in I\/Iaxfc(Uj), which grows from
two occurrences d’ ¢ Max(Uy,) and d” ¢ Max(U;). So, assume d = d'd" is
a maximal occurrence in U;. Assume additionally that b stays unchanged
in U;, a; € Max(U;), and there are no elements of Max(U),) that are not
separated from aj, from the right side. Then |Max(U;)| > |Max(Up)|.
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L L L '] ah (] ]
IUh 1 g Id’l 1 1
d
= } .I } .I ; |

Uj p dd" a
2 ——
b a;

So, the number of members of the chart of U, and |Max(Uy)| are not
appropriate parameters for the induction. If we want to prove that the in-
duction is nevertheless finite, we need to introduce a parameter with more
stable properties with respect to multi-turns. In order to do this, we refine
the notion of a member of the chart in this section. After that we introduce
a function that guarantees finiteness of the inductive process (see Proposi-

tion [6.22)).

6.1 Images of maximal occurrences

Definition 6.1. Let U, be a monomial, a;, € Max(Uy), A(ay) = 3, U, =
LapR. Let aj, and a; be incident monomials (that is, there exists p € R such
that aj, and a; are monomials in p). Consider the replacement a; +— a; in
Un. Then La;R is the resulting monomial, we denote it by U;.

1. First we define images of ay in U;. If a; = 1 we say that the set of
images of a; is empty. If a; # 1, an element of Max(U;) that contains
a; is called an image of ap in U;. The set of all such elements is called
the set of images of a; in Uj.

2. Assume a; # 1. Let b € Max(Uy), b # ap, b starts from the left of the
beginning of a;. Let b be the intersection of b and L. Then an element
of Max(Uj;) that contains b is called an image of b in U;. The set of all
such elements is called the set of images of b in U;.

Let ¢ € Max(Up,), ¢ # ay, ¢ starts from the right of the beginning of ay,.
Let ¢ be the intersection of ¢ and R. Then an element of Max(U;) that
contains ¢ is called an image of ¢ in U;. The set of all such elements is
called the set of tmages of ¢ in Uj;.
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3. Let a; = 1. Assume L = L'C, R = C7'R', 'R has no further
cancellations. Let b € Max(U},) such that b # ay, b starts from the left
of the beginning of a,. If b is contained in C', then b cancels in U; and
we say that the set of images of b in U; is empty. Assume b is not
contained in C. Let b be the intersection of b and L’. Then an element
of Max(U;) that contains b is called an image of b in U;. The set of all
such elements is called the set of images of b in U;.

Let ¢ € Max(Uy) such that ¢ # ap, ¢ starts from the right of the
beginning of a,. If ¢ is contained in C~!, then ¢ cancels in U; and
we say that the set of images of ¢ in U; is empty. Assume c is not
contained in C~'. Let ¢ be the intersection of ¢ and R’. Then an
element of Max(U;) that contains ¢ is called an image of ¢ in U;. The
set of all such elements is called the set of images of ¢ in U;.

Remark 6.1. Let us state several observations on images.

1. Consider images of a; in U;. All possible images of a; in U; are de-
scribed in Section [ see cases A[lIl LEI3| LRI4 RPI3 RE24l 2T,
ARIT-ARI

2. Consider the case a; # 1. Let b € Max(Uy) such that b # ay, b starts
from the left of the beginning of a;. Let b be the intersection of b and
L. Let ¢ € Max(Uy,) such that ¢ # ay, ¢ starts from the right of the
beginning of a;,. Let ¢ be the intersection of ¢ and R.

By Corollary [3.6] if b is not a small piece, then b has a single image in
U;. If b is a small piece, then it may have more than one image in U;.
Similarly, if ¢ is not a small piece, then ¢ has a single image in U;. If ¢
is a small piece, then it may have more than one image in U;.

Recall that in Section [l we studied b such that b is not a small piece
and ¢ such that ¢ is not a small piece. In fact, we described all possible
forms of their images in U;. We proved that if b is separated from ay, in
Uh,Atheng = bin U, and the image of b is the corresponding occurrence
of bin U;. If b is not separated from a;, in Uy, then all possible forms
of its image are described in Section [Blin LOLT], L2, LRI LR2I4, 211
Similarly for ¢, we proved that if ¢ is separated from a; in U, then
¢ = cin Uy, and the image of ¢ is the corresponding occurrence of ¢ in
U;. If ¢ is not separated from a; in Uy, then all possible forms of its

image are described in Section [ in RO, RI2] R2I-RE24]
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3. Consider the case a; = 1, L = L'C, R = C™'R’, LR’ has no further
cancellations. Let b € Max(Uy,) such that b # ayp, b starts from the
left of the beginning of ay, b is not contained in C. Assume b is the
intersection of b and L'. Let ¢ € Max(Uy,) such that ¢ # ay, ¢ starts
from the right of the beginning of ay,, ¢ is not contained in C~!. Assume
¢ is the intersection of ¢ and R'.

By Corollary 3.6, if b is not a small piece, then b has a single image in
U;. If b is a small piece, then it may have more than one image in Uj;.
Similarly, if ¢ is not a small piece, then ¢ has a single image in U;. If ¢
is a small piece, then it may have more than one image in U;.

In Section 5] we studied b such that b is not a small piece and ¢ such
that ¢ is not a small piece. We described all possible forms of their
images in U;. We proved that if b is separated from the end of L in U,
then b=bin Uy, and the image of b is the corresponding occurrence
of bin U;. If b is not separated from the end of L' in Uj, then all
possible forms of its image are described in Section [ in LBl LB[2]
BLIl Similarly for ¢, we proved that if ¢ is separated from the beginning
of R in Uy, then ¢ = ¢ in Uy, and the image of ¢ is the corresponding
occurrence of ¢ in U;. If ¢ is not separated from the beginning of R’
in U, then all possible forms of its image are described in Section

in RB RB2 Bl

4. Notice that taking images is not an injective mapping. That is, different
elements of Max(U),) may have the same set of images in U;. For
example, let us mention case in Section Bl It follows directly from
our definition of images, that in this case the maximal occurrences b, ¢
and ay in Uj, have the same set of images in U; (and this set consists

of the single element Zaj’c\).

6.2 Minimal coverings of a monomial

Let U be a monomial. Assume A, By, ..., B, are occurrences in U. If every
occurrence of a letter in A is contained in some B;, 1 < i < n, then we
say that Bi,..., B, fully cover A (or for short cover A). Let us consider
the monomial U as a segment and its subwords as its subsegments. Assume
By, ..., B, fully cover A in the sense of the above definition. Then, clearly,
the segments By, ..., B,, cover the segment A.
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Recall that Max(U) is the set of all maximal occurrences in U. There
are two types of such occurrences: occurrences that are not fully covered by
other occurrences of Max(U) and occurrences that are fully covered by other
occurrences of Max(U). We denote the first set by Max"(U) and the second
set by Max™(U).

Lemma 6.1. Let U be a monomial. Assume a € Max(U). Then A(a) < 2.

Proof. Let b,c € Max(Uy). Assume b starts from the left of the beginning
of a and b has a non-empty intersection with a. Then b covers some proper
initial subword of a, since a is not contained in b.

: =5 :
U a

Assume c starts from the right of the beginning of @ and ¢ has a non-empty
intersection with a. Then ¢ covers some proper final subword of a, since c is
not contained in a.

I —=—— |

I U ITI 1

Assume dy,...,d, € Max(U) cover a. Clearly, every d;, 1 < i < n,
starts either from the left or from the right of the beginning of a. Therefore,
using the above observations, once can easily see that there exist d;,,d,,,
1 < 41,142 < n, such that d;, covers a proper initial subword a; of a, d;, covers
a proper final subword ay of a, a; and as cover the whole a.

ey
U 4, | dy

— |
v, T

Since a; and as are overlaps of maximal occurrences in U, a; and ay are small
pieces. Since a; and ay cover a, we obtain A(a) < 2. O

Let us enumerate the beginnings of all the elements of Max(U) according
to their positions in U in ascending order. We consider this order on the
beginnings as an order on Max(U). Notice that since elements of Max(U) are
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not contained inside each other, the order on their ends is the same as the
order on their beginnings. Namely, assume A; By and A, B, are two segments

of our set, where A; and A, are starting points, B; and By are ending points.
If Al < AQ, then By < Bs.

14Il Bil L 1
U A, Bs
Al B1
U A, B,
Al Bl
| ] |
I U I—I 1
AQ BQ

Let us consider a graph with a set of vertices Max(U). Two vertices are
connected with an edge in this graph if and only if the corresponding maximal
occurrences in U are not separated. Let Max(U)y, ..., Max(U),, be all the
maximal connected components of this graph. Then, clearly,

Max(U) = Max(U); U ... U Max(U)n,

where U is a disjoint union. Assume a € Max(U);, and b € Max(U),,, i1 # ia.
Then a and b are separated in U. If a < b, then without loss of generality
we can assume that i; < 9.

U | |
Max(U ), Max(U ) Max(U),,

Let us consider a set Max(U)g, 1 < k < m, in detail. Every element

of Max(U);, belongs either to Max™(U), or to Max™(U). Clearly, the first
clement and the last element of Max(U); belong to Max™(U). So, if we
enumerate elements of Max(U);, in ascending order, we obtain

d17 Cily - -+, Clt17d27 R dl—17 Cl—1,15- - Cl—1,t;_1» dl7
where d; € Max”fc(U),cij e Max“(U),j=1,...,tyi=1,...,1,
a SEqUENCE Ciy, . . ., Cy, can be empty.
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Cl_17tl71 I_'l
d Cl—1,1.. I I
=1

dy
c 1 . e
P —9

The elements d; and d;;; can either be separated, or touch at a point, or
have an overlap. The elements d; and ¢;1, ¢, and di41, ¢;; and ¢; j11 always
have an overlap. Non-successive elements of Max(U); are not necessarily
separated. They still can touch at a point or have an overlap. For example,

Ci1
U L4 D din '
Ci1
U d; dit1

Let Py be the starting point of the first element of Max(U), and Q. be the
end point of the last element of Max(U)x, k = 1,...,m. Clearly, segments
Py, Qr, and Py, Qy, are separated if ky # ko.

I S S
Ul r 1 1

In the other words, if we consider elements of Max(U) as segments and glue all
non-separated segments, as a result we obtain the segments P;Q1, ..., Pp,Qn.
So, Max(U) covers all the segments P,Q1, ..., P,Q., (and only them) in U.
We consider a subcovering of every segment P,Qy, k = 1,...,m, by elements
of Max(U). Clearly, a subcovering of P,Q)y is a subset of Max(U),. We call
the union of these subcoverings by & = 1,...,m a covering of U (despite
the fact that it covers only certain subsegments of U and may not cover the
whole U). There are finitely many different coverings of U, we denote them
by C;(U), i =1,...,n(U).

If Z is some occurrence in U (Z not necessarily belongs to M) and C;(U)
is a covering of U, we can consider all the elements of C;(U) that have a
non-empty intersection with Z (but not necessarily fully contained in 7).

We denote this set by C;(Z,U).
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Let us consider a subcovering of every segment P,Qr, £ = 1,...,m,
that consists of the smallest number of elements and denote this number by
MinCovy(U). We call the union of these subcoverings by k = 1,...,m a
minimal covering of U. Clearly, a minimal covering of U is not necessarily
unique. Let MinCov(U) be the number of elements in a minimal covering of
U, that is,

MinCov(U) = Z MinCovy (U).
k=1

Notice that all elements of Max™(U) are contained in any covering of U,
including a minimal covering. If some element of Max™(U) is fully covered
by elements of Max"(U), it is never contained in a minimal covering of U.
Assume U, is a monomial, a;, € Max(Uy). Let a;, and a; be incident
monomials and consider the replacement a, + a; in Uy. Let U; be the
resulting monomial. We study how a minimal covering of U is connected
with a minimal covering of U;. Let us prove the following auxiliary lemma.

Lemma 6.2. Let U, be a monomial, a;, € Max(Uy,), U, = LayR. Let a), and
a; be incident monomials, a; # 1. Consider the replacement ay, — a; in Uy,
Let U; = La,R be the resulting monomial. Assume b € Max"(Uy,), b # ap, b
starts from the left of the beginning of a,. Then b has a single image in U;.
Moreover, zfg is the intersection of b and L, then the single image of b in U;
1s of the form /Z;Y, where Y s a suffix of the image.

Under the same conditions assume ¢ € Max™(Uy,), ¢ # ap, ¢ starts from
the right of the beginning of an. Then c has a single image in U;. Moreover,
if € is the intersection of ¢ and R, then the single image of c in U; is of the
form Xg, where X is a prefiz of the image.

Proof. We consider the case of b that starts from the left of the beginning of
ap. Since a; # 1, the monomial La; R has no cancellations and b has a non-
empty set of images in U;. If b is not a small piece, then, by Corollary [3.6]
b has a single image without any additional conditions. So, in fact, the
condition b € Max"(U},) is essential only if b is a small piece.

If b is separated from ay, in Uy, then the corresponding occurrence of b in
U; is a maximal occurrence in U;. Hence, it is the single image of b in Uj.

Assume b is not separated from a; in U,. Then L = ng. Assume d’ is
an image of b in U;. That is, d' € Max(U;), d’ contains b in U;. Let us show
that b is a prefix of d’, that is, d' = EY, where Y is a suffix of d’. Assume
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the contrary, namely that d' = X/Z;Y, where X is a non-empty prefix of d'.
Assume L = L) Xb.

Ly x b ap R

Ly x b a; R

the prefiz of d’

Consider the case when a;, and b touch at a point. Then b=bin U,, and
L = Lb.

We assumed d' = XbY € M, therefore Xb € M. Since b = b in Uy, we
obtain Xb € M. So, since U, = L Xba, R, b is not a maximal occurrence in
Uy, a contradiction. R

Assume a and b have an overlap e in Uj. Since Xb € M, there exists a
maximal occurrence in U), that contains Xb. Denote this maximal occurrence

in Uy, by d, so d € Max(Uy,).

Xb is con- ah
tained inside d

We assumed that X is non empty, hence, d and b have different beginnings
in Uj,. Therefore d and b are different maximal occurrences in U;,. Then d
together with a; cover b in Uj,. Hence, b € I\/Iaxfc(Uh), a contradiction.

So finally we obtain d’ = bY', where d' € Max(U;) is an image of b in U;.
Since d' is an arbitrary image of b in Uj, this means that all images of b in
U; have the same beginning. Moreover, every image of b in U; has the prefix
b. Clearly, there exists a single maximal occurrence in U; with the prefix b.
Thus, b has a single image in U;. The case when b starts from the left of the
beginning of ay in U}, is considered in the same way. O
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Lemma 6.3. Let U, be a monomial, a, € Max"(Uy,), Uy, = LapR. Assume
ap, and a; are incident monomials, U; = La;R. Then we have MinCov(U;)) <
MinCov(Uy,). Moreover, ifa; = 1 or a; is fully covered by images of Max™(Uy)\
{an} in Uy, then MinCov(U;) < MinCov(Uy).

Proof. Let C;(Uy) be a minimal covering of U,. Since a; € Max“fc(Uh), it
necessarily belongs to C;(Uy,). Hence, the covering C;(Uy) can be written as

CZ(Uh) = C,(L, Uh) L {ah} L CZ(R, Uh),

where U is a disjoint union. First consider the case a; # 1. Let a; be some
image of aj,. Consider images of elements of C;(L,U,). Let us take one
arbitrary image of every element of C;(L, U,,) and denote the obtained set by
C'. Similarly for C;(R,Uy), let us take one arbitrary image of every element
of C;(L,Uy) and denote the obtained set by C”.

As above, let PQq,..., P,Q,, be the subsegments of U, that are ac-
tually covered by C;(Up). Recall that if we consider elements of Max(Up)
as segments and glue all non-separated segments, we obtain the segments
PQ,...,P,Q,,. Then a; is a subsegment of some P,();, 1 <t < m.

U, f?l Qlullljt Qt le le
|\ 1 1 1 ) ah 4 1 1 1 /'
~ ~"
L R
So, in U; we obtain
vy P QP Q% .. P Q
I } ; —— } ] |
— G5 _/
~ ~"
L R
Here the points P;, @}, . . ., P} have the same positions in L in U; as the points

P, Q1,..., P, have in L in Uy, respectively. The points @}, P/, ..., @, have
the same positions in R in U; as the points Q, P11, ..., Qy, have in R in Uy,
respectively. Clearly, the replacement a;, — a; in U, can not produce any oc-
currences of monomials of M in U; outside of the segments P/Q, ..., P, Q..
Hence, a covering of U; covers the segments P{Q), ..., P/ (), and only them.
Let C;(U;) be a covering of U;. Then we actually proved that an occurrence of
aletter in L or in R in U}, is covered by C;(Uy,) if and only if the corresponding
occurrence of this letter in U; is covered by C;(Uj).
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Let x € SUS™! be an occurrence of a letter in L. Assume x is covered by
some b € C;(L, Uy), then the corresponding occurrence of z in Uj is contained
in the intersection of b and L. Hence, by the definition of images, the cor-
responding occurrence of x in U; is covered by any image of b in U;. Hence,
z is covered by C' in U;. The same for R. Namely, let y € SUS™! be an
occurrence of a letter in R. Assume y is covered by some ¢ € C;(R, Uy), then
the corresponding occurrence of y in U; is contained in the intersection of ¢
and R. Hence, by the definition of images, the corresponding occurrence of
y in U; is covered by any image of ¢ in U;. Hence, y is covered by C” in U;.
Therefore, every letter of L that is covered by C;(L,Uy) in Uy, is covered by
C' in U; and every letter of R that is covered by C;(R,Uy,) in U, is covered
by C" in U;. The occurrence a; in Uj is covered by a’;. Hence,

C'U{a;} UC" is a covering of Uj.
Since we take one image of every element of C;(L, U,,) and C;(R, Uy,),
IC'] < |Ci(L, Un)l, IC"] < [Ci(R, Un),

where | - | is the number of elements in a set. Hence,

IC"U{ait uC <IC+[C" + [{a)}] < IC(L, Un)l + [Ci( R, Un)| + [{a;}] =

So, we constructed a covering of U; that consists of no more than MinCov(U},)
elements. Thus, MinCov(U;) < MinCov(Uy,).

Assume a; is fully covered by images of elements of Max™(Uy) \ {a} in
U,. Every element of Max"(U,) is contained in any covering of Uy. Clearly,
every element of Max™(U,,)\ {ay} has a non empty intersection either with L,
or with R. Therefore, every element of Max"(Uy)\ {as} is contained either in
Ci(L,Uy), or in C;(R, Uy). By Lemma 6.2, every element of Max"(U,) \ {ax}
has only one image. Hence, all images of Max"(U,) \ {as} are contained in
C'UC” (regardless of images that we take for elements that have more than
one image). So, C' UC" covers a;. Clearly, aj = da’aja”, where o' is a suffix
of L, a” is a prefix of R (a', a” are possibly empty). Since C’ covers L, we
see that C’ covers a’. Since C” covers R, we see that C” covers a”. Therefore,
finally we obtain C' UC" covers a};. Thus,

C'UC" is a covering of U;.
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So, since |C;(Uy)| = |C;(L, Up)| + |Ci(R, Up,)| + 1, we have

MinCov(U;) < |C'UC"| < |C'] +|C"] <
< |CAL, Up)| + |Ci(R, Uy)| < |ICi(Up)| = MinCov(Up,).

Now consider the case a; = 1. Assume U; = L- R = (L'C) - (C'R') =
L'R', where L' R’ has no further cancellations. Assume C;(U;) is some cover-
ing of U;. Using the same argument as above, we obtain that an occurrence
of a letter in L' or in R in Uj, is covered by C;(Uy) if and only if the corre-
sponding occurrence of this letter in U; is covered by Cy (U;).

Consider images of elements of C;(L',U)) in U;. Let us take one arbi-
trary image of every element of C;(L’, U},) and denote the obtained set by C'.
Similarly for C;(R’,Uy), let us take one arbitrary image of every element of
Ci,(L',Uy) and denote the obtained set by C”. As above, we see that every
letter of L' that is covered by C;(L',Uy) in U, is covered by C' in U;. Every
letter of R’ that is covered by C;(R’,Uy) in Uy, is covered by C” in U;. So,
since U; = L'R,

C'UC" is a covering of U;.

Since we take one image of every element of C;(L',U,) and C;(R',Uy), we
have
IC'] < IC(L', Un)l, IC7] < |Ci( R, Un)-

Since L' is contained in L in U, and R’ is contained in R in U, we have
Ci(L',Up) CCi(L,Uy), Ci(R,Uy) CCi(R,Up).

So,
|CZ(L/7 Uh)‘ < ‘CZ(Lv Uh)‘? |CZ(R/7 Uh)| < CZ(R7 Uh)‘

Recall that |C;(Uy)| = [Ci(L,Up)| + |Ci(R,Up)| + 1. Therefore, finally we
obtain

MinCov(Uj;) < |C"UC"| < [C' + [C"] < |Gi(L, Un)| + [Ci(R', Un)| <
< |Ci(L, Un) + |Ci(R, Up)| < |Ci(Up)| = MinCov(U).

O
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6.3 Admissible replacements of incident monomials

Let U be a monomial. We separate the set Max(U) in two distinct parts
according to A-measure of maximal occurrences in U. Namely, we consider
all the maximal occurrences in U of A-measure > 3 and denote this set by
Max>*(U), and we consider all the maximal occurrences in U of A-measure
< 2 and denote this set by Max<*(U). Since values of A-measure are natural
numbers, we see that Max(U) = Max”*(U) UMax=*(U), where U is a disjoint
union. It follows directly from Lemma that Max™(U) € Max~*(U) and
Max>*(U) C Max"(U)).

Definition 6.2. Let Uj, be a monomial, a, € Max(U,). Let aj, and a; be
incident monomials. Consider a replacement a; — a; in Uy,. Let U; be the
resulting monomial. We say that the replacement a;, + a; in U}, is admissible
if A(ap) > 7—2 and a; # 1 and a; is not fully covered by images of elements
of Max>*(Uy) \ {an} in Uj.

Remark 6.2. Assume A(ap) > 7 — 2. Then, by Lemma [6.3] we have
MinCov(U;) < MinCov(U;,). Notice that if aj, — a; is an admissible replace-
ment in U, we can obtain both MinCov(U;) = MinCov(U}) or MinCov(U;) <
MinCov(Uy). Let A(ap) > 7 — 2 and a, +— a; be not an admissible re-
placement in U,. Then, by definition, a; is covered by images of element
of Max”*(Uy,) \ {an} in U;. This yields that a; is covered by images of ele-
ments Max™(Uy,) \ {as} in U;, because Max™*(U,) € Max"(U,). Hence, by
Lemma [6.3], we obtain MinCov(U;) < MinCov(U},) in this case.

Definition 6.3. Assume U is a monomial, a € Max(U). Assume b € Max(U),
b starts from the left of the beginning of a, and b is not separated from a.
Then b is called a left neighbour of a in U. Assume ¢ € Max(U), c starts
from the right of the beginning of a, and c¢ is not separated from a. Then ¢
is called a right neighbour of a in U.

Notice that the maximal occurrence a may have several left neighbours
and several right neighbours.

| 1 bl [ ] l% ] |
f U T I ] I T Co T 1
by

a,bi,ba,c1,c9 € I\/Iax(U)
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Remark 6.3. Let U, be a monomial, a;, € Max(U,). Let a, — a; be an
admissible replacement in Uy, U; be a resulting monomial. Let U, = LayR.
We need a notion of an admissible replacement to prevent the following two
effects.

1. Assume b € Max(Uy,) is a left neighbour of a;. Let b be the intersection
of band L. Assume A(g) > 3. Then b € Max”*(Uy,). Let ' be the image
of b in U;. Since b € Max”*(Uy,), it follows directly from the definition
of admissible replacements that a; is not contained in 4. Namely, the
following configurations are not possible:

Similarly, assume ¢ € Max(U,) is a right neighbour of a;. Let ¢ be the
intersection of ¢ and R. Assume A(¢) > 3. Then ¢ € Max”*(U,). Let
¢ be the image of b in U;. Since ¢ € Max”*(Uy,), it follows directly
from the definition that a; is not contained in ¢’. Namely, the following
configurations are not possible:

I 1
Uj H/—/II A@) >3
C/
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2. Assume b € Max(Uy,) is a left neighbour if ap, ¢ € Max(Uy,) is a right
neighbour of a;. Let b be the intersection of b and L, ¢ be the intersec-
tion of ¢ and R. Assume A(b) > 3 and A(¢) > 3. Then b € Max”*(Uy,)
and ¢ € Max”*(U,). Let ¥ be the image of b in Uj, and ¢ be the
image of ¢ in U;. Then it follows directly from the definition of admis-
sible replacements that ' and ¢ are separated. Namely, the following

configurations are not possible:

b/
1 |—|| aj/_/\ 1
U S~ t AG) >3
b M AG) >3
b/
N e i .
U ~—~"F } AG) >3
b ¥ A() >3

Remark 6.4. Let us consider Property [Il from Remark from a different
point of view and state it in other words.

Let Uy, be a monomial, a5, € Max(Uy,), U, = LapR, and A(ay) > 7 — 2.
Assume ay, and a; are incident monomials. Consider the replacement ay — a;
in Uy, let U; be the resulting monomial. Assume b € Max(Uy,), b is a left
neighbour of ;. Let b be the intersection of b and L. Assume ¢ € Max(U,,),
c is a left neighbour of aj,. Let ¢ be the intersection of ¢ and R. Assume b
and ¢ merge to one maximal occurrence ba;c in U;. Then it follows from the
results of Section [0 that a; is a small piece (see A[LI).

S
)

g
)

=T
)

8
o)

L
f}(—/ﬁ
e




A~

Assume A(ba;c) > 6. Notice that A(a;) = 1 because a; is a small piece.
Therefore,

A~ -~ ~

A(bajc) < A(b) + A(€) + Aa;) = A(b) + A(c) + 1.

Since A(Eajﬁ) > 6, we see that A(/Z;) > 3 or A(¢) > 3. To be definite, assume
A@) > 3. Then A(b) > A@) > 3. Hence, b € Max”*(Uy,). By definition, Zaj’c\
is an image of b in U;. Therefore, a; is covered by an image of an element of
Max”?(Uy,)\ {as}. Clearly, we obtain the same result if A(¢) > 3. So, a; + a;
is not an admissible replacement in U}, if Zaﬁe Max(U;) and A(/l;ajﬁ) > 6.

Thus, if aj, — a; is an admissible replacement in Uy, then A(Eajf) < 5.
This means that we can not obtain “very long” maximal occurrences in U; as
a result of merging if a, — a; is an admissible replacement in Uy,

Lemma 6.4. Let U be a monomial, a € Max(U). Then either a does not
have left neighbours that belong to Max™(U), or it has just one left neighbour
that belongs to Max™(U) (but it may have other left neighbours provided they
do not belong to Max™(U) ). Moreover, if a has a left neighbour that belongs
to Max™(U), then this is a left neighbour of a with the leftmost beginning
point. The same holds for right neighbours, that is, either a does not have
right neighbours that belong to Max™(U), or it has just one right neighbour
that belongs to Max"(U) (but it may have other right neighbours provided
they do not belong to Max™(U) ). Moreover, if a has a right neighbour that
belongs to Max™(U), then this is a right neighbour of a with the rightmost
end point.

Proof. Assume my,my € Max(U). Let my and ms be left neighbours of a.
By definition, both m; and msy start from the left of the beginning of a.
Without loss of generality we may assume that m; starts from the left of the
beginning of my. Then, since both m; and msy are not separated from a, mo
is covered by m; and a.

| ml [ | [
U |_|m2 a
my
f I I I ] i
U |_|m2 a
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So, my € Max™(U). This means that a either has a single left neighbour
that belongs to Max"(U), or does not have left neighbours that belong to
Max™(U) at all. Furthermore, only a left neighbour of a with the leftmost
beginning may belong to Max”fc(U ). The statement about right neighbours
of a is proved in the same way. O

Corollary 6.5. Let U be a monomial, a € Max(U). Then either a does not
have left neighbours that belong to Max”>(U), or it has just one left neighbour
that belongs to Max”*(U) (but it may have other left neighbours provided they
do not belong to Max”*(U) ). Moreover, if a has a left neighbour that belongs
to Max>3(U), then this is a left neighbour of a with the leftmost beginning
point. The same holds for right neighbours, that is, either a does not have
right neighbours that belong to Max*(U), or it has just one right neighbour
that belongs to Max”?(U) (but it may have other right neighbours provided
they do not belong to Max>*(U) ). Moreover, if a has a right neighbour that
belongs to Max”*(U), then this is a right neighbour of a with the rightmost
end point.

Proof. Since Max”*(U) C Max™(U), the statement of Corollary G5 follows
directly from Lemma O

Lemma 6.6. Let Uy, be a monomial, a;, € Max(Uy,), U, = LayR. Let a), and
a; be incident monomials, a; # 1. Consider the replacement ay, — a; in Uy,.
Let U; be the resulting monomial, U; = La;R. Assume t/ € Max(U;). Let by

be the intersection of b" and L, by be the intersection of b' and R. Recall that
we can consider by and by as occurrences in Uy,.

A~

1. Assume A(by) = 3. Then there ezists b € Max(Uy) \ {an} such that V/
is a single image of b in U;. Furthermore, b zle, where Y is a suffix
of b, Y s an overlap of b and ay, in Uy, (Y is empty if b and a; are
separated or touch at a point), and b € Max”>(Uy,).

o~

2. Assume A(by) = 3. Then there ezists b € Max(Uy) \ {an} such that V' is
a single image of b in U;. Furthermore, b = X/b\Q, where X s a prefix
of b, X is an overlap of b and ay, in Uy, (X is empty if b and a), are
separated or touch at a point), and b € Max>>(Uy,).

Under the same conditions suppose that a, + a; is an admissible re-
placement in Uy. Then the element b obtained above is a unique element of
Max™™(U,) such that V' is its image in U;.

85



A~

Proof. Let us prove statement [II That is, A(b;) > 3. Statement [2]is proved

o~

similarly. Notice, that we can have A(b) > 3 and A(¢) > 3 simultaneously.

By the condition of Lemma [6.6, the occurrence b; is the intersection of
b and L. If b' does not start from the left of the beginning of a;, then b; is

o~

empty. So, the assumption A(b;) > 3 implies that b starts from the left of
the beginning of a;.

Assume b and a; are separated. Then /51 = V. Denote by b the occurrence
31 in U,. Then we can argue as earlier and obtain that b is a maximal
occurrence in U,. Since A(by) > 3, we obtain that A(b) > 3. That is,
b € Max”®(Uy,). Clearly, b and aj, are separated. Hence, by the definition of

images, b’ is a single image of b in Uj.

by =b h Un

Assume V' and a; are not separated. Then O’ and a; either touch at a
point, or have an overlap, or a; is contained inside b'. Notice that if a; is
contained in ', then a; is a small piece (see Section B AOLT).

a;
V=1, Uj
L aJ (]
I I 3 I I ] U]I
AN 1 J/
b/
a;
: — | U:
N I !
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— bl b2/
N

L
N
|/ 1 \l ] |
I 1 /b\l | | a/j 1 U]
L
A
|/ 1 \l ] |
I 1 /l;l | | a h 1 Uh

Since we assume that A(gl) > 3, by is not a small piece. Therefore, by

Corollary B.6] there exists a unique maximal occurrence in Uy, that contains
by. Denote it by b. Then A(b) > A(b) > 3, that is, b € Max”>(Uy,).

~

Let us show that b = 0,Y, where YV is a suffix of b. Indeed, assume
b= XbY, where X is a non-empty prefix of b. Then L = L X0b;.

L
N
|/ 1 1 \l 1 |
I L1 T X T /b\l T an T Uh
L
AN
|f 1 1 \l 1 |
f Ll T X T 31 T a; T U]

Since b = Xle € M, we obtain Xgl € M. Since 31 in U; is an intersection
of b and L, b; is an initial subword of ¥. Since b; is not a small piece, we
apply Lemma 2.I] to Xb; and b’ and obtain that X' € M.

Xy =0 Uj
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I T ™ U
X b, J
b/

Iajl
: I — 1 | Ul
X %_/ ’

b/
a;
! ————
X h by,
b/

Then V' is not a maximal occurrence in Uj, a contradiction. Therefore, X is
empty and b = le. R

Since b, in U}, is non-empty and is contained in the Asubword L of Uy, by
in U), starts from the left of the beginning of a;. Since b; in U}, is contained
in b, b starts from the left of the beginning of a; as well. Therefore, a;, # b.
Since a; and by in U; touch at a point, a; and b; in Uj touch at a point as
well. So, since b = le, Y is a common subword of b and a;,. In other words,
Y is an overlap of aj, and b (Y is empty if a;, and b touch at a point).

1 1 1 n ] 1

I 1 /b\ _ b | | 1 U}IL

1 1 ah [l ]
b

Let us show that b’ is an image of b. Indeed, 31 is a suffix of L and
b = bY. Hence, the intersection of b and L in U, is equal to b;. Since b; in
U, is the intersection of b’ and L, V' contains b in U;. Thus, by definition, O/
is an image of b in U;. Since b € Max”*(Uj,) € Max™(U,), by Lemma B2, ¥/
is a single image of b in Uj.

Now suppose that aj — a; is an admissible replacement in Uj,. Then we
have to show that the element b constructed above is a unique element of
Max™(U,,) such that & is an image of b. First of all notice that a; is not
contained in ¢'. Indeed, assume the contrary. We proved that the element b
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constructed above belongs to Max”*(U) \ {an}. So, since ' is an image of
b, we obtain that a; is covered by an image of b € Max”*(Uy,) \ {as}. This
contradicts with the assumption that a; + a; is an admissible replacement
in Uy. Therefore, a; is not contained in ¥'.

Assume d € Max"(U,,), d # b, and d' is an image of d in U;. Let us show
that d’ # b'. There are three possibilities for d.

1. d= ap;
2. d starts from the right of the beginning of ay;
3. d starts from the left of the beginning of aj.

Consider the first possibility, namely, d = a;. Then, by definition, a;
is contained in d’. We proved above that a; is not contained in &'. Hence,
d#V.

Consider the second possibility, namely, that d starts from the right of
the beginning of a;. Then the intersection of d and R is non-empty, and we
denote it by d2 Recall that d2 can be considered as an occurrence in U;. By
the definition of images, d2 in U; is contained in d'. Since d2 is non-empty

and is contained in the subword R in Uj, d2 in U; ends from the right of the
end of a;. So, d’ ends from the right of the end of a; as well. We proved
above that a; is not contained in '. Hence, V' ends from the left of the end
of a;. That is, b’ and d' have different end points. Thus, b’ # d'.

Consider the third possibility, namely, that d starts from the left of the
beginning of a,. Then the intersection of d and L is non-empty, and we
denote it bX di. We proved that b; in Uy is an initial subword of b. By
definition, d; in U}, is an initial subword of d. Since b and d are_ differerit
maximal occurrences in Uy, they have different beginnings. So, b; and d;
have different beginnings in U,. Recall that dl can be considered as an
occurrence in U;. Then, clearly, bl and d1 have different beginnings in Uj.
Since d € Max”fc(Uh) it follows from Lemma 62 that d; in U, is an initial

subword of d’. By definition, b, is an initial subword of V' Thus, b and d'
have different beginnings. So, ¥’ # d’. This completes the proof. O

Lemma 6.7. Let U, be a monomial, b € Max”*(Uy,). Suppose aj, € Max(Uy,)
is a right neighbour of b. Suppose aj, — a; is an admissible replacement in
Un. Let U; be the resulting monomial. Denote by V' the image of b in U;. Let
a; ¢ Max”®(Uj;), that is, either a; € Max~*(U;), or a; ¢ Max(U;). Assume
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that there exists ¢ a right neighbour of b such that ¢ € Max*(U;). Then
A(d) < 4.

Proof. Assume Uj, = LayR, then U; = La;R. Let b be the intersection of b
and L in Uy. Recall that we also consider b as an occurrence in U; and, by
definition, b’ contains b in U;. Moreover, since b € Max”*(Uj,) € Max"(U),
it follows from Lemma that b’ = ZY, where Y is a suffix of ¥'.

Since a; and b are not separated in Uy, aj, and b either touch at a point
or have an overlap.

| 1 b:/b\ [ ] ah ] |

th 1 1 1 1

bty .

th I 1 1
b

Clearly, b' and a; are not separated as well.

b '] J ] |
I 1 || 1 1

Ui ~—ou—

b is contained

inside b’

Moreover, since b € Max*(Uy,) \ {an} and a;, — a; is an admissible replace-
ment in Uy, a; is not contained in ¢'. So, either b’ and a; touch at a point,
or b' and a; have an overlap.

I 1 Ezbl 1 aj ] 1
IU] I | I 1
D
: ! 1 :
U; ~———
b/

Since b € Max”*(U},) € Max™(U},), by Lemma B2 & = bY, where Y is a
suffix of b'. Since ¢’ is a right neighbour of ', ¢’ starts from the right of the
beginning of t'. Therefore, ¢’ starts from the right of the beginning of b, and
b is not contained in ¢
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Let us show that either ¢ ends from the right of the end of a;, or ¢’ and a;
have the same end point. Assume the contrary, namely, that ¢’ ends from the
left of the end of a;. Then, obviously, ¢’ starts from the left of the end of a;
as well. First consider the case when ¢’ starts from the left of the beginning
of a;.

R

i

We see that b and a; cover ¢'. By definition, b contains b and every image
of aj, in U; contains a;. Hence, b’ and an arbitrary image of aj, in U; cover
d’. On the other hand, ¥ # ¢’ and ¢ is not equal to any image of a;, in Uj.
Therefore, ¢ € Max(U;). In particular, ¢ ¢ Max”*(U;), a contradiction.

Now assume ¢’ ends from the left of the end of a;, and ¢’ either starts
from the right of the beginning of a;, or ¢’ and a; have the same starting
point.

R

/[; a]’ ~ - ~

I U] T T |?| T 1
R

/[; a]’ ~ - ~

I UJ 1 I?l 1 1

Then ¢ is contained in a;. So, ¢ ¢ Max(U;), a contradiction. Therefore, ¢/
ends either from the right of the end of a;, or ¢’ and a; have the same end
point.

First consider the case when ¢’ and a; have the same end point. Since
¢ € Max(U;) and ¢ # - aj, ¢ starts strictly from the left of the beginning of
a; in this case. Since b is not contained in ', we see that b and ¢ have an
overlap d, and d is a small piece. Clearly, in thls case a; is contained in ¢’
Then a; is a small piece (see Section [B], A[ILI]).
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Therefore, A(c) < A(d) + Afa;) <2 < 4.

Now assume that ¢’ ends from the right of the end of a;. Then ¢ has
a non-empty intersection with R. Denote by ¢ the intersection of ¢’ and R.
First assume that either ¢’ starts from the left of the beginning of a;, or ¢’ and
a; have the same starting point. Then a; is contained in ¢’. So, as above,
a; is a small piece. Since b is not contained in ¢ , there are the following
possibilities:

e band ¢ touch at a point;

R
~ N
1 b Iaj If \I
T H— '
U; =
RC,/_/

R
~ AN
| b |aj|/ \I
'U ! ——— !
J N/ c
C/

Assume A(¢) > 3. Then it follows from Lemma that there exists ¢ €
Max>?(Uy,) \ {an} such that ¢ is an image of c. Since a; is contained in ¢/, a;
is fully covered by an image of the element ¢ € Max”*(Uy,) \ {as}. However,
by the conditions of Lemma [6.7, a; — a; is an admissible replacement in
Up, a contradiction. Therefore, A(¢) < 2. So, A(¢) < A€) + Aa;) +1 <
24+1+1<4

It remains to consider the case when ¢’ starts from the right of the begin-
ning of a; and ends from the right of the end of a;. Since b € Max”*(Uy)\ {ax}
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and aj, — a; is an admissible replacement in Uy, a; is not contained in b'. So,
b" ends from the left of the end of a;. Since ¢ is a right neighbour of ¥’ in Uj,
b" and ¢’ are not separated in U;. Therefore, since V' ends from the left of the
end of a; and ¢ starts from the right of the beginning of a;, we obtain that
the end point of 0 is contained strictly inside a; and the beginning point of
¢’ is contained strictly inside a;. So, we obtain the following possibilities:

We see that b' and ¢’ cover a;, wherein ¥’ # a; and ¢’ # a;. Assume A(c) > 3.
Then, by Lemma 6.6 there exists ¢ € Max”*(Uy,) \ {as} such that ¢ is an
image of c¢. Since a; is covered by 0’ and ¢ in U;, we see that a; is fully
covered by images of elements of Max”?(U,) \ {a,}. By the conditions of
Lemma 6.7, a, — a; is an admissible replacement in Uy, a contradiction.
Therefore, A(¢) < 2. Hence, A(¢) < A(e) +1 <3< 4. O

Corollary 6.8. Let Uy, be a monomial, b € Max”>(U,). Suppose a; €
Max(Uy) is a right neighbour of b. Suppose ay — a; is an admissible replace-
ment in Uy,. Let U; be the resulting monomial. Denote by b/ the image of b in
U,. Then every right neighbour of ' in U; is of A-measure < max(4, A(a;)).

Proof. Since a;, and b are not separated in Uy, clearly, a; and V' are not
separated in U; as well.

Let a; € Max>3(Uj). Then, in particular, a; € Max(Uy). So, by definition,
a; is a right neighbour of ¥ in U;. Since a; € Max”*(U;), it follows from
Corollary that all the rest of right neighbours of & (if there are any)
belong to Max~*(U ;). Therefore, in this case every right neighbour of ' is of
A-measure < A(q;).
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Let a; ¢ Max”®(U;). First assume that all the right neighbours of ¥
belong to Max=*(U;). Then, by definition, every right neighbour of ' is of
A-measure < 2. Now assume there exists ¢’ a right neighbour of ¢ such that
¢ € Max”*(U;). Then, by Lemma 6.7, we obtain A(¢) < 4.

So, combining all the above, we see that every right neighbour of ¢/ in U;
is of A-measure < max(4, A(a;)). O

Lemma 6.9. Let U, be a monomial, b € Max”*(Uy,). Suppose aj, € Max(Uy,)
is a left neighbour of b. Suppose ay, — a; is an admissible replacement in Uy,.
Let U; be the resulting monomial. Denote by V' the image of b in U;. Let
a; ¢ Max”®(Uj;), that is, either a; € Max~*(U;), or a; ¢ Max(U;). Assume
that there exists ¢ a left neighbour of b such that ¢ € Max”(U;). Then
A(d) < 4.

Proof. This lemma is proved in the same way as Lemma [6.7] O

Corollary 6.10. Let Uy, be a monomial, b € Max”*(Uy). Suppose aj, €
Max(Uy) is a left neighbour of b. Suppose aj, — a; is an admissible replace-
ment in Uy,. Let U; be the resulting monomial. Denote by V' the image of b in
U;. Then every left neighbour of b' in U; is of A-measure < max(4, A(a;)).

Proof. This corollary is proved in the same way as Corollary 6.8 O

Lemma 6.11. Let U, be a monomial, b € Max>*(Uy,). Suppose aj, € Max(Uy,)
starts from the right of the beginning of b and ay, is separated from b. Suppose
ap — a;j 1s an admissible replacement in Uy,. Let U; be the resulting mono-
mial. Denote by b’ the image of b in U;. Assume there exists ¢ € Max(Uy)
a right neighbour of V' such that A(¢') > 6. Then a; is not contained in c'.
That is, either a; and ¢’ are separated, or they touch at a point, or they have
an overlap.

Proof. Assume Uj, = LayR, then U; = La;R. Let b be the intersection of b
and L in U,. As earlier, we consider b as an occurrence in U ;. Since aj, and b
are separated, b stays unchanged in Uj;, that is, b = bin Uy, and V' =bin U;.
Hence, one can easily see that a; and b are separated in U;. So, a; is not a
neighbour of ¥/, and 0’ ends from the left of the beginning of a;.

1 [| b:E [ [| ah [ |
IUh 1 1 1 1 1
| 1 b/:/b\ ] 1 a] ] |
IU] 1 1 1 1 1
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Let ¢; be the intersection of ¢’ and L in U; and ¢, be the intersection of
¢ and R in U;. Since ¢ and V' are not separated and b’ ends from the left of
the beginning of a;, we see that ¢’ starts from the left of the beginning of a;.
Hence, ¢; is always non-empty.

Assume a; is contained in ¢’. Then q; is a small piece (see Section 5], A[ILT]).
There are the following possibilities:

e ; is a terminal subword of ¢/;

V=0 a;

e a; is not a terminal subword of ¢’;

r_ 7 Qs
I 1 b_bl L |
e b — i '
J NS Co2
J
r 7 a
I |b_b 1 L7 |
'U ' | — | '
J N G2
~
C

Since a; is a small piece, A(a;) = 1. Assume A(¢;) < 2 and A(e) < 2.
Then A(¢) < A(er) + A(ez) + Alaj) <2+2+1 =75 A contradiction with
the condition A(¢’) > 6. Therefore, A(¢1) > 3 or A(¢z) > 3. Assume that
A(¢1) = 3. Then it follows from Lemma [6.6] that there exists ¢ € Max”*(U,)
such that ¢ is an image of c. Since a; is covered by ¢/, we see that a; is
fully covered by an image of an element ¢ € Max”*(Up,) \ {as}. However,
by the conditions of Lemma [6.11] a, — a; is an admissible replacement
in Uy, a contradiction. Now assume that A(c;) > 3. Then, by the same
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argument, we obtain that a;, — a; is not an admissible replacement in Uj.
This contradiction completes the proof. O

Lemma 6.12. Let Uy, be a monomial, b € Max”*(Uy,). Suppose a;, € Max(Up,)
starts from the left of the beginning of b and ay, is separated from b. Suppose
ap — a;j 1s an admissible replacement in Uy,. Let U; be the resulting mono-
mial. Denote by b' the image of b in U;. Assume there exists ¢ € Max(Uy,) a
left neighbour of b' such that A(c’) > 6. Then a; is not contained in ¢'. That
is, either a; and ¢ are separated, or they touch at a point, or they have an
overlap.

Definition 6.4. Let U be a monomial, b € Max”*(U). Assume UW, ..., U5,
are monomials, K > 2, and

UW = UE)
is a sequence of replacements of the following form:
[ ] U == ljr(l)7

. ag{) € Max(U®), aglk) and a§k) are incident monomials and ag{) — agk)
is an admissible replacement in U® U*+D is the resulting monomial,
k=1,...,K —1;

o b=0b;

e b1 is an image of b*) in UKD k=1, ... K —1;

o al LW k=1 . K-1

Then a triple that consists of
1. the sequence U = UM s ... — UF),
2. the tuple of pairs ((ag), a§1)), ce (agK_l), ag»K_l))),

3. the tuple (b= b1 ... b))

is called (b, U)-admissible sequence.

96



Remark 6.5. In Definition [6.4] we use same indices h and j for replacements
agﬁ) > ag-kl) and aﬁlkz) > a§-k2) even if k; # ky. Recall that, speaking formally,
h and j are numbers of a; and a; in a polynomial of R. So, to be formal,
we have to use h(k) and j(k) that depend on k. However, we never fixed
any precise order of monomials in the polynomials of R. Throughout the
paper we use indices h and j just to emphasise that a; and a; are incident
monomials and we never focus on their precise numbers in a polynomial
of R in our proofs. That is, using same indices h and j for different pairs
of incident monomials does not cause any additional restrictions to these
monomials. Also, we do not want to make our denotations too bulky, so, we

continue using same indices h and j for different pairs of incident monomials.

Assume U is a monomial, b € Max”*(U). Then there are the following
configurations for left neighbours of b:

(L1) there exists a left neighbour of b of A-measure > 7 — 3;
(L2) all the left neighbours of b are of A-measure < 7 — 3;

(L3) b does not have left neighbours at all.

Let t(b) be a terminal subword of b defined by the following rule. Assume

we have configuration |(L1)|for b and ¢ € Max(U) is a left neighbour of b with
A(e) = 7 — 3. Then t(b) is the suffix of b such that its beginning point is
equal to the end point of c.

If we have configuration or [(L3)| for b, then we put ¢(b) to be equal to
b. So, in general b = pt(b), where p is a small piece (possibly empty).

Lemma 6.13. Let U be a monomial. Assume b € Max*(U) and, moreover,
A(t(b)) = 3. Assume
U =0 ... U (@, alV),. .. (a0, a7, (=00, 5y

J
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is a (b, U)-admissible sequence such that every aglk) starts from the left of the
beginning of b, k =1,..., K — 1. Then b*) is a single image of b*~Y in
U® k=2 .. .. K, and

b®) = p®t(b), where p*) is a prefiz of b*,
p®) is a small piece (possibly empty), k=1,..., K.

Moreover, if we start with |(L2) or|(L3) for b, then aék_l) is separated from
e i Uk k=2 .. K, and b® =t(b) =b, k=1,..., K (that is, p*

is empty).
Under the same conditions, we have

UR = Ay g = AW®m)B, k=1,...,K,

where A®) is a prefix of U and B is a suffic of U®) . That is, the suffiz of
U®) that starts at the beginning point of t(b) does not depend on k. Moreover,

agk) is a maximal occurrence in the subword A®p® k=1 . K —1.

Proof. Consider the first replacement in the sequence, namely, ag) — ag-l)

in UM, U® is a resulting monomial. Assume U1 = Lag)R. Recall that,
by the condition of Lemma [6.13] agll) starts from the left of the beginning of

b . So, the intersection of bY) and R is non-empty and we denote it by b,
As earlier, we can consider b as an occurrence in the resulting monomial
U® = La{"R.

| A e
'U(1) 1y \'/ )
R
(1)
\ @ el
U(Z) I\ \I/ /I
R
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|L| B
IU(l) ~ : ~ ' _
R
1)
W
IU(2) — i ~ i /I
R

First assume that ag) is not separated from b(!). Since A(ag)) > T — 2,

we have configuration for bV, Since ag) is a left neighbour of b of
A-measure > 7 — 3, it trivially follows from the definition that #(b")) = b,

Since ag) is not separated from b1, there are the following possibilities:

° ag) and b touch at a point. Then b = ¢(b(1)) =,

U b — ¢(p(1) = BV

e a!" and b have an overlap d, d is a small picce. Then b = dt(bM) =
db.

" t(pM) =5
|—h|—f/—/H

U N/ ,
pD)

So, we see that b = pt(b), where pV) is empty if ag) and bV touch at a
point, and pM = d if ag) and b)) have an overlap d.
Since ag) > ag-l) is an admissible replacement in U™ and bV € Max”*(U)\

{ag)}, ag-l) is not contained in . So, there are the following possibilities:

° ag.l) and b® touch at a point. Then b :6(1);
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o)

| — I

U® b — )

. ag-l) and b® have an overlap d’, d’ is a small piece. Then b = b,

(1) )

We proved above that b = t(b®). Hence, b® = p@¢(b(M), where p@ is
empty if ag-l) and b® touch at a point, and p® = d' if ag-l) and b® have an
overlap d'. N -

Assume aﬁll) is separated from b™"). Then b = p™) in UM and b = p(V
in U@,

| h | . pH — pM) .
3 N v' ;
R
oY
| J | . p2 = pM) .
IU(Z) — ' ~ ' _
R

By the definition of (b)), b = pM¢(bM)), where p™) is a small piece (pos-
sibly empty). Since b = b® in UM and b@ = bV in U®, we obtain
b2 = pWt(bM). Moreover, by the definition of t(b")), p) is empty if we
have configuration or configuration for bV,

Combining the above arguments, we see that we are done if K = 2.

Further we argue by induction on K. The case K = 2 is a basis of induction.
Consider the sequence

U = s U (0,0, @D, 6 ), (602, ). (5)
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Clearly, this is a (b®), U®))-admissible sequence. It has K — 1 replacements.
We want to apply the induction hypothesis to this sequence. In order to do
this, first we calculate ¢(b®).

1)

First consider the case when a;’ is not separated from ) in U"). Then

ag-l) is not separated from b® in U®).

—
U L —30 |
a
Ue d ' |
H/_/

Assume A(a§1)) > 17— 3. Since a§-1) is not a small piece, ag»l) € Max(U®) (see

Section [5 A[LT). Therefore, ag-l) € Max>3(U®). Since ag-l) is not separated
from b® from the left, ag-l) is a left neighbour of b®. Therefore, we have
configuration [(L1)| for b® in U®. If a§-1) and b® touch at a point, then

H(H®) = p2) = 1)

e
J
| P

Ue HHD) = b — H0)

Assume a§-1) and b® have an overlap d’. Then #(b®)) starts at the end of &,
because A(agl)) > 7 — 3. Therefore, t(b®) =,

We proved above that b = ¢(b®)) when aj is not separated from ().
Therefore, in both cases we have ¢(b®) = b)) = ¢(bV)). Since A(t(b)) > 3,
we have A(t(b?)) > 3 as well. Hence, we can apply the induction hypothesis
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to the sequence (). Then we obtain b*) = p®¢(b(?)) = p*(p1)) = p*EI¢(p),
where p*) is a small piece (possibly empty), k¥ = 2,..., K. Since we have
configuration for b1 in UM this means that we are done for the case

when ag) is not separated from b and A(a§1)) > 71— 3.

Assume ag) is not separated from b in UM and A(agl)) <T-3 It
follows from Corollary that every left neighbour of b® is of A-measure
< max(4,A(a§1))). Since 7 > 10, we have 7 —4 > 6 > 4. Therefore, every
left neighbour of b is of A-measure < 7 — 4. Hence, we obtain configu-
ration for b in U®). Then, by definition, ¢(b®)) = b®). We proved
above that b® = p@¢(b)), where p® is a small piece (possibly empty).
Hence, t(b@) = p@¢(bM). So, A(t(b@)) = A(t(bV)) = 3. Therefore, we
can apply the induction hypothesis to the sequence (). Then we obtain
bk = t(b@) = p@t(bM)) = p@t(b), where p® is a small piece (possibly
empty), k = 2,..., K. Since we have configuration for 6™ in UM, this
means that we are done for the case when ahl is not separated from b(!) and
Ay <7 -3

(1)

Let us return to the case when q,;~ is separated from b,

| A | p) — )
IU(l) — : ~ ' _
R
o
| J | . b2 = p») .
IU(2) — ' ~ I _
R

First consider configurations [(L2)] and [(L3)] for 5 in U®). That is, either
all the left neighbours of b® are of A-measure < 7 — 3, or b® does not

have left neighbours at all. Then, by definition, #(b®)) = b2). Since ag) is

separated from b, we obtain 5@ = 51 = p@». Hence, t(b®) = M. So,
A(DP)) = ABW) = A(t(bM)) > 3. Therefore, we can apply the induction
hypothesis to the sequence (). Since we have configuration or for
b2, we obtain b¥) = t(bP?)) = bV k = 2,..., K. We proved above that
b = pM¢(bM), where p™) is a small piece, and p) is empty if we have
configuration or configuration for b1). Therefore, b*) = pMt(bM),

k=2 ...,K. So, we are done for the case when ahl) is separated from b()
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and there are configurations [(L2)] or [[L3)] for 62 in U®).

It remains to consider the case when ag) is separated from b and we
have configuration for b® in U®. That is, there exists a left neighbour
of b® of A-measure > 7 — 3. Recall that, by Corollary 6.5, ) can have only
one left neighbour of A-measure > 3. That is, in the considered case b@ has
a single left neighbour of A-measure > 7—3. Let ¢’ be a left neighbour of b

of A-measure > 7 — 3. Since aﬁll) — agl) is an admissible replacement in U™

and A(c) > 7 — 3 > 6, by Lemma [6.12] we obtain that ag-l) is not contained

in ¢. Recall that U® = Lagl)R. Let ¢ be the intersection of R and ¢’. First
(1)
J

and ¢ is a maximal occurrence in UM,

assume that a’ is separated from ¢ in U®. Then, clearly, ¢ = ¢ in U,

e
h o~ b
- |
U W

a ~ b2
— b —— |
U®

al) PSR
— e + 5 |
U W

a ~ b2
— b - |
U®

It is clear that ¢ is a left neighbour of b() in UM, Therefore, since A(C) =
A() = 3, we have configuration for b in UW. Since ¢ = ¢, we see
that t(b®) = t(bV). Hence, we can apply the induction hypothesis to the
sequence (). Then we obtain that b%*®) = p®¢(pM) k =2,... K. So, we
is not separated from ¢ in U®. Recall that from

are done for the case when a'’ is separated from ¢ in U®.

o
J
Lemma [6.12] it follows that either ag»l) and ¢ touch at a point, or ag»l) and ¢
have in overlap in this case.

Now assume that a
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CLJ b(2)
}](2) | 1 1
C/
c
I 1 L] I
U® ~~
C/
= | LIL| =
U2 ~—
Cl

Since the overlap of ag-l) and ¢ is a small piece (possibly empty), we see that
A Z2Ad)—1=27-3-1=7—-4.

Hence, it follows from Lemma [6.6 that there exists ¢ € Max(U(M) such that
¢ is an image of ¢ in U®. Moreover, ¢ = X¢, where X is an overlap of ¢ and
ag). So, ¢ is a left neighbour of b(".

e
h _ b
, — ¢=C p— ,
U(l) 1 1
c
al) ¥ b
= | L 1 =
U ——
C
c
: : H— =
o Y
M 4
ap’ X b
=(](1) | L 1 =
~———
&
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Clearly, A(c) > A(¢). Therefore, since A(¢) > 7 —4, we have A(c) > 7 —4 as
well. We consider possibilities A(¢) > 7 — 3 and A(c) = 7 — 4 separately.

Assume A(c) > 7 — 3. Then we have configuration for b1 in UW.
Since c is a left neighbour of b and A(c) > 7 — 3, by definition, #(b")) starts
at the end of ¢in UM, Recall that we also have configuration for b
in U®). Since ¢ is a left neighbour of 6® and A(c) > 7 — 3, by definition,
t(b®)) starts at the end of ¢ in U®). Therefore, since b = b? we obtain
t(bM) = ¢(b®). Hence, A(t(b®)) = A(t(bM)) > 3. Therefore, we can apply
the induction hypothesis to the sequence (H). We obtain b*) = p®¢(p®)) =
p®t(dM), where p*®) is a small piece (possibly empty), k = 2,..., K. Since
we have configuration for b in UM, this means that we are done for
the case A(c) > 7 — 3.

Assume A(c) = 7 — 4. Clearly, |A(c) — A(¢/)] < 1. By our assumption,
A(c') > 7—3. Hence, we obtain A(¢') = 7—3. So, we have configuration [(L2))|
for b and configuration for b2 . If we apply the induction hypothesis
to the sequence () in this case, we do not obtain the desired result. Namely,
since we have configuration for bV, informally speaking, we have to
show that there are no possibilities to change for b(!) in the initial sequence.
However, since we have configuration for 6, by the induction hypoth-
esis, we obtain that b3 may change in the sequence (&), and hence b*) may
change in the initial sequence. So, in what follows we do not apply the in-
duction hypothesis directly to the sequence (Bl and argue in a different way.
We will directly show that agk) is separated from b*) for k=1,..., K — 1.

Let us prove an auxiliary lemma.

Lemma 6.14. We are under the conditions of Lemma and are using

notations introduced above. Assume A(c) = 7—4 and A(¢') = 7—3. Consider
the replacement aék_l) — a§k_1) in UF=D U®) s a resulting monomial,
k=3,....,K. Let ? = ¢, and let ¢® be an image of ¢*=1 in U,

k=3,...,K. Then
o ¢ is a left neighbour of ), k=2, ... K;

e T—4<AM) <73, k=2,...,K, c® =q¢®eE where ¢*) is a small
piece (possibly empty);

. agk) starts from the left of the beginning of ¢, k =2,... . K —1. In
: (k) (k)
particular, a;” # c\™.
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Proof. We have the sequence of element ¢, ... ¢, We prove Lemma [6.14]
by induction on k - the number of the element ¢*) in this sequence.

Let us prove the basis of induction. That is, we consider £k = 2. By our
initial assumption, A(c®) = A(¢') = 7 — 3 and ¢? = ¢ is a left neighbour of
b Since al? — a§2) is an admissible replacement in U® | we have A(a!”) >
7 — 2. Therefore, af) # ¢® . Recall that, by the conditions of Lemma [6.13],

af) starts from the left of the beginning of b®. Since af) € Max"(U®)
and b® and ¢ are not separated in U®, af) can not start from the left of
the beginning of b® and at the same time from the right of the beginning of
c® . Therefore, af) starts from the left of the beginning of ¢?. So far, we
are done with the basis of induction.

Let us prove the step of induction. In order to do this, let us first calculate
t(c®). Since A(c®) = 7 —3 > 6, it follows from Lemma that ag-l) is not
contained in ¢®. Therefore, since ag-l) is not separated from ¢, ag-l) and ¢
either touch at a point, or have an overlap. By our assumption, A(c) = 7—4
and A(c?) = 7 — 3, that is, A(c®) > A(c). We proved above that ¢ = X¢,
hence, A(c) > A(¢). Therefore, A(c®) > A(c) > A(¢). This implies that ag-l)

and ¢® have a non-empty overlap X’ and ¢® = X'¢.

(1) c
aj - X b
IIJ(Q) ] 1 1 I
@)
VS e
IIJ(Q) ] 1 1 1 I
~—
@)

Assume A(a&l)) > 7 — 3. Recall that if agl) is not a small piece, then a§-1) €
Max(U®) (see Section 5, AQLT)). Therefore, ag-l) is a left neighbour of ¢?. So,
since A(ag-l)) > 7—3, we have configuration [(L1)|for ¢®). Then, by definition,
t(c(z)) = /C\
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a X/ b(?)
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&
a; " xv b(2)
: | L LI I
u® A(a(l)) >7-3
2 e

Assume A(agl)) < 7 —3. Then it follows from Corollary that A-measure

of all the left neighbours of ¢® is not greater than max(4, A(a;)) < 7 — 4.

That is, we have configuration [(L2)|for ¢®. Then, by definition, #(¢®) = ¢®.
Consider ¢¥), where 2 < N < K. Consider the sequence

2 2 N-1 N-1
U@ o UM (@, al?), . (@70 )), (@) d). (6)

By the induction hypothesis, ag{) #c®) k=2 ... N—1. By the conditions
of Lemma [6.13] aglk) — ag-k) is an admissible replacement in U®). Therefore,
by definition, the sequence (@) is a (c®,U®)-admissible sequence. By the
induction hypothesis, agk) starts from the left of the beginning of ¢®) for
k=2,...,N —1. Therefore, since there are N —2 < K — 1 replacements in
the sequence (), we can apply the induction hypothesis of Lemma to
this sequence. Then we obtain c¢®) = ¢®t(c?)), where ¢'*) is a small piece,
¢ is empty if we have configuration for ¢, k =2,..., N. Therefore,
it follows from the above that

w @ =x7c if AalV) <7 -3,
q®t(c?) = ¢®e  if A(ay)) >7 -3,
k=2,...,N.

This implies that ¢ < A(c™) <+ 1.

Recall that ¢ = X¢ and ¢® = X'¢, where X and X’ are small pieces (X
may be empty). Therefore, 7—4 = A(c) > A(¢) and 7—3 = A(c®) < A(©)+1.
So, we obtain A(¢) = 7—4. We proved above that ¢ < A(c™)) < &+1. Hence,

T—4<A(C(N))<T—3.
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Since ¢? is a left neighbour of ), we have that ¢ is not separated from b
in U® . We proved that ¢®¥) = ¢®)& for k =2,..., N. This obviously implies
that c® is a left neighbour of b® for k = 2,..., N. Since agN) — ag»N) is an
admissible replacement in U™, A(aﬁlN)) > 7 — 2. Therefore, aﬁlN) #cN). As

above, since a%N) € Max"(UM) and ¢®) is not separated from b, a%N)

can not start from the left of the beginning of b¥) and at the same time
from the right of the beginning of ¢"). Hence, aELN) starts from the left of
the beginning of ¢™). So, we are done with the step of induction. O

Lemma [6.14] implies that aglk) starts from the left of the beginning of ¢,
b*) starts from the right of the beginning of ¢, and A(c™) > 7—-4>6 >3
for k = 2,..., K — 1. Therefore, aék) is separated from b in U®) k =

2,...,K—1. The occurrence ag) is separated from b") in UM | by our initial
assumption. Hence, aﬁf) is separated from b® for k = 1,..., K—1. Therefore,

b#) = p=D k=2 ... K. This means that b®*) = oM k =1,.... K. We
assumed that A(c) = 7 — 4, where c is a left neighbour of b(). That is, we
have configuration for b, hence, b = t(b™). Thus, b® = ¢(p1),
k=1,...,K. So, we are done for the last case. This completes the proof of
the first part of Lemma [6.13]

Using the above argument, one can easily see that aglk) is always contained
in the prefix of U®) that ends at the beginning point of ¢(b). Therefore, the
suffix of U®) that starts at the beginning point of #(b) does not change after
the replacement agk) — ag-k), and, therefore, does not depend on k. This
completes the proof of Lemma [6.13 O

Assume U is a monomial, b € Max”*(U). Then there are the following
possibilities for right neighbours of b:

(R1) there exists a right neighbour of b of A-measure > 7 — 3;
(R2) all the right neighbours of b are of A-measure < 7 — 3;
(R3) b does not have a right neighbours at all.

Let i(b) be an initial subword of b defined by the following rule. Assume
we have configuration for b and d € Max”*(U) is a right neighbour of
b with A(d) > 7 — 3. Then i(b) is the prefix of b such that its end point is
equal to the beginning point of d.
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U b
A(d)>71-3
d
I } |‘ I I
U b=1i(b)
Ald)=7-3

If we have configuration |(R2)| or [(R3)| for b, then we put i(b) to be equal to
b. So, in general, b = i(b)py, where p, is a small piece (possibly empty).

Lemma 6.15. Let U be a monomial. Assume b € Max”*(U) and, moreover,
A(i(b)) = 3. Assume
K) (K
U =0 ... U (@, alV),.... (af, ), (0 =0, ... b))
is a (b, U)-admissible sequence such that every agk) starts from the right of
the beginning of b, k=1,... K —1 (that is, aglk) ends from the right of the
end of b%) ). Then b is a single image of b*~Y in U® k=2, ... K, and

b® = i(b)s™® | where s®) is a suffiz of b*),
s®) is a small piece (possibly empty), k=1,..., K.
Moreover, if we start with |(R2) or for b, then agk_l) is separated from
b= i URD k=2, K, andb® =b=i(b), k=1,...,K (that is, s

is empty).
Under the same conditions, we have

U® = ApPB® = Ai(p)s®B® k=1,... K,

where A is a prefiz of U and B®) is a suffiz of U¥). That is, the prefiz 0{‘
U®) that ends at the end point of i(b) does not depend on k. Moreover, aglk

is a mazimal occurrence in the subword s®B®)  k=1,... K —1.
Proof. This lemma is proved in the same way as Lemma [6.13 O

Let m(b) be the intersection of ¢(b) and i(b). Namely, m(b) is defined by
the following rule.
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e Assume we have configuration for b from the left side and ¢ €
Max>*(U) is a left neighbour of b with A(c) > 7 — 3. Assume we have
configuration [(R1)|for b from the right side and d € Max”*(U) is a right
neighbour of b with A(d) > 7 — 3. Then the beginning point of m(b) is
equal to the end point of ¢ and the end point of m(b) is equal to the
beginning point of d.

m(b)
c — d

I U 1 b 1 1
Ale) > 7 -3,

Ald)=>71-3

m(b)
c —

= } ; ] |
Ale) = 7 — 3,

Ald) =7-3

m(b)
c — d

= } ; ! |
Ale) = 7 — 3,

Ald)=>7-3

m(b)
e W L

= } ; ] |
Ale) = 7 -3,

A(d) =>7-3

e Assume we have configuration |[(L1)|for b from the left side and config-

uration |(R2)| or [(R3)| for b from the right side. Then m(b) is equal to
t(D).

e Assume we have configuration |(L2)| or ((L3)| for b from the left side and
configuration for b from the right side. Then m(b) is equal to i(b).
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e In the rest cases m(b) is equal to b.

So, in general b = pm(b)s, where p is a prefix of b, s is a suffix of b, and p and
s are small pieces (any of them may be empty). In particular, A(b) — 2 <
A(m(b)) < A(b). Also notice that t(b) = m(b)s, i(b) = pm(b).

Lemma 6.16. Let U, be a monomial, b € Max”*(Uy,). Let m be an occur-
rence in b such that A(m) > 3. Assume U, = XmY . Let a5, € Max(Uy,),
ap #b. Let ap, and a; be incident monomials.

Assume ay, is contained in mY . In this case the transformation a, — a;
can be considered as a replacement both in Uy and in mY . Then a, — a; s
an admissible replacement in Uy, if and only if it is an admissible replacement
mmyY .

Assume ay, s contained in Xm. In this case the transformation ay, — a;
can be considered as a replacement both in Uy, and in Xm. Then ay, — a; s
an admissible replacement in Uy, if and only if it is an admissible replacement
m Xm.

Proof. Let us prove the first part of Lemma That is, we study the case
when ay, is contained in mY. Let us denote mY by S,. Let us denote the
beginning point of m by P. Let t be a terminal subword of b that begins
at the point P. Then t € Max(S),). Moreover, since A(m) > 3, we have
t € Max”?(S},). Since a;, # b, we have the following configurations:

Sh

Vs - N\

IUh é t 1 1 ah 1 1
Sh
A

Vs N\

(TR ST '
Sh,
A

r | I
Uy, p ot ap I

So, ap +— a; can be considered as a replacement Sj,. Let us denote the
resulting monomial of the replacement a;, — a; in Sj, by S;.

First assume a;, — a; is an admissible replacement in U,. Let us show that
ap — a; is an admissible replacement in Sj,. Assume the contrary. Namely,
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assume that a; is covered by images of elements of Max”*(S},) \ {as} in ;.
Let us show that every element of Max”®(S},) has the corresponding element
in Max”*(Uy). Indeed, if a € Max”?(S},) and a # t, then a can be considered
as an element of Max”*(U,). And t € Max”*(S),) naturally corresponds to
b € Max”*(Uy). Hence, if a; is covered by images of elements of Max”?(S) \
{an} in S;, then a; is covered by images of the corresponding elements of
Max”?(Up,) \ {ax} in U;. So, aj, — a; is not an admissible replacement in Uj,.
A contradiction.

Assume aj, — a; is an admissible replacement in Sj,. Let us show that
ap — a; is an admissible replacement in Uj,. Assume the contrary. Namely,
assume that a; is covered by images of elements of Max”*(Uy) \ {an} in Uj.
Then it follows from the results of Section [l that a; is covered by images of
neighbours of a; that belong to Max”?(Uy,).

Let ¢ € Max”*(U,) be a right neighbour of aj. Then, by definition, ¢
starts from the right of the beginning of ay.

Sh,
A
4 | 1 \I
Uy, J2 Cooay o1
Sh,
A
4 | [| \I
Uy, J2 Coay P I

Since ay, is contained in Sj,, we see that ¢ is contained in S). Hence, ¢ €
Max=?(Sy,).

Let d € Max>3(Uh) be a left neighbour of aj,. First assume that a, is
separated from b. Then b is not a neighbour of ay, so, d # b. Therefore,
since d is not separated from aj, we see that d starts from the right of the
beginning of b. Since m is not a small piece, we obtain that d starts from
the right of the beginning of m.

Sh

e A
U, P gt an
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=
'*U__
S

Therefore, d is contained in Sy, so, d € Max”*(Sy). Now assume that aj, is
not separated from b.

Sh,
S ~
U Pt @ |
Sh,
A
./ | D
Uy, p t! aj, I

Then b is a left neighbour of a;, in U,,. By Corollary [6.5] a; has a single left
neighbour that belong to Max>*(Uy). So, since b € Max”*(Uy,), we obtain b =
d. Therefore, t € Max”3(S},) is a left neighbour of aj, in Sy, that corresponds
to d in this case.

So, we proved that neighbours of a; in Uy, that belong to Max”*(U;,) cor-
respond to neighbours of a; in Sj, that belong to Max”?(S,). We assumed
that a; in U; is covered by images of neighbours of a; in Uy, that belong to
Max>*(U,). Therefore, a; is covered by images of the corresponding neigh-
bours of a, in S), that belong to Max>*(S,). That is, ap a; is not an
admissible replacement in Sj,. A contradiction.

The second part of Lemma is proved in the same way. O

Proposition 6.17. Let U be a monomial. Assume b € Max”*(U) and, more-
over, A(m(b)) > 3. Assume
K-1) (K-
U =UY s o U (@,alD), o (@065, (=00, .,b(?))))
7

(b, U)-admissible sequence. Then b*) is a single image of b*=1) in U®),
2,..., K, and

18 @
k=
B = p®m)s®, k=1,.. . K,

where p*) is a prefic of b®, s is a suffix of b, p*) and s are small
pieces (any of them may be empty). In particular,

AD) =2 < AW <AD)+2, k=1,..., K.
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Proof. The occurrence ag) begins either from the left or from the right of the

beginning of b = b in U = UM, Assume that ag) begins from the left of

the beginning of b). The replacements aﬁj) — agl), Ce agK_l) — ag»K_l)

be separated into groups. Namely, there exist ky, ..., k; such that agk) begins
from the left of the beginning of b*) in U® when k = 1,...,k — 1, aglk)
begins from the right of the beginning of b*) in U®) when k = ky, ..., ks —1,
ete., (ky = K). We call t —1 the number of switchings of sides in the sequence

can

U =0 ... UB (@), al), . (a6l 7)), (b = 0D, 0Dy,

J

We prove Proposition [6.17] by induction on ¢.
Clearly, the sequence

1 1 k1—1 k1—1
UD s U (@0, (@706l )), 00, by

is a (b, U)-admissible sequence. By definition, we have t(b) = m(b)s, where
s is a small piece (possibly empty). Hence, A(¢(b)) = A(m(b)) > 3. Recall
that aﬁlk) begins from the left of the beginning of %) when k= 1,... k; — 1.
Therefore, by Lemma [6.13, we obtain that b*) is a single image of b*~V in
U® k=2, ... ki, and

b®) = p®t(b), where p* is a small piece (possibly empty),
UR = A®pP B where A® is a prefic of U, B is a suffizx of U®,
k=1,... k.

So,
pk) — p(k)t(b) = p("f)m(b)s7 k=1,..., k.

If t = 1 (the number of switchings of sides in the initial sequence is equal

to 0), then k; = K. Thus, if t = 1 and ag) starts from the left of the

)

beginning of b1, we are done. The case when ¢ = 1 and ag starts from the

right of the beginning of () is studied in the same way.
Assume t > 1. For now, we have

UR = AP B = AB 8B = APp®m(b)sB, k=1,..., k.

By Lemma [6.13] every agk) for k=1,...,k; — 1 is contained in the subword
A®pE) of UH . Since A(m(b)) > 3, every aﬁf) is separated from the right
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neighbours of b*) in U® for k = 1,..., k; — 1. Therefore, configuration of
the type [[RI)}H(R2)| for b)) and its right neighbours in U™ is the same as
for b*1) and its right neighbours in U*1). So, since i(b) = pm(b), we obtain
i(b*)) = pEm(b). Hence, A(i(b*1))) > A(m(b)) > 3. Clearly,

(U®) o URD () af™), o (a7, 70)), 0, b))
is a (b*1), U*1))_admissible sequence. Recall that a%k) begins from the right
of the beginning of b*) when k = ky,..., ko — 1, and U*) = AkOpk) B,
Therefore, it follows from Lemma [6.15 that b*) is a single image of b~V in
UR =k +1,... ko, and

b® = i(b*N)s®) where s*) is a small piece (possibly empty),
U® = Ak ® BE) - phere AR is a prefiz of UX), B® is a suffiz of U®,
]{7:]{71,...,]{?2.

So,
b®) = i(b*)s®) = pEm(B)s®) | Ky, ... k.

If ¢ = 2 (the number of switchings of sides in the initial sequence is equal
to 1), then ky = K. Thus, if ¢t = 2 and ag) starts from the left of the

beginning of b, we are done. The case when ¢ = 2 and ag) starts from
the right of the beginning of b is studied in the same way. Further we will
argue by induction on ¢, the cases t = 1 and ¢t = 2 are the basis of induction.

Assume t > 2. Let us do the step of induction. Notice that we already
studied the form of b*) for k < k». So, it remains to consider only k > k.
Since t > 2, there exists k3 such that aék) begins from the left of the beginning
of %) if k = ko, ..., ks — 1. We proved above that

Uk2) — A(k1)p(k2) glk2) — A(kl)p(kl)m(b)s(kQ)B(kz).

Notice, that both p®*1) and s*2) can be empty. Then b*2) = m(b). At the
same time it may happen that we have configuration [(L1)| for 5*2) in U®*2)

and b*2) has an overlap e with its neighbour of A-measure > 7 — 3. Then
btk2) = et(bk2)) = m(b) and A(t(b*2))) < A(m(b)).

>7—3 k
Z t(b*2)
IU(kz) 1 b(kz) _ m(b) 1 i



So, in this case we may have A(t(b*2))) < 3. Then we can not apply
Lemma [6.13] to the sequence
(U s UED (a0l (a6l ), o) bRy,

as we do above. Notice that even if A(¢(b(%2))) > 3, we do not obtain the
desired result if we use Lemma [6.13] in this case. Informally speaking, we
need to prove that the unchangeable part of b*) is equal to m(b). However,
if we directly apply Lemma [6.I3 in this case, we obtain b®) = ¢®¢(h2)),
where ¢ is a small piece (possibly empty). That is, the unchangeable part
of b*) becomes smaller than m(b), because t(b*2)) is a proper subword of

m(b). So, we will argue in a different way.
Consider the range of indices k = kq, ..., ko. By Lemma [6.15] we have

U® = AkDp®) gk — AGDpE) g ()s W BE =k ks, (8)

and every aﬁlk) is contalned in s®B® k =k, ... ko —1. Let us replace

the prefix of U® that is equal to A(kl (k1) by AWpM . Then we obtain
monomials

VE = ADpWb)s®B® |k =k .. k.
Since aglk) is contained in s*) B*) and aglk) is a maximal occurrence in U® one

can easily see that aglk) is a maximal occurrence in V*), So a,, k) a(k) can be

considered as a replacement in V*). Since U*+1) = A(k1 m(b)s(kH)B(kH)

is a resulting monomial of the replacement ag) > a in U®, we see that

VERD = AW pWm(5)sE+D BE+HD g a resulting monomlal of the replacement

ag{) — a ) in V® . Since A(m(b)) > 3 and ag{) — a§k) is an admissible

replacement in U® it follows from Lemma [6.16] that agk) — a§k>

missible replacement in m(b)s® B® k = k,... ky — 1. Then, again by

is an ad-

Lemma [6.16, we obtain that aglk) — agk) is an admissible replacement in V%)
]{Z:kl,...,]{?Q—l.
Consider the range of indices k = 1,...,k;. By Lemma [6.13] we have

Uk — Akpk) g — A(k)p(k)m(b)sB, E=1,... ki,

and every aﬁf) is contained in A®p*) Lk =1,... k; — 1. According to the

above denotations (see (§)), we have B = B%*1) and s = s*1). So, we obtain

U® = ABpEmb)sB = AW p®m(b)sFIBE) | =1, k.
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Let us replace the suffix of U®*) that is equal to s*1) B%*1) by s(k2) B(:2)  Then
we obtain monomials
WE = AR pEy () sEBE2) | =1 k.

By the same argument as above, we obtain that aé ) is a maximal occurrence

in W®), ) — a(k) is an admissible replacement in W®) and W*+D is the
resultmg monomlal k=1,....k — 1.
Let

C(k) = p(l)m(b)s(k), k= kla SRR k2>
d(k) — p(k)m(b)g(kz), k = 1, cee k’l.

Since m(b) is not a small piece and b*) = p®)m(b)s*) is a maximal occurrence
in U®) | we obtain

M € Max(VH),
d™ € Max(W®)),

Recall that a\") € Max™(U®)) is contained in s®) B®) and p*+0) = plki)p (p) s+
is an image of b®) = p*Vm(p)s®) in U**HY for k = ky, ..., ky— 1. Since m(b)
is not a small piece, this implies that c**) = pMWm(b)s*+1) is an image
of ¢® = pWm(b)s® in VD for k = ky,... ky — 1. We also know that
") e Max®*(U®)) is contained in A®p® | and b*+D = pk+D i (p)s*1) is an
image of b®) = p®m(p)s*) in UV for k = 1,...,k; — 1. Since m(b) is
not a small piece, this implies that d**1) = p*+m(h)s*2) is an image of
d® = pFm(b)sk2) in WD for k=1,... &k — 1.
It follows directly from the corresponding definitions that U® = V(1)
b = k1) and Uk2) = Wk pk2) = k1) o we obtain three sequences.
Namely,
(UW =v®) oy )y
(@ af™), o (@™, o)),
(b(l) AV "C(kz)))

is a (b1, UM)-admissible sequence,

(WD s W) = k),
1 k1—1 k1—1
((ay, §>>,...,<a§; ) alP Ty,

(dW, ..., d") = p*))
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is a (dM, W®)-admissible sequence,

(U*) — = U,
k k K-—1 K-—1
((ay™,al), .. (@), a YY),

(B2, b))
is a (b*2) U*2))_admissible sequence. Notice also that
) — A0 () s B2 — ),

Hence, we can glue these sequences and obtain a (b, U)-admissible sequence.
Namely, the sequence

(XW s xE)

(g, 2Dy, (@Y 2y, (9)
(€W, eY),

where

XO = yvER= yhenl =1,... ky — ki,
XO = yyl=ketk) yhen | =Fky — ki 4+ 1,... ko — 1,

XO=yu® whenl=ky,..., K,

(I+k1—1)

o (I+k1—1
Ty = ay

,xy):aj )whenlzl,...,/fg—kl,

:L.;Ll) — ag_kz—i_kl)’ xy) = ag_kz—i_kl) when [ = k2 - kl + 1) ceey k2 —1

:L"g) :ag)’ xgl) :ag) when | = ko, ..., K —1
el = =D whenl =1,... ko — ki,
e(l) — d(l_k2+k1) when | = ]{;2 — ]{51 + 1’ ey ]{52 - 1,

e =0 whenl =ky,..., K,

Y

Y

is a (b, U)-admissible sequence. We see that l’g) begins from the left of the
beginning of e®) when I = ky,...,ky — 1, and also when [ = ko, ... ks — 1.
Therefore, since the initial sequence ([7]) has t — 1 changings of sides, by the
construction, the sequence (d) has t—2 changings of sides. Recall that X! =
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UM and e = b1, Hence, m(eM) = m(bM) = m(b) and A(m(eV)) > 3.
So, we can apply the induction hypothesis to the sequence (9)) and obtain

e(k) = p(k)m(b)s(k) when k = k2 + 17 crty K7

(k

where p*) and s are small pieces (possibly empty).

Since e = b*) when k = ky + 1,..., K, we are done. O

6.4 Virtual members of the chart and their properties

Definition 6.5. Let U be a monomial, b € Max(U). We call b a virtual
member of the chart of U if

1. A(b) > 1 —2.
2. There exists a (b, U)-admissible sequence

U =UD s . UB ((af,alD), . (a0, a0, (0= 0D, 510))

J

such that A(b)) > 7.

We denote the set of all virtual members of the chart of U by V(U). We
denote the number of virtual members of the chart of U by NVirt(U), that
is, [V(U)| = NVirt(U).

Lemma 6.18. Assume Uy is a monomial, aj, € Max(Uy,). Let aj, — a; be
an admissible replacement in Uy, U, be the resulting monomial. Assume V' is
a virtual member of the chart of U; and b’ # a;. Then there exists a unique
b € Max"™(U,) such that b is an image of b in U;. Moreover, b is a virtual
member of the chart of Uy, b # ap, and b' is a single image of b in Uj.
Under the same conditions assume a; € Max(U;). Consider the replace-
ment a; — ap, in U;. Clearly, then Uy, is the resulting monomial. Then the
element b € Max"(U,) obtained above is a single image of b in Uy,.

Proof. We assume that b starts from the left of the beginning of a;. The
case when V' starts from the right of the beginning of a; is considered in the
similar (but simpler) way.

Assume Uy, = LapR, Uj = La;R. Let 31 be the intersection of & and L,
32 be the intersection of b and R. First let us show that a; is not contained
inside 0'. Assume the contrary. Then a; is a small piece (see Section [5

A
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We have

AV < AD) + A(by) + Alay) = Abr) + A(by) + 1.
Assume A(/l;l) < 2 and A(/Z;g) < 2. Then we obtain A()) <242+ 1 =5.
Since 7 > 10, we see that A()') < 5 < 8 < 7 — 2. However, since ' is a
virtual member of the chart of U;, we have A(Y) > 7 — 2, a contradiction.

o~ o~ o~

Therefore, A(by) > 3 or A(bs) > 3. To be definite, assume A(by) > 3. Then,
by Lemma [6.6, there exists ¢ € Max>*(Uy,) \ {ax} such that o' is an image
of c. Since a; is covered by V', we obtain that a; is covered by an image of
¢ € Max”®*(U,) \ {an}. A contradiction with the condition that aj + a; is an
admissible replacement in Uj,. Thus, a; is not contained inside ¥'.

Since a; is not contained inside ¥', by is empty, and b’ and a; can have the
following positions:

e I/ and a; are separated.

Uj V=0,

Then by = V. So, A(by) = A(V) > 7 — 2.

e I/ and a; touch at a point.

Then by = . So, A(by) = A() > 7 —2.

e ' and a; have an overlap d.
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Then d is a small piece. We have b = Zld, where d is a suffix of ¥'.

o~

Hence, A(by)) 2 A(V)—1>27—-2—-1=7—-3.

We see that in all cases

o~

AD) >7-3>7>3.

Recall that we can consider /51 as an occurrence in Uy. Then, by Lemma [6.6],
there exists a unique b € Max"(U},) such that ¥’ is an image of b. Moreover,
b # ap, b' is a single image of b in U;, and b = /l;lY, where Y is either empty,
or Y is a small piece. It remains to show that the obtained b is a virtual
member of the chart of Uj,.

First notice the following. Since ¥ is a virtual member of the chart of U;,
there exists a (b, U;)-admissible sequence
U; =UD s o UB) (0P, alD), o (a0 a0, (0 = 00, 0y

¥l )

such that A(b)) > 7. Consider the sequence
Uy U =UY = s UE)

Since ap, — a; is an admissible replacement in Uy, and b # ay, and V' is an
image of b, we obtain

(U= U =UW s U,

(an,az), (@}, a"), ... (a7, 0l DY), (10)

(b, 0 = b1, ... pY))

is a (b, U)-admissible sequence.

Assume A(b) > 7 — 2. Then, since (I0) is a (b, U)-admissible sequence
and A(b®)) > 7, by definition, we see that b is a virtual member of the chart
of U, h- -

Assume A(b) < 7—2. Recall that b = b;Y’, where Y is either empty, or Y’

~ o~

is a small piece. Hence, A(b) > A(by). We proved above that A(by) > 7 — 3.
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Therefore, A(b) > 7—3. This means that the only possibility is A(b) = 7—3.
Recall that A(b) —2 < A(m(b)) < A(D) (see page [II0). So, in our case we
have

A(m(b)) 2 A0b)—2=7-3—-2=7—-52>25>3.

Since ([I0) is a (b, U)-admissible sequence, it follows from Corollary that
AOEN) < A(mb) +2<A(D) +2=7—-3+2=7—1.

This is a contradiction, since A(bY)) > 7. Therefore, the case A(b) < 7 — 2
is not possible.

Consider the opposite replacement, namely, the replacement a; — a; in
U;. Obviously, U, is the resulting monomial. Then it follows directly from
the construction of b that b is a single image of ¢’ in Uj. This completes the
proof. O

Corollary 6.19. Assume U, is a monomial, ay is a virtual member of the
chart of Uy. Let ap — a; be an admissible replacement in Uy, U; be the
resulting monomial. Then NVirt(U;) < NVirt(Uy,). If, moreover, a; is not a
virtual member of the chart of U;, then NVirt(U;) < NVirt(Uy).

Proof. Let b' be a virtual member of the chart of U; such that ¥’ # a;. Then,
by Lemma [6.I8], there exists b, a virtual member of the chart of Uj, such
that b # a, and V' is a single image of b. This means that there exists
V' CV(Uy) \ {an} such that taking images is a surjective mapping from V'
to V(U;) \ {a;}. Hence,

V' = V(U;j) \{a;}.
Obviously, we have

NVirt(U;) if a; is not a virtual member
of the chart of U;,

NVirt(U;) — 1 if a; is a virtual member
of the chart of Uj.

VU;) \{a;}| =

Since ay, is a virtual member of the chart of Uy, we have

[V(U) \ {an}| = NVirt(U) — 1.
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Therefore,

NVirt(U,) — 1 = V(U \ {an}] = V] 2 V0) \ {a;}] > NVir(U;) — 1.

So, we see that NVirt(U,) > NVirt(U;).
Now assume that a; is not a virtual member of the chart of U;. Then

V(U;) \ {a;} = V(U;) and |V(U;) \ {a;}| = NVirt(U;). Therefore, we obtain
NVirt(Un) = 1 = [V(U) \ {an}| = V'] = V(U;) \ {a;}] = NVirt(U).
Thus, NVirt(Uy) > NVirt(U;). O

Assume U}, is a monomial. We can enumerate its virtual members of the
chart according to their starting positions in U, from left to right. Then the
i-th virtual member of the chart of U, (or the virtual member of the chart
of Uy, that is located at i-th place) is defined.

Corollary 6.20. Assume Uy, is a monomial, ay is a virtual member of the
chart of Uy. Let a, and a; be incident monomials. Consider the replace-
ment ap +— a; i Uy. Let U; be the resulting monomial. Suppose a; is a
virtual member of the chart of U;. Then taking images gives a bijective cor-
respondence between all the virtual members of the chart of U, and all the
virtual members of the chart of U;. Moreover, the i-th virtual member of the
chart of Uy, goes to the i-th virtual member of the chart of U;. In particular,
NVirt(Uy) = NVirt(U;).

Proof. In order to show that taking images is a bijective mapping between
V(Uy,) and V(U;) we have to prove two properties:

1. If b is a virtual member of the chart of U, then it has a single image
in U; and this image is a virtual member of the chart. Then we obtain
that taking images is a mapping from V(U,,) to V(U;).

2. If ¥’ is a virtual member of the chart of Uj, then there exists b, a unique
virtual member of the chart of Uy, such that ¢’ is an image of b. Then
we obtain that taking images is a bijective mapping from V(U,) to
V(U;).

Let us prove statement 1. Let b be a virtual member of the chart of Uj,.
First assume b = a;,. Since g, is a virtual member of the chart, a; € Max(Uj).
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Then it follows from the definition of images that a; is a single image of ay,
in U;.

Recall that since a; is a virtual member of the chart of U,, we have
A(ap) =7 —2 > 8 > 2. Therefore, aj, € Max™(U},). By the same argument,
A(aj) = 7 —2 and a; € Max™(U;).

Assume b # a;,. Consider the replacement a; — a; in U;. Then, clearly,
Uy, is the resulting monomial. Since A(a;) > 7 — 2 and a), € Max”fc(Uh), we
obtain that a; — a;, is an admissible replacement in U;. We have b a virtual
member of the chart of Uj,. Let us apply Lemma to the replacement
a;j — ap, in U;. Then we obtain that there exists ¢/, a virtual member of the
chart of U;, such that b is an image of O/. Moreover, we can consider the
opposite replacement, namely, a;, +— a; in U,. Then, by the second part of
Lemma [6.18, b’ is a single image of b in U;. So, statement 1 is proved.

Let us prove statement 2. Let 0’ be a virtual member of the chart of U;.
First assume ¢/ = a;. Since a; € Max(U;), we obtain that a; is an image of a,.
Assume ¢ € Max(Uy,) and ¢ # ap,. Then it follows directly from the definition
of images, that an arbitrary image of c is not equal to a;. Therefore, a4 is a
unique virtual member of the chart of Uj, such that a; is its image is U;.

Now assume b # a;. Since A(a;) = 7 — 2 and a; € Max"(U;), we
obtain that aj, ~ a; is an admissible replacement in Uj,. Then it follows
from Lemma that there exists a unique b € Max"(U}) such that b’ is
an image of b in U;. Moreover, b is a virtual member of the chart of Uj.
Obviously, every virtual member of the chart of U, belongs to Max™(U,).
Hence, b is a unique virtual member of the chart of U, such that b is an
image of b. So, statement 2 is proved.

Finally we obtain that taking images is a bijective mapping between
V(Uy) and V(U;). It follows directly from the definition of images that the
i-th virtual member of the chart of U;, goes to the i-th virtual member of
the chart of U; under this mapping. This completes the proof of Corol-
lary [6.201 O

In the same way as in Section [ we define a linear subspace of kF of
linear dependencies induced by multi-turns of virtual members of the chart
of monomials. For every monomial of F we do all multi-turns of all virtual
members of the chart and we consider all layouts of these multi-turns (see
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Definition B.5]). As a result, we obtain the set of expressions

T = { Za]—Uj | U; € F, there exists an index 1 < h < n such that

j=1

Up — Z(—a;la]—Uj) 15 a multi-turn of a virtual member of the chart of Uh}.
=
J
(11)
We denote the linear span of 77 by (77).

Proposition 6.21. The linear subspace (T') C kF/Z is equal to the ideal
7.

Proof. Let us show that 7 = 7. Assume U, is a monomial and a; is a
member of the chart of U,. Then, by definition, A(ay) > 7. Therefore, ay
is a virtual member of the chart of Uj,. So, every multi-turn of a member or
the chart of U}, is a multi-turn of a virtual member of the chart of U,, as well.
Thus, 7 C T".

Now let a; be a virtual member of the chart of Uj,, U;, = La,R. Assume
Uy +— Z%l(—aglajUj) is a multi-turn of a, in Uy, Then 3°7 | a;U; is a

j#h

layout of this multi-turn. By definition, Z?:l a;U; € T' and every element
of 7" can be obtained in such a way (with its own U, and aj,). We have to
show that > 7, a;U; € T

Assume the multi-turn Uy, — Y j-1(—a; 'a;U;) comes from an elemen-

JF#h
tary multi-turn a;, — Y j=1(—a; 'aja;). Then U; = La;jR, 1 < j < n. By
J#h

definition, Z?Zl aja; € R. From Small Cancellation Axiom it follows that
there exists a monomial a;,, 1 < jo < n, such that A(a;,) > 7 + 1. Then a;,
is a member of the chart of U;, = La;, R, and

n

Ujy = Laj,R = Y (=, a;La;R) =Y " (—a;'a;U;)
=1 =1
j]#jo J']7fjo

is a multi-turn of a member of the chart of U;,. Clearly, 77 | a;La;R =
-1 @;Uj is a layout of this multi-turn. So, 37, a;U; € T. Thus, 7' C T
So, finally we obtain 7' = 7. Hence, by Proposition 4.1}, (7') =Z. O
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The next proposition aggregates results of Subsection and Subsec-
tion [6.4]

Proposition 6.22. Assume Uy, is a monomial, ay, is a virtual member of the
chart of Uy. Let aj, and a; be incident monomials. Consider the replacement
ap +— aj in Uy. Let U; be the resulting monomial. If a; is a virtual member of
the chart of U;, then MinCov(Uj) = MinCov(U;) and NVirt(U,) = NVirt(U;).
If a; is not a virtual member of the chart of U;, then either MinCov(U;) <
MinCov(Uy,), or MinCov(U;) = MinCov(U,,) and NVirt(U;) < NVirt(Uy,).

Proof. First assume a; is a virtual member of the chart of U;. Since ay is a
virtual member of the chart of Uy, by definition, A(ay) > 7 — 2. Therefore,
an € Max"™(U,). Then if we consider the replacement aj — a; in Uy, it
follows from Lemma [6.3]that MinCov(U;) < MinCov(U},). Since a; is a virtual
member of the chart of U;, by definition, A(a;) = 7—2. So, a; € Max"™(U;).
Hence, we can also consider the replacement a; + aj in U;. Then, by
Lemma [6:3, MinCov(U;,) < MinCov(U;). So, MinCov(U},) = MinCov(U;).

If a; is a virtual member of the chart of U;, it follows directly from
Corollary [6.200 that NVirt(U) = NVirt(U;).

Now assume a; is not virtual member of the chart of U;. By Lemma [6.3]
we have MinCov(U;) < MinCov(Uy,). So, it remains to prove that if MinCov(Uj) =
MinCov(U;), then NVirt(U;) < NVirt(U,). Indeed, let MinCov(Uj) = MinCov(Uj).
If ap, — a; is not an admissible replacement in Uj, then it follows from
Lemma [6.3] that MinCov(U;) < MinCov(U,). Hence, a, — a; is an admis-
sible replacement in U, in the case under consideration. Then, since a; is
not a virtual member of the chart of Uj, it follows from Corollary that
NVirt(U;) < NVirt(U,,). This completes the proof. O

7 'Transformation of a given monomial. De-
rived monomials

7.1 Derived monomials and f-characteristics of mono-
mials

Definition 7.1 (derived monomials). Consider the following transforma-
tions of monomials:
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(rl) Replacements of a virtual member of the chart by an incident monomial
non-equal to 1 (see Definition 2.2)). Recall that in this case the result
is always a reduced monomial (see Section [B AMLT]).

(r2) Replacements of a virtual member of the chart by an incident monomial
equal to 1 and the further cancellations (in order to obtain the reduced
monomial).

Starting with a certain monomial U we consecutively apply transformations
. All the monomials that we obtain after some sequence of trans-
formations (including the monomial U itself) are called derived
monomials of U.

Definition 7.2. Let U be a monomial. We introduce the following numerical
characteristic of U (f-characteristic of a monomial):

f(U) = (MinCov(U),NVirt(U)), (12)

where MinCov(U) is the number of elements in a minimal covering of U,
NVirt(U) is the number of virtual members of the chart of U. If U; and U,
are monomials, we say that f(U;) < f(U,) if and only if either MinCov(U;) <
MinCov(U,), or MinCov(U;) = MinCov(U,) and NVirt(U;) < NVirt(Us).

The characteristic f satisfies the following important property.

Lemma 7.1. Assume U and Z are monomials, Z is a derived monomial
of U. Then f(Z) < f(U). Moreover, f(Z) < f(U) if and only if in the
corresponding sequence of replacements there exists at least one replacement
of the form LapR — La;R such that ay, is a virtual member of the chart of
LayR and a; is not a virtual member of the chart of La;R.

Proof. The statement follows directly from Proposition [6.22] O

In order to study the structure of kF /Z as a vector space, we need to study
interactions between linear generators 7' of the ideal Z, namely, interactions
between layouts of multi-turns of virtual members of the chart. The simplest
example is as follows. Assume 77 and T3 are two layouts of multi-turns of
virtual members of the chart of a monomial U. Then we have an interaction
between them in the following sense: the monomial U cancels out in the
linear combination T} — T5. Notice that, by Definition [7.1], all monomials of
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T7 and Ty are derived monomials of U. So, in order to study interactions of
layouts, we need to study derived monomials.

In the simple example above the monomials of T} and 75 are obtained
from U by a sequence of replacements of the form and of length
one. However, we can consider more complicated linear combinations of
layouts. Assume U’ is some monomial in 7} different from U. Assume T3
is a layout of a multi-turn of a virtual member of the chart of U’. Consider
the linear combination 77 — T — T5. Then U and U’ cancel out in this
linear combination. However, the monomials of T3 are obtained from U,
using a sequence of replacements of length two. We can keep going this
way and consider more and more complicated linear combinations of layouts
of multi-turns. Then we deal with layouts that contain derived monomials
of U obtained by longer and longer sequences of replacements and ,
starting from U. So, we have to study sequences of replacements and
of arbitrary length.

In Subsection we deal with sequences of replacements and
of length two. This is our basic case. Namely, we consider two replacements
in two different positions of the chart of U and define their consecutive per-
forming. For instance, assume that in the above example f(U) = f(U’) and
Ty and T3 come from two different positions of the chart of U and of the
chart of U’. Then the monomials of T3 are obtained from U in this way.
In Subsection [7.3] we move on to the general case and study sequences of

replacements |(r1)| and |(r2)| of arbitrary length.

7.2 Replacements of virtual members of the chart by
incident monomials

To be clear, in this section we use more explicit symbols for resulting monomi-
als of replacements of maximal occurrences by incident monomials. Namely,
let Z be an arbitrary monomial, ¢;, € Max(Z). Let ¢, and ¢; be incident
monomials. Consider the replacement ¢, — ¢; in Z. In this section we de-
note the resulting monomial of the replacement ¢, — ¢; in Z and the further
cancellations (if there are any) by Z[c, — ¢;].

Let U be a monomial. Let ¢, and dj, be virtual members of the chart of
U. Let ¢;, and ¢;, dj and d; be incident monomials (see Remark about
same indices for different pairs of incident monomials). We consider the
replacements ¢, +— ¢; and dj, — d; in U.
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Assume that c; is not a small piece, d; can be of arbitrary A-measure.
We want to perform the replacements ¢, — ¢; and dj, — d; consecutively in

the following sense. Let dj, be the image of dj, in Ulcy, — ¢;]. Since ¢; is not
a small piece, from the results of Section [ (see LIl LOL2, RO ROL2) it
follows that

(d,, if ¢, and dy, are separated,
¢(e™t-dy) if ey and dy are not separated,

Jh _ e 1s the overlap of ¢, and dj, (13)

(empty if ¢, and dy, touch at a point),
e’ is the overlap of ¢; and dj,

L (empty if ¢; and dy touch at a point).

[| [ [| dh [

IU 1 Ch 1 1 1 1
G Iglvh =dp

U [clh — ¢l I L L

1 1 [ dh’ |

T e

c; €
U [clh = ¢l I I d, I

Let us perform the same transformation of d; as was done on dj, in order to
obtain dj, and put

(dj if ¢, and dy, are separated,

e e ' -d;, if ¢, and dy, are not separated,

'3«' _ e 1s the overlap of ¢, and dj, (14)
! (empty if ¢, and dj, touch at a point),

e’ is the overlap of ¢; and Jh

\ (empty if ¢; and dy touch at a point).

Then, by Compatibility Axiom, we obtain that dvh and Z are incident mono-
mials (see Lemma [[.2] for a detailed proof). So, we have a replacement of
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incident monomials dj, — c?l; in Ule, — ¢;]. We perform this replacement

and obtain the monomial Ulc), — cj][gh — d;]. Notice that we do not claim

that dj, is necessarily a virtual member of the chart of U [en — ¢

Assume that d; is not a small piece, ¢; can be of arbitrary A-measure.
We can do the same procedure, starting from the replacement dj, — d;. Let
¢y, be the image of ¢, in U[d), — d;]. Since d; is not a small piece, we obtain

as above

Cp =

if ¢p, and djy, are separated,
if ¢p, and djy, are not separated,

e is the overlap of ¢, and dj

(empty if ¢, and d, touch at a point),

e" is the overlap of ¢, and d,;

(empty if ¢, and d; touch at a point).

L L Ch (] L (] ]
I 1 1 1 dh 1 Ul
L Ié;t — Chl | d] [ ]
S L Uldy, — d;]
1 Ch | [ |
' T4, U
, I—Ie—”| di | .

o " Uldy — dy]

(15)

Let us perform the same transformation of ¢; as was done on ¢; in order to
obtain ¢, and put

if cp, and djy, are separated,

if ¢y, and djy, are not separated,

e is the overlap of ¢, and dj

(empty if cp, and dy, touch at a point),
"

e is the overlap of ¢, and d,

empty if ¢, and d; touch at a point).
pty j p
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Then, by Compatibility Axiom, we obtain that ¢, and Acx'] are incident mono-
mials (see Lemma for a detailed proof). So, we have a replacement of
incident monomials ¢, — Cctj in Uld, — d;]. We perform this replacement
and obtain the monomial U[dy, — d;][¢, — ¢;]. Notice that we do not claim
that ¢, is necessarily a virtual member of the chart of Uld), — d;].

Lemma 7.2. Let U be a monomial. Let ¢, and dj, be virtual members of the
chart of U. Assume c;, starts from the left of the beginning of dy. Let cp, c;
and dy,, d; be incident monomials.

Assume c; is not a small piece. Let Jh be the image of dy, in Ulc, — ¢,

dy is defined by formula (@3). Assume c:l; is defined by formula (I4]). Then

dp, dj are incident monomials. In particular d; € M.

Assume d; is not a small piece. Let ¢, be the image of ¢, in Uldy, — d,],
cp be defined by formula ([I5). Assume a is defined by formula (I6). Then
Ch, a are incident monomials. In particular, g} e M.

Proof. Let us prove the first statement of Lemmal[7.2l So, in what follows we
assume that c¢; is not a small piece. The second statement is proved similarly.

Assume that ¢, and d;, are separated. Then ¢, = ¢, a = ¢j, Cp, = Cp,
;c:j = ¢;. So, the statement is trivial.

Assume that ¢, and d; are not separated. Let us show that Jh, c?j are
incident monomials. We see that e is a prefix of d;, (possibly empty). So, by
Lemma 2.6, we obtain that e~ - dj, and e™! - d; are incident monomials.

Since e is a small piece and A(d,) > 7 — 2, we see that A(e™ - d},) >
7 —3> 7. Thatis, e - dj, is not a small piece. Notice that, by definition,
¢ and e~! - d;, have no cancellations from the left and dj, = ¢'(e™! - d;,) € M.
Hence, it follows from Lemma 2.6 that ¢’(e™!-d},) and €’ -e™! - d; are incident

monomials. That is, d; and d; are incident monomials. In particular, d; is a

monomial of a polynomial from R. Hence, Zi? e M. O

Lemma 7.3. Let U be a monomial. Let ¢, and d; be virtual members of
the chart of U. Assume cp, starts from the left of the beginning of dy,. Let
cn, ¢j and dy, d; be incident monomials. Assume A(c;) >4, A(d;) > 4. Let
dy be the image of dy, in Ule, — ¢, dy is defined by formula (I3)). Assume
c@ is defined by formula (I4). Let ¢, be the image of ¢, in Uldy — d;], ¢
be defined by formula ([H). Assume ¢; is defined by formula ([IB). Then the
following properties hold:
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(1) Ulen = ¢jlldy — dj] = Uldy, — d;][en — ).
In what follows in LemmalZ.3 we denote the monomial Ulcy, — ¢;] [d), —
dj] = Uldy — d;)[c, — ¢ by Z.

(2) The occurrence c@ is the single image of d; in Z under the replacement
¢ = ¢ in Uldy, — dj]. Similarly, ¢; is the single image of ¢; in Z
under the replacement dy, — d; in Uley, — ¢j].

(3) ¢ € Max(Z), Z € Max(2), ¢ andz are different mazimal occurrences
mn 2.

(4) Mej) —1 <A®G) < A(ey) +1, A(dy) — 1 < Aldy) < A(d)) + 1.

(5) Since a,z € Max(Z) and A(G;) > 3, A(Z) > 3, we consider the
replacements in Z in the other direction. Namely, we consider the

replacements Cctj = ¢ and c@ — Jh in Z. The resulting monomial of
the replacement ¢; — ¢y, in Z is, clearly, Uldy — d;]. The resulting

monomial of the replacement glv — glvh in Z s, clearly, Ulcy, — ¢l.

Then d; is the single image ofd in Uldy, — d}] under the replacement
G i Z. Similarly, c; is the single image of ¢; in Ulep = c¢j]

under the replacement d — dh m 4.

Proof.

(1) Assume ¢, and dj, are separated in U. Then U can be written as U =
LepMdypR. We obtain Uley, — ¢;] = LejMdyR. Since ¢; # 1, the monomial
Le;MdyR is reduced. Similarly, we obtain Uldy, — d;| = Lep,Md;R. Since
d; # 1, the monomial Lc,Md,;R is reduced. Hence,

Ulen = ¢][dp — d;] = Le;Md; R,
Uldy, = dj][ch — ¢;] = Le;Md;R.
Therefore, N
U[Ch — Cj”dh — d]] = U[dh — d]][gh — ACICJ]

Assume that ¢, and dj, are not separated. Recall that e is the overlap
of ¢, and d;,. We assume that e is empty if ¢, and dj, touch at a point.
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1

Let ¢, = Cpr e and o?h = e !'-d, Then U can be written in the form

U= LEheth.
dp,
| L /C\h 1 ] R |
IU I—IEI &\ 1 1
W_/ h

Clearly, we have Ulc), — ¢;] = LcjghR. Recall that €’ is the overlap of ¢,
and dj. So, we can represent Ulcy, — ¢;| in the following way:

Ulen = ¢;] = LejdyR = L(c; - € De'dyR = L(c; - € ") dyR.

| L Iell dh ] R |
Ulen = ¢l ! ¢ H/_/I
dn

Therefore, we obtain
Ulen v ¢)ldn = dj] = L{e; - ¢~ )d;R =
= L(ej-¢ (e et d)R=Lej- e - d,R.

Similarly, we have Ul[d), — d;] = Lcpd;R. Recall that e” is the overlap of
¢, and d;. Hence, we can represent U|dj — d;] in the following way:

Uldy, — d;] = Lénd; R = Leye ("' - dj)R = Ley (" - dj)R.

| L 1 /C\h Ielll R |
I T —— 1
U[dh = dj] 5}/_/ dj
Ch

Hence, we obtain
Uldy, = djl[en = &) = L(e" ™ - dj)R =
= L{c;-e ' -e")(e" " -d;)R = Le; - e Vd,R.
Combining the results, we see that

Ulen = ¢jl[dn = dj] = Uldn = d;][6n — &)
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(2) Assume c;, and d, are separated. In this case ¢; = c;, c@ = d;. Assume
U = Lep, MdpR. Since c¢; is not a small piece, we obtain that ¢; is a maximal
occurrence in Lc;MdpR and Lc;Md;R. Similarly, since d; is not a small
piece, we obtain that d; is a maximal occurrence in Lc, M d;R and Le; Md; R.
So, the statement is obvious.

Assume ¢;, and d; are not separated. Recall that e is the overlap of ¢,
and d,. We assume that e is empty if ¢;, and dj, tguch at a point.

Consider the monomial Z = Ulcy, — cj][gh — c@] = Uldy, = d;][cn + ¢j).
Recall that € is the overlap of ¢; and d, in Uley — ¢ Let & =c¢;-¢ 7' As
above, we represent Z in the form

Z =Ulen = ¢jl[dy — dj] = L(c; - ¢ )d;R = Le;d, R.

¢
L L /_/Rlell [| R ]
Ulen — ¢ I cj R/_/I
dp,
1 L | [ R |
! /1 = ! '
A ¢ d;

Recall that €” is the overlap of ¢, and d; in U[d), — d;]. Let o@ ="' d;.
Similarly, we have

Z = Uldy ~ dj][én — ¢;) = L&;(¢" ™" - d;)R = L&;d;R.

~

d]
| L 1 Ielll/_/\ R |
I I — 1
U[dh — dj] W_/ dj
Ch
| L 1 L R |
I T P 1#' 1
4 € d;

On the one hand, Z = L/C\]'ZZ-R. On the other hand, Z = ngc@R. Therefore,

dej = dej'
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Notice that we do not make any additional assumptions on A-measure of
e, ¢ ' and ¢’"'. In particular, we do not specially assume that they are

small pieces. Therefore, initially, looking at formulas (I4]) and (I6]), we do

not have any special restrictions on A-measure of ¢; and d;.

Assume that /c\]c@ € M. This implies that c@ is a small piece (see Sec-

tion B, A[LT). Since € is a suffix of ¢;, by Lemma 2.6, we obtain that ¢, - et
and ¢; - ¢~ = ¢ are incident monomials. Since A(c;) > 4, we see that
A(cj) > 4 —1=3. That is, ¢; is not a small piece. Hence, since E]Z e M,
it follows from Lemma that ¢, - ¢/ Z and E;l; are incident monomials.
In particular, ¢, - ¢~ 3] € M. Let ¢, = ¢ - et So, we have

—1 7 —1

ch-€odj=cp-€ el d; =¢nd; € M.

Therefore, ¢, = ¢,e” and d; merge in Uld;, — d;]. But this is not possible
since d; is not a small piece. A contradiction. Therefore, cjd = c]d ¢ M.

Since c]d = cjd ¢ M, we see that neither ¢ cj = 1, nor d = 1. Hence,

there are three possibilities for the monomial cjd = c]d

° 5;’ :/C\] anddj:dj;

C d;
L J IL J ]
] | | 1
Cj d;
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Consider the first and the second cases. Since A(c;) > 4, we see that

A(c;) > 4—1 = 3. Since A(d;) > 4, we see that A(c@) >4 —1=3. Since
¢ is a subword of ¢;, and c@ is a subword onlj-, we obtain A(¢;) = A(¢;) > 3
and A(Z) > A(c@) > 3. So, ¢; and z are not small pieces. Therefore, it
follows from the results of Section [l that ¢; and le are maximal occurrences

in Z (see AIl). Clearly, a and c@ are two different maximal occurrences
in Z. R

Consider the third case. In this case ¢; and d; have a non-empty overlap.
If this overlap is not a small piece, then ¢; and d; merge to one monomial of
M. So, ac@ = E]gj € M, a contradiction. Therefore, the overlap of ¢; and
d; is a small piece. Since A(¢;) = 3 and A(c;) = 3, this implies that AGG) =2
and A(d;) > 2. That is, ¢; and d; are not small pieces. Therefore, it follows
from the results of Section [l that a and c@ are maximal occurrences in Z
(see A[ILI]). This contradicts with the assumption that ¢; is a proper subword

of ¢, and c?] is a proper subword of c@ So, the third case is not possible.
By definition, an image of ¢; in Z is a maximal occurrence in Z that
contains ¢;. We proved above that E‘J is a maximal occurrence in Z that
contains ¢;. Therefore, ;c:] is an image of ¢; in Z. Since ¢; is not a small piece,
Z'j is the single maximal occurrence in Z that contains ¢;. Therefore, Z’j is the

single image of ¢; in Z. In the same way one can show that c?j is the single
image of d; in Z.

(3) In fact, we proved this property in the previous statement.

(4) The proof of statement (3) implies that ¢; differs from ¢; by at most

one small piece at the end. So, A(c;) — 1 < A(¢;) < A(e;) + 1. Similarly, J]
differs from d; by at most one small piece at the beginning. So, A(d;) — 1 <

A(dy) < A(d)) + 1.

(5) If ¢, and d), are separated, then the statement is obvious.
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Assume ¢, and dj, are not separated. We use the same notations as in the
proof of statement |(2) - So, we have Z = Lcjd R, d is a terminal subword of

d . By statement [(3)} we have ¢;, d € Max(Z). Since d; is longer than d by
at most one small piece, we have A(d;) > A(d;) —1>4—-1=3.

d.

ZZLj (the overlap
may be empty)

We have Uld), — d;] = LEhc@R, cjj is a terminal subword of d;.

o~

| L 1 Ielll/-/\ R |
I T —— 1
U[dh — dj] W_/ dj
Ch

By definition, an image of J -in Uldy, ~ d;] under the replacement ¢; + ¢, in
Z i Is a maximal occurrence in Z that contains d Therefore, d; is an image
of d in Uldy, +— d;| under the replacement c] — ¢ in Z. Since d is not a
small piece, d; is the single image of d in Uld, — d;] under the replacement
Ej — Eh in Z. _

Similarly, we obtain that ¢; is the single image of ¢; in Ulcj, — ¢;| under

the replacement cAl; — Jh in Z. O

Lemma 7.4. Let U be a monomial. Let ¢, and dj be virtual members of the
chart of U. Assume c;, starts from the left of the beginning of dy. Let cp, c;
and dy,, d; be incident monomials.

Assume c; is a virtual member of the chart of Uley, — ¢;]. Let dy, be
the image of dj, in Ulc, — ¢4, dy is defined by formula (@3). Assume Z
is defined by formula (I4)). Then Z 1s a virtual member of the chart of
Ulep — cj][glvh > le] if and only if d; is a virtual member of the chart of
U[dh — d]]

Assume d; is a virtual member of the chart of Uldy v+ d;]. Let ¢y, be
the image of ¢y, in Uld, — d;|, ¢, is defined by formula ([15)). Assume c;
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is defined by formula (@I6). Then AcAzj 15 a virtual member of the chart of
Uldy, — dj][ch — ¢j] if and only if ¢; is a virtual member of the chart of
Ulep = ¢;].

Proof. Let us prove the first part of Lemma [7.4l The second part is proved
similarly. So, we suppose that ¢; is a virtual member of the chart of Ulc), —
Cj].

Assume that d; is a virtual member of the chart of Uld), — d;]. Let us
denote the monomial Ulc), — cj][gh = cAl;] = Uldy, > d;][¢n = ¢;] by Z. Let
us show that J is a virtual member of the chart of Z.

First we prove that A(d ) > 7 —2. Assume ¢, and dj, are separated, then

d; = d;. Since d; is a virtual member of the chart of U[d;, — d;], we have
A(dj) = 7 — 2. Therefore, A(c@) = A(dj) > 7 — 2. Assume ¢, and dj, are not
separated. Consider the monomial Uldj, — d;|. Recall that e” is the overlap
of ¢, and d; (¢” is empty if ¢, and d; touch at a point). Let d; = et d;.

-~

J
L '~ R
I 1 — 1
U[dh — dj] RN/_/ dj
Ch

Since d; is a virtual member of the chart of U[d), +— d;], we have A(d;) > 7—2.
Hence, we see that A(cj) >7—3.

By statement - of Lemma [7.3] d is the 1mage of d; in Z under the
replacement ¢, — ¢; in Uldy, +— d;). So, clearly, d contains d Therefore,
A(dy) = A(dy).

First assume A(c? ) = 7—2. Then we immediately obtain A(d ) = A(c@) >
T —2.

Now assume that A(c@) = 7—3. Since A(¢y) = 7—2 and ¢, differs from ¢,
by at most one small piece at the end, we see that A(¢;) > 7 — 3. Therefore
m(d;) is an initial subword of cjj (see the definition of a subword m(-) on
page I09). So, A(m(d;)) < A(c@) = 7 — 3. Since d; is a virtual member of
the chart of Uld), — d;], there exists a (U[d), — d}], d;)-admissible sequence
such that the final image of d; in this sequence is of A-measure > 7. Let us
denote this image by dg»K). So, on the one hand, A(dg»K)) > 7. On the other

138



hand, it follows from Propositions that dg-K) = pBm(d;)sH), where
p%) and s%) are small pieces (possibly empty). So, we have
A = A" Im(d;)s5) < AE) + Alm(d;)) + As™) <

L<Kl+7—-3+1=7-—-1.

A contradiction. Hence, A-measure of 3] is always > 7 — 2. Thus, A(c?]) >
Ady) =7 —2.

One can prove similarly that A(¢;) > 7 — 2.

Now let us prove that cjj is a virtual member of the chart of Z. Consider
the replacement Z’j — ¢y in Z. Clearly, U[dy, — d,] is the resulting monomial.
We proved above that A(¢;) > 7 — 2 and A(¢,) > 7 — 3. Therefore T o
is an admissible replacement in Z. By statement |(5) - )|of Lemma [T.3] d; is the

single image of cjj in U[dy, — d;]. Since d; is a virtual member of the chart
of Uldy, — d;], there exists a (Uld), — d;], d;)-admissible sequence such that
the final image of d; in this sequence is of A-measure > 7. So, if we add
the replacement Aé] — ¢;, in Z to the beginning of this sequence, we obtain a

(Z, gj)—admissible sequence such that the final image of cjj in this sequence
is of A-measure > 7. Combining this with A(oAi;) > 7 — 2, we see that 67] is a
virtual member of the chart of Z.

Let us prove the first part of Lemma [.4 in the other direction. We

suppose that d is a virtual member of the chart of Z = Ulcy, — c]][dh - d, -
Let us show that d; is a virtual member of the chart of U[d), — d;].

Consider the monomial Ulep + ¢j]. Since ¢, and dj, are virtual members
of the chart of U, and ¢; is a virtual member of the chart of Ule, — ¢,
by Corollary [6.20] we obtain that Jh is a virtual member of the chart of
Ulep = ¢;).

Denote the monomial Ulc;, — ¢;] by W. Denote dp by z;, and c@ by z;.
Then Z = W{zy, — z;|, x), is a virtual member of the chart of W, and z; is
a virtual member of the chart of Wiz, — x;].

Cj
| L Iel ] R ]
W =Ulep — ¢ W—/I
Jh = Tp
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By our initial assumption, ¢; is a virtual member of the chart of W =
Ulen = ¢j]. Consider the replacement c¢; — ¢;, in W. Clearly, the resulting
monomial W{c; — ¢;] is equal to U. Hence, ¢, is a virtual member of the
chart of Wic; — ¢3]. So, we obtain that z; is a virtual member of the
chart of W, z; is a virtual member of the chart of W{z), — x;], ¢; is a virtual
member of the chart of W, ¢, is a virtual member of the chart of Wc; — ¢
Therefore, we can apply the part of Lemma [7.4] that is proved above to the
monomial W and the replacements c; — ¢, and xp, +— x; in W.

Denote the image of x), in Wic; — ¢3] by z,. Clearly, ), is equal to dj,.

dh:fh
1 L 1 ] R |
W[le—l>ch]:U \ e, I I

Therefore, T, = e- €' - x,. We put ’fj e " xj. Then, by the part of
Lemma [7.4] that is proved above, we obtain that z; is a virtual member of
the chart of W{c; — ¢p)[zh — z;]. But we have

~ =1 =

Ij=e-d xj=e-edj=e-¢ ¢t dj = d,,
and Wc; = cp][@n = ;] = U@n = 7] = Uld, + dj]. That is, d; is a
virtual member of the chart of U[d), — d;]. This completes the proof. O

7.3 Replacements of virtual members of the chart of a
monomial U by U-incident monomials

Definition 7.3. Let U be a monomial. Let v € Max(U) and U = LuR. Let
a € M. Assume there exists a sequence of monomials mq,...,m,.1 € M
such that

1. u=mq1, a =mpy1;
2. m; and m;, are incident monomials for all i =1,... n;
3. m; is a virtual member of the chart of Lm; R for i =2,... n.

Then the monomials v and a are called U-incident.
Notice that if v and a are incident monomials, they are U-incident mono-
mials as well. In this case we have the sequence of monomials of length 2:
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u = mq, a = me. In particular, v is U-incident to itself. In this case we have
the sequence of monomials of length 2 as well: ©w = my, u = ms.

If v is a virtual member of the chart of U, then it follows directly from
Definition [7.T] that the monomial LaR is a derived monomial of U.

Notice that if u and a are U-incident monomials and a € Max(LaR), then
a and u are LaR-incident-monomials.

In what follows we consider replacements in U such that U = LuR goes to
LaR, where v and a are U-incident monomials. We denote these replacements
by LuR ~ LaR or u ~ a in order to distinguish them from replacements
of incident monomials. In other words, LuR ~» LaR can be considered as a
short notion for the sequence of replacements

LuR=LmR+— LmyR+— ...— Lm,R = LaR.

Similarly to the above, we denote the resulting monomial of the replace-
ment u ~ a in U and the further cancellations (if there are any) by Ulu ~ a].

Let us notice that the complete analogue of property ALl from Sec-
tion [B] holds for replacements by U-incident monomials. Namely, we have the
following statement.

Lemma 7.5. Let U be a monomial, w € Max(U), U = LuR. Let u and a be
U-incident monomials. Assume a is not a small piece. Then the monomial
LaR is reduced and a is a maximal occurrence in LaR.

Proof. Since u and a are U-incident monomials, there exists a sequence of

monomials myq, ..., m,,; that satisfies the conditions of Definition [Z.3] In
particular, u = my, a = my,41, and A(m;) > 7—2foralli =2,... n. Let us

prove Lemma by induction on n. If n = 1, that is, v and a are incident
monomials, the statement was proved in Section

Assume n > 1. Let us split the replacement u ~» a into two replacements
u +— mgy and my ~> a. Since A(my) > 7 — 2, by the induction hypothesis, we
obtain that LmsyR is a reduced monomial and ms is a maximal occurrence
in LmoR. Now we consider the replacement my ~ a in LmyR. Since a
is not a small piece, by the induction hypothesis, we see that LaR is a
reduced monomial and a is a maximal occurrence in LaR. This completes
the proof. O
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Notice that the whole list of cases in Section [l was based on two prop-
erties. The first is that we obtain a reduced monomial after we replace a
maximal occurrence in U by an incident monomial different from 1. The
second is property A1l Therefore, using Lemma [Z.5, we have the following
statement.

Corollary 7.6. We have literally the same list of possibilities for replace-
ments of mazximal occurrences in U by U-incident monomials as we have in
Section [J for replacements of maximal occurrences in U by incident mono-
mauals.

Let U be a monomial, u be a maximal occurrence in U, A(u) > 3, U =
LuR. Assume b is a maximal occurrence in U. Let u and a be U-incident
monomials. We perform the replacement v ~» a in U, LaR is the resulting
monomial. In the same way as in Definition [6.1] we define a set of images of
b in the resulting monomial LOR.

Let () and u() be virtual members of the chart of U. Assume a()
starts from the left of the beginning of a(®). Assume v, a0 and u(?),
a'’?) are U-incident monomials. We consider the replacements 1) ~» (1)
and u(?) ~ a2 in U. Assume a™) is not a small piece. Let u(2) be the
image of u(?) in Ulu™) ~» a®)]. Then, combining the results of Section
and Corollary [7.6, we see that

((,(2) if ™ and v are separated,

(et -ul)  if u) and w2 are not separated,

. ' (41) (42)

(i) _ e is the oveﬂap of u | and u (a7
(empty if u'™) and u2) touch at a point),

¢ is the overlap of a™ and u*?)

(empty if a™ and U touch at a point).

ali) | al(iz) — u(il2)
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l 1 1 u(i2)

IU I u(zl) e I
i) o
I : a( 1) e ! I
U[u(il) ~> a(il)] u(2)

Assume that (™) is not a small piece. In the same way as (I5), we have

( (1) if u™) and u?) are separated,
(u® e Ne” if u™) and u?) are not separated,

(i) e is the overlap of u™) and u(®?)
u e

. . 18
(empty if u™) and u?) touch at a point), (18)
" is the overlap of u™) and a(®)
L (empty if 0" and a"®) touch at a point).
1 [| U(Zl) [ [ [ ]
I 1 1 1 U(ZZ) 1 Ul
. ’g(lil) — u(lil) | a(i2) .
f T —1 1 U[U(w) r\/; a(iQ)}
u(“) 1 1
o el i) U
6//
P :
Similarly to (I4]), we put
(qi2) if ) and w2 are separated,
e e t-a iful™ and u) are not separated,
~(i is the overlap of u™ and u(*2)
a( 2) _ e is the overlap of u'"" and u (19)

(empty if u™) and u*2) touch at a point),

¢ is the overlap of a®™) and u(*?)

\ (empty if a™) and u) touch at a point).
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Similarly to ([I6]), we put

(i) if ) and u?) are separated,
a®™ et iful and u') are not separated,
~(i e is the overlap of u™ and u(*?)

(empty if u™) and u2) touch at a point),

" is the overlap of u™) and ()

L (empty if 0" and a%) touch at a point).

We want to perform the replacements u() ~» a() and 42 ~» () con-
secutively, similarly to replacements of incident monomials in Subsection [7

(i1)

However, the monomials %) and a ~ are not necessarily U[u(®) ~» a(”)]

incident monomials. Similarly, %) and @ () are not necessarily Ulu(it) ~»
a™)]-incident monomials. So, we can not perform the replacements u(") ~»
a™) and u(?) ~» a(*?) consecutively under the same conditions as we have in
Subsection But it turns out that if () is a virtual member of the chart
of Ulul™ ~ @], or a2 is a virtual member of the chart of Uu(™) ~» a(1)],
then we obtain properties of replacements by U-incident monomials similar
to the properties that we have for replacements by incident monomials. So,
first we consider this particular case.

Corollary 7.7. Let U be a monomial. Let u'™) and u?) be virtual members
of the chart of U. Assume u'™) starts from the left of the beginning of u(2).
Let v, o) and u'%), o) be U-incident monomials.

Assume a'™) is a virtual member of the chart of Uu™ ~s a(™)]. Assume
u'2) is the image of ut™ in Ulu(™) ~s o], 402 is defined by formula (7).
Let 3 pe defined by formula ([I9). Then we have

(1) %) is a virtual member of the chart of Uu™) ~s a(1)].

(2) ) and ) are Ulu®™ ~s a@)]-incident monomials. In particular,
7 e M.

(3) 5@'2) is a virtual member of the chart of Ulu (i1) ~s a(ll)][a(iz) ~s 5“2)] if
and only if a®) is a virtual member of the chart of U[u(i2) ~> a(i2)],

Assume a'"?) is a virtual member of the chart of Ulul™) ~» a)]. Assume
u™) s the image of u'™) in Uul ~s o] a0 is defined by formula (I8).
Let @ be defined by formula (I9). Then we have
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(4) U is a virtual member of the chart of Uu("2) ~» a(2)].
(5) u) and E(il)
Z(Zl) c M

are Ulu') ~ a®]-incident monomials. In particular,

Zii 18 a virtual member of the chart o (i2) s qli2 ﬂilvzi 1
6) & | member of the chart of Ulu )] [ ~ G
and only if a™) is a virtual member of the chart of Ulu) ~» a()].

Assume a") is a virtual member of the chart of Uu(™) ~s a®™)], and a*?)
is a virtual member of the chart of Uu®) ~» a(®)]. Then

(7) U[ (i1) ~s a(ll)][a(iz) ~s E(h)] _ U[u(iz) ~s a(iz)”a(h) ~s E(il)].

Proof.

(7) At this moment, we can not yet claim that 7 and 3 are U (1) ~s
a™]-incident monomials. In the same way, we can not yet claim that ()

and 3" are U [u) ~s a()]-incident monomials. However, we still can do

formally the replacement u(2) ~» AT [u™) ~s a@)] and the replace-
ment () ~» a( ) in Ulu® ~s a(®)]. Then literally in the same way as in

statement [(1)] of Lemma [7.3] one can show that

U[u™ ~ ][ ~ 5] = Uu® ~ a@)ae ~ 7).

(1) Since u™) and a™) are U-incident monomials, by definition, there ex-

ists a sequence of monomials of m(“) . msl 4, that satisfies conditions of

Definition [73l In particular, m1 ) = u() and mmil = a™). We prove
statement of Corollary [Z.7] by induction on n;.

If n; = 1, then the statement follows from Corollary [6.201

Assume nq > 1. Then first we perform the replacement 1) ~» mgll).

Let v() be the image of u(™) in Ulu(™) ~ mgf)]. Denote the monomial

Ulu() ~s mi! ] by Z. Since m\ is a virtual member of the chart of Z and

©2) is a virtual member of the chart of U, by the induction hypothesis, we
obtain that v is a virtual member of the chart of Z.
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After that we perform the replacement mgf) — a™) in Z. Clearly, the

resulting monomial Z[mgf) = a™)] = Ulu® ~ a()], and the image of v(*2)
in Z[m&l) — a)] is equal to u®).

mi) ) — @)

: I —1 +—

qlin) ﬂl(iZ) — u(il2)

| I H— |

Z[mgf) > )] ~—

u(2)

Since (™) is a virtual member of the chart of Z[m') s a™] and v is a

virtual member of the chart of Z, by the induction hypothesis, we have that
1) is a virtual member of the chart Ulu() ~s q(D)].

(4) Statement of Corollary [I.7 is proved in the same way as state-

ment .
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(2), (3), (5), (6) Statements [(2)|[(3)} [(6)] are proved together.

Since u() and () are U-incident monomlals by definition, there exists a

sequence of monomials of m(21 b s 141 that satisfies the conditions of Def-

inition 7.3l In particular, m;’ = u(“ and mm) = a("). Since u™) and a(®)
are U-incident monomlals by definition, there exists a sequence of monomials

of mgiz), o n2 +1 that satlsﬁes the conditions of Definition [7.3] In particu-

lar, m1i2) = u(’2 and manrl = a(®). We prove statements [(2) -, -, -, @ of
Corollary [T by induction on ny + ns.

We consider only the case when u() and u%?) are not separated. The case
when u() and u(%?) are separated is considered in a similar (but simpler) way.

If ny =1 and ny = 1, then these statements follow from Lemma and
Lemma [7.4]

Assume a(™) is a virtual member of the chart of Ulul™) ~» a(™)]. First
suppose that ny = 1, that is, u(® and a(®®) are incident monomials. Let us

show that ) and &> are incident monomials and t)hat al) is a virtual
member of the chart of Uu(®) ~» ()] if and only if a ) is a virtual member

of the chart of Uu(™) ~s a™)][u() ~» & 2)]. We prove it by induction on n;.
We consider the replacement u™) ~ a) and split it into two replace-
ments: u() ~» mﬁfl and m{?) — a(). Denote the monomial Ulu@) ~s m%l)]

by W. Let v(®) be the image of () in W. Then
) = ¢, (e7! ~u(i2)) . where ey is the overlap of mﬁfll) and v,

We put

pliz) — e e b ali2)
Since u() and mm) are connected by the sequence of monomials of length
ny — 1 and mnl) is a virtual member of the chart of W, by the induction
hypothesis, we obtain that v(?) and b(?) are incident monomials and b2 is
a virtual member of the chart of W[v(2) s b(2)] = U[u®) ~ miD][v6) —
()] if and only if a®) is a virtual member of the chart of U[u(®) ~» a(®)].
Now consider the replacement mni Vs q@) in W. The resulting mono-
mial is equal to W[m I ] = Uu®™ ~ a@®)]. So, a™ is a virtual
member of the chart of V[/[mn1 — a™)]. Clearly, the image of v(®2) in
WmiY — a@)] is equal to

) — ¢ (61—1 . U(iz)) )
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If we do the same transformation of b2), then we obtain

_ . _ _ . _ . ~(i2)
e’.ell.b(”):e’~€11~e1-e Logle) = ¢ el gl =%

Since m,(fll) and a™) are connected by the sequence of monomials of length 1

and a™) is a virtual member of the chart of W[mgfll) — a™)], by the induction

(i2) =(i2)

hypothesis, we obtain that %2 and @ ~ are incident monomials and @ is

a virtual member of the chart of
WD s a)[E s 7] = Ut ~ a@][@i) — 5

if and only if b(®2) is a virtual member of the chart of W[v(2) s b(2)].
Combining the above results, we obtain that a') is a virtual member of

the chart of Uu) — a)] if and only if @ )

chart of U[ul™) ~» a)][u(2) — Zi(lz)] So far, we are done with the case when

a™) is a virtual member of the chart of Uu(™) ~s )] and ny = 1.
Statements and @ for the case when n; = 1 are considered in the
same way.

Now again let a() be a virtual member of the chart of Ulu(®) ~» a(“)]
(i2)

is a virtual member of the

We assume that n, > 1. Let us show that a2 and @~ are Ulul™) ~
a™)]-incident monomials and that aiz) is a virtual member of the chart

of Ulul™ ~» a®)] if and only it 3 is a virtual member of the chart of

Ulu®) ~s a@)][al2) ~s & ]. We prove it by induction on n; + ne. That is,
we suppose that statements -, -, -, @ are proved for total length of
the corresponding sequences of monomials smaller than ny + ns.

We consider the replacement u(iz) ~ a?) in U and split it into two
replacements: () ~» m(' and m ' ) — a). First we perform the replace-
ment u(® ~ m{?) in U. Let v(@) be the image of u(® in U[u(®2) ~ m{2)].
Then

o) = (u(il) e 1) es, where ey is the overlap of v and m(”).

We put ' '
b(ll) = a(ll) . 6_1 - €9.

Since u(® and my, ) are connected by the sequence of monomials of length
ny — 1 and m{? is a virtual member of the chart of U [u(2) ~ m\2 ] by
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the induction hypothesis, we obtain that v(*) and b(t) are Ulu(2) ~» mi )]—

incident monomials and @) is a virtual member of the chart of Ulu(®) ~»
m(lz)][v(u) ~s plin ]

Denote the monomial U[u(®) ~» mi2 ] by Z. We have the replacements

m%z) ~ @' and v ~» ) in Z. Let mgg be the image of mm) in

Z[o®) ~s b)) = Ul ~ mi2][v@) ~ b)), Since e, is the overlap of v(i)

i2)

and an , we see that

mi>) = el (e3' - mi2)) , where €y is the overlap of b™) and m{?).  (21)

Let us show that e} - e;' = ¢’ - e. Let

7715;2) =¢ (et -ml?).

Since u(?) and mniz) are U-incident monomials and (") is a virtual member
of the chart of Ulu™) ~» ()], by the induction hypothesis, we obtain that

a2 and miz) are Ulu(™) ~ a(™]-incident monomials. It follows from the

induction hypothesis and statement that

Ul ~ m][p@) o 50 = U ~s a6~ 512,

Denote these monomials by Q. Assume 42 is the j-th virtual member of
the chart of U. Then, since we replace only virtual members of the chart
by virtual members of the chart in order to obtain the right-hand and the

left-hand monomial in the above equality, by the induction hypothesis, we

() is the j-th virtual member of the chart of ) and ffz&g) is the

J-th v1rtua1 member of the chart of (). Therefore, m(lz) = ﬁzﬁj) Hence,
—1

d-e=éey-e;.

see that ﬁl

So, if we do the same transformation of a(®2) as we do in (Z2I)) over m%z),

=(iz2)
G 2 and a2 are incident monomials,

by the basis of induction (case ny = 1) we obtain that m'2) and 7" are
incident monomials. So, we see that u(?) ~» m,(12 and m(”) > 5(12) is a
sequence of replacements in one position of the chart of U [u(il) ~ al)].

Since M2’ is a virtual member of the chart of U[u() ~» a()][i(2) ~ w2,

(i2)

then we obtain @~ as a result. Since my,

we obtain that 22 and @~ are U[u(™) ~» a(™]-incident monomials.
By the basis of induction (case ny = 1), we obtain that (™) is a virtual

member of the chart of Z [ 2) s qliz )] if and only if @ ) s a virtual member

149



of the chart of Z[v(11) ~ (1) ][mgj) A ]. We proved above that

Z[v(“) ~ b(il)] — U[u(iz) ~ m(iz)][v(il) ~ b(il)] — U[u(“) ~ a(il)][g(iz) ~ m(zz)].
n2

Therefore,

Z[u() ~s pi0] i) 5(@] = Uu® ~ a@)][al@ ~ 5(2’2)].

n2

Clearly, Z [m%2 ) 0] = Uu2) ~ a(]. This completes the proof of
statements |(2)| and .

Statements and @ for the case when n; > 1 are considered in the
same way. ]

Now we go to the principle case which serves as a basis for the argument

in Subsection

Definition 7.4. Let U be a monomial. Let ©™"), ..., u(™ be all the different
virtual members of the chart of U enumerated from left to right. Assume
{i1,...,ix} € {1,...,m}. Let u() and aUs) be U-incident monomials, s =
1, ...,k (we allow that some u(*) = a(**)). Consider the replacements u(*s) ~»
al) in U, s =1,...,k. Assume a'%) is a virtual member of the chart of
Ulul®) ~ al®)] for all s=1,...,k. Notice that since u() is the i,-th virtual
member of the chart of U, we obtain that a’) is the i,-th virtual member of
the chart of Ulu’) ~s a(®)].

Let j1,...,jkx be a permutation of the set {iy,...,ix}. We define a se-
quence of replacements that we call consecutive performing the replacements
ul) ~s als) s =1,... k, starting from U, in order j1,...,j,. We define it
by induction on number k of replacements

Assume k = 1. Then U ~» Ulul) ~» aU)] is the required sequence.

Assume k > 1. Then first we perform the replacement u\) ~s Ut in
U. Let u¥) be the image of u(J in U[u(J1 ~ aU]) j = jy, ..., jx, defined by

formulas (I7) and (I8). Let uV) ~» a ” be the replacement in Uult) ~» qU)]
that corresponds to the replacement v\ ~» ¢V in U, j = jo, ..., jr. Every

element 5(]), J = J2,---,Jk, is defined by formula (I9) or (20). Actually, at
most two replacements may essentially change.

The following properties needed hold because al/") is a virtual member of
the chart of U[ul") ~» aU1)]. By Corollary [T, we see that a¥) is a virtual

member of the chart of Ulul/t) ~s aUV], V) and a7 are Ut ~s qln)]-

incident monomials, and & is a virtual member of the chart of U [ul1) ~s
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au][at) ~ E(j)], J = Jo,--.,Jr- S0, consecutive performing the replacements
V) ~ 5(]), § = Jj2,...,jr, starting from UluU) ~» aUV)] in order jo, ..., ji is
defined by the induction hypothesis. We add the replacement uU1) ~» qU1)

in U to the beginning of this sequence and obtain the desired sequence of
replacements.

Definition 7.5. Let U be a monomial and a € Max*(U). Similarly to
subwords t(a), i(a), and m(a), which are defined in Subsection with the
use of overlaps with neighbours from Max”*(U), we define subwords ,(a),
iv(a), and m,(a) with the use of overlaps with neighbouring virtual members
of the chart. Namely,

a = et,(a),

where e is the overlap of a and the left neighbouring virtual member of the
chart of U, e is empty, if there are no virtual members of the chart of U
that start from the left of the beginning of a, or a and the left neighbouring
virtual member of the chart of U are separated or touch at a point;

tv(“)
uls) o A

U a

i)

U a=t(a)

a = iv(a)fu

where f is the overlap of a and the right neighbouring virtual member of the
chart of U, f is empty, if there are no virtual members of the chart of U that
start from the right of the beginning of a, or a and the right neighbouring
virtual member of the chart of U are separated or touch at a point;

iv(a)
/_/Rq f ul®) |
U } P — '
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and finally
a = em,(a)f,

either iy = i, + 1 if @ is not a virtual member of the chart of U,
or iy = i, + 2 if a is a virtual member of the chart of U.

. m.,(a) ,
ulr) A ool
f U 1 P 1 |
mv(a) )
ulr) A u(s)
f U i P ] i
mv(a)
u(l’f) f U(ZS)
f U | P 1 |
mv(a) )
i) A u(s)
f U ! P ] !

First let us notice obvious properties of consecutive replacements.

Remark 7.1. Assume that we are under the conditions of Definition [7.4l
When we consecutively perform replacements, at every step we have replace-
ments that are already performed and the rest of the replacements that we
need to perform. Assume Z is the resulting monomial after some step. Let
us emphasise that for every initial replacement in U from the second set
there exists a corresponding replacement in Z. Consider the corresponding
replacements in more detail.

Assume that we consecutively performed the first ¢ — 1 replacements
u) ~ gl wlUe) s U1 starting from U. Let Z be the result-
ing monomial. Assume uU?) is the j,-th virtual member of the chart of Z.
Let 709 ~ 57 be the next replacement in Z in the sequence of consecutive

replacements (the element i corresponds to the element a*)). Then the
following properties hold.

1. Tt follows from Corollary[6.20[that the structure of the chart is preserved
completely after every replacement of a virtual member of the chart by
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a virtual member of the chart. That is, since ©V) is the j,-th virtual
member of the chart of U, we obtain that uUt) is the j,-th virtual
member of the chart of Z. Since al*) is a j,-th virtual member of the
chart of U[ul) ~» aU")], we see that &
the chart of Z[uUt) ~» 5(%)]. So, index numbers of virtual members of
the chart do not shift in a resulting monomial after every step.

is the j;-th virtual member of

. By definition, every virtual member of the chart is of A-measure >
T — 2. So, every replacement above is, in particular, a replacement of
a maximal occurrence of A-measure > 7 — 2 by an element of M of
A-measure > 7 — 2. Therefore, it follows from the results of Section
that V) in U may differ from @Y in Z only by small pieces at the
beginning and at the end.

In more detail, we have the following. Since we replace only virtual
members of the chart by virtual members of the chart, we obtain

w9 = em, (u9) £, U0 = em, (uV)f,

30 = (et ) FL A e ) g
where e is an overlap of ©V*) and its left neighbouring virtual member
of the chart of U, and € is an overlap of @\ and its left neighbouring
virtual member of the chart of Z, f is an overlap of uU*) and its right

neighbouring virtual member of the chart of U, and J?is an overlap of
uY) and its right neighbouring virtual member of the chart of Z.

Moreover, if all the replacements u) ~» UV . 4lt=1) ~s qU=1) are
from the left of «U%) and its images (that is, ji,...,j;i—1 < ji), then

w9t = et, (w9, AU =&t (ul"),

AU =& (e ub) 0D _ 5ol gl
If all the replacements uUV) ~» q) . 401 ~s qUi-1) are from the
right of «U) and its images (that is, ji,...,5—1 > Jj;), then

w8 — iv(u(jt))f, 00 — iv(u(jt))]?,

a0 — (u(jt) ) f—l) ]7’ 5(%) — qUn) . F1. ]?
In what follows we say that the replacement uUt) ~» E(jt)
sponds to the replacement uU) ~» aU) in U.

in Z corre-
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Lemma 7.8. Let U be a monomial. Let uV, ... u™ be all the different
virtual members of the chart of U enumerated from left to right. Assume
{i1,...,ix} € {1,...,m}. Let uC) and o) be U-incident monomials, s =
1,....k (we allow that some ul™ = al=)). We consider the replacements
ul®) ~s ql) in U, s = 1,..., k. Assume a) is a virtual member of the
chart of Uul) ~s aU%)] for all s = 1,... k. We consecutively perform the
replacements u'%) ~» als) s = 1,... k, starting from U, in some order.
Then the resulting monomial does not depend on the order of performing the
replacements. Moreover, the resulting monomial is a derived monomial of U
with the same f-characteristic as U.

Proof. We prove Lemma [I.8 by induction on k. Assume k = 2. Let uU?
be defined by (1), 7% be defined by ([@). Let uY) be defined by (IX)),
5(”) be defined by (20). It follows from statement of Corollary [7.7] that
Ut ~ a0][a0) ~ 9] = Ulul2) ~ a0)][ai) ~ 77V So, the basis of
induction is proved.

Assume k > 2. Let ji,...,j, and hy, ..., hy be two orders of performing
the replacements. First assume that j; = hy. Then w0 = u(") qU1) = (M),
Ut ~ aU1)] = Uu™) ~» a")] and the set of the rest of the replacements
is the same for the both monomials. By the induction hypothesis, we can
perform the rest of the replacements in Uult) ~s )] = Uu™) ~s qM)]
in any order and obtain the same resulting monomial. Hence, we obtain
the same resulting monomials when we perform the replacements in order
J1,- -+, Jr and in order hq, ..., hy.

Assume j; # hi. Let us perform the first replacement ") ~» aUV) in U,
and the first replacement u(") ~» (") in U. By the induction hypothesis, the
rest of the replacements in U[ul") ~» al/V)] and the rest of the replacements
in Ulu") ~» a)] can be performed in any order. So, we can continue with
the replacement in any position of jy, ..., jr in Uub) ~» aUV], and with the
replacement in any position of Ry, ...~ in Uu™) ~s a(™)]. Notice that
hi € {ja,....ju} and j1 € {hy,... hy}. Assume hy = j,, and j; = hy,.
Let us start from the replacement in the position h; in Ulu") ~» aU1)], and
from the replacement in the position j, in Uu") ~+ a")]. By the induc-
tion hypothesis, we obtain that the result of performing the replacements,

starting from U[uUt) ~» aV)], in order jo,...,ji is the same as in order
Joshi = JrosJ2y -« oy Jro—1s Jro+1s - - - » Jk- Hence, the result of performing the
replacements, starting from U, in order ji,...,J; is the same as in order
Ji,h = Jres J2s oo Jro—1s Jro+1s - - - » Je- I the same way, we obtain that the
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result of performing the replacements, starting from U[u") ~s ("], in or-

der hy, ..., hy is the same as in order ho, 71 = hgy, ho, ..., hsy—1, hsgt1, - - -, P
Therefore, the result of performing the replacements, starting from U, in or-
der hy, ..., hi is the same as in order hy, j1 = hgy, hoy - ooy Rgg—1, Rsg 15 - - - 5 Pk

Let @) ~» 3" be the replacement in U [ul) ~» aU1)] that corresponds

to the replacement u") ~ (") in U, and let 7" ~» 5(”) be the replacement

in Ulu™) ~» a")] that corresponds to the replacement utt) ~» aUv) in U
(u2) is defined by (I7), 7% is defined by ([IJ), uY) is defined by (IJ), g
is defined by (20)). It follows from statement of Corollary [7.7 that

Ulut) ~s a0][ah ~ gwﬂ] — Ulu™) ~ o[G0 ~ a<ﬁ>]_
Denote this monomial by Z. Obviously,

{j?a s 7j7“0—1aj7’0+17 s a]k} - {h'27 R h50—17 h’so-i-la ) h’k}

One can show that the set of the rest of the replacements in Z is the same

) in Uty ~

aY], and after the replacements u®) ~s a(") in U and a0 ~ 59 in

Ulu") ~s a")]. Therefore, by the induction hypothesis, the resulting mono-
mial of performing these replacements, starting from 7, is the same in or-
der jo, ..., Jro—1,Jro+1, - - -, Jr and in order ho, ..., hso—1, hsot1, ..., hi. Since
Z is the resulting monomial of the consecutive replacements 1) ~» ql1)
and u") ~ ™) in U in order Jji,hi = jr, and in order hq,j1 = h,,
we see that the result of performing the initial replacements, starting from
U, in order ji,h1 = JrgsJ2, - -+ Jro—1,Jro+1s - - - » Jk 1S the same as in order
h’lajl - hso, hg, ey h’so—la h50+1, ey hk

We proved above that the result of performing the initial replacements,
starting from U, in order ji1, A1 = Jrgs J2y - - - s Jro—1s Jro+1, - - - » Jk 1 the same as
in order jy,..., jr, and that the result of performing the initial replacements,
starting from U, in order hy, j1 = hsy, hoy ...y hsg—1, Psg+1, - - -, Ry is the same
as in order hq, ..., hy. Combining this with the above result, we obtain that
the results of the initial replacements, starting from U, in orders ji, ..., Jx
and hq, ..., h are equal.

By Definition [[.4], we replace only virtual members of the chart of mono-
mials. Hence, the resulting monomial is a derived monomial of U. More-
over, by Definition [7.4] we perform only replacements of virtual members
of the chart by virtual members of the chart. Such replacements preserve

after the replacements ©) ~» U1 in U and @™ ~ &
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f-characteristic of monomials. Thus, the resulting monomial is of the same
f-characteristic as U. O

So, different order of consecutive replacements gives the same result. In
what follows when we speak about consecutive replacements, we omit in what
order we perform them.

The next lemma follows from the fact that consecutive replacements can
be performed in any order.

Lemma 7.9. Let U be a monomial. Let uV, ... u™ be all the different
virtual members of the chart of U enumerated from left to right. Assume

{ir,...,ix} € {1,...,m}. Let uC) and o) be U-incident monomials, s =
1,....,k (we allow that some ul®) = al)). We consider the replacements
u) ~ a) inU, s =1,... k. Assume a®) is a virtual member of the chart

of Ulul) ~s )] for all s = 1,... k. Let iy be one of indices iy,. .., i,. We
consecutively perform the replacements ul') ~» a(s), i, #£ iy, starting from
U. Let Z be the resulting monomial. Let u() be the io-th virtual member of
the chart of Z. According to Remark 7.1, we have

w0 = em, (u) f, 70 = em, (ul®)f,

!

where e, €, f, f are small pieces. Let 1) ~» 5( ) be the replacement in Z that
corresponds to the replacement v ~» a0 in U. Then

0t = e'my(al) ", @ = &m, ()],
where €, f', €, f’ are small pieces, and
cet=w e o f= T

Proof. Let W be the resulting monomial of consecutive performing all the
replacements u(*) ~» a0 s = 1,... k. Then 70 is the io-th virtual member
of the chart of W. Let us consecutively perform the replacements u() ~»
al™ s =1,..., k, starting from the replacement u(®) ~» q(®) Then we see
that IV is obtained from Ulu(®) ~» a(®)] as a result of replacements of virtual
members of the chart by virtual members of the chart in positions different
from iy. By the initial assumptions, a(® is the io-th virtual member of the
chart of Ulul®) ~» a(®)]. Therefore, 5(10) may differ from a) only by a small
piece at the beginning and by a small piece at the end. Namely,

a™ = e'my,(al™) f', a = &m,(a™)f,
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where €', ', €, f/ are small pieces.

Notice that changes of u(®) after the consecutive replacements 1) ~s
a™ . s =1,...,k, iy # iy, from the left side and from the right side are
independent. This happens because the replacements from the left side of
19 do not influence the form of the replacements from the right side of iy,
and m, (u')), which stays unchanged, is not a small piece. Namely, they
are independent in the following sense. Let us perform all the replacements
ul®) ~ %) s =1,... k, such that iy < 4, starting from U. Let V be the
resulting monomial. Then the iy-th virtual member of the chart of V is of
the form

ety (ul™) = emy, (ul) £.

In the same way, if we consecutively perform all the replacements u(%) ~» a(%s)
s =1,...,k, such that 7, > 7g, starting from U, then the 7¢-th virtual member
of the chart of the resulting monomial is equal to

iy (u(io))f = em, (u(io))f

However, for now we are interested only in the replacements u(*) ~» als),
s=1,...,k,in U such that i, < 7.

Similarly, changes of ) after the corresponding replacements in U[u (%) ~»
a™)] are independent from the left side and from the right side. Namely,
consider all the replacements in Ulu(®) ~» a()] that correspond to the re-
placements 1) ~» al*) s =1,... k, such that i, < i. Let us consecutively
perform them, starting from Uful®) ~s ()] and let V be the resulting
monomial. Similarly, since a0 is the 4¢-th virtual member of the chart of
Ulu(®) ~s ()], the ip-th virtual member of the chart of V is of the form

&ty (a)) = my, (al0) f'.

On the other hand, by definition, V is the resulting monomial of the
consecutive replacements u) ~» a(s), s = 1,... k, such that i, < i, start-
ing from U. Assume that first we perform the replacements u() ~» al%s)
s = 1,...,k, such that 7, < 75. Recall that V is the resulting monomial.
Since the ig-th virtual member of the chart of V' is of the form

gtv(u(i‘))) = 5(6_1 ~u(i°)) ,

we see that the replacement in V that corresponds to the replacement () ~»
al™) in U is of the form

ety (u®) ~s - et - glio),
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wherein V[et, (ul©)) ~ €. e - )] = V and &- e~ - a(®) is the io-th virtual
member of the chart of V. However, we proved above that the i-th virtual
member of the chart of V is of the form €'t,(a®)). Therefore,

c.-e L. qglio) = gtv(a(i‘))).
Since al©) = e'm,(a™)) f' = e't,(al™)), we obtain

Fty(a) = et qli0) =E. el et (o).

Hence, & =¢-e'-¢and & ¢ ' =¢-e L.
Similarly, considering the replacements u(iS)N'\» a), s =1,... k, such
that 4, > 49, one can show that f=1. f = f/~'. f. O

Remark 7.2. There are two comments about Lemma [.9. So, assume we
are under the conditions of Lemma and use the same notations. Let us
consecutively perform all the replacements u(*) ~» aU), s = 1,.. . k, starting
from U, and let W be the resulting monomial.

1. Since a(®) is a virtual member of the chart of Uu(®) ~» a(®)] and we

replace only virtual members of the chart by virtual members of the
chart, we obtain that 5(20) is the 7g-th virtual member of the chart of
W. Since 1 is an arbitrary index and the resulting monomial W does
not depend on the order of the replacements, we see that i,-th virtual
member of the chart of W differs from ) by at most a small piece at

the beginning and a small piece at the end for all s =1,... k.

2. By definition, €’ is an overlap of al®) and the left neighbouring virtual
member of the chart of U[ul®) ~» a()], f’is an overlap of a(®) and the
right neighbouring virtual member of the chart of U[u(®) ~s ql0)].

Since we replace only virtual members of the chart by virtual members

of the chart, one can easily see that € is an overlap of 5“0) and the left
neighbouring virtual member of the chart of W, f’ is an overlap of 5(20)

and the right neighbouring virtual member of the chart of W.

Lemma 7.10. Let U be a monomial. Assume W is a derived monomial of U
and f(U) = f(W). Then there exists a set of replacements u'’) ~» a() in U,
s=1,...,k, such that u) and a%) are U-incident monomials, u®) is the
is-th virtual member of the chart of U, aCs) is the i,-th virtual member of the
chart of Ulul*) ~» aU%)], and if we consecutively perform these replacements,
then W is the resulting monomaial.
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Proof. Since W is a derived monomial of U and f(U) = f(W), there exists

a sequence of replacements
1 o
U=Zi— ...— Zy 1 =W (22)

such that every ¢; is a replacement of a virtual member of the chart of W, by
an incident monomial such that it is a virtual member of the chart of W, ;.
Let us prove Lemma [ZI0 by induction on ¢. If ¢ = 1, then the statement is
trivial.

Assume t > 1. Consider the initial part of the sequence (22)). Namely, we

consider the sequence
Pt—1

U=2+"% . 23 7,
By the induction hypothesis, there exists a set of replacements 1) ~» (%)
in U, s = 1,...,n, that satisfies the conditions of Definition [7.4, and such
that Z; is the resulting monomial of their consecutive performing. Let

U:Xl”\ﬁXg’\/?...’\/? n—l—l:Zt (23)

be a consecutive performing the replacements 1) ~» (%), starting from U,
s=1,...,n.

Consider the last transformation Z; >ﬁ> Zyi1. Assume ¢y is a replacement
of j-th virtual member of the chart of Z;.

First assume that j # i, for all s = 1,...,n. Let the replacement ¢, be of

the form u¥) — Qci(]), where @) is a j-th virtual member of the chart of Z,,

and Qcij) is the j-th virtual member of the chart of Z,,, = Z,[u") Z(j)]. Let
u) be the j-th virtual member of the chart of U. Since in sequence (23) we
replace only virtual members of the chart by virtual members of the chart,

we see that B
w9 = emv(u(j))f, ) = gmv(u(j))f,

where e, f, ¢, fare small pieces. Let us put
D) =e. 5713V ~f_1 - f.

Since in the sequence (23) we replace only virtual members of the chart by
virtual members of the chart, one is X;-incident to the next one at every
step, | = 1,...,n, we can perform the corresponding reverse replacements
in reverse order. Namely, Z; and U are connected by the following sequence
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of replacements of virtual members of the chart by virtual members of the
chart, one is X;-incident to the next one at every step, l=n+1,...,2:

Zt:Xn+1’\/'>...’\/->X1:U. (24)

Therefore, since V) and *g(j) are Z-incident monomials, it follows from state-
ments and [(5)] of Corollary [ that u) and ) are U-incident mono-

mials. Since ¢’ is a virtual member of the chart of Zyiiq, it follows from
statements and @ of Corollary [ that V%) is a virtual member of the
chart of U[u") ~ ¢9)]. By construction, we obtain that () ~» iy Zy cor-
responds to the replacement 1) ~» ¢U) in U after consecutive performing the

replacements u*) ~» aU) s =1,... n. Therefore, ul™) ~» aU), s =1,... n,
together with ) ~» ¢\9) is the required set of replacements in U.

Now assume that j = iy, for some 1 < sy < n. Then assume that
sequence (23)) is performing the replacements u') ~s als), s = 1,... n, in

order ji,...,j, such that j, = i,, = j. Let ) be the j-th virtual member
of the chart of X,,. Let the last replacement X, ~» X, 1 be of the form

2 in X,,. Then 5(” is j-th virtual member of the chart of X,, .1 = Z;.

We assumed that the last replacement X, 1 = Z; »ﬁ> Zi11 is a replacement
of the j-th virtual member of the chart of Z;. So, it is a replacement of 5(])
() N ”E“(j)

a9~ aq

by an incident monomial. Assume this replacement is of the form @

Y

where 27 is a virtual member of the chart of Ziv1 = Zy [5(j) —> %j)].
V) in X, and the replacement 5(]) — Qc/m
=0) in X,,, and Z;,; = W

in Z,. Then we obtain the replacement u¥) ~» ¢’
is the resulting monomial. Since 5(]) is a virtual member of the chart of

We glue the replacement 7V ~» @

Xni1 = Z;, we see that a9 and ;E(]) are X,-incident monomials. As above,
we can construct the replacement ) ~» ¢\ in U such that u¥) and ¢¥) are
U-incident monomials, and ¢\ is a virtual member of the chart of U[ul) ~»
c)], and the replacement u) ~» g(]) in X,, corresponds to the replacement
u) ~s V) in U after consecutive performing the replacements 1) ~» a(%),
s=1,...,n, s # sg. Therefore, u™) ~» alis) s =1,... . n, s # sy, together
with u(0) ~s c(0) is the required set of replacements in U. O

As above, let U be a monomial and let u) and «(?) be virtual members

of the chart of U. Assume u(™) starts from the left of the beginning of u(%2).
Let v, ¢ and u(?), a(?) be U-incident monomials. Now we study a
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general case with two replacements. Namely, we consider the replacements
u™) ~ a) and 4 ~» () in U such that a(™) is not necessary a virtual
member of the chart of U[u() ~» @], and a(®) is not necessary a virtual
member of the chart of U[ul ~+ a(]. Let us do the first replacement
1) ~ (™) in U and consider what happens with the second replacement.

Let U = L0y RED and %2 be the image of u(®) in Uu() ~» ()] =
L)) R The first problem that may appear is as follows. Assume
a™ = 1. Then the monomial U[u) ~s a(] = L)g() R = L) . R
does not have to be reduced. Hence, u(?) may have an empty image in
Ulu'™) ~» a(™)] because of cancellations. Then the replacement of ") is not
defined.

We deal with this issue as follows. Let u(2) be the intersection of (2
and R, Let us put

al’2) if u™ and v are separated or touch at a point
Aiz) (that is, u(®) = 1002 ):
S P if ™) and w2 have an overlap e
(that is, u'?) = eul®) ),
(25)

L) w(2) = i)

JAGY ul2) = )

L) —

Instead of replacements of maximal occurrences, we perform the following
sequence of replacements, starting from U.

1. We start with the replacement %) ~s a(™) in U. The resulting mono-
mlal is U[u(ll) NS a(il)] — L(Zl)a(ll)R(Zl) If a(il) — ]_ and L(Zl) . R(ll) iS
not reduced, then we do not perform the cancellations.
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U u(ll)
| ——
U[u(ll) ~> a(il)] a(il)
L ] L | a(ZQ) [| ]
u(7'2)
| } = |
U u(zl) € a(lg)
: | — |
U@ ~s )] g at?)
| |« —— |
Ul ~s 1] uli2)

* on the above pictures means possibility of cancellations

A(i2

2. We do the replacement 02 ~» a "in RO, 112" = 1 and the
monomial that we obtain after the replacement 7(?) ~» 2% in RO is
not reduced, then we perform the cancellations in this monomial. Let
R [@l2) ~, 5”2)] be the resulting monomial after the cancellations.

: 7,(i1) : a() - 7(i2) -

ULt~ al) TR

i i (i)
: L( 1) : a( 1) : =a : I
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L(il) 6(12)
, : i« : |
Ulu@™) ~s 1] .
R
(1) ﬁ(h)
: 1+ | : |
—
RED[G02) ~s 3]

* on the above pictures means possibility of cancellations

Notice that the replacement 7(%2) ~» 2% in R0 is a formal procedure.

We do not claim neither that @) is a virtual member of the chart of
R@)_ nor that 1) and @~ are R(-incident monomials.

3. After the second replacement we obtain the monomial (L()q()) .
ROV[G02) ~s ﬁ(lz)]. The last step is performing the cancellations in
this monomial if there are any.

Let U = L)y RG2)  Tet 50 be the intersection of u(™) and L(2),
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Similarly to (25]), we define

at®™) if u™ and v are separated or touch at a point
A(i1) (that is, ut) = 102 );
¢ a™ et ifu) and u) have an overlap e
(that is, u™) = 4e).
(26)
Clearly, we can also do the above process, starting from the replacement
a'’? ~» 42) in U. But then at the second step we deal with the intersection
of u™) and L(2) and perform the replacement u(t) ~» ﬁ(“) in L(2),

Let us explain why the process of replacements introduced above agrees
with our idea of replacements of maximal occurrences. Assume that the
monomial L()a) R@) does not have cancellations. Then u(®) has a non-
empty image in Uu(™) ~ o] = LEq) R Ag above, let 1) be the
image of u(®) in Ulul®) ~» ()] and let 4 be the intersection of u(®2) and
R Tt follows from the results of Section B that

((i2) = i2) if ) and u?) are separated,
X(e ' ul®) = X002 jf u) and w2 are not separated,

~(i2) e is the overlap of u™ and u(*?)
(2 —

- (empty if u™ and u'®) touch at a point),
X is a mazimal prolongation of 1)
to the left in L) a1 R,

\

(27)
Similar to (I9), let us put
((2) if ™ and v are separated,
X et al  ifu®™ and u) are not separated,
~(i is the overlap of u®™ and u(®
CL(Q): e is verlap of and u (28)

(empty if u'™) and u?) touch at a point),
X is a mazimal prolongation of 4%
to the left in L)) RG1),

\

We can not claim that 2% and &> are necessarily U [u™ ~ al™)]-incident

(i2)

monomials. So, let us specially assume that () and @~ are U ()~

164



a™]-incident monomials. After the replacement u™ ~s a™) in U, we can

perform either the replacement 72 ~» @ " inu [ul) ~ a(i)] and obtain the

monomial Ulu(®) ~s a@)][a02) ~» &t 2)], or the replacement u(i2) ~ 6(22) in
R®) and the further cancellations in the monomial (L(“ ) RO [02) ~
gt |. Let us show that in both cases we obtain the same resulting monomial.

Lemma 7.11. Let U be a monomial, and let u™) and v be virtual members
of the chart of U. Assume u'™) starts from the left of the beginning of u(2).
Let ™), o) and v, o) be U-incident monomials.

Assume U = LEDyGI RO - Let 102) be the intersection of u') and R™),
let 2% be defined by formula B5). Assume L'a™ R does not have
cancellations. Let u"™ be the image of u'™ in Ulu™ ~s o] @02) pe
defined by formula ([27) ), 5 pe defined by formula [28). Assume u'™) and

& are Ulu™ ~s a™]-incident monomials. Then we obtain

Uu ~ a]a) ~ 3% = (La™) - ROO[@) ~ 5™,

Similarly, let ™) be the intersection of u) and L) let a 2 be defined
by formula 28). Assume LU2)a2) R(2) does not have cancellatwns. Let u®)
be the image of u™ in Ulul™ ~ al)] @) pe deﬁned similarly to (21)),

! be defined similarly to 28). Assume u™) and & are Ulu(®) ~s q(®)]-
mczdent monomials. Then we obtain
U[u(iz) ~ a(iz)][ﬂ(h) ~ 5(%’1)] _ L(iz)[u( D 6(“)] ) (a(iz)R(iZ)) '
Proof. Let us prove the first part of Lemma [Z.TTl The second part is proved
analogously. Denote the monomial (La@)) . ROD[G(2) ~, 3 ] by W.

If u) and u(®) are separated, then u(2) = ul2) = u(lz) are the same
occurrence in Ulu™) ~s )], Then we have A O So,
Ulu) ~ @702 ~ 5] = W,

Assume 1) and u(?) are not separated. Let Lbea prefix of Uu() ~

a™)] that ends at the beginning point of X. Let U = L2y R(2) Then,
clearly Ulu™) ~s a™)] can be written as follows

U[u(il) ~> a(il)] — L) g(@0) plin) — (i) () gliz) Rli2) — T x72) pliz).
Hence, on the one hand, we see that

Ulu(® ~s o)) ~ z(iz)] _ 75 pli) _ T (X el ‘a(ig)) Rli2).
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On the other hand, we have

W = (LOa) . RE[GE) ~, 30) = (L)) . 3 Rl =
= (L@)g@M) . (e7! . al) RO = LX - (e7t - al®)) RO2),

Therefore, U[u(il) ~> a(il)][ﬁ(iz) ~ T [ =W. 0

So, if Lia) R is a reduced monomial and %), 5 are Ulut™) ~

A2

a™)]-incident monomials, then the replacement (2 ~s @ ) in R4 and the
further cancellations in (L)) . ROV [G02) ~, 3(22)] agree with our general
idea of replacements of maximal occurrences.

Now assume that a(") is not a virtual member of the chart of U[u(i) ~»
a™)], or a®) is not a virtual member of the chart of Uu(?) ~s a()]. Our
goal is to prove that in this case the monomial (La)) . RD[g(i2) ~ 5(22)]
has smaller f-characteristic than U.

Remark 7.3. To be definite, assume that a(") is not a virtual member of
the chart of U[u(™) ~+ a(")]. Notice that even if the monomial L(t)q(") R(1)
which we obtain after the first replacement u) ~» () in U, is reduced, we
still have a number of issues with the second replacement, which corresponds
to the replacement u(?) ~» (2) in U. So, the statement that the monomial
(L@a) - RED[l2) ~ ﬁ(m] has smaller f-characteristic than U is non-
trivial.

Namely, the situation is as follows. Suppose that L)a() RV has no
cancellations. Then u("?) always has a non-empty image in L) a(®) R(1)  So,
let 7®2) be the image of u() in L)q(@) R(1) (7(2) he defined by formula (27))).

~(i2

Let a ) be defined by formula (28)). Then the following problems may occur.

e 1) is not necessarily a virtual member of the chart of U[u() ~s a(™)].

o @) and 3 may not be U[u™) ~» a()]-incident monomials.

The following lemma shows that if a) is not a virtual member of the
chart of U[u™ ~» a()], or a® is not a virtual member of the chart of
Uu® ~s a®)] then we do not claim that we always obtain a derived
monomial of U. However, we always obtain a monomial with smaller f-
characteristic than U. In Subsection we will see that this property is
sufficient for the further argument.
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Lemma 7.12. Let U be a monomial. Let u'™) and v\ be virtual mem-
bers of the chart of U. Assume u™) starts from the left of the beginning
of u . Let v o) and v a2 be U-incident monomials. Assume
U = L0y RO = L0202 RG2) - Let 7102) be the intersection of ul™) and
ROV | et 2% be defined by formula [25). Let u™) be the intersection of u(™)
and L) let 24 pe defined by formula ([28). Then the following properties
hold.

(1) (L@a) . R [G) ~ 2™ = L@ gen . 7). (@ R2).

(2) Let us denote the resulting monomial from statement by W.

If a®™) is a virtual member of the chart of Ulu™) ~s a™)] and a'™ is

a virtual member of the chart of Ulu'™ ~» ()], then W is a derived

monomial of U and f(W) = f(U).

If a®™) is not a virtual member of the chart of U[u(i1 ~ a™] or a(®)

is not a virtual member of the chart of Ulul) ~» a(2)], then f(W) <

F(O).
Proof. Assume that (") and u(*?) are separated, and U = L)1) M4, (2) RG2)
Then (LMa()) - R [@(2) ~ 5(22)] is the result of the cancellations in the
monomial L)1) (M al®2) R(iQ)) where cancellations are performed, starting
from the right parenthesis. Similarly, L(2)[a(1) ~» ﬁ(“)] - (@™ R()) is the
result of the cancellations in the monomial (L(“)a(il)M ) - a?) R(2)  where
cancellations are performed, starting from the left parenthesis. Obviously,
the results after all the cancellations are the same.

Assume u(™) and u?) are not separated. Let e be the overlap of u(*) and

u(®) (e is empty if u() and u) touch at a point). Then we have

ﬁ(iz) — e 1. gl ﬁ(il) — gli2) o1
Hence, we obtain
(L) . RV G s 30 = (L) . et . qliz) R62),
L@ g ~, 5y (a(m RU2)) = [()ql) . e=1 . (g2 R62)Y
Thus, we see that

(L@ a@)) . RID[G0) ~ 5] = L@ [0 s 37 (a2 RE)Y |
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The first part of Lemma [7.12 is proved.
Assume a(™) is a virtual member of the chart of U[u(™) ~» )] and a®)
is a virtual member of the chart of Uu?) ~» a(®)]. Let u(%2) be the image of

u(®) in Ulu™ ~ a(™)] (@) be defined by formula (7)), let a 7 be defined
by formula GIQI) Since a(™) # 1, the monomlal L(21 (1) R(1) is reduced.
Since a(™) is a virtual member of the chart of U[u(™) ~» a(™)] it follows from

statement [(2)] of Corollary .7 that @(®2) and ™ are U [u() ~s a(")]-incident
monomials. Therefore, it follows from Lemma [I1] that W = Ulul®) ~»
a@[al2) ~» g ]. Since at™) is a virtual member of the chart of Uu(®) ~»
a™] and a(®) is a virtual member of the chart of Uu(?) ~» ()] it follows
from Lemma [7.8 that U[u() ~ a()][u(2) ~ 3t 2)]
U with the same f-characteristic as U.

Now assume that a(™) is a virtual member of the chart of U [u )~
a™)], and @™ is not a virtual member of the chart of Uu(®) ~» a(®)]. As
above, using statement [(2)] of Corollary [7.71and Lemma[7.1T], we obtain W =
Ulu™) ~s a(il)][ﬂ(i2) ~ 3 ], where 1) is the image of u(®) in Uu() ~»
a™] and 7 is defined by formula (I9)). It follows from statement - of
Corollary [77 that a ) is not a virtual member of the chart of U [ul@) ~

a2 ~ g ) |. Therefore,

is a derived monomial of

FU) > FUD ~ a®][@e) ~ 5 = f(w).

The case when a(™) is a not a virtual member of the chart of Uful™) ~»
a™] and () is a virtual member of the chart of U[u() ~» a(®)] is studied
similarly.

Now assume that ) is not a virtual member of the chart of U[u(i) ~»
a™] and @™ is not a virtual member of the chart of Uul®) ~ a2)]. In
particular, this means that A(a™)) < 7 and A(a™?)) < 7.

First let us consider the following particular case. Recall that u(?) is the
intersection of () and R We assume that u(®) and a(®) are incident
monomials, and A(@)) > 7. At the end we will show how to reduce the
general case to this particular situation.

First assume that L()a@) R@) is reduced. Let @) be the image of
u(®) in L0)g) R (302) be defined by formula (27)). Therefore, since
A@#)) > 7, we see that A(u®)) > 7. That is, u) is a virtual member of
the chart of L1)q() R,
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Let a2 be defined by formula ([28). Since u(®) and a®) are incident
monomials and 72 is not a small piece, it follows from Lemma 2.6] that 72

~(i2) .. . . ~(io) - .
and @  are incident monomials. Therefore, since u(*?) is a virtual member

of the chart of L#)a() R it follows from Lemma [7I] that the replacement

=(i2) .

1) = a7 in L0a) R does not increase f-characteristic. That is,

f(U[u(il) ~s a(il)][ﬂ(i2) ]) < f( o) Rli ))_

However, since (") is a virtual member of the chart of U and o) is not a

virtual member of the chart of Li1)a() RV we see that f(LVa) R) <

f(U). Since the monomial L()a() R@) is reduced and %) and a &) are

incident monomials, by Lemma [11], we have W = Ulu(®) ~» a(W][a®2)

5(i2)] . Hence,

FOW) = O ~ a@][Ee) - 7)) < fLDaDRW) < f(U).

Now assume that a(™) = 1 and L) . R4 is not necessarily reduced.
Notice that the replacement 702 ﬁ(lz) in R is a replacement of an
element of Max”?(R(™)) C Max"(R()). Hence, similarly to the last part
of Lemma [6.3, one can prove that MinCov(I¥) < MinCov(U). Therefore,
fW) < f(U).

Now let us show the reduction of the general case to the particular case
considered above. Initially we have the replacements u(™) ~» @) and
u®) ~» @02 in U. Since u(?) and a0 are U-incident monomials, there

exists a sequence of elements m&i”, e ms +1 that satlsﬁes the conditions of

Definition [7.3l Assume A(mgm) < 7+ 1. Since m and a(® are inci-
dent monomials and A(a™) < 7, it follows from Small Cancellation Axiom

that there exists a monomial m’ € M such that m’ is incident to m(”) and

a) and Wherem A(m’) = 7+ 1. We can insert this m’ to the sequence
m§’2>, o ms +1 before the last monomial. Therefore, without loss of general-

ity in what follows we assume that A(ms )) >7+ 1

Roughly speaking, instead of two initial replacements in U we consider

three replacements: u() ~s a(@) () ~ Ml () ) We perform

the replacement w2~ mli™ in U. Let us denote the resulting monomial
Ulut ~ m{?] by Z. Since m{® is a virtual member of the chart of Z,
we have f(Z) = f(U). We define the replacements in Z that correspond to
(i2)

u™) ~ @) and mg? — al®). On the one hand, if we perform them, using
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the process defined above, then W is the resulting monomial. On the other
hand, they satisfy the conditions of the particular case considered above.
Hence, f(W) < f(Z). Therefore, finally we obtain f(W) < f(Z) = f(U).
Let us explain the situation in more detail. Let v) be the image of
u®™ in Ulu® ~ m] = Z. We have the replacement m{? — a2 in Z
(without any changes of a(®). Let v() ~s b() be the replacement in Z that
corresponds to the replacement u(") ~» a(il in U. Let Z = Lyl Rlin),
Clearly, L) = L) g0, Z = LDy R Let ml™ be the intersection of

; ~ A(i2) ,
m{ and R, Let m(l2 b bethe replacement in R that corresponds
to the replacement msg’ ) 5 q02) in Z. First let us show that

(L(Zl)b(zl)) . R(zl)[ (ia |—>/Z;(22)] W
Assume u(il) and u(iz) are separated. Then U = L(il)u(il)Mu(iQ)R(i2)’ and
we have
We have v() = (1) (1) = (1) M) — mgiQ), /?b\(m = a(2), Therefore,

(LOB)) . B[R0 s 3] = L g . (Ma® RO = W
Assume v and u(2) are not separated. Then v and m<?
separated as well. Assume 1) and u(*?) have an overlap e (e is empty if u()

are not

and u(2) touch at a point), v() and m{ have an overlap d (d is empty if

0@ and m{® touch at a point). Then we see that

p) = (u(“ . )d plir) = (i) . =1 -d,




Clearly, Z can be written as Z = L@@ RG2) Hence, we obtain

(Lul)b(n)).R(n)[ () 53] = (La® . et d) - d -l RO =
— L)qln) . et qli2) RG2) — (L) glin) 30 pli2)

= (L(il)a(“)) RW[E 2 = W

Let us show that the replacements m{? s a(@ and v@) ~s p@) in Z
satisfy the conditions of the particular case that we studied above

Since (™) is not a virtual member of the chart of Ulu (1)~ qlin) | and
m$?) is a virtual member of the chart of U[u ~ 2 )] = 7, it follows from

statement @ of Corollary [.7] that 1) is not a virtual member of the chart

of U[u“? ~s m(lz)][v(il) ~s i) | = Z[,U(il) ~ b(il)]'
Since Z = Ulu(® ~ m{™)], we obviously have Ulu(®2) ~ a(i2)] = Z[m{® —
al)]. So, since a™) is not a virtual member of the chart of U[u(2) ~» a(2)], we

obviously obtain that a(®2) is not a virtual member of the chart of Z [mgh) —

(iz)]
a\?)].
Since A(m{™) > 7 41, we sce that A(m{>) > 7.
Therefore, all the above conditions are satlsﬁed. This completes the proof.
U

8 The structure of kF/Z as a vector space: fil-
tration, grading and tensor products

8.1 The filtration on the space kF

We define an increasing filtration on k£F, using f-characteristics of monomi-
als. Consider the following correspondence t between {0} UN and values of
f-characteristics of monomials. We put ¢(0) = (0,0). Assume t(n) = (r,s),

then we put
1 .
Hn 4 1) = (r,s+1) z-fr>s,
(r+1,0) ifr=s.

We define an increasing filtration on kF by the following rule:

Fo(kF) = ({212 € F, [(Z) <i(n)}), (29)
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where (-) is a linear span. That is, F,,(kF) is generated by all monomials with
f-characteristics not greater than t(n). Since, by definition, t(n — 1) < t(n),
we see that F,_1(kF) C F,(kF).

Since MinCov(Z) > NVirt(Z) for every monomial Z, we see that t(n)
covers all possible values of f-characteristics of monomials while n varies
over all values from {0} UN. Therefore, we really have

KF = D F,(kF).

n=0

Assume Z is a monomial that belongs to F,(kF). By Lemma [ f-
characteristics of derived monomials of Z is not greater that f(Z). Hence,
all derived monomials of Z belong to F,(kF). That is, F,,(kF) is closed
under taking derived monomials.

Definition 8.1. Let U be a monomial. By (U)4, we denote a linear subspace
of kF generated by all the derived monomials of U.

We consider derived monomials of U and distinguish two sets of mono-
mials:

Equal-f(U)y ={Z | Z is a derived monomial of U

such that f(Z) = f(U)}; (30)
Lower-f(U)q = {Z | Z is a derived monomial of U
such that f(Z) < f(U)}. (31)

Notice that the set Equal-f(U), is always non-empty, since U € Equal-f(U),.
On the other hand, the set Lower-f(U),; may be empty. Clearly, the set of all
derived monomials of U is equal to Equal-f(U); U Lower-f(U)y. Therefore,
we have

(U)y = (Equal-f(U), U Lower-f(U)4) .

Definition 8.2. Let Y be a linear subspace of kF generated by monomials,
closed under taking derived monomials and such that f-characteristics of its

monomials is bounded. Then, evidently, there exists a unique number n such
that Y C F,,(kF) and Y € F,,_1(kF). We put

L(Y) =Y NF,_i(kF).

172



If Y C Fy(kF), then we put L(Y) = 0.

Since both spaces Y and F,,_; (kF) are generated by monomials and closed
under taking derived monomials, we obtain that L(Y) is generated by mono-

mials and closed under taking derived monomials as well. Moreover, if Y 2 0,
then Y # L(Y).

Lemma 8.1. Let U be a monomial. Assume U € F,(kF)\ F,_1(kF). If
Lower-f(U)4 is non empty, then

L{U)q = (Lower-f(U)y).
If Lower-f(U), is empty, then L(U)4 = 0.

Proof. Since U € F,,(kF), every monomial with f-characteristic smaller than
f(U) is contained in F,,_1(kF). Therefore, (Lower-f(U)q) C F,_1(U). So,
we obviously have

(Lower-£(U)) C L(U)q = Fp_y(kF) N (U

Consider some arbitrary element S\, 0, Z; € F,_1(kF) N (U)g, where
Z; are monomials. Here we mean that the sum is additively reduced. Since
F._1(kF) is generated by monomials, every Z; belongs to F,_1(kF). Sim-
ilarly, since (U), is generated by monomials, every Z; belongs to (U)4. So,
on the one hand, every Z; is a derived monomial of U. On the other hand,
since Z; € F,,_1(kF), we have f(Z;) <t(n—1) <t(n). Since U € F,,(kF) \
F._1(kF), we see that f(U) = t(n). Therefore, f(Z;) < f(U). By definition,
this means that Z; € (Lower-f(U)g), so, S>'_, ;Z; € (Lower-f(U)g). Thus,
Fo1(kF)N(U)g C (Lower-f(U)y). Lemma [B1]is proved. O

In the sequel, we will widely use the following simple lemma.

Lemma 8.2. Let U be a monomial, Z be a derived monomial of U, Y C kF
be a linear space generated by monomials and closed under taking derived
monomials. Then the following statements hold:

(1) Z € Equal-f(U), if and only if (Z)q = (U)a-
(2) If Z €Y and Z € Equal-f(U)g, then (U)y C Y.
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Proof. Let us prove statement (1). Assume Z € Equal-f(U), and let us show
that <Z>d = <U>d

Since Z is a derived monomial of U, clearly, every derived monomial of
Z is a derived monomial of U as well. Hence, (Z)4 C (U)g.

Since Z is a derived monomial of U, there exists a sequence of transfor-

mations ¢y, ..., ¢, of type|(rl)] |(r2)| (see Definition [.1]) such that

U g

Moreover, Lemma [Tl implies that every transformation ¢, preserves f-
characteristic of the corresponding monomial. That is, every transformation
¢, is of the form L(l)ag)R(l) N L(l)ag-l)R(l), where ag) is a virtual member of
the chart of L(l)ag)R(l) and agl) is a virtual member of the chart of L(l)agl)R(l),

ag) and agl) are incident monomials. In particular, every transformation ¢,

is of type . Then the opposite replacement L(l)agl)R(l) N L(l)ag)R(l) is
a transformation of type as well. Denote it by (;Sl_l. Then we obtain the
following sequence of transformations of type :
— —1
A
Therefore, by definition, U is a derived monomial of Z. Hence, (U)q C (Z),.
ThUS, <U>d = <Z>d

Assume (Z); = (U)q, let us show that Z € Equal-f(U),. We see that Z
is a derived monomial of U, hence, f(Z) < f(U). Similarly, U is a derived
monomial of Z, hence, f(U) < f(Z). So, f(U) = f(Z). By definition, this
means that Z € Equal-f(U),.

Let us prove statement (2). Since Z € Y and Y is closed under taking
derived monomials, we obtain (Z); C Y. However, since Z € Equal-f(U)g,
it follows from statement (1) that (Z); = (U)g4. Therefore, (U)y C Y. This
completes the proof. O

Definition 8.3. Suppose Y is a subspace of kF linearly generated by a set
of monomials and closed under taking derived monomials.

We denote the set of all the layouts of multi-turns
of virtual members of the chart of monomials of Y by T'(Y).
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Let Z be a monomial. A layout a multi-turn of a virtual member of
the chart of Z is, in fact, a linear combination of derived monomials of
7. Therefore, if Z € Y, a layout of a multi-turn of a virtual member of the
chart of Z belongs to Y, because Y is closed under taking derived monomials.
Hence, 7'(Y) C Y. So, we can consider a subspace of Y linearly generated
by T'(Y'). We call this space the subspace of dependencies on'Y and denote
it by Dp(Y'). That is,

Dp(Y) = (T"(Y)).

Note that if a monomial Z € Y has no virtual members of the chart,
then there are no multi-turns of virtual members of the chart of Z. So, if
Y consists only of monomials with no virtual members of the chart, then
T'(Y) = @. In this case, by definition, we put Dp(Y) = 0.

Using the above notions, we see that 7' = T (kF) (see ({I) on page [25)
and

I =(T") =(T'(kF)) = Dp(kF)
(see Proposition [6.21]).

Remark 8.1. Let Y; and Y5 be subspaces of kF linearly generated by a
set of monomials and closed under taking derived monomials. Assume Y; C
Y. Then it follows directly from Definition R3] that 7'(Y;) € T'(Y2) and
Dp(Y3) C Dp(Y3).

Lemma 8.3. Suppose Y1 and Y, are subspaces of kF linearly generated by
monomials and closed under taking derived monomials, Y1 C Yy. Then Y7 N
T'(Y2) =T'(Y1). In particular, Y N T =Y NT'(kF)=T'Y).

Proof. Let T € T'(Y1). Then T € Y; because Y] is closed under taking
derived monomials. On the other hand, since Y; C Y, 7'(Y;) C T'(Y2).
Hence, T' € T'(Y3). So, T' € Y1 NT'(Y2). That is, 7' (Y1) C Y1 N T'(Y2).

Let T € YiNT'(Y;). Let Z € Y3 be a monomial such that T is a layout
of a multi-turn of a virtual member of the chart of Z. Since T' € Y] and Y is
generated by monomials, all the monomials of 7" belong to Y;. In particular,

Z €Y,. Thus, T € T'(Y;). That is, Y; N T"(Yz) C T'(Y1). O

Lemma 8.4 (Main Lemma). Let U be an arbitrary monomial, U € F,,(kJF)\
F,_(kF). Then

Dp(U)a N L{U)a € Dp(Fn_1(kF)). (32)
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We will prove this lemma in Subsection First let us apply it in order
to prove the following key statement.

Proposition 8.5. We have
Dp(Fn(kF)) NFp1(kF) = Dp(Fp—1(kF)). (33)

Proof. We assume that Lemma [R.4] is proved. Let us prove Proposition
Since F,,(kF) 2 F,,_1(kF), we evidently have Dp(F,(kF))NF,_1(kF) 2
Dp(F,_1(kF)). Hence, we need to show that

Clearly, we have

Dp(F,(kF)) = Dp(F 1 (kF)) + Y™,
where Y™ = ({T | T € T'(Fo(kF)),T ¢ Fp_1(kF)}).

That is, the space Y™ is linearly generated by all the layouts of multi-turns
of virtual members of the chart of all the monomials of F,,(kF) \ F,—1(kF).
Since Dp(Fy,—1(kF)) C Fy1(kF), we have

Dp(F,(kF)) N Fy1(kF) = (Dp(F1 (kF)) + Y™ N F, g (kF) =
=Dp(F,_1(kF)) + Y™ NF, (kF).

So, we only need to prove that
Y™ NF,_(kF) C Dp(F,_1(kF)).

Let W € Y™ NF,_;(kF) be a non-zero element. Then

l
=1

where every T; € T'(F,(kF)) and T; ¢ F,,_1(kF), and

Z%Ti cFp1(kF). (34)

i=1

We will prove that W € Dp(F,,_1(kF)).
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Since F,,_1(kF) is generated by monomials and the the set of all monomi-
als is a basis of kF, every additively reduced linear combination of monomials
that belongs to F,,_1(kF) contains only monomials from F,_;(kF). Hence,
all monomials of F,,(kF) \ F,,_1(kF) have to cancel out in (34).

Let Z; € Fo(kF) \ Foo1(kF) be a monomial such that 7; is a layout
of a multi-turn of a virtual member of the chart of Z;, ¢ = 1,...,l. Then,
obviously, T; € Dp(Z;)4, i = 1,...,l. Consider the space Zé=1<Zi>d~ If
(Ziya S (Zp)g for i' #4", then, clearly,

Then every Z;,i=1,...,l, is a derived monomial of some Z;,, j =1,...,m,
and <Zz>d Q <le>d
Since T; € Dp(Z;)q4, T; belongs to some Dp(Z;;)4, j = 1,...,m. So, the

layouts {T},...,T;} can be separated into m groups {717, ... sz]]} such that
{lea e >lej} C Dp(Z;,)a- So, we have

{1y,.... 0y = | {r{,.... 17}
j=1

Hence,
1 m 1

D iTi=3_ 3 W1 € Fua(kF). (35)

j=1 t=1

Clearly, every monomial in the sum (35) is a derived monomial of Z;,
for some j = 1,...,m. Recall that Z;, € F,(kF) \ F,_1(kF). Hence, by
definition, f-characteristics of monomials of Lower-f(Z;, )4 are smaller than
t(n). Therefore, we see that

LOWGI‘-f(ZZ'j>d Q Fn_l(k./_">
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So, if a monomial in the sum (35) belongs to F,,(kF) \ F,_1(kF), then it
belongs to Equal-f(Z;;)q for some j =1,... ,m.

Let Z be a monomial and Z € Equal-f(Z;,)q. Assume Z belongs to
F._1(kF). Then it follows from Lemma that (Z;,)a € Fn—1(kF). This
contradicts the assumption that Z;, € F,(kF) \ F,_1(kF). Hence, Z €
Fo(kF)\ Fno1(kF).

Combining the above results, we see that any monomial in the sum (33])
belongs to F,(kF) \ Fr_1(kF) if and only if it belongs to Equal-f(Z;,)q for
some j = 1,...,m. Hence, the monomials of Equal-f(Z;,)4, j = 1,...,m,
have to cancel out in the sum (3.

Again assume that a monomial Z € Equal-f(Z;;)q. If Z belongs to (Z; )
for some j" # j, then it follows from Lemma B2l that (Z;;)q C (Z;,)4. How-
ever, we have chosen the monomials Z;,, ..., Z;, with the property (Z;,)a €
(Zi,)a whenever j # j'. Hence, Z ¢ (Z; ,)q it j # j'. Thus,

j/

Equal-f(Z;.)a N Equal-f(Z; ,)g = @ if j # 7.

J i’

Assume Z is a monomial of some th and Z € Equal-f(Z;;)q. Then it
follows from the above argument that Z is not contained in any Tt],, whenever
J # j'. We proved that the monomials of Equal-f(Z; )4, j = 1,...,m, have
to cancel out in the sum (35). Therefore, the monomials of Equal-f(Z;;)q
have to cancel out completely in the corresponding sum 2?:1 %j th . As a
result we obtain

lj

Z”ythj € L(Z;,)q for every j =1,...,m.

t=1
Since T/ € Dp(Zi;)a, we have Zi’zl YT} € Dp(Z;;)a. Hence, we see that

lj
Z 71{7—%] € Dp<Z7']>d N L<Zlg>d

t=1
So, by Lemma [R.4, we have

lj
> AT} € Dp(Foor(kF)) forall j=1,...,m.

t=1

178



Thus, we obtain

L

1 m
ST =3 T € Dp(F,_i(kF)).

i=1 j=1 t=1
Proposition is proved. O
Using Proposition [R5 we obtain the following important statement.

Proposition 8.6. Suppose X, Y are subspaces of kF generated by monomials
and closed under taking derived monomials, Y C X. Then Dp(X)NY =
Dp(Y).

Proof. Since Dp(Y') € Dp(X) and Dp(Y) C Y, we have Dp(Y) C Dp(X)NY.
Let us show that Dp(X)NY C Dp(Y).
Since Dp(X) € Dp(kF), we evidently have

Dp(X)NY C Dp(kF)NY.

We will show that Dp(kF)NY C Dp(Y). This implies Dp(X)NY C Dp(Y).
Let 7" € Dp(kF) NY. Then

T=yT,+...+vyT, whereTy,.... T, €T, 71,...,7 € k.

Let us show that 7" € Dp(Y'). Assume that some T}, € Y, 1 < iy < [. Since
Y is generated by monomials, we obtain that every monomial of T}, belongs
to Y. Therefore, T;, € T'(Y) C Dp(Y). Hence, it is sufficient to prove that
T — 7, Ti, € Dp(Y). So, further we assume that every T, ¢ Y, i =1,...,1.

Denote by X’ the linear space generated by all the monomials of T;,
1 =1,...,1, and their derived monomials. Since X' is generated by derived
monomials of a finite number of monomials, f-characteristics of monomials
from X’ is bounded. Therefore, there exists a unique N such that

X' CFn(kF) and X' € Fy_1(kF),

and the subspace L(X") is defined. Let us prove that v 71+...+v1; € Dp(Y)
by induction on N.

First we do the step of induction. Let Z; be a monomial such that 7T; is a
layout of a multi-turn of a virtual member of the chart of Z;. If Z; € L(X'),
then all the monomials of 7; belong to L(X"), because L(X") is closed under
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taking derived monomials. Assume Z; € X'\ L(X’). Let Z be an arbitrary
monomial of 7} such that Z € X'\ L(X’). Since Z € X'\ L(X’), we have
Z € Equal-f(Z;)4. Therefore, Lemma yields that (Z;)q = (Z)4. That
is, Z; is a derived monomial of Z. Therefore, all the monomials of T; are
derived monomials of Z. Assume Z € Y. Then all its derived monomials
belong to Y because Y is closed under taking derived monomials. Hence, all
the monomials of 7} are contained in Y. This contradicts to our assumption
that T; ¢ Y. So, Z ¢ Y. Therefore, the monomials of T} that are contained
in X’ \ L(X’) are not contained in Y.

Since 111 + ... +v1; € Y and Y is generated by monomials, the mono-
mials of v T + ... + v/1; that remain after the additive cancellations be-
long to Y. Since monomials of X'\ L(X’) are not contained in Y, the
monomials of X'\ L(X’) cancel in the sum T} + ... + v71;. Therefore,
W + ...+ I € L(X'). Since X' C Fy(kF) and X' € Fy_1(kF), by
definition, we see that L(X’) = X' NFx_1(kF) C Fy_1(kF). Hence,

I+ ...+ 9T € Fy_1(kF).
Since X' C Fy(kF), we obviously have
111+ ...+ T € Dp(Fn(kF)).
Therefore, we see that
nh+ ... +5T € Fy_1(kF) N Dp(FEn(kF)).
So, Proposition implies
11+ ...+ 91 € Dp(Fy_1(kF)).
First assume that Dp(Fy_1(kF)) # 0. Then we obtain
nh+...+vL =0T +...+ 6T,

where T} € T'(Fn_1(kF)), i =1,...,I'. Therefore, we have

nh+ . AnTi=6T +... + 6Ty => 6T+ > &T].

T!eYy T/¢Y

As above, every element of the first sum ) ., 6;77 belongs to Dp(Y’). Since
T! € T'(Fn_1(kF)), we obtain that all the monomials of T}, i = 1,...,0,
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and their derived monomials belong to Fn_;(kF). Hence, the second sum
ZT#Y T! belongs to Dp(Y') by the induction hypothesis. Thus, 7 + ...+
T, € Dp(Y).

Now assume that Dp(Fy_i(kF)) = 0. Then, evidently, v71 + ... +
vwT; = 0 € Dp(Y). Clearly, in this case for every n < N — 1, we have
Dp(F,(kF)) =0 and T'(F,(kF)) = @. So, this case at the same time is our
basis of induction.

Thus, we obtain Dp(kF)NY C Dp(Y). This concludes the proof. O

8.2 Tensor products. The proof of the Main Lemma

The main goal of this section is to prove Lemma [8.4]

Assume U is a monomial. Derived monomials of U are defined with the
use of certain sequences of replacements of virtual members of the chart (see
Definition [I.T]). When we perform replacements that preserve f-characteristics
of monomials, they preserve, roughly speaking, the structure of the chart.
Moreover, there is no interaction between the replaced occurrence and the
separated virtual members of the chart and there is a very small interaction
between the replaced occurrence and its neighbours. This kind of behaviour
provides the idea to consider a tensor product of linear spaces that correspond
to each place of the chart of U.

Assume a monomial U has m virtual members of the chart, that is,
NVirt(U) = m. We enumerate all the virtual members of the chart of U
from left to right. Let u(® be the i-th virtual member of the chart of U. We
define a linear space A;[U] by the following formula

AU = <{a(i) | u' and o' are U-incident monomials} ) . (36)

Suppose U = LOu@DRE. We define two sets of monomials M E;[U] C
A;[U] and ML;[U] C A;[U] by the following rule:

ME;|U] = {a(i) | u® and a9 are U-incident monomials,

N 37
LW RO ¢ Equal—f(U)d} : (37)
ML;[U] ={a" | u? and o' are U-incident monomials, (38)
LOgWRO ¢ Lower-f(U)} .
We define the subspace L;[U] C A;[U] by the formula
LU] = (ML{U]). (39)
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Let us put
LAU]®...®@ A,lU]) = iAl[U] ®...0 LiU]®...® An[U].

We put
DilU] = (RN A;[U]) . (40)

Remark 8.2. Let us show that A;[U] is closed under taking derived mono-
mials.

First of all notice that if a € M, then a is a virtual member of the chart of
itself if and only if A(a) > 7. Indeed, since a is a single maximal occurrence
inside itself, there are no (a, a)-admissible sequences.

Let a be a monomial from A;[U]. It follows from the above that if
A(a) < 7, then it does not have any derived monomials. Assume A(a®) >
7, and assume b is a derived monomial of a'?. By definition, this means
that there exists a sequence of transformations of type and such
that b® is the resulting monomial. In order to obtain a derived monomial,
we replace only virtual members of the chart by incident monomials. Since
a) € M, after every such replacement, except the last one, the resulting
monomial is an element of M such that it is a virtual member of the chart
of itself. However, we proved above that this holds if and only if its A-

measure is > 7. Therefore, there exists a sequence of monomials mg ), . m,(c)

such that a® = mgi), b = m,(j), mgi) and mﬂl are incident monomlals for
j=1...k—1, andA(mgi)) >71forj=1,....,k—1.

Let us return to the monomial U = LOu®O RO Since m( and m]ll
are incident monomials and they are not small pieces for j = 1, ok —2,
it follows from the results of Sectlon l (see AT that m() is a maximal

occurrence in L®Wm m; W R Since A( ) >7forj=1,...,k—1, we see that

m( ) is a virtual member of the chart ofL m; @ RG) for Jj= 1, ..., k—1. Hence,

by definition, a” and b are U-incident monomials. Thus, b® € A;[U], and,
therefore, A;[U] is closed under taking derived monomials.

Remark 8.3. Since the space A;[U] is closed under taking derived monomi-
als, the space Dp(A4;[U]) is defined. Let Z; 1 ozj Ve RNA; [U]. It follows

from Small Cancellation Axiom that in the polynomial Z i1 ajag-i) there ex-
ists a monomial of A-measure > 7 + 1. By definition, this monomial is a
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virtual member of the chart of itself. Obviously, 22:1 ajag-i)

a multi-turn of this monomial. Therefore, Z;Zl ozjag»i) € Dp(4;[U]). Hence,
Di{U] € Dp(4; [U])

Let Z 1a] ) be a layout of a multi-turn of a virtual member of the
chart of a monomlal from A;[U]. Since A;[U] is closed under taking derived

is a layout of

monomials, every a(i) € A;[U]. Since every a( € M, by the definition

Z

of layouts, we obtain Z —pja;” € R. Combining these facts, we obtain

Z;Zl a;a 5-2 € D;[U]. Since Dp(A;[U]) is linearly generated by the layouts of
multi-turns of virtual members of the chart of the monomials from A;[U], we
have Dp(A;[U]) C D;[U].

Thus, we finally see that D;[U] = Dp(A4;[U]).

Lemma 8.7. Let U be a monomial, u be a virtual member of the chart of
U, U = LuR. Letu and b be U-incident monomials, and u and ¢ be U-
incident monomials. Assume b € Max(LbR). Then b and ¢ are LbR-incident
monomaals.

Proof. Since u and b are U-incident monomials, there exists a sequence of
monomials mgl), e mg), mgl) = u, mg) = b that satisfies the conditions
of Definition Since u and c¢ are U-incident monomials, there exists a

sequence of monomials mgz), .. mg), mﬁ” u, mg) = ¢ that satisfies the
conditions of Definition 73 Since m{” = m{ = u is a virtual member of

the chart of U = LuR, we obtain that the sequence

N QU R

satisfies the conditions of Definition [Z.3l Thus, since b € Max(LbR), we
obtain that b and ¢ are LbR-incident monomials. O

Definition 8.4. Let U be a monomial, NVirt(U) = m, U € F,(kF) \
F,_1(kF). Assume u® is the i-th virtual member of the chart of U, i =
1,...,m. We construct a linear mapping

UU] - AL[U] ® ... ® Ap|U] = (U)q + Foi (kF).

By definition, A;[U] is generated by monomials. Obviously, all monomials of
A;[U] is a basis of A;[U]. Hence, all the elements Y @ ... ® a™ where o
is a monomial of A;[U], is a basis of 4,[U]®...® A,,[U]. We define u[U] on
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these basis elements of A4;[U]®...® A,,[U] and then extend p[U] by linearity
on the whole space A;[U] ® ... ® A,[U].

Informally speaking, the general idea is as follows. The element oY) ®
... ® a™ encodes the replacements u™®™ ~» a ... u™ ~ o™ in U.
We want to perform them consecutively and to call the resulting monomial
p[U] (aV @ ... ®al™). However, in Subsection [7.3] we defined consecutive
performing the replacements only for the case when u® ~» a® preserves
f-characteristic. That is, we considered only the case when every a® is a
virtual member of the chart of the corresponding resulting monomial (see
Definition [T.4]). Also in Subsection [7.3 we described possible difficulties that
take place if some u) ~» ¥ does not preserve f-characteristic (see page [I61]
and Remark [73]) and how we work with them (see procedure at page [I61]).
So, in the definition of u[U] we consider separately a number of cases.

Now let us precisely define p[U] on the basis elements of 4;[U] ® ... ®
A, [U]. We distinguish between the following four possibilities.

Case 1 Consider an element a'¥ @ ... ® a™ such that every oY) € ME;[U].
Recall that v and a® are U-incident monomials. Consider the re-

placements u™ ~ oM .. u(™ ~ a(™ in U. By definition, we put
u[U] (e @ ...® al™) to be the result of consecutive performing the
replacements u(M ~» a®, ... u(™ ~ o™ starting from U (see Defi-

nition [74]). Recall that, by Lemma [7.§ we can perform them in any
order and obtain the same result.

It follows from Lemma [T8 that the monomial p[U] (a'V @ ... ® a(™)
is a derived monomial of U with the same f-characteristic as U. That
is, p[U] (e @ ... ®a™) € Equal-f(U),.

Case 2 Assume 1 < ig < m is a position in the chart of U. Consider an element
aM @ ...®a™ such that oV € ME;[U] if i # i9, and a®) € ML;,[U].
Then first we consecutively perform the replacements v ~» (¥, i =
1,...,m, i # ig, starting from U. Recall that, by Lemma [[.8 we can
perform them in any order and obtain the same result. Let Z be the
resulting monomial.

Assume 7% is the 4y-th virtual member of the chart of Z. Let u(®) ~»

E(m) be the replacement in Z that corresponds to the replacement
u(®) ~ ali0) in U (see Remark [TT). Since a? € ME;[U] for i # iy,
it follows from statements and of Corollary [777 that u(®) and
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Case 3

5%) are Z-incident monomials. Finally we perform the replacement

70 ~ 3 in Z and do the cancellations if there are any (cancel-

)

lations may occur only if E(io = 1). The resulting monomial of the

replacement (%) ~ 50 ih 7 is, by definition, u[U] (¢! ® ... ® a™).

By definition of consecutive performing the replacements (see Defini-
tion [74)), the monomial Z is a derived monomial of U. Since u()

and 5“0) are Z-incident monomials, we obtain, by definition, that
p[U] (e @ ... ® al™) is a derived monomial of U. Furthermore, since
al®) € ML, [U], statements and [(6)] of Corollary [T.7 imply that

&™) is not a virtual member of the chart of Z [alio) ~» E(m)]- That

is, the replacement () ~» g(iO) in Z decreases f-characteristic of
the resulting monomial. Therefore, pu[U] (a(l) ®...Q0 a(m)) belongs to

Lower-f(U)y C F,_1(kF).

Assume 1 < i; < i < m are two different positions in the chart of U.
Consider an element ¢V ®. . .®a™ such that a® € ME;[U]if i # iy, s,
and a™) € ML; [U], a"™® € ML,;,[U].

First we consecutively perform the replacements u® ~» o, i =1,...,m,
1 # 11,19, starting from U. Let Z be the resulting monomial.

Assume 7 is the i;-th virtual member of the chart of Z, and @)

is the io-th virtual member of the chart of Z. Let u(®) ~» 5(“) be
the replacement in Z that corresponds to the replacement u(") ~» ()
in U, and 002 ~» 5(22) be the replacement in Z that corresponds to
the replacement u(®) ~» a2 in U (see Remark [Z.T)). We will do the
procedure that we introduced in the second part of Subsection (see

page [I61]) with these two replacements.

Namely, we do the following process, starting from Z. Since a¥ €
ME;[U] for i # iy,1i, it follows from statements and of Corol-
lary [7.7 that %) and &%) are Z-incident monomials. We do the re-

placement () ~» E(il) in Z. If a®) = 1, there may be cancellations

in the resulting monomial. In this case we do not do the cancellations
after the replacement.

Let Z = Lu@ R, where @@ is the i;-th virtual member of the chart

of Z. Then the resulting monomial of the replacement u() ~» E(il) in

185



Case 4

Z is equal to La®™R. Let 002 be the intersection of R and (). Let
u2) ~ ﬁ(iz) be the replacement in R that corresponds to the replace-
ment 702 ~» 5% in Z (see (25)). We do the replacement (%) ~» g
in R, let R[a(?) ~ ﬁ(m] be the resulting monomial. After that we do

the cancellations in the monomial (EE“”) - Rl ~» ﬁ(h)] if there are

any. The resulting monomial is, by definition, u[U] (a(l) ®...0 a(m)).

By Lemma [.§ we obtain that Z is a derived monomial of U with
the same f-characteristic as U. That is, Z € F,,(kF). It follows from
statement [(2)]of Lemma[T.I2 that the monomial u[U] (aV ® ... ® a!™)
obtained by the above process in Z belongs to F,,_1(kF).

Clearly, we can do the above process in Z, starting from the position i,
(then in the second step we deal with the intersection of u™) with L).
It follows from statement of Lemma that we obtain the same
resulting monomial as if we start from the position ;.

Consider an element a) ® ... ® a™ such that there are more than
two a9 € ML,[U]. We do not need to preserve full information about
these elements. So, by definition, we put u[U] (e ®...®a™) =0
in this case.

The following lemma states properties of u[U]. We will use them in order
to prove Lemma[8.4] In order to prove statement we use Isolation Axiom.

Here

we prove statement under assumption that right-sided Isolation

Axiom holds. The case when left-sided Isolation Axiom holds is considered
similarly.

Lemma 8.8. Let U be a monomial. Assume U € F,(kF)\ F,_1(kF) and
U has m wvirtual members of the chart. For the matter of convenience, we
denote all the layouts of all the multi-turns of i-th virtual members of the
chart of the monomials of Equal-f(U)y by TW[U]. Let u[U] be a mapping
defined above by Definition[87]. Then u[U] possesses the following properties.

(1) pUNL(AU) © ... ® A[U)) € Fuoy(KF).

(2)

LetaV®...®@a™ € A[U]®...®A,,[U] such that every a® € M E;[U].
Then plU] (oW ® ... ® a™) € Equal-f(U)y. Moreover, u[U] gives a
bijective correspondence between all the elements oV ® ... ® a™ such
that every a”) € M E;[U] and all the monomials of Equal-f(U),.
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(3) Let W ® .. @t ®.. . @™ ec A4U]®...0 DilU]®...® An[U]
such that a® € ME[U] for i # iy and %) € RN D;[U]. Then
plU] (V@ ... 0t g.. . ©ad™) e TWU.

(4) Let T € T'((U)q) such that T ¢ L{(U)y. Then there exists an ele-
ment aV @ ... @t @ .. . ®@ad™ € U] ®...0 DUl ®...®
AnU] such that a0 € ME[U] for i # iy, 1) € RN D, [U], and
plU(aV@.. . @te.. . @ad™)=T.

(5) Let AV @ ... @t ... @ad™ e AUl ®...0 Dy[U]®...® A,[U]
such that a) € ME;[U] for i # iy,ia, and a®) € MLy, [U]. Then
plU) (aV@... 0t e...©a™) e Dp(F,_1(kF)). Moreover, if t'") €
RN D, [U], then p[U] (aW @ ... @t @...@a™) € T'(Fn1(kF)).

Proof. Let us fix the notations. Namely, let v, ... 4™ be all the virtual
members of the chart of U enumerated from left to right. We use the same no-
tations for resulting monomials of replacements as we used in Subsection [7.3]
Namely, let Z be a monomial, a € Max(Z), and a, b be Z-incident monomi-

als. Then the resulting monomial of the replacement a ~» b in Z is denoted
by Zla ~ b].

(1) LetadV®...®@a™ € LA U] ®...® A,[U]), where all o) € A,;[U]
are monomials, ¢ = 1,...,m. This means that there exist positions 71, ..., i
such that ' € ML; [U], j =1,...,k. So, u[U] (e @ ...® a™) is defined
by [Case 2-{Case 4] of Definition 8.4 We already noticed in the definition of
p[U] that in [Case 2 and [Case 3 we have p[U] (M @ ... @ a™) € F,_; (kF).
In [Case 4] by definition, u[U] (o) ®...® a™) is equal to 0, so, it is also
contained in F,,_1(kF). Thus, pu[U)(L(A[U] ® ...® A,[U))) C F,_1(kF).

(2) Assume aV®...®a™ € A,[U]®...®A,,[U], where all a9 € M E;[U].
We noticed in[Case Tlof the definition of x[U] that then u[U] (aV @ ... ® a™) €
Equal-f(U),. Hence, the restriction of u[U] on the set of all elements aY) ®
... ®a™ such that every a € ME;[U] is a mapping to Equal-f(U)y. Let
us show that this mapping is bijective.

First we show that the restriction of u[U] is a surjective mapping. Let
Z € Equal-f(U)4. Then it follows from Lemma [7.10] that there exists a set of
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replacements u® ~» b i = 1,... m, such that v and b® are U-incident
monomials, b@ is a virtual member of the chart of U[u® ~ 5], and if we
perform these replacements consecutively, then Z is the resulting monomial.
Since every b is a virtual member of the chart of U[u'® ~» b®)], we see that
b € ME;[U]. Therefore, p[U] (b @ ... ® b™) is defined using [Case 1l of
Defintion 8.4l Hence, we see that Z = p[U] (b @ ... ®b™)). Thus, p[U] is
a surjective mapping from the set of all elements a¥ @ ... ® a(™ such that
every a¥) € ME;[U] to Equal-f(U),.

Assume b @ ... @b™ V& ... @™ are two elements of A[U]®...®
A[U] such that b9 ) € ME;[U], and bY @ ... @ b™ # M @ ... @ cm.
Let us show that

plU) (0 @ ... @b™) £ plU] (W e...0dm).

Since bW @ ... @b™ £ D@ .. .®c™ notall b = . Assume m = 1.
Then b £ ¢ We have

ulU] (00) = U™ ~ 5],
(U] (C(l)) - U[u(l) ~s C(l)]_

Since b1 # )| we obviously see that U[u®M) ~» b)) # UluM) ~» ¢M]. Hence,
u[U] (b)) # p[U] (V). So far, we are done with the case m = 1.

Assume m > 1. Let iy be the first position such that 6@ and ¢ differ
from each other. That is, b(0) £ c(0) and b®) = ¢ if § =1,... iy — 1. Since
b®,c® € ME;[U] for alli = 1,...,m, the monomials u[U] (b ® ... ® b™)
and pu[U] (¢V @ ... @ ™) are defined, using [Case Tl of Definition B4 Recall
that, according to Lemma [7.8] in of the definition of u[U] the replace-
ments can be done in any order. First let us consecutively perform the
replacements u9 ~» 6@ and u® ~» ¢ starting from U, fori = 1,... i — 1.
Since b = ¢® for i = 1,...,i9 — 1, we obviously see that the resulting
monomial is the same. Denote this resulting monomial by Z.

Let @) be iy-th virtual member of the chart of Z. Let u() ~» z(m) be
the replacement in Z that corresponds to the replacement 1) ~s b() in U,
Let u(%) ~» g(m) be the replacement in Z that corresponds to the replacement
1) ~s () in U. Since all replacements u® ~» b = @ fori=1,...,ip—1
are from the left of the beginning of u(®), we obtain u() = ¢ (e7! - (),
where e and ¢’ are small pieces. Then, according to formula (I9]), we have

=(io)

~(io) — el b(io)’ =00 or o1 lio).
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) ) ~(io) i
Therefore, since bl0) £ () we obtain b ’ 5( 0).

Assume iy = m. In this case

. ~
plU] (M @ ... @ b™) = Z[u" ~ b
plU (V@ ... &™) = Z[a ~ 2.

Therefore, since b v A(O), we obtain Z [0 ] # Z[ul A(ZO)]
Thus, ,LL[U] V.. .@bm) #£uUl (V.. c( )). So far, we are done
with the case 79 = m.

Assume iy < m. Clearly, u®*1) can be considered as an occurrence in 7
and u*Y is the (39 4 1)-th virtual member of the chart of Z. Assume (%)

. 10
and u*1) are separated in Z. Then there are no further changes of b after

io)
the rest of the replacements in Z[a) ~ b |. Similarly, there are no further

changes of ¢ &) after the rest of the replacements in Z[u(®) ~» %iO)]. Hence,
~io)
b is the io-th virtual member of the chart of p[U] (b @...® b™) and

7% is the io-th virtual member of the chart of u[U] (¢ @ ... ® ™). Since
z(m #c ) , we see that pu[U] (b @ ... b™) # pu[U] (c(l) ®...®cd™) in
th1s case.

Assume 1) and u(+Y) are not separated in Z. Let f be the overlap of
u) and w0+ in Z (f is empty if 2 and u*Y touch at a point). Let
a(io-l-l f 1 u Z()-l-l

u(iO‘l’l)

/_/R

A4 2(0) f gliot+D)

~(s ~io) . .
Let us perform the replacement %) ~» b in Z and consider the resulting

. io) ~(io)
monomial Z[a(") ~ b |. Let fi be the overlap of b and the image of

. . ~(io) ,
u®*) in Z[u%) ~ b ] (f; is empty if b and the image of u(@+1 in
. ~(io) , ~(io)
Z[al ~ b ’ ] touch at a point). We can write Z[u(®) ~» b ’ | in the form
I LU
Z[E®) ~s b ] = v fru@tVR. (41)
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~(io)
i) s 3 —~ "1 gty

] ?io)
Similarly, we can write Z[u() ~» é(iO)] in the form

Z[a ~ 2] = 2% 500tV R, (42)
where f5 i o) i (io+1) § 7ji0) A, 0)

5 is the overlap of ¢~ and the image of u in Z[a") ~ ¢ (fe
is empty if ¢ &) and the i image of w0+ in Z[al) ~» Z )] touch at a point).
=(io)
¢

R ]

20~ FY) S h ater) |

If m > iy + 1, then, clearly, ©9, i = iy +2,...,m, can be considered

"y ~(io) . "y ~{i L

as occurrences in Z[u) ~s b O] and in Z[u() ~» E(O)]. Clearly, u, i =
. ~io)

ig + 2,...,m, are virtual members of the chart of Z[ul) ~s b 0] and of

Z[70) ~s T)

~(io)

i =dp+2,...,m (if m > iy + 1), starting from Z[a ~ b ’ |, and let V

be the resulting monomial. Let us consecutively perform the replacements

u® ~s ) for i = ig+2,...,m (if m > ip + 1), starting from Z[u (%) ?0420)],

and let W be the resultmg monomial. Then it follows from (AIl) and (42)

that

. Let us consecutively perform the replacements u® ~» b® for

—Alio) .
szb°ﬁm<“ﬁ%mRb (43)
W LC f2 ( (iO—H))ngg, (44)

where fim,(u™+Y)d; is the (igp 4+ 1)-th virtual member of the chart of V/,
fim (u®F)dy is the (49 + 1)-th virtual member of the chart of W, d; is the
overlap of fim,(u®*V)d; and the (iy + 2)-th virtual member of the chart of
V', dy is the overlap of fom,(u®*)d, and the (g + 2)-th virtual member of
the chart of W (di, ds may be empty).

190



'»g(io)

L —— e
V \/_/‘fl m, Zo+1 ) Id1|
?5"0) Ry

| L i | [ - [ ™
W R/_/Ifz m, (uloth) dy

9\(10

1/

If m = ig+1 or the (ip+1)-th and the (ip+2)-th virtual members of the chart
of U are separated, then, obviously, m, (u*Y)d; = m, (ul0+Y)d, = ulio+),
Let us put

U(io—i-l) _ flmv( (i0+1) )d w (i0+1) f m, ( (20+1))d2.

Let vl ~; (ot he the replacement in V' that corresponds to the re-
P P

placement w0+ ~s plotD) in U let w0t ~s 40+ he the replacement in

W that corresponds to the replacement w0+ ~s ¢(0+1) in /. Then we have

plU] (B ® ... @ b™) = V][ploth) ~s glio+D),
plU] (¢ ® ... @ ™) = Wwlo+D ~s yliotD],

Assume that

plU (0 @ ... @b™) = pU] (M e...0d™m).

Then
V[ (i0+1) (20_,_1)] W[ (i0+1) ~s y(io—i-l)]. (45)
N Rl - R2
I . . - 3
4] (io+1) ~_, x(@o+1)] R/—/k N -
Alio) 1.(@‘0—}—1)
b
N R1 - RQ
I . . - 3
W[w(%o+1) y(lo+1)] R/_A h - |
/’C\\(io) y(i0+1)
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Since x(*Y is the (ig + 1)-th virtual member of the chart of V[v(o*D) ~,
20+ and y(o+Y is the (ig+1)-th virtual member of the chart of W [w(@+1) ~s
yot] we see that 200! = ¢(0+) a5 occurrences. That is, they are equal
as words and they start at the same position in Voot ~s glotD] =
Wwlo+h) ~, y(i‘)“ ]. Therefore, (@) implies that the monomials V [p(0+1)

20+t )] and W wlo ) ~, ¢ lo+D) ] have equal prefix that end at the begmmng
point of z(0+Y) = 4G+ On the one hand, it follows from (@3] that this

~Alio)

prefix is equal to Lb " On the other hand, it follows from (44) that this
~(i Alio) i

prefix is equal to L?( o). Therefore, b Yo ?( o).

We have that v+ and 200+ are V-incident monomials and w@+ and
y@0+Y are W-incident monomials. Hence, 201 and v(+Y are Vvl ~s
20+ Y] incident monomials and y0*Y and wtY) are W w0+t ~s ylio+D)).
incident monomials. Therefore, combining (45]), Lemma [B.1 and the fact
that z(0t1) = o+ are virtual members of the chart of the corresponding
monomials, we get that that v+ and w*Y) are V-incident monomials.

(i) ) —(; ~(io)
We have that 210 is a virtual member of the chart of Z, 760) and b are
Z-incident monomials, and @) and Aém) are Z-incident monomials. There-
~i0) o o)
fore, by Lemma [8.7], we obtain that b " and 3 are Z[ut) ~ b ’ J-incident
monomials. i) o)
(10 A0 i i
Recall that b =0b f; and Fo) _ 2lio) f2. Consider the monomials

~(io) ~(io)
b fimy(u (ZO+1)>d1 -

b
’/i(lo f2m ( (20+1))d2 :’/gio)mv(u(io-i-l))dz.

The following properties hold.

~(io) ; oy ~(io) = |
1. We proved above that b  and 7 are 7 [4(0) ~s b ]-incident mono-
mials. Hence, there exists a sequence of monomials m(m), . m,ilil that

~(io)
satisfies the conditions of Deﬁmtlon 73 In particular, m(lo) . ,

(i) _ =lio) (io) i)

myyy = ¢ -, my " and th are incident monomials for ¢t = 1,... k,
and A(m{®) >r—2fort=2,... k.
) ~(io) (i0) i0) (io) .
2. Sinceb  =mi” and ¢ =my 41 are virtual members of the chart of

~io) i
the corresponding monomials, we obtain A(b ’ ) > 7—2 and A(N( ) >
T—2.
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3. Since u®*V) is a virtual member of the chart of U, we obtain A (m,,(ul+Y)) >

T — 2.

. A(io) .
4. fim,(uf*V) is a maximal occurrence in b ’ fim (uloth);

fam,(u®FD) is a maximal occurrence in 2 fomy (ulio ),

5. dy and dy are small pieces.

6. We proved above that v+ = fim, (u0+))d; and w+) = fom, (uloF)d,

are V-incident monomials. Therefore, there exists a sequence of mono-

mials mgiOH), . mlf;r Y that satisfies the conditions of Definition [73.
In particular, m§’°“> = pliot]), ml(fffrl) — ot ot and o)
are incident monomials for t = 1,...,[, and A(m, (ZOH ) > 17— 2 for

t=2...,1

7. Since vt = fim, (u®F)d; and wtY) = fom, (uorY)d, are vir-
tual members of the chart of the corresponding monomials, we obtain
Aty > 7 — 2 and A(wtY) > 7 — 2.

~(i0) ~j )
So, the monomials b ’ 40), together with m,(u(®*V)) satisfy the initial

conditions of right-sided Isolation Axiom. However, we proved above that

~(io) Aio)  (ip) A(m
=c

b - fit=b Syt

NZO)

Therefore, b , together with m,(u(™*V) violate right-sided Isolation
Axiom. A contradlction. Thus,

plU] (0 @ ... @b™) # puU] (M e...ed™).

Statement is proved.

(3) Let 1 < iy < m bea position in the chart of U. We consider an element
aV®. .. ®t(m> ®..0ad™ c AUl ®...0 Di[U]®...® A,[U] such that
a € ME;[U] for i # iy, and @) € D; [U] NR.

Assume t00) = 2?21 ijg-i()). Let

W; = u[U] <a(1>®...®b§io’®...®a(m>>, j=1,...,k
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Clearly, if bg-iO) € ME;,[U], then W; is defined using of Defintion B4t

if b§-i0) € ML;,[U], then W; is defined using of Defintion B4l Notice
that in both cases the replacement in the position ig can be performed last.

Let us consecutively perform the replacements u® ~» a®® for i # i,
starting from U, and let Z be the resulting monomial. Let () be the io-th
virtual member of the chart of Z. Then, according to Remark [T, we have

w0 — emv(u(m))f, o) — Emv(u(io))f’ and

o) — g(e—l (i) . f—1> f’

where e, f, €, f are small pieces. Let 1) ~» b; be the replacement in Z

that corresponds to the replacement %) ~» bgiO) inU, j=1,..., k. Then,
by definition,
Z(io)_"". _1~b(i0)-f_1~f 1 I

j e e e j ) j - 900y
(see also Remark [Z.T)). It follows from Small Cancellation Axiom that ¢() =
Z?Zl @-bgm) contains a monomial of A-measure > 7 + 1. Without loss of

generality, we can assume that A(b(i0 ) > 7+ 1. Then bgiO) is a virtual
member of the chart of Ulul®) ~» ()], Hence, Lemma [.9 implies

K = im0, By = Em,(5)F

B = (e BT

cel= . o f=p
where €', ', €, f/ are small pieces. Hence, we have

B g F

J J

and we obtain

k
~(io 1 (i) —1 77
Bib; E:a b oplio) et
; ! (46)

.e/—l o) p1 L

M»

flio) —

™ T

Since b\ = ¢/m, (b)) f" is of A-measure > 7+ 1 and ¢ and f are small
pieces, we see that mv(bgm)) =t -bg’o) . f'~! is not a small piece. Lemmal[7.9]
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~io)
implies b, ’
that

= ?mv(byo))f’ € M. Therefore, it follows from Corollary 2.3]

50 =S 53 g g Fen
j=1

Let Z = Lu"R. Since Z is the resulting monomial of the consecutive

replacements u® ~» a for i # iy, starting from U, and u(®) ~» Z;ZO) is the

replacement in Z that corresponds to the replacement 1) ~» bg-io) in U, we

R
obtain W, = Z[@® ~ b, | = Lb, R. Therefore,

k k
) ~(i0)
plU] (Ve . ot@We.  @d™) =) gW,=> piLb; R (47)
j=1 i=1

Recall that we assumed that A(B{®) > 7+ 1. Then b{® is a virtual
member of the chart of U[u(®) ~» b{™)]. Therefore, b°) € ME; [U]. Since
aV € ME;[U] for i # iy, statement [(2)] of Lemma 8.8 implies

Wy = u[U] (a(l) ®..0M®...® a(m)) € Equal-f(U),.

~(io)
It follows from statements and [(6)| Corollary [T.7] that blo is the io-th

virtual member of the chart of W7 = inm)R (see also Remark [Z.1]). Combin-
ing this with ({@T), we see that Z?Zl BjW; is a layout of a multi-turn of the
ip-th virtual member of the chart of the monomial W; € Equal-f(U),. Thus,
plU(aV@.. 0t e... ©ad™)eTWOU.

(4) Let 1 <1y < m be a position in the chart of U. Let T € T@)[U]. Then
k k .
~(io)
T=> BW;=> BiLb; R,
j=1 j=1

~(io) ~(io)
where Z§:1 5jbj0 € R, Wy, € Equal-f(U)y for some 1 < h < k, and bho is
the 7p-th virtual member of the chart of W;,. Without loss of generality we
can assume that h = 1. So, W, € Equal-f(U)g.
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Since W € Equal-f(U), it follows from the statement |(2)| of Lemma [8.§]
that there exists an element oV ®. . .®b§m) ®...0a™ € A|[U]®...Q An[U]
such that every a® € ME;[U] for i # i, bﬁZO) € ME,; U], and

Wy, = Lb, R= p[U] (a(l) ®...®b§m)®...®a(m>).

Let us consecutively perform the replacements u® ~» a®, i # i;. Let Z
be the resulting monomial. Assume @) is the io-th virtual member of the
chart of Z. Let 1) ~» ¢(®) be the replacement in Z that corresponds to the
replacement u(%) ~ bgiO) in U. By the of Definition B4, we obtain

Zw%%wémy:mm(MU®H.®w“®”.®¢m) wy = 1" R,

Since c() is the iy-th virtual member of the Chart of Z[u(®) ~» ()] and b
is the 7p-th virtual member of the chart of Lb1 R, the last equality implies

. ~(io) .
c® =p " and Z = LuR.
It follows from Remark [l and Lemma that
ul0) = emv(u(iO))f, a0 — Emv(u(i()))f,
o) — g(e—l (i) f—l) J’fv’
b\ = e'm, (b)) ", b = m, () f,

z(z) — i — -~
blo :?34(6/ l_bgo _f/ 1)_ /’

’é-e_l:’éf-e/_l, f_l'f:f/_l'.f,> (48)
where e, f, ¢, f, e, e, f’ are small pieces. Let us put
—1 Afio) ~-1

b ey P =2k

J

and consider

k ) k 1 ~i0) ~—1
£i0) — Zb§10) _ Ze’ el .bj S
j=1 j=1

~(io) ~io)
Since b;  is a virtual member of the chart of Wy, we have A (b, ’ ) =>T—2.
; ~—1 o) ~-1
Since ¢ and f’ are small pieces, we see that mv(bgm)) = . bl0 < f s
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~io) . .
not a small piece. So, since Z?=1 ﬁjbjo € R and b°) = ¢'m,(B{°)) f' € M,
it follows from Corollary 23] that

k
o =3 e 5 per

J=1

Since t©) € R, we see that b;iO) € Mforallj=1,...,k, and bgiO) and b;io)
are incident monomials for j = 2,... k. Since b§i°) € A;,[U], by definition,
u(®) and b§’°) are U-incident monomials. Combining these two observations
with the fact that b\ is a virtual member of the chart of Ulu(io) ~» b\],
we see that u(®) and ngO) are U-incident monomials for j = 2,..., k. That
is, b € A, [U].

Let us show that

~io) (1) (o) m\

W; = Lb,” R = p[U] <a 2.0 .. 0 ),]:2,...,k:.
Recall that Z is the resulting monomial of the consecutive replacements
u® ~ a® | § £ 4, starting from U, and @) is the io-th virtual member of
the chart of Z, Z = LuR. Consider the replacement in Z that corresponds
to the replacement u() ~» b§20) in U. Since a'™) =€ (e!-ul® . f=1) f the
corresponding replacement in Z is of the form

700 s gLl bg,io) CfUf

; ~—1 i) ~-1
By the equality bg-m) —¢ .o . b; v f" - f" and formula (48)), we have

~ 1 (o) -1 F__~ — , ~-1 ~(io) -1, B ~_x{i0)
6-61-bj°-f1-f—e-el-(e-e 'bj - f 'f)'fl-f—bj.

Hence, the replacement (%) ~» in Z corresponds to the replacement

u) ~ bgiO) in U. So, it follows from [Case 1] and [Case 2] of Definition [R.4]
that

~(io)
bj

. » ~(io)
U] (a(l) ®.. 00 ®..® a(m>) — Z[a ~ D, ).
Since Z = Lu'™) R, we obtain
; o Ao, (o)
ulU] (a<1> ®... @b @...®a<m>) — Z[@ ~ b, | = Lb, R=W;.
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Since ¢(0) = $°* ) € R and bgiO) € Ay [U]forall j =1,...,k, we have

j=1"7
ti, € Di[U N'R. It follows from the above that

k
pU] @V e...ot@e.. ©dm) =3 gW,=T
J=1

Thus, ¢ ® ... @t00) ® ... ® a™ is the desired element.

(5) LetaV®.. @tW..®d™eAU]®..0DLU]®...0 AuU]
such that a® € ME;[U] for i # iy, iy, and a®®) € M L;,[U]. First we consider
the case i1 < 9.

Since R N D;,[U] is a set of generators of D, [U] and T'(F,,_1(kF)) is a
set of generators of Dp(F,,_1(kF)), it is enough to prove that

plU] (@V@... 0t e.. . .@ad™) e T (Foi(kF)) for t™ e RN D, [U].

So, we assume that t(1) € R N Dy, [U]. Let ) = Z?=1 ﬁjbg-il), and let
W; = u[U] <a(1) ®..0e... ®a(m)> .

If bg-il) € ME; [U], then W; is defined using of Definition B4 If
bg-il) € ML;, [U], then W; is defined using of Definition 84
Let us consecutively do the replacements u® ~» a® for i # iy, iy. Let Z
be the resulting monomial. Let @) be the i;-th virtual member of the chart
of Z. Then, according to Remark [Tl we see that
) — g(e—l () . f—l) f,
where e, f, €, fare small pieces. Then the replacement in Z that corresponds

. . )
to the replacement u() ~» b§-”) in U is of the form @) ~» b; 1 , where

~i1) i -1 7
jl:6~€_1'b§1)'f1'f7,]:17"'7k
(see Remark [7.T).
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Let 212 be the iy-th virtual member of the chart of Z. Let u(%2) ~» 5(i2) be
the replacement in Z that corresponds to the replacement 1) ~» a(®2) in U.

Let Z = Lu" R. Let @) be the intersection of 4(?) with R. As before, 71()
. ~i1) ~i1)
can be considered as an occurrence in the monomial Z[u() ~ b; 1 ] = Lb; "R,

Let () ~» 5“2) be the replacement in R that corresponds to the replacement
1@ o7 (see (29))).

Assume byl) € ML; [U], that is, W; is defined using of Defini-
tion 8.4l Assume that we start with the replacement in the position ;.
Then, by definition, in order to obtain W, first we replace 1) in R by ﬁ(iz).

Denote the corresponding resulting monomial R[a(2) ~» ﬁ(iz)] by R. After
N .
that we do the cancellations in the monomial Lb; v R.

Assume b§-i1) € ME; [U], that is, W; is defined using on Defini-
tion B4l Then, clearly, the last replacement in of Defintion B4 (in

~(11 . (7
the monomial Lb; R) can be represented as the replacement 7(2) ~» 6(22) in

R and the further cancellations in the monomial
~(i1) . (i ~(i1) ~
(Lbjl ) R ~ 2™ = (Lbjl ) H

(see also Remark [7.3]).
So, in both cases (when bg-”) € ML; [U] and when byl) € ME; [U]) we

~(i1)\ ~
have W, = (Lbjl ) ‘R.
Using the same argument as in statement of Lemma 8.8, we obtain
~i1)
Z?=1 Bib; Y eR. By the same argument as in Proposition 4.1l we see that

k M)~
> BiW; = BiLb, - ReT'(kF).
j=1 i=1

We noticed in Definition 4] that in [Case 2-{Case 4] resulting monomials
belong to F,,_1(kF). Therefore, every W; € F,,_1(kF). As a result we see
that

k
plU] (@M@ .ot e. . @a™) =" BW; e Dp(F,_(kF)).

=1
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Recall that in of Definition B4l it does not matter whether we
start two last replacements from the position with a smaller number or with
a bigger number. So, the case i; > iy is considered in the same way as above
(but in this case we need to deal with the intersection of u(?) with L in
7 = Lu"R).

Lemma [8.§] is proved. O

Remark 8.4. Throughout this paper we use Isolation Axiom only in the
argument of statement of Lemma [R.8 in order to prove that the corre-
sponding mapping is injective. Let us notice that, of course, Isolation Axiom
is only a sufficient condition of injectivity of this mapping, not a criterion.
One can state another sufficient condition if it would be more suitable in a
particular case. We state the current version of Isolation Axiom because it
sounds transparent, not too difficult for verification in a particular case, and
holds for particular cases that we are interested in (see Section [IT]).

Let us go back to consideration of the space Dp(U),;. Assume T €
T'({(U)q). Then, by definition, T is a layout of a multi-turn of a virtual
member of the chart of some monomial Z € (U)y. If Z € Equal-f(U)a,
then it follows from Lemma B that T" ¢ L(U)4. Assume Z € L(U)4. Since
L(U)q is closed under taking derived monomials, we see that 7" € Dp(L(U),).
Therefore, since Dp(U)q = (T'((U)4)), we obtain

Dp(U)a = Dp(L(U)a) + EDp(U)a,
where EDp(U)g = ({T | T € T'((U)a), T ¢ L(U)4}) .
That is, by definition, the linear space EDp(U), is generated by all the layouts
of all the multi-turns of monomials of Equal-f(U),.
However, in order to prove Lemma [8.4] we consider a bigger set of gener-

ators of EDp(U)y. Namely, for every 1 < ¢ < m = NVirt(U) let us consider
the set of elements as follows:

TOWU] = {,u[U] (Ve .. 9t"®...®@ad™) |
) e MEy[U] ifi' #1i, t9 € D;[U] \ {0}}.

Let us put
NVirt(U)

T = |J 701

i=1
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Lemma 8.9. The following properties hold.
(1) For every T € T[U] we have T ¢ L(U)4.

(2) Let EDp(U)a = ({T' | T € T'((U)a), T ¢ L(U)a})-
Then EDp(U)4 = <T[U]>

Proof. Let us prove statement . Let T € %[U |. Then, by definition,
T=pU(aV®.. otV ®...®a(’”>),

where a") € ME;[U] for i # i, and %) € D;[U], t®) # 0. Let
l .
=" b, (49)
k=1

where b,(j) are monomials, b,(j) € A;[U] and the sum in the right-hand side is
additively reduced. Then we have

T = p[U] (a(1>®...®7i)® L@a™) =

50
Zﬁku (W e. 2. ®a(m>). (50)

It follows from Lemma B8 that u[U] (a(l) ®...0 b,(f) ®...0 a(m)) belongs
to Equal-f(U)4 if and only if b,(f) € ME;[U]. Moreover, if b,(fl), b,(;z) € ME;[U]
and b,(fl) =+ b,(jz), then

pulU] (a(l) ®...0b ®...®a(’”>) + u[U) (a(l) ®...0b0) ®...®a(m>> .

So, if there exists b,(j) such that b,(j) € ME;[U], then monomials of Equal-f(U)g
can not cancel in the right-hand side of (&0).

Since ) € D;[U], by definition, ) is a linear combination of elements
of R. Hence, it follows from Small Cancellation Axiom that there exists at
least one monomial bk in (49) of A-measure > 7 + 1. Therefore, using the

above result, we obtain that monomials of Equal-f(U); do not cancel in the
right-hand side of (B0). Thus, 7" ¢ L(U),. Statement is proved.
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Let us prove statement Let T be a generator of the space EDp(U),,
that is, T € T'((U)a), T ¢ L{(U)q. Then it follows from statement of
Lemma B8 that there exists an element ¢V ® ... @t ®...®a™ such that
a") € MEy[U] for i’ # i, t9 € RN D;[U], and

T=pU](aV®.. otV.. . 0dm).

This means that T € T[U]. So, EDp(U)q C <7:[U]>
Now let T' € T[U]. Then, by definition,

T=pU](aV®.. ot"x.. . 0dm),

where o) € MEy[U] for i/ # i, and t¥) € D;[U], t® # 0. Since ¥ € D,[U],
by the definition of D;[U], we have

= Z Vit
k=1

where every ¢, € RN D;[U]. So,

T:Z%,LL[U] (a(l)®...®tk®...®a(m)).

It follows from statement|(3)]of LemmaB.8 that ,u U] (a® O ®...0ad™) e
T'((U)q). Statement|(1)]of Lemma B implies p[U (a ) L ® tk ®...0am) ¢
L(U)q. Therefore, u[U] (a(l) R...0h ®. m)) € EDp Vd- Hence,

T € EDp(U)4 and, so, <’%[U]> - EDp(U)d. This completes the proof. [

Proof of Lemma [8.4] Let U be a monomial with m virtual members of
the chart, U € F,,(kF) \ F,,_1(kF). Recall that we need to prove that

Dp(U)y NL{(U)q € Dp(F,,_1(kF)).
We noticed above that

Dp(U)q = Dp(L(U)q) + EDp(U)4,
where EDp = ({T' | T € T'((U)a), T ¢ L{U)a}) .
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We have Dp(L(U)4) € L(U)4. Hence, we see that

Dp(U)a N L({U)a = (Dp(L(U)a) + EDp(U)a) N L{U)a =
= Dp(L(U)a) + EDp(U)q N L(U ).

)
Obviously, Dp(L(U)4) € Dp(F,—1(kF)). So, we need to prove that
EDp(U)s NL{U)4 C Dp(F,,—1(kF)).

Let us define a linear order on the monomials of Equal-f(U)ys. Since
ME;[U] is a finite or countable set, we can introduce a linear order on the
monomials of M E;[U] without infinite decreasing chains. For instance, the
lexicographical order on M E;[U] satisfies this condition. So, in what follows
we use the lexicographical order on M E;[U]. We extend this ordering lexico-
graphically on all the elements (V) ®...®a™ such that o € M E;[U] for all
t=1,...,m. By the statement of Lemma [R.8 u[U] gives a bijective cor-
respondence between all the elements ™ ®. ..®a™ such that ') € ME;[U]

for alli =1,...,m, and all the monomials of Equal-f(U),. Therefore, a lin-
ear order on the elements a¥ ® ... ® a(™ such that a9 € ME;[U] for all
i = 1,...,m, induces a linear order on Equal-f(U)y. Clearly, this order on

Equal-f(U)y does not have infinite decreasing chains. So, we can use this
order for an induction.

Let W € EDp(U)y N L(U)q4. By statement of Lemma 8.9, we obtain
EDp(U); = <%[U]> Hence, we have

l
= Z voly, where T, are elements of TU,
-1

!
and qufq e L(U)q.

q=1

It follows from statement of Lemma that every T, y does not belong to
L(U)4. Therefore, every T contains monomials of Equal-f(U), in its addi-
tively reduced representation. We call the biggest monomial of Equal f(U)g
in additively reduced representatlon of T the highest monomial of T We
need to show that Zqzl vqTq € Dp(F,,—1(kF)). We will prove thf by in-
duction on the biggest monomial among all highest monomials of 7}, in the
sum.
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Let us make the step of induction. Let X be the biggest monomial among
all highest monomials of T ,q=1,...,1. Without loss of generahty we can
assume that 7 Ty - T have the hlghest monomial X, and Tl RIEE Tl have

smaller highest monomials (clearly, it is possible that = [). We will show
that

T
Z Yolg = Z Y, 1, + Q, (51)
q=1 p

where every TIQ € %[U |, the highest monomial of every f; is smaller than X,

and @ € Dp(F,,_1(kF)) (the sum » 7;72 may be empty).
Assume (B])) is proved then we obtain

l
W= Z%T quTJerqT ZV’T’+Q+quTq

q= l+1 q:l~+1
Since all monomials of Equal-f(U )4 cancel out in Z 7, and Q € F,_y(kF),
we obtain that all monomials of Equal-f(U)4 cancel out in the sum Z ’T’ +

Zf]:f—i—l vqT However, the highest monomial of every T’ and T for ¢ =
I+ 1,...,0 is smaller than X. Therefore, by the induction hypothesis, we

have

!
Y T+ > YTy € Dp(Fy 1 (kF)).
p q=l+1
Thus, W € Dp(F,_1(kF)).
Let us prove (BIl). Since W = Zgzlyqfq € L(U), and L(U), is gener-
ated by the monomials of Lower-f(U)y, all monomials of Equal-f(U),; can-
cel out in the sum Z = 17qT . In particular, the monomial X cancels out.

Since T-

TR
mial X is contained in none of T+

Titr s
sum Zq:l Aquq N N
Let 6, be the coefficient of X in T, ¢ =1,...,l. Then we obtain

Tl have the hlghest monomials smaller than X, the mono-
fl. Therefore, X cancels out in the

Z’}/q ’}/1(51 5 T1 (Sz_lfg) + (’}/1(51 + ’)/252)((52_1f2 — 53_1T3) + ...

+ (0 + .+ )6 T
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Notice that 7101 +. .. +7;07is a coefficient of X in Zf]:l vqfq. Since X cancels
out in this sum, we see that v,0; + ... + 707 = 0. Therefore,

U U
S v Ty =Y a6, — 6:1T). (52)
q=1 r,s=1
r<s

The monomial X has the coefficient 1 in every 5(1_15: q- Therefore, X cancels
out in every 6717, — 6717,

Clearly, 6717, 67 T, € T[U]. Hence, by definition, there exists vV ®. ..®
e, @um e AU]®...®D; [U]®. .. Ay[U] such that v® € ME;[U]
for i #i,, i) € D, [U], and

plU] (v @.. @t e .. @u™) =§'T,.

Similarly, there exists vV ®... @t ®...® w(m? e LU ®...@ D [U]®
... ® Ay |U] such that w® € ME;[U] for i # i,, t{*) € D;.[U], and

plU] (wV ... @t e. . ow™) =T,

It follows from the statement of Lemma that there exists an element
V.. . ®2m™eAU]®...® A,[U] such that every () € ME;[U] and

plU] (2 ... @2™) =X.

Since X is a monomial of 9, 1T, and o, LT, and w[U] is a bijective correspon-
dence between the elements o™V ® ... ®a™ such that o € M E;[U] and the
monomials of Equal-f(U)y, we see that v = w® = 2@ for ¢ # i,,i,, and
ir)

20 is a monomial of " , 2U%) is a monomial of #is) So, we have

ST = U] eV e ... 0t e.. @z™),
S T =plU] (eV ... 0tWe.. @z™).

Since X is the highest monomial of 6717, and 0;'7,, we see that z(r) is
the lexicographically biggest monomial of ME; [U] in ¢, and 20 is the
lexicographically biggest monomial of M E;_ [U] in $is)
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First consider the case i, = i; = 75. Then we have
5T, — 67T, =
=uU] (W ®.. et .. . 0sm) - puU](Ve.. . 0te.. . e2M)=
=pU] (Y ®... @ (" —t)) o.. . @zM).
If 79 = ¢ then 5 7 — o LT, = 0, hence, we can delete it from the
sum (52). Assume £0) £ ${0) " Then, by definition, ¢, T, — 67T, € TIUI.
Recall that X cancels out in 027, — 67'7,. Therefore,

5;1@ — 5;@ e TU] and (53)

6T, — 6, T, has the smaller highest monomial than X.

Now consider the case i, # i;,. To be definite, assume i, < i,. Let

i) Zﬁjb(w i) = ankclﬁ“),
k=1

where bg-i") € A, U], 7 =1,...,n,, and c,(js) € A, U], k =1,...,n are
monomials, and the right-hand sides are additively reduced. Without loss of
generality we can assume that bglr) is the lexicographically biggest monomial

of ME; [U] in ts«i"), and cgis) is the lexicographically biggest monomial of
ME; [U] in t*). According to the above, this means that b} = (") and

(“) = 20s). Since the coefficient of X in 4, 1T and in o, 1T is equal to 1,
we see that §; =1 and n; = 1.
We consider elements 2V ® ... @t @ ... @20 and 20 ®... @ t%)
..®x™)_ Since we have changes only in p051t10ns 1, and g, let us focus only
on these positions in the further auxiliary calculations. Since the coefficients
B1 =1 and 1n; = 1, one can easily see that

(ir') ® SL’(Z&) _ (17) ® t(%) — t(“) ®c (ZS) _ b(“) ® thS) —
=2 e~ Yon e -

=0 @+ Z Bib\ @ ) — b @ ) — Z mdi" ® ) =
_ Z@ ) g ol Zn B @ cff).
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On the other hand, we have

iﬁjbyr) ® t(ls Z e t(lr ® C(ZS _
=2
- jﬁjb;w ¢ (Z el ) Z”’“ (Z B ) e

Ns

_izﬁﬂkb“ @ oy —ZZWJ ]ZT Qe =

7=2 k=1 k=2 j=1
—Zﬁml b @ =Y by @ Zﬁa b & ef) Zﬁ b © .
k=2

Combining the above results, we see that

t7(n7wr) ® l»(zs) — (7'7“ ® t 'ls Z /8] (7'7“ S's Z nktgjr) ® CSS).
k=2

So, we have
5T, — 67T, =
plU] 2V ... ote.. 0™ —uU](@Ve.. ot e.. . .e2M) =
pUl (@ e.. . 0te.. grg.. . ozMm-
Ve .. . 0r"e.. . 0te.. . gs™)=

= B;ulU] (:p“) ®..0be.. . otie.. 0r™)-
_Zﬁku Y e..et"e.. ®c(“)®...®x(m>>.

Consider the element p[U] <x(1) ®...0 b§ir) ®.. 0t .. . @™ ) J#
1. We distinguish two possibilities: bg»ir) € ML; [U] and bj“ € ME,; [U].

First assume that b;ir) € ML, [U]. Then, by the statement |(5)|of Lemma 8.8
we obtain

ulU] (x“)@...@by”@tgis’@ L@z )er( o1 (EF)).
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Now assume that bg-ir) € ME; [U]. Then, by definition, we have

U] (1'(1) ®.0 e . . 0tWe..® x“”’) e TIU).

We assumed above that cgis) is the lexicographically biggest monomial of

ME; [U] in ¢{*). Hence, by the definition of our order on Equal-f(U),, we
obtain that u[U] (:c(l) ®...® bg.ir) ®..0d79.. .® x(m)> is the highest

monomial of u[U] (x(l) ®...® b;ir) ®.. 9. . ® a:(m)). We also as-

sumed that bgi") is the lexicographically biggest monomial of ME; [U] in
i), Therefore, since bg-i") € ME, [U], we see that b§ir), j # 1, is lexicograph-
ically smaller than bgi"). Recall that z() = b§“> and 2(%) = c§“‘>. That is, we
have

X = p[U] (x(”®...®b§“)®...®c§“’®...®x(m>>.
Hence, the monomial u[U] (:L'(l) ®...® bg-i") ®...Q cgis) ®...Q at(m)>, j#
1, is smaller than X with respect to our order on Equal-f(U),. Thus,

pulU] (x(” ®...00" ... @t ®...®x(’”>) e TIU

has smaller highest monomial than X.

The element p[U] <£L’(1) ®.0t"e.. . ode.. . ® x(m)>, k#1,is
studied similarly. Namely, if c,(js) € ML, [U], then

ulU] <x(1) ®.. t"edYe.. . ® x<m>) € Dp(F,_1 (kF)).
If &) € ME; [U], then

U] (x(l)®...®t£“)®...®c,(js)®...®x(m)) e TU

has smaller highest monomaial than X.
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So, for i, # i, we eventually obtain

5T, — 67T, =
S BulU] (:c(l) ®...0be .. et g. . @1™)—
=2

N ~ . (54)
= " nult] @Yo et e od) e x<m>) _
k=2

_ Z ,y;,sfg,s + Qr,s’
p

where T’ » € %[U |, every T »'* has the highest monomial smaller than X, and
QT’S € Dp(Fn—l(kF))

Combining (54) with (52) and (53), we obtain the equality (5II). So far,
we are done with the step of induction.

Let us prove the basis of induction. Again let X be the biggest monomial
among the highest monomials of all T, ¢ = 1,...,l. Assume that X is the
smallest monomial of Equal-f(U), with respect to our order on Equal-f(U),.

Then X is the only monomial of Equal-f(U)y in every T,, ¢ = 1,...,l. We
have to prove that

l

> 4T, € Dp(Fey (kF)).

q=1
Let us argue as in the step of induction and use the same notations. As
above, we need to consider 9, 1T, r— 55_1i. The equality (52]) implies that it
is enough to prove that 67, — 0:17, € Dp(F,_1(kF)).

Notice that since X is the only monomial of Equal-f(U) in every T, we

see that

5T, — 07T, € L{U)q C Fr1(kF). (55)
As above, let

ST = plU) eV e et e, ™),
ST = p[U] (W e ot e.. . @z™),

e 9= 5530, 0= Sl
j=1 k=1
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Since X is the only monomial of Equal-f(U)y in every T, q> the statement
of Lemma B8 implies b\ € ML, [U] if j # 1, and ¢’ € ML, [U] if k # 1.
First assume i, = i, = 7. Then, as above,

ST — 67T, = p[U] (2W @ . @ (t00) — ) @ . @ 2™).
Assume ) —¢{") # 0. Then it follows from statement - of Lemmathat
o, 1T, — 05 1T, ¢ L{U)q. A contradiction with (55). Therefore, if i, = i, = i,
then t'® — ¢{®) = 0 and §:17, — 67T, = 0.

Now assume 4, # i,. To be definite, assume i, < i,. As above, we obtain
that 6 I — N LT, is a linear combination of the elements

1[U] (x(1)®...®t§“)® ®c(“>®...®xm>,k7£1,
] (zV e wi” e e, @) A1
Since bg»ir) € ML, [U]if j # 1 and c,(fs) € ML, [U]if k # 1, the statement
of Lemma [R.§ implies
plU @V @.. @t e.  od)®...®ad™) e Dp(F, 1(kF)) if k # 1
pU)@V @... 0" .. .0t e. .. .©a™) e Dp(F,(kF)) if j # 1.

Thus, 61T, — 67 T, € Dp(F,_1(kF)). So, we are done with the basis of
induction. This completes the proof of Lemma 8.4l O

Proposition 8.10. Let U be a monomial with m wirtual members of the
chart. Suppose A;|U|, L;JU] € A;[U], D;JU] C AJU], i = 1,...,m, are
subspaces of kF defined above by [B0), (39), and [@Q). Then we have

(U)a/(DpU)a + L(U)q) =
=~ N[UJ/(D1[U] + LiU)) @ ... @ An[U]/(Dn[U] + Ly [U]).
Proof. Assume U € F,,(kF)\ F,—1(kF). Let
plU]: AAlU] @ ... @ Ap[U] = (U)g + Froa (EF)

be a linear mapping defined by Definition 8.4l This statement is, in fact, a
corollary of Lemma [RS8 It follows from statements|(1){and |(3)|of Lemma B8
that

plUJ(A U] @ ... DUl ®...® ALlUl + L(A[U] ® ... @ A,|U])) C
CDp(U)s+Fpa(kF) foralli=1,....m
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Hence,

plUI(Dp(Ai[U] @ ... ® Ap[U]) + L(A[U] ® ... © An[U])) €
C Dp(U)q+ Fn1(kF). (56)

We define the mapping

U] : AU]®. .. @AL[U]/(Dp(A[U]@. . . @AR[UD)+L(A[U]®. . .®A,[U]) —
= (U)a + Fna (kF))/(Dp(U)a + Froa (kF))

by the formula

alU](W) 4+ Dp(A4[U] @ ... 0 ALU]) + LA U] ® ... ® AL[U])) =
= u[UJ(W) +Dp{U)q + Fp_1(kF),

where W is an arbitrary element of A,[U]®...® A,,[U]. It follows from (56])
that the mapping 1z[U] is a well-defined homomorphism of vector spaces. Let
us show that @[U] is an isomorphism of vector spaces. That is, we have to
show that fi[U] is a bijective mapping.

Clearly, ((U)q + Fp—1(kF))/(Dp(U)q + Fp,—1(kF)) is linearly generated
by all the elements of the form Z + Dp(U)y + F,,_1(kF) such that Z €
Equal-f(U)4. By the statement |(2)| of Lemma B8] for every Z € Equal-f(U),
there exists an element W € A [U] ® ... ® A.,[U] such that p[U](W) = Z.
Hence, fi[U] is a surjective mapping.

Assume

T € AU]®...@ A,[U]/(Dp(A[U]®...® A,[U]) +L(A [U]®. .. @ A,[U]))
and I[U](T) = 0. Let us show that 7' = 0. We have
T =T +Dp(A4[U] ®...® Ap[U]) + LA U] ® ... ® A,[U)),

where 7" € A,[U] ® ... ® A,[U]. By the definition of [U], we have

0=nlU|T") =
— AUNT" + Dp(A U] ® ... ® AnU]) + LA U] ® ... ® An[U]) =
= p[UNT") + Dp(U)a + Fp1(kF).
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Therefore, p[U](T") € Dp(U)q + Fp—1(kF). This means that

I
WUIT") = 32T+ X,
s=1
where Ty € T'"((U)a), Ts ¢ Frimr1(kF), s =1,...,1,and X € F,,_;(kF). Since
T ¢ F,_1(kF), Lemma B1l implies Ty ¢ L(U)4. Hence, it follows from the

statement |(4)| of Lemma 8.8 that there exists 77 € Dp(A4,1[U] ® ... ® A,[U])
such that p[U)(T!) = Ts. Therefore,

l
plUNT' =Y T = X € By (kF).

We have T — YL 7,17 € A [U] ® ... ® An[U]. Let

!
1 m
T/ - Z 75T8/ = Z ajl ----- j7rla§1) ® tet ® a"g'm)? (57)
s=1 J1seeodm
where agi) is a monomial of A;[U], i = 1,...,m, and the right-hand sum is

additively reduced. Assume T’ — S\ 7,77 ¢ L(A[U] ® ... ® A,[U]). This
means that not all aﬁ) ®...Q ag:) in the right-hand side of (&1) belong to
LAU]®...® Ay,lU]). By the statement of Lemma B.8 u[U] gives a
bijective correspondence between all the elements bV ®...@b™ ¢ L(A[U]®
... ® A,[U)) such that b € A;[U], i =1,...,m, are monomials, and all the
monomials of Equal-f(U);. By the statement of Lemma [B.8 we have
plUNL(A U] @ ... ® An[U])) € Fp_1(kF). Notice that every monomial of
Equal-f(U)4 belongs to F,(kF) \ F,—1(kF). Combining these statements, we
see that if there exist elements aﬁ) ®...0 ag-:) ¢LAU]®...0 AnlU]) in
the right-hand side of (57)), then their images under the mapping p[U] belong
to Equal-f(U), and can not additively cancel out in

1 m 1 m
u[U]( > aj, jma§1’®...®a§m)> = 3 U@V e. . 0a™).
J1 j

So, since every monomial of Equal-f(U),; belongs to F,(kF) \ F,,—1(kF), we
obtain

!
ulU] (T’—Z%Tg> = Y U6 © . 0 d") ¢ Fui(kF),



a contradiction. Therefore, T — 32! _ 7T € L(A[U] ® ... @ An[U]).
So, we proved that

l
= T+ X', where X' € LAU® ... @ Ay[U]).

s=1
Since T! € Dp(A1[U] ® ... ® An[U]), s =1,...,1, this yields
T € Dp(A[U] @ ... @ AL[U]) + L(A U] @ ... @ Ay[U]).
Hence, finally we see that
T =T +Dp(A4[U] ® ... ® An[U]) + L(A[U] @ ... @ A, [U]) = 0.

Thus, z[U] is an injective mapping.
Let us define the mapping

UL A[U]/(D1[U] + Ly [U]) @ AnlU]/(D[U] + Lin[U]) —
—>Al[U]®...®Am[U]/(Dp(A1[U]® ®A U] +L(AU]®...© An[U])).

Let 9[U] take each element
(Y + Dy [U] + Li[U) @ ... ® ("™ + D, [U] + L [U])
such that aV) € ME;[U],i=1,...,m, to
aV®.. . ®ad™ +Dp(AU]®...0 A.[U]) + L(A U] @ ... A,U]),

and let it be extended linearly on the space A;[U]/(D1[U] 4+ L1[U]) ® ... ®
An U]/ (D [U] + Ly [U]). One can easily show that 1[U] is well-defined and
[U] is an isomorphism of vector spaces. Thus,

I

AU]/(D1[U] + Li[U]) @ ... @ A [U]/(D[U] + L [U])
>~ A\[U]®... @ An[U]/(Dp(A[U]®. .. @ Ap[U) +L(A[U]®. .. @ AnU))).

Let us show that

(U)a + Fna(kF))/(Dp(U)a + Fra(kF)) = (U)a/(Dp(U)a + L(U)a).
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Indeed, by the isomorphism theorem, we have

(U)a + Fna(kF))/(Dp(U)a + Froa (kF)) =
= ((U)a+Dp(U)g + Fn1(kF))/(Dp(U) g + F oy (kF)) =
= (U)a/(Dp(U)a + Fna(kF)) 0 (U)a)-

Since Dp(U)g C (U4, we obtain
(Dp(U) g + Fre 1 (kF)) N {U)g = Dp(U)g + Fruoy (EF) N (U
By Lemma BI] we have F,,_y (k) N (U)g = L(U)q. So, finally we see that
(DpU)a + Fr1(kF)) N {U)a = Dp(U)a + L{U)a
and, therefore,
(D)a + Fno1(kF))/(Dp(U)d + Frno1(kF)) = (U)a/(Dp{U)a + L{U)a). (58)

Combining the above results we obtain

AUV (DU 4+ L1 [U)) @ ... @ AU/ (D [U] + L [U]) =
= (U)a/(Dp(U)a + L{U)a). (59)

Let a¥ € ME;[U], i = 1,...,m. Then it follows from the definitions of f[U],
Y[U], and the canonical isomorphism (58) that the isomorphism of vector
spaces (B9) takes each

(V) + DU+ Li[U]) @ ... ® ("™ + D, [U] + L [U])

to
u[U)(aV @ ... @ a™) +Dp(U)g + L{U) 4.

This completes the proof. O

8.3 The grading on the space kF

Recall that Dp(kF) = Z. The quotient space kF/Z inherits the filtration
from kJF, namely,

F.(kF/I)= (F.(kF)+ Dp(kF))/Dp(kF) = (F.(kF)+I)/I.

214



We have the corresponding graded spaces

Gr(kF) = é(}rn(k}_), where Gr,,(kF) = Fp(kF)/Fn_1(kF),

n=0
Gr(kF/I) = @Grn kF/T),
where Grn(k}"/I) =F.(kF/I)/F-1(kF/T).

It is well-known that kF = Gr(kF) and kF/Z = Gr(kF /) as vector spaces.

The following theorem establishes the compatibility of the filtration and
the corresponding grading on kF with the space of dependencies Dp(kJF).
Theorem 2.

Grn(kF/T) = F,(kF)/(Dp(F,(kF)) + F,_1(kF)).

Proof. Using the isomorphism theorems, we obtain

Gr,(kF/I) =F,(kF/I)/F,—1(kF/I) =
= (Fu(kF) + Dp(kF))/(Fn1(kF) + Dp(kF)) =
= (Fn(kF) + Fna(kF) + Dp(kF))/(Fn-1(kF) + Dp(kF)) =
= Fn(kF)/(Fu(kF) 0 (Fnoa(kF) + Dp(kF))).

Since F,,_1(kF) C F,,(kF), we have
Fo.(kF)N (Fp1(kF) 4+ Dp(kF)) =F,_1(kF) + F,.(kF) N Dp(kF). (61)

Therefore, we obtain

Fn(kF)/(Fn(kF) O (Fr 1(kf)+Dp(kf))) =
Fo(kF)/(Fna(kF) + Fn(kF) N Dp(kF)).

Since kF and F, (kF) are generated by monomials and are closed under
taking derived monomials, from Proposition it follows that

F.(kF)NDp(kF) = Dp(F.(kF)).
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Therefore,
Fn_1(kF)+F,(kF)NDp(kF) =F,_1(kF) + Dp(F,(kF)).
Thus, combining (60) and (61]), we obtain
Grn(kF/T) = F,(kF)/(Dp(F,(kF)) + F,_1(kF)).
U

Proposition 8.11 (Reducing to the cyclic case). Assume Y is a non-trivial
subspace of kF generated by monomials and is closed under taking derived
monomials such that f-characteristics of monomials from'Y is bounded. Con-
sider the set of spaces as follows

{(Z)a| Ze F,ZecY\LY)}

Let {V;}ier be all the different spaces from the above set (some different Z
may give the same V;). Then

(1)
Y/(Dp(Y) + L(Y)) = EH Vi/(Dp(Vi) + L(V)). (62)

iel

(2) Assume Z €Y is a monomial such that Z ¢ L(Y'), and Z € V; N'V}.
Then i = j. And then in (62)

Z +Dp(Y) +L(Y) = (0,...,0,Z + Dp(V;) + L(V}),0,...).

7

~
i-th place

Proof. Let {X }ses be all the monomials of Y. Since Y is generated by

monomials, we have
Y = P(X,).

seS
Since (X;) C (Xs)q, we also have
seS
Consider the quotient space Y/L(Y"). Using (63]), we obtain
Y/L(Y) =) ((Xo)a+L(Y))/L(Y). (64)

ses
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Assume X; € L(Y). Since L(Y) is generated by monomials and closed
under taking derived monomials, we have (X)q C L(Y). So, ((Xs)a +
L(Y))/L(Y) is trivial. Therefore, in the sum (64]) we can take only spaces
((Xs)a + L(Y))/L(Y) such that X, ¢ L(Y) and obtain the same result-
ing space. Assume (X, )qg = (X4, )a, 51 # S2. Then, obviously, ((Xy, )4 +
L(Y))/L(Y) = ((Xs)a+L(Y))/L(Y). Clearly, we can take only one of them
in the sum (64)), and again obtain the same resulting space. Therefore, finally

we have
Y/L(Y) =) (Vi + L(Y))/L(Y). (65)
icl
Let us show that (BF) is a direct sum. Let T; € (V;, + L(Y))/L(Y),
jg=1,...,0,4; #1ip if j # j'. Assume 23:1 v,T; = 0. Tt is enough to show
that Tj =0,5=1,...,1. Clearly,

T;=T; +L(Y),

where T} is a linear combination of monomials of V;;. Since > ;_, ;T = 0,
we have

Y T € LY). (66)

Our aim is to show that every T, € L(Y), j=1,...,L.

Let V; = (Z;)q4, where Z; € F, Z; € Y \ L(Y'). Then we obtain 7, €
Vi, = (Zi;)a- Since 22:1 v;L; € L(Y), all monomials of T, j = 1,...,1,
that belong to Y \ L(Y') cancel out in the sum (60). Let X be a monomial
and X € Equal-f(Z;;)q (see (30)). Assume X € L(Y). Then it follows

from Lemma that (Z;;)a € L(Y). Hence, Z;, € L(Y), a contradiction.

Therefore, Equal-f(Z;;)q QJ Y \L(Y). So, all monomials of T} that belong to
Equal-f(Z;;)a, j = 1,...,1, cancel out in the sum (6.

Assume Z is a monomial such that Z € Y \ L(Y). Assume Z € V, =
(Zi)a and Z € V; = (Zj)q, 1,5 € I, i # j. Since Z ¢ L(Y), we have
Z € Equal-f(Z;)q and Z € Equal-f(Z;)4. However, then it follows from
Lemma B2 that (Z;)qy = (Z)4 and (Z;)q = (Z)4. Therefore, (Z;)q = (Z;)a, &
contradiction. Thus, Z belongs to precisely one space V;, ¢ € I.

Assume U is a monomial in T; and U € Equal-f(Z;); C V;,. Since
Equal-f(Z;;)a € Y \ L(Y), we have U € Y \ L(Y'). Hence, it follows from
the above that U is not contained in any V; for i # ;. Let 1 < j' < [ and

j" # j. Then U is not contained in T}/, since T} is a linear combination of
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monomials of V, ,and i; # iy. So, if U is cancelled in the sum (66]), then U
is cancelled in T That is, T; € L(V;;) € L(Y). Hence, every T; € L(Y),
j=1...,L Thus the sum (IZ)E) is a direct sum.

Consider the space Dp(Y). Recall that Dp(Y) = (T'(Y)). Let T €
T'(Y). That is, T is a layout of a multi-turn of a virtual member of the
chart of some monomial Z € Y. By definition, all monomials of 7" are
derived monomials of Z. Therefore, since (Z), is closed under taking derived
monomials, we have T € T'({Z);) C Dp(Z)4. Recall that {X,}.cs are all
the monomials of Y. So, we obtain

ses
Consider the space (Dp(Y) + L(Y))/L(Y). By (67), we have
(Dp(Y) + L(Y))/L(Y) = > _(Dp(X,)a + L(Y)) /L(Y),
seS
Arguing as at the beginning of the proof, we obtain

(Dp(Y) + L(Y))/L(Y) = ) _(Dp(Vi) + L(Y))/L(Y). (68)

el

Since (Dp(V;) + L(Y))/L(Y) C (Vi + L(Y))/L(Y) and (63)) is a direct sum,
we obtain that (68) is a direct sum as well.

Consider the space Y/(Dp(Y) + L(Y)). It follows from the isomorphism
theorem that

Y/(Dp(Y) + L(Y)) = (Y/L(Y))/((Dp(Y) + L(Y))/L(Y)).

We proved above that

Y/L(Y) = Vi + L(YV))/L(Y),

el

(Dp(Y) + L(Y))/L(Y) = @ (Dp(V;) + L(Y)) /L(Y).

el
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Hence, we have the following sequence of isomorphisms of vector spaces
Y/(Dp(Y) + L(Y)) = (Y/L(Y))/((Dp(Y) + L(Y))/L(Y)) = (69)
= ( D (Vi + LIY))/LY )) / (@(Dp( i) + L(Y))/L(Y ))

el

= P((Vi + L)) /L(Y)/((Dp(V;) + L(Y))/L(Y)) =

= (D(Vi + L(Y))/(Dp(V;) + L(Y)).

By the isomorphism theorem, we obtain

(Vi +L(Y))/(Dp(V;) + L(Y)) = (Vi + Dp(Vi) + L(Y))/(Dp(V;) + L(Y)) =

(70)
= Vi/((Dp(Vi) + L(Y)) N V)).
Since Dp(V;) C V;, we have
(Dp(V;) + L(Y)) N Vi = Dp(V;) + L(Y) N V;. (71)

Let us show that L(Y) NV; = L(V;). Assume Y C F,(kF) and Y ¢
F,.—1(kF). By definition, L(Y) =Y NF,,_1(kF), so

LY)NV,=YNnF,_1(kF)NV,.
Recall that V; = (Z;)4, where Z; is a monomial, and Z; € Y\L(Y'). Therefore,
V;CY CF,(kF)and V; € F,_1(kF). Hence, F,_1(kF)NV; = L(V;). Since
L(V;) CV; CY, we finally obtain
LY)NVi=Y nF, 1 (kF)nV; =Y NL(V;) = L(Vi).
Applying the equality L(Y) NV, = L(V;) to (), we see that
(Dp(Vi) + L(Y)) N V; = Dp(V;) + L(V3).

Thus, using (69) and ([70), we finally obtain

Y/(Dp(Y = P Vi/(Dp(Vi) + L(V;)).

el

219



So, the first statement of Proposition [8.11] is proved.
Assume Z is a monomial such that Z € Y \ L(Y). We proved above that
Z belongs to precisely one space V;, ¢ € I. Then, obviously,

Z+L(Y) e (V;+L(Y))/L(Y).

Thus, by the isomorphism theorems, we obtain that the sequence of the
canonical isomorphisms (69) and (70]) acts on Z+Dp(Y)+L(Y) € Y/(Dp(Y)+
L(Y)) in the following way:

Z+Dp(Y)+L(Y)— Z+L(Y)+ (Dp(Y) + L(Y))/L(Y)
= (0,...,0,Z+ L(Y),0,...) + @P(Dp(V;) + L(Y))/L(Y)
N——

i-th place =
— (0,..., O,g + L(Y) + (Dp(V;) + L(Y))/L(Yl, 0,...)—
i-th place

> (0,...,0,?+Dp(%) —|—L(Yl,0,...) >

i-th place
= (0,...,0,Z+ (Dp(V;)) + L(Y))NV,,0,...) =

b ih e ]

=(0,...,0,Z 4+ Dp(V;) + L(V}),0,...).

e

So, the second statement of Proposition R.I1]is proved. O

9 Construction of a basis of k. /Z (ensuring the
non-triviality of kF/T)

9.1 Non-triviality of kF/Z

Lemma 9.1. Let {V;}ier be all the different spaces {(Z)q | Z € F}. Then
not all spaces V;/(Dp(Vi) + L(V;)), @ € I, are trivial. Namely, the space
(X)a/(Dp(X)a + L(X)q), where X is a monomial with no virtual members
of the chart, is always non-trivial, and is of dimension 1. In particular,

(1)a/(Dp(1)q + L(1)4) # 0, where 1 is the empty word.

Proof. Let X be a monomial with no virtual members of the chart. Then
there are no derived monomials of X except X itself, and there are no multi-
turns of virtual members of the chart of X. So, by definition, (X), is linearly
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generated by X and, therefore, it is of dimension 1; Dp(X )4 = 0; L(X)4 = 0.
Therefore,
(X)a/(Dp(X)a + L(X)a) = (X)a = (X) #0,
and (X)q/(Dp(X)q+ L(X)4) is of dimension 1.
By definition, the empty word 1 is a small piece. Therefore, 1 has no vir-
tual members of the chart. So, it follows from the above that (1)4/(Dp(1)s+

L(1)a) # 0. O

Remark 9.1. Notice that, by the definition of small pieces, there always
exists at least one small piece. Namely, the monomial 1 is always a small
piece. Let us emphasise that this fact plays the crucial role in the argument
of Lemma

Now we can prove that the quotient ring kF/Z is non-trivial.
Corollary 9.2. The quotient ring kF /T is non-trivial.

Proof. Let U be a monomial. Consider the space (U), and the corresponding
subspace in kF/Z, namely, ((U)y+ Z)/Z. From the isomorphism theorem it
follows that

(U)a+1)/T=(U)a/((U)aNI).

Recall that Z = Dp(kF). From Proposition it follows that (U)y N
Dp(kF) = Dp(U)4. Hence,

((U)a+1)/T = (U)a/Dp(U)a.

By Lemmal[0.1] there exists a space (Up)a, Uy € F, such that (Up)a/(Dp(Us)a+
L{Uy)a) # 0. Hence, we see that (Uy)q/Dp(Up)a # 0 and ((Up)a +Z)/Z # 0.
So, there exists a non-trivial subspace of kF/Z. Thus, kF/Z itself is non-
trivial. O

9.2 Construction of a basis of kF /T

Now we show how to construct a basis of kF/Z. First we construct a basis
for non-trivial graded components

Gro(kF/T) = Fu(kF)T)/For(kF)T),

where F,, (kF) is a filtration defined by (29).
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Proposition 9.3. Let n be a level of the filtration ¥, (kF) defined by (29]).

We consider the set of spaces
{{(Z)al Ze€F . Z e Fn(kF)\Fpr(kF),(Z)a/(Dp{Z)a + L(Z)a) # 0}.

Let {Vi(")}iel(n) be all the different spaces from the above set. Then Gr, (kF /T)
is non-trivial if and only if {V\'"},epm # @. If {V.'" Vs # @, then we
have
Gro(kF/Z) = D V™ /(Dp(V™) + L(V™).
iel(n)
Assume {WEM)}] is a basis of V" /(Dp(V™) + L(V;™)), i € I™. Let
Wj(i’") € Vi(") be an arbitrary representative of the coset Wﬁ-l’n). Then

U {W” YT+ F, 1(k]-"/I)}

iel(n)
is a basis of Gr,(kF/I).

Proof. While the statement is pretty obvious, we prefer to give a proof to
recollect the previously stated facts.

Recall that we constructed the following sequence of canonical isomor-
phisms of vector spaces in Theorem [2] (see (60])):

Gr(kF)I) =Fn(kF/T)/F,_1(kF/T) = (72)

= ((Fu(hF) + 1) /D) [(Fna(kF) + 1)/1) —

— (Fo(kF)+I)/(Fpor(kF) +Z) = (Fo(kF) + Dp(kF))/(Fr1(kF) + Dp(kF)) —
Fo(kF)/(Fp-1(kF)+Dp(kF)NF,(kF)) = Fp(kF)/(Fp_1(kF) + Dp(F,,(kF))).

It follows from Proposition RIT]that if {‘/i(n)}iej(n) =g, then F,,(kF)/(Fp_1(kF)+

Dp(F,(kF))) is trivial; otherwise F,,(kF)/(F,—1(kF)+ Dp(F,(kF))) is non-

trivial, and we obtain

Fo(kF)/(Fuo1(kF)+Dp(Fa(kF))) = @ Vi /(Dp(V;™)+LV;™)). (73)

ieI(n)

Thus, Gr,(kF/I) is non-trivial if and only if {V"},c;m # @. And if
{Vi(n)}iel(n) # &, then we have

Gro(kF/T) = €D V™ /(Dp(V;™) + L(V;™)). (74)

iel(n)
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Let W belong to some Vi(n), that is, W is a linear combination of mono-
mials of V;("). Then, clearly, the sequence of isomorphisms (72]) acts on

W+ZT+F, (kF/T) e Grp(kF/I)=F,(kF/I)/F,_1(kF/I)
in the following way:

WH+Z+F, 1(kF/D) W +T+ (Fo oy (kF)+1I)
— W+ F,_1(kF) + Dp(F,.(kF)).

By Proposition8.11] the isomorphism (73)) acts on W+F,,_1(kF)+Dp(F,.(kF))
as follows:

W + Fp1(kF) + Dp(Fu(kF)) = (0,...,0,W + Dp(V;") + L(V;"),0,...).

~
i—th place

Combining two last mappings, we obtain that the isomorphism (74)) acts as
follows:

W + I +F,_1(kF/I) — (0,...,0,W +Dp(V;™") + L(V\"),0,...). (75)

P
i—th place

Assume {ng)}j is a basis of Vi(")/(Dp(V;-(")) + L(Vi("))). Let

T7(6n)  1r(in) (n) (n)
W, =W 4+ Dp(V;™) + L(V;™),

J

where Wj(i’") € Vi(") is an arbitrary representative of the coset W;m .
ing ([7H)), we obtain

W™ 4 T4 By (kF/Z) w5 (0,...,0, W™ + Dp(V™) + L(‘/i(n)lv 0,...) =

i—th\;lace
—(Z,TL)
=(0,...,0, W;™ ,0,...).
——
i—th place

Therefore, since

7(in)

U <,....0, W™ 0,..)
~——

i—th place

223



is a basis of P Vi(")/(Dp(V;(")) + L(V;(n))), we see that

iel(™)
U (W + I+ Fa(kF/T)},
i€l
is a basis of Gr,,(kF/Z) = F,,(kF/I)/F,_1(kF/I). This completes the proof.

O

The following theorem describes a structure of kF/Z as a vector space

and describes a basis of kF/Z.

Theorem 3. Consider the set of spaces as follows

UZ)al Z € F,(Z)a/(Dp(Z)a+1{Z)a) # 0}.

Let {V;}ier be all the different spaces from the above set (V;, # Vi, foriy # iy).
Then {V;}ic; # @ and we have

kF/Z = @ Vi/(Dp(Vi) + L(V;))

el

as vector spaces, and the right-hand side is explicitly described in Proposi-

tionl810. .
Assume {W(-Z)}j is a basis of V;/(Dp(V;) + L(V;)), 1 € 1. Let VV]-(Z) eV

be an arbitrary representative of the coset W . Then

U1y,

el
is a basis of kF /L.

Proof. Recall that we have

kF )T = Gr(kF/T) = @Grn (kF/T),
wher’e Gr,(kF/T) = Fo(kF/T)/Fn (kF/T). (76)
For every n € {0} UN we consider the set of spaces
{(2)a| Z € F.Z € ¥Fo(kF) \ Froa(kF), (Z)a/(Dp(Z)a + L(Z)a) # 0}.
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Let {V;.(")}Z-E 1 be all the different spaces from the above set. Proposition 0.3]
implies that Gr,(kF/Z) is non-trivial if and only if {Vi(")}iel(n) # @; if
{V"}ie1n # @, then

Gr,(kF/T) = €@ Vi /(Dp(V™) + L(V;™)). (77)

iel(n)

Since every monomial belongs to F,(kF) \ F,,—1(kF) for some n, we have

| (V" Yicrm = {Vibier- (78)

n=0

Therefore, combining ([76) and ([{T), we obtain

Gr(kF/T) = @ Vi/(Dp(Vi) + L(V)).

el

Let us construct a basis of kF /Z. Let {ng)}] be a basis of V;("), ie 1™,
Then it follows from Proposition that

U W™ + T+ i (kF)),

iel(n)

is a basis of Gr,(kF/I), where VV](M) is an arbitrary representative of the

coset Wﬁln) It is well-known that kJF /Z is isomorphic as a vector space to
Gr(kF/I) = @, , Gr,(kF /). Although there is no canonical isomorphism
between them, we have the following correspondence. Assume {Eg-n)}j is a
basis of a non-trivial graded component Gr,(kF/Z). If Gr,(kF/I) is trivial,
for the matter of convenience we assume that {Eg»") }; = @. Then U2 0{6 } j

is a basis of k]: /Z, where eg-") € F,,(kF/I) is an arbitrary representative of

the coset e . Therefore,

O U v+ 1

n=0;c1(n)

is a basis of kF/T.
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Using (78)), we see that

G U (Wi 13y, = U{Wj(“ +I}'.

n=0jc(n) iel J

Thus, {Wj(i) +I} _is a basis of kF/Z. This completes the proof. O
j

el

10 Greedy Algorithm based on f-characteristic
and Ideal Membership Problem

We take an additive closure of the set of generators R in the following sense.
Assume two polynomials p,q € R have a common monomial of A-measure
> 7 — 2. Denote this monomial by a. Assume « is the coefficient of a in p
and [ is the coefficient of a in g. Then we add to R additively reduced linear
combinations of the form v(a~'p — 871¢), where ~ is an arbitrary element
of the field k. Notice that a cancels out in such linear combinations. As a
result we obtain the set of generators of Z of the form

RU{v(a'p— B9 |y €k,p,q €R, p,q have a common monomial
of A-measure > 7 — 2 with a coefficient o in p
and with a coefficient 5 in q}.

We repeat the same procedure for the obtained set, then for the set obtained
after the second step, etc. Let Add(R) be the union of sets of generators
obtained after every step.

Remark 10.1. It can be more convenient to consider a stronger additive
closure of R. Namely, assume two polynomials p,q € R have a common
monomial of A-measure > 7 — 2. Then we add all their possible additively
reduced linear combinations yp + dq, 7,0 € k, and obtain a set of generators

RU{yp+dq |y,0 €k, p,q € R, p,q have a common monomial

of A-measure > T — 2 with a coefficient }.

We repeat the same procedure for the obtained set, then for the set obtained
after the second step, etc. The desired result is the union of sets of generators
obtained after every step.
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Clearly, the set of all monomials of Add(R) is equal to M. We con-
sider A-measure on monomials of Add(R) with respect to the initial set of
small pieces S. Every element of Add(R) is, in fact, a linear combination
of elements of R. Therefore, it follows from Small Cancellation Axiom that
every linear combination of elements of Add(R) after additive cancellations
is either trivial, or contains a monomial of A-measure > 7 + 1.

We do not claim that Add(R) necessarily satisfies Compatibility Axiom.

The initial set of generators R itself can be additively closed in the above
sense. That is, it is possible that Add(R) = R. The initial set of gener-
ators even can be closed in the stronger sense formulated in Remark M0l
Corresponding natural examples are given in Section [LL

In the same way as in Definition [B we can define elementary multi-turns
and multi-turns with respect to the set Add(R). Similarly to 77 (see (III)),
we define the set of layouts 7" with respect to the set Add(R). Namely,

T = { ZajLajR | L, R € F,there exists an index 1 < h < s such that

j=1

ay, is a virtual member of the chart of LapR, and Zozjaj € Add(R)}.

j=1

The complete analogue of property ALl from Section B holds for replace-
ments by monomials that belong to one polynomial from Add(R).

Lemma 10.1. Let U be a monomial, a € Max(U), U = LaR. Let p €
Add(R) and a,b be two monomials of p. Assume b is not a small piece.
Then the monomial LbR s reduced and b is a mazximal occurrence in LbDR.

Proof. Since p € Add(R), this means that p belongs to Add(R) after some
number N of steps. Let us prove Lemma [I0.1] by induction on N.

Assume N = 0. Then p € R. Therefore, a and b are incident monomi-
als. Hence, the statement of Lemma 0.l follows from property ALl from
Section

Let us make the step of induction. We have p = v1¢q1 —72¢2, where ¢; and
¢2 belong to Add(R) after N — 1 steps, there exists a common monomial ¢
of ¢; and ¢, such that A(c) > 7 — 2, and ¢ cancels out in y;¢; — Y2¢o. Since a
and b are monomials of p, we get that a belongs to at least one of ¢; and ¢,
and b belongs to at least one of ¢; and ¢y. Assume a and b both belong to

227



q1, or both belong to ¢;. Then the statement of Lemma [10.1] follows directly
from the induction hypothesis.

Now assume that a and b belong to the different polynomials. Without
loss of generality, we can assume that a is contained in ¢; and b is contained
in ¢o. First we consider the replacement a — ¢ in LaR. So, a and ¢ are
monomials of ¢;, ¢; belongs to Add(R) after N —1 steps, and ¢ is not a small
piece. Therefore, by the induction hypothesis, we obtain that the monomial
LcR is reduced and ¢ € Max(LcR). Now we consider the replacement ¢ — b
in LcR. Similarly, ¢ and b are monomials of g, g2 belongs to Add(R) after
N — 1 steps, and b is not a small piece. Therefore, since ¢ € Max(LcR), it
follows from the induction hypothesis that the monomial LbR is reduced and
b € Max(LbR). Lemma [I0.1] is proved. O

Definition 10.1 (Order <j). Let us define a linear order on monomials
based on f-characteristic and denote it by <. Consider the set of spaces
{{(Z)q | Z € F}. We fix monomials {Z;}ic; such that {(Z;)a}icsr are all
different spaces from the above set. Then it follows from Lemma that

F = UEqual—f(Zi)d. (79)

iel

First we order monomials Z; according to their f-characteristic. Then we
linearly order monomials Z; with the same f-characteristic. We can order
them in an arbitrary way. For example, we can take Deglex ordering.

Now we define a linear order on every Equal-f(Z;),. Let m; = NVirt(Z;),
AV[Z;] be defined by formula ([B6), ME;[Z;] be defined by formula (B7),
j=1,...,m;. We order M E;[Z;] first by A-measure. Elements of M E};[Z;]
which have equal A-measure can be ordered in an arbitrary way. For instance,
we can take Deglex ordering. We denote the obtained order on ME;[Z;]
by <a. After that we lexicographically order elements V) ® ... ® a(™) €
AW[Z] @ ... @ AMI[Z] with every o) € ME;[Z;], using the order on
MFE;|Z;] introduced above. That is,

W, . 2bm <V @cdm —

b(]) — C(]) fo'r’j < jo < m; and b(JO) <A C(jO). (80>

By statement of Lemma [R8 we obtain that there exists a bijective
correspondence between the monomials of Equal-f(Z;); and the elements
adV®...®@adm e AV[Z]®...0 A™)[Z] such that every a\¥) € ME;[Z].
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Using this bijective correspondence, the order constructed above on the ele-
ments oV ®@...@a™) € AV[Z]®...0 A™)[Z] with every V) € M E;[Z;]
induces an order on Equal-f(Z;)4.

As a result, we define a linear order <y on all monomials as follows.
Consider two monomials U and V.

o If f(U) < f(V), then U <; V.

e Assume f(U) = f(V). It follows from (79) that there exist monomials
Z;, and Z;, such that U € Equal-f(Z;,)s and V' € Equal-f(Z,,)q.

Assume iy # ip. Then either Z;, < Z,,, or Z;, < Z;,, where < is Deglex
ordering. If Z;, < Z;,, then U <; V. If Z;, < Z;, then V <; U.

e Assume iy = 1o, that is U,V € Equal-f(Z;,)s. Then we order U and V/,
using formula (80).

Clearly, the linear order <; does not have infinite decreasing chains.

Let G = (X | Rg) be a group given by generators and defining relations.
Let A = ]\/[1]\/[2_1 € Rg. Assume LM R and L - M, - R are two words. Recall
that the transition from LMR to L - M5 - R

M,
L : : R
My

is called a turn of an occurrence of the subrelation M; (to its comple-
ment M), see [21].

Let the group G = (X | R¢g) be given. In what follows we assume that
R¢ is closed under taking cyclic shifts and inverses of relators, and every
relator from R is a cyclically reduced word. Below is the procedure called
Dehn’s algorithm (see [19]). Generally speaking, Dehn’s algorithm is a greedy
algorithm on words based on the corresponding set of turns with respect to
words length in generators. Let us explain it in more detail. Let W be a
word. Let A = My My ! 'be an element from R such that M, is an occurrence
in W, W = LM, R, and |M;| > | M|, where | - | is the number of generators
in a reduced word. The step of Dehn’s algorithm is as follows:
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That is, we perform a turn of the occurrence M; to its complement M;. If
there is no element of Ry with the required property, then the algorithm
terminates.

The group G = (X | Rg) satisfies small cancellation condition C'(3) if
for every R;, = cRj € Rq and R;, = cR}, € R, we have |c| < §|R;,| and
lc| < §|Rj,| (see [19]). The following theorem is one of main results of Small
Cancellation Groups Theory (see [19]).

Theorem 4. Assume G = (X | Rg) satisfies condition C'(3). Then a
word W is equal to 1 in G if and only if Dehn’s algorithm, starting from W,
terminates at 1.

Definition 10.2. Based on order <; and on the set Add(R), we define an
algorithm with a black-box on kF. Every step of this algorithm is a reduction
of the highest monomial of an element of kF with respect to order <;. So, in
fact, we define a greedy algorithm with respect to order <;. We denote this
procedure by GreedyAlg(< s, Add(R)). Namely, let Wy, ..., W} be different
monomials, Zle viWi, vi # 0, be an element of kF. Let W;, be the highest
monomial among Wi, ..., W) with respect to order <;. Let ijl aja; be a
polynomial from Add(R) such that

(GA1) there exists an index 1 < h < s such that ay, is a virtual member of the
chart of W;;

(GA2) La;R <y LapR, where W, = La, R, for all j # h.
Then the step of GreedyAlg(<;, Add(R)) is as follows:

S

k s k
S Wi =3 Wi+ 70 Wig > > Wi + 3 3 (—ja; ' La;R)
i=1 =1 i=1 =1
iio i#io j#h

(and the further cancellations if there are any).

That is, we perform a multi-turn of W;,, which comes from the elementary

multi-turn ay, — > 51 (—a;a; 'a;). If there is no polynomial in Add(R) that
j£h
satisfies conditions [(GA1)|and |(GA2), then the algorithm terminates.

A black-box answers whether there exits or does not exist a polynomial

in Add(R) that satisfies conditions |(GA1) and [(GA2)]
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In other words, GreedyAlg(<y, Add(R)) for Zle v:W; works in the fol-
lowing way. We take a polynomial 7' from 7" such that W;, is its high-
est monomial. Let § be the coefficient of W;, in 7. Then the step of
GreedyAlg(<;, Add(R)) is as follows:

k k
ZW@WZ — Z’}/ZWZ — fyioé_lT.

i=1 =1

If there is no element of 7" such that W, is its highest monomial, then the
algorithm terminates.

Notice that there may exist several elements of Add(R) that satisfy con-
ditions [(GA1)| and [(GA2)| If this is the case, then we choose one of them
arbitrarily. Hence, the algorithm GreedyAlg(<;, Add(R)) may have several
possibilities at every step, so it may have different possible branches of exe-
cution. That is, GreedyAlg(<s, Add(R)) is a non-deterministic algorithm.

One can consider GreedyAlg(<s, Add(R)) as a generalization of Dehn’s
algorithm.

In fact, inside Main Lemma (Lemma [.4)) we proved the following state-
ment.

Lemma 10.2. Let U be a monomial. Let Ty,...,T, be elements of %[U]
Let X be the biggest monomial of all highest monomials of 11, ...,T, with

respect to order <. Assume X additively cancels out in a linear combination
Z;‘Lzl 5]‘7}, 5]' % 0. Then

> 0T =) 0T,

j=1 r=1
where all T! € TUIUT'(L(U)q), and all monomials of T}, ..., T', are smaller
than X with respect to order <j;.
Proof. See the proof of Lemma 8.4l O

Lemma 10.3. Let U be a monomial. Then for every element of %[U] there
exists an element of T" with the same highest monomial with respect to or-
der <j.
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Proof. Let T € T[U]. Then we have T' € T0)[U] for some 1 < iy < NVirt(U).
Hence,
T=plU](aV®.. ®ta.. . 0ad™m),

where a9 € ME;[U] for i # io and t € D;,[U]. Since t € D;,[U], we have
k
t: Z(Sjtj’
j=1
where t; € R N D, [U]. So,
k
T = ZéjTj, where T; = plU] (aV @ ... 0t ®...@a™). (81)
j=1

Assume t; corresponds to t; in T} (see the proof of statement [(3)]of Lemma 88,
formula ({6), for the details). Statement of Lemma B implies t; € R
and T; € T'. Since T C T, we have T; € T".

Let us prove the following statement. Assume T = Zle 0,1}, where

o Ty =pulU] (aV®...0t®...0a"™) = Lt;R, t; corresponds to ¢; in
T; (see the proof of statement of Lemma B.§ formula (@€, for the
details);

o 0V € ME;[U] for i # ip;

o t; € Add(R);

o I, €T
Let X be the highest monomial of 7. Then there exists an element of 7"
with the same highest monomial X.

Looking at (8I]), one can see that Lemma follows from the above
statement. We prove it by induction on k.

Assume k = 1. Then T' = §;T;. Therefore, X is the highest monomial of
T, eT".

Assume k > 1. Let us make the step of induction. Let x be the biggest
monomial of the highest monomials of all ¢, ..., t;. First assume that x does
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not additively cancel out in Zle 0,t;. Obviously, z is the biggest monomial
of all monomials of ¢y, ..., ;. Therefore, by the definition of <y,

X = u[U] (a(1)®...®x®...®a(m)).

The monomial z is the highest monomial of some ¢;,. Hence, X is the highest
monomial of Tj, = p[U] (aV @ ... @ t;, ®...®a™) € T".

Now assume that x additively cancels out in Zle 0,;t;. Without loss of
generality, we can assume that x is the highest monomial of #;,...,%;, and

5415 - - - » tr have smaller highest monomials. Then z cancels out in Zle 0,t;.
Assume 7); is the coefficient of = in ¢;. Then we have

%
Z ity = Sim(ny "t — 3 o) + (G114 Gama) (3 o — 3 ts) + . .
=1
e+ (Ot + 5@7@)7]%_115;.

Notice that (017, + ...+ d;zn;) is the coefficient of z in Zil d,t;. Therefore,
o1m + ...+ 0z = 0. Let us put

-1 -1
Sjg+1 ="M t; —Njplj+.
So, we have

k
> " Git; = Oumsia + (0 + Gam)sas + -+ (Gim 4+ O Sk
=1

Consider s; ;+1 for 1 < j < k—1 in detail. By Small Cancellation Axiom,
every polynomial ¢; has a monomial of A-measure > 7+ 1. Therefore, by the
definition of <y, we see that A(z) > 7+ 1. So, since x additively cancels out
in Sj.j+1, We get Sji+1 € Add(R)

We have

0 T = T = pU) (@ @ @ ('t —nihtin) @ .. @al™) =
= TIJ_ILth — 77]'_+11Ltj+1R-
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Let us put N _
Sjg+1 =05 't — 0t
Then we have
0 T = i Tier = L3 R,
Let = be a monomial that corresponds to x in ’tvj and ’tvj+1. Then Lemma [7.9
implies that x may differ from = by at most a small piece at the beginning
and by a small piece at the end. So, A(Z) > A(z)—2 > 7—1. Therefore, since
t;,tj1 € Add(R), we obtain 5, ;41 € Add(R). By Small Cancellation Axiom,
Sjj+1 contains a monomial a of A-measure > 7+ 1. Since a is not a small
piece and 7,741 € T”, by Lemma [I0.1] a is a maximal occurrence in LaR.
Since A(a) > 7, a is a virtual member of LaR. Therefore, Ls; ;1R € T".
As a result, we obtain

k—1 k
T=N T Y A &
j=1

j=k+1
where T} = Ls; ;1 R and &7 = o111 + ... + d;m;. Moreover, we proved that

o T/ = plU] (aW®...®s;;51®...0a"™) = L5; 1R, 541 corre-
sponds to s; ;11 in T7;
o 5;;41 € Add(R) N Dy, [U];
® 5jj+1 € Add(R);
o Ti=Lsj;1ReT"
Notice that sum (82]) contains & — 1 members. Thus, by the induction hy-

pothesis, there exists an element of 7" with the same highest monomial X
as T has. This completes the proof. O

Using Lemma [10.2] and Lemma [10.3] we obtain the following statement.

Lemma 10.4. Assume Wy, ..., Wy are different monomials, and an element
Zle Wi, v # 0, belongs to L. Then it is possible to make a step of the
algorithm GreedyAlg(<y, Add(R)) for Zlefini. Namely, let W;, be the
highest monomial among W1, ..., Wy with respect to order <. Then there
exists an element of T" such that W;, is its highest monomial.
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Proof. Assume ¢ W, € Fy(kF) \ Fy_1(kF). Recall that Z = Dp(kF).
Then Zle Wi € Fx(kF) N Dp(kF). It follows from Proposition that
Fy(kF) N Dp(kF) = Dp(Fx(kF)). So, S, %:Wi € Dp(Fy(kF)). There-

fore,
k n
>_Wi= 2 0T,
i=1 j=1

where T; € T'(Fn(kF)).

Let Z; be a monomial such that 7} is a layout of a multi-turn of a virtual
member of the chart of Z;, j = 1,...,n. Then, obviously, 7; € Dp(Z;)a.
Consider the space > 7 (Z;)a. If (Zjr)a C (Zjn)a for j' # j”, then, clearly,

Z(Zj>d => (Zj)a.
=

Hence, we can choose a subset {Z;,,...,Z;,} C{Z,...,Z,} such that

n t
Z(Zj>d = Z(Zj Va and (Z;)a L (Z;,)a whenever s # s'.
j=1 s=1
Then every Z;, j =1,...,n, is a derived monomial of some Z; , s =1,...,t.
Since 1T; € Dp(Z;)4, we have that T, belongs to some Dp(Z; )4, s =
1,...,t. Therefore, we can separate {171,...,7,} into ¢t groups as follows:

t
{Th,.... T} = | {1¥,.... 19},
s=1

where {T", ... T} C Dp(Z;,)4. Hence,
n t Ns
T W
j=1 s=1 p=1
Applying consecutively Lemma [10.2] we obtain
AR SR
p=1 q=1
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where every T, € T12,], Q¥ € Lower-f(Z;,,)q, and the biggest monomial of

all highest monomials of Tl(s), o ,T ,§§> does not cancel. Since Lower-f(Z;,), C
Fy_1(kF), we have Q) € Fy_i(kF). Since Y §;,T; ¢ Fy_1(kF), we obtain
j=1

that at least one sum ZS: Eés’fq(s) is non-empty.
q=1
Lemma B3 implies 7[Z;.] N L(Z,.)q = @. Therefore, every T e (Z;.)a
and T,." ¢ L(Z;,)q. So, it follows from the definition of <y that the high-
est monomial of T,* is contained in Equal-f(Z,)4. Since (Z;,)a ¢ (Z; )
whenever s # s, it follows from Lemma R.2 that

Equal-f(Z;,)aN(Z; )a =D if s # 5.

Therefore, the highest monomials of {T Ly ,TT({?} for different s can not

cancel each other out. Hence, there exists T, q(os " such that its highest mono-
mial is equal to W;,. Then it follows from Lemma [[0.3] that there exists an
element of 7" such that its highest monomial is equal to W;,. This completes
the proof. O

As a result, we have the following theorem.

Theorem 5. Assume W1, ... Wy are different monomials. We take an ele-
ment Zle Wi € kF, v; # 0. Then the following statements are equivalent:

(1) some branch of the algorithm GreedyAlg(<;, Add(R)), starting from
Zle viW;, terminates at 0;

(2) S Wi € T;

(3) every branch of the algorithm GreedyAlg(<y, Add(R)), starting from
Zle ~:W;, terminates at 0;

Proof. = Assume some branch of the algorithm GreedyAlg(<;
,Add(R)), starting from S>¥  ~,W;, terminates at 0. The n-th step of the
branch of GreedyAlg(<ys, Add(R)) is of the form

k(n) k(n)

Z% NN ZW T(”
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where Zk( : (1 VV(1 Z, 1 YiWis Zk(n) MW" is the result of the step

7

— 1 forn > 1 and 7™ € T". Since T" C I we have T € Z. Hence, the
result of the n—th step is of the form

k n
Z%Wi — Zg(T)T( )
i=1 r=1

where TW ... T € T. The branch of the algorithm GreedyAlg(<;, Add(R)),
starting from Zle v;W;, terminates at 0 after a step with some number N.

Therefore, we obtain
k N
S = Y
i=1 r=1

Thus, Zle %Wz e’

= Assume Zle v:W; € Z. We need to prove that every branch of
the algorithm GreedyAlg(<;, Add(R)), starting from Zle ~; Wi, terminates
at 0. Let us take an arbitrary branch of GreedyAlg(<;, Add(R)), starting
from Zle ~v;W;, and show that it terminates at 0.
Assume the contrary, namely, assume that the branch of GreedyAlg(<;
,Add(R)), starting from Y2 ~,W;, terminates at some non-zero element
of kF. Assume Z 17’ W/ € kF, where W’ are monomials, 7, # 0, is this

7

element. We proved in implication |[(1)[ = |(2)| that a result of the n-th step
of GreedyAlg(<y, Add(R)), starting from ) >, v;W;, is of the form

k n
Z%VV" _ Z(;(T)T( )
i=1 r=1

where TW ... T(™ are some elements of 7" C . Therefore, since Zle Wi €

Z, we obtain
k n
ORI SRS

In particular, ZZ Wi € L. Let Wi be the highest monomial of ZZ LW,
with respect to order <;. Then it follows from Lemma [10.4] that there exists
T € T" such that Wy, is the highest monomial of T'. Let ¢’ be the coefficient

7
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of I//VZ.’O in T'. Hence, it is possible to do a step of GreedyAlg(<y, Add(R)) for
Zle ~viW! of the form

% K
Z%{Wz{ — Z YW — %{05,_1T-
i=1 i=1

Therefore, GreedyAlg(<;, Add(R)) does not terminate at Zf;l viW!. A con-

7

tradiction. Thus, an arbitrary branch of GreedyAlg(<y, Add(R)), starting
from Zle ~iW;, terminates at 0.

= This implication is trivial. O
Theorem [l implies the following statemement.

Corollary 10.5. The set Add(R) is a Grobner basis of the ideal T with
respect to monomial ordering <y, and GreedyAlg(<;, Add(R)) solves the
Ideal Membership Problem for T.

Let us show the following property of additively closed system of gener-
ators R. We will use it in Section [I1]

Lemma 10.6. Assume Add(R) = R. Let my, ..., my be a sequence of mono-
maals from M such that m;, m;y fori=1,...,k—1 are incident monomi-
als and A(m;) =2 17—2 fori =2,....k—1. Then my and my are incident

monomials. In particular, the notions of incident monomials and U-incident
monomials (U is a monomial) coincide.

Proof. We prove Lemma by induction on k.

Assume k£ = 2, then m; and msy are incident monomials by the initial
assumption.

Assume k > 2. Let us make a step of induction. Consider the first three
monomials mq, ms and mg. First assume that m; = mg. Then we obtain
the sequence of monomials my, my, ..., m such that consecutive monomials
are incident, A(m;) > 7 —2 for i = 4,...,k — 1, and length of this sequence
is equal to k — 2. So, m; and m;, are incident monomials, by the induction
hypothesis.

Now assume that m; # mgs. Since m; and my are incident monomials,
there exists a polynomial p € R of the form

ny
p = aimi + asmsg + E Q;a;,
i=3
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and exists a polynomial ¢ € R of the form
ng
q = Pima + famsz + Z Bibi.
i=3

Since Add(R) = R and A(mg) > 7 — 2, we get ¢ = ay'p — B5'q € R.
Obviously, g contains monomials m; and ms. So, m; and mg3 are incident

monomials. Therefore, we obtain the sequence of monomials mq, ms, ..., my
such that consecutive monomials are incident, A(m;) > 7—2fori =3,... k—
1, and length of this sequence is equal to k—1. Hence, m; and my, are incident
monomials, by the induction hypothesis. O

11 Examples

11.1 Group algebras of small cancellation groups

Let a group G be given by generators and defining relations,
G =(X|Ra), Re ={R;}jes,

where R is closed under taking cyclic shifts of relators and taking inverses
of relators, and every R; is a cyclically reduced word. The word c is called a
small piece with respect to R (in a group sense) if there exist R;,, R;, € Re
such that Rj, = cR , R;, = cR}, and R} # R}, as words in the correspond-
ing free group. Obviously, every subword of a small piece is a small piece as
well.

Since R is closed under taking inverses of relators, we get Rj_ll = R el e
Rqa and Rj_Ql = R}z_lc_1 € Rg. Since Rg is closed under taking cyclic shifts
of relators, we see that c‘le-l_l € R¢g and C_IR;2_1 € Rq. Therefore, if ¢
is a small piece, then ¢! is a small piece as well.

Let Sg(R¢) be a set of all small pieces with respect to R¢ in the group
sense.

Remark 11.1. Assume c is a subword of some I?; € R¢ and c is not a small
piece. The following properties follow directly from the above definition and
the fact that Rq is closed under taking cyclic shifts of relators.

o If cisaprefix of Rj, € R¢ and cis a prefix of R, € Rq, then R;, = Rj,.
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e There are no occurrences of ¢ in other relators from R different from
cyclic shifts of R;.

Remark 11.2. Notice that even if ¢ is not a small piece and c is a prefix of
some I, € Rg, ¢ can be a prefix of some R}, where R;, € Ra, Rj, # R,
for n € Z, |n| > 2. If this happens, we get that ether R;,, or Rj_21 is a proper
prefix of R;,. Therefore, R;, and R;' are small pieces.

Lemma 11.1. Assume c is a subword of some R; € R and c is not a
small piece. Assume there is more than one occurrence of ¢ in R}, m € N.
Then all the occurrences of ¢ are shifts of the first occurrence by a multiple
of length of the smallest (with respect to length in the generators X U X™t)
period of R;.

Proof. First assume that there is a single occurrence of ¢ in R;. Then all
occurrences of ¢ in RT" are shifts of ¢ by length of R;. Otherwise, we can
shift by a multiple of length of R; an occurrence of ¢ in R} that violates this
property and obtain more than one occurrence of ¢ in R;.

Now assume that there is more than one occurrence of ¢ in R;. Let
R; = licry = lycry, where [y is a proper prefix of l,. Let I, = [;I'. Then [ is
a shift between these two occurrences of ¢ in R;. Let us show that |I'| is a
multiple of length of the smallest period of R;.

Consider a cyclic shift of R; by {; and denote it by Rj. That is, we have
Rj = crily. Since R is closed under cyclic shifts, we get cril; € Rg and
craly € Re. Since ¢ is not a small piece, we obtain that crily = cryly as words
in the corresponding free group. Therefore, Rj = crals.

Since R; = lycry = 11'cRy, we have R, = l'croly. We have cryly = ceralyl.
Therefore, cryly is a cyclic shift of R;; by I’. However, we proved above that
R = cryly. Hence, Ry is equal to its cyclic shift by ’. Since we work with
words in a free group, this implies that there exists a € F such that I’ = a™
and craly = a™, ny,ny € N.

Let a be the shortest word with the property I’ = a™ and cryl; = a™2,
ni,ng € N. Let us show that a is the smallest period of R;. Assume the
contrary. Namely, we assume that there exists b € F such that b is a proper
prefix of a and Rj = b'. Then, on the one hand, Ry = a™, n =ny +ny > 2,
on the other hand, R; = b*. One can show that if two power words have a
common subword of length greater than the sum of their periods, then their
periods are powers of the same word. Since n > 2 and |a| > |b|, we obtain
that a™ and b" have a common subword a" of length greater then |a| + |b|.
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Hence, a and b are powers of the same word. This contradicts the assumption
that a is the shortest word with the property L' = a™* and cRyL; = a™. So,
a is the smallest period of R;.

Length of the smallest period of R; is equal to length of the smallest
period of R;/, because R is a cyclic shift of R;. Therefore, length of L' in
generators is a multiple of the length of the smallest period of R;.

Clearly, the same property holds for positions of occurrences of ¢ in R}
for m > 2. Lemma [I1.1]is proved. O

Remark 11.3. Assume c is a subword of some R; € R¢ and c is not a small
piece. Lemma [I1.T] implies the following properties.

e If RR; is a primitive word, then there is a unique occurrence of ¢ in R;.

e If R; is a proper power and c is a subword of its smallest period, then
there is a unique occurrence of ¢ in the smallest period of R;.

Lemma 11.2. Assume a group G = (X | R¢). Let Rj,, R;, € Rg. Assume
¢ is not a small piece and c is a prefix of Rfll and Rf;, where ki, ky € N.

Then either R;, is a proper prefix of R;,, or Rj, is a proper prefix of R;,, or
Rj, = Rj,.

Proof. Since c is a prefix of R?ll, we see that either ¢ is a prefix of R;,, or R,

is a prefix of ¢. Similarly, since c is a prefix of Rf;, we see that either c is a
prefix of R;,, or R;, is a prefix of c.

Assume that c is a prefix of R;, and c is a prefix of R;,. So, R;, = cR},
and Rj, = cR),. Then, by definition, R; = R}, , because c¢ is not a small
piece. Therefore, R;, = Rj,.

Assume that c is a prefix of R; and Rj, is a prefix of c¢. Then we obtain
that R, is a prefix of ;. That is, either R;, = R;,, or R;, is a proper prefix
of R;,. Assume R;, is a prefix of ¢ and c is a prefix of R;,. Then we obtain
that R, is a prefix of R;,. That is, either R;, = R,,, or R;, is a proper prefix
of Rjz .

Assume that R; is a prefix of ¢ and R;, is a prefix of c¢. Then, clearly,
either R;, = Rj,, or R;, is a proper prefix of Rj,, or R;, is a proper prefix of
Rj,. This completes the proof. O

Definition 11.1. We say that a group G = (X | R¢) satisfies small cancel-
lation condition C'(m) if every R; € R can not be written as a product of
less than m small pieces.
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We noticed above that if ¢ is a small piece, then ¢! is a small piece as

well. Therefore, a word a can not be written as a product of less than ¢ small
pieces if and only if ! can not be written as a product of less than ¢ small
pieces for every t € N.

Assume G = (X | Rg), where R = {R;};es, Re is closed under taking
cyclic shifts of relators and taking inverses of relators, and every R; is a
cyclically reduced word. For now, we do not make any additional assumptions
about the group G. We consider its group algebra kG, where k is a field.
Let F be the free group with the set of free generators X'. Consider an ideal
T of kF that is generated as an ideal by the set {R; — 1},c;. That is,

T ={R;—1}jes);- (83)
Lemma 11.3. We have kG = kF/T.

Proof. By the universal property of F we obtain that there exists the canon-
ical surjective group homomorphism ¢; : F — G such that ker ¢, is a normal
subgroup generated as a normal subgroup by Rq. Clearly, we can linearly
extend ¢ to kF and obtain a linear mapping of vector spaces ¢ : kF — kG.
Using the well-known definition of ¢;, one can easily see that ¢y preserves
the multiplication as well, so ¢ is a homomorphism of algebras.

By the isomorphism theorem, we obtain that kG = kF/ ker ¢o. We need
to prove that Z = ker ¢5. Let R; € Rg. We have

G2(Ry — 1) = ¢1 (1) — (1) =1-1=0.

Therefore, {R; — 1}je; C ker ¢. Since ker ¢ < kF, this implies Z C ker ¢.
Let us show that ker ¢o C Z. Assume )" | a;A; € ker ¢, where A; € F.

Then . .
0= (Z a,-A,-) = a;01(A). (84)
=1 =1

Since the elements of G is a basis of kG, we see that all elements in the
right-hand side of the above sum have to additively cancel. We split the
monomials A; into sets such that the elements of the same set have equal
images under the mapping ¢; and the elements from different sets have dif-
ferent images. Let A, ,..., A;, be such a set. Since ¢1(A4;,) = ... = ¢1(4;,)
additively cancel with each other in (84), we see that >.'_, ;. = 0. Hence,

2 (Z aisAis> =) aihi(A) = (Z 0%) ¢1(Ai;) = 0.
s=1 s=1 s=1
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Therefore,
t
Z Qy, Ais € ker (bg.
s=1

Thus, it is enough to consider elements E?Zl a; A; € ker g9 such that all A;
have the same image under the mapping ¢; and show that such elements
belong to Z.

So, we take > "  a;A; € ker ¢o such that all A; have the same image
under the mapping ¢;. Recall that, since

0= (ﬁ: aiAi> = Zn: ai¢1(Ai) = (i Oéz) ¢1(A1

we have > ; ; = 0 in this case. Since all A; have the same image under
the mapping ¢;, we obtain that all A; belong to the same coset of ker ¢;.
That is, every A; = A- H;, where A € F, H; € ker ¢1. Hence, it is enough to
prove that Y "  «;H; € Z. Since ker ¢; is generated as a normal subgroup
by R¢ = {R,};es, by definition, we have

S

o, = HU ‘RO . UO™ where RY € Re, UD € F.

Since RS) — 1€ Z, we have

U@ . RO . yOT Zy® (RO —141).yD " =

S S S S

—UO . (RD —1). DT 4+ U® . yO =1 mod T.

S

Therefore, every H; =1 mod Z. Hence,

iOKZHZ:iOQl mod Z = 0.
i=1 =1

That is, Y ., &;H; € Z. Therefore,

=1 =1 =1

This completes the proof. O
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In what follows we assume that the group G = (X | R¢) satisfies small
cancellation condition C(m). For now, we do not specify a value of the
constant m. Let us study the quotient algebra kJF/Z, where the ideal Z is
defined by (83)). Using the set of relators {R; — 1};c;, we will extend it and
construct a set of relators R O {R; — 1}, with the following properties:

(i) R generates as an ideal the same ideal Z;

(ii) R satisfies Compatibility Axiom, Small Cancellation Axiom, and Iso-
lation Axiom (both left-sided and right-sided);

(i) S¢(R¢) = Sr(R), where Sg(R) is a set of all small pieces with respect
to R in the sense of Definition 2.1]

1°  Let us look first at the set {R; — 1};c;. One can easily see that it does
not satisfy Compatibility Axiom. We consider the Cayley graph of the group
G with respect to the set of generators X'. Then every R; € R¢ corresponds
to a closed path in the Cayley graph.

(85)

Here the point I; is the initial and the final point of the path that corresponds
to R;. Every cyclic shift of R; corresponds to a closed path in graph (85

with some other initial and final point.

e
i Vi
ag-s) = b§s) in G and in kF/Z. We consider all binomial relations in G' and in
kF /T of such a form. That is, we take all different points F’ j(s) on graph (8]

Let us do the first obvious step. Assume R; = a . Then, clearly
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and consider two different simple paths from /; to Fj(s).

We take the set of binomials
S S S S -1
{fy(ag-)—bg-))\Rj € Re, Rj:ag»)bg») ,76/{;}

and add them to the initial set {R; — 1},c;. Denote the obtained set by R;.
Obviously, Ry C Z, so, R, generates as an ideal the same ideal Z.

Since R¢ is closed under taking cyclic shifts, one can see that Compati-
bility Axiom holds for the obtained set R,. However, if we consider Sg(R1),
a set of all small pieces with respect to Ry in the sense of Definition 2]
we see that there are too many small pieces and Ry does not satisfy Small
Cancellation Axiom. Namely, assume R; = a;b; € R¢, both a; and b; are
not empty. Since R is closed under cyclic shifts, we see that bja; € Re.
Therefore, a;b; —1 € R C Ry and bja; —1 € R € R,. Notice that mono-
mials in every binomial from R; do not have common prefixes and common
suffixes. Hence, b;ja;b; — b; ¢ Ry. Therefore, by Definition 2.1] a; is a small
piece with respect to R;. Similarly, b; is a small piece with respect to R;.
That is, every proper subword of every R; € R is a small piece with re-
spect to Ry. So, every R; € R is a product of not more than two small
pieces with respect to R, (regardless the constant m in condition C(m) for
G = (X | Ra)).

In order to deal with the above difficulties, we do a further extension of the
set R1. Let R; € R¢g. As above, we consider the corresponding graph (85])

and take all different points Fj(s) in this graph. But now we consider all

possible different paths with the initial point /; and the final point Fj(s),
-1
not only two different simple paths as we did above. Let R; = ags)bg-s)

(see (BH)). Then every such path corresponds to a monomial either of the
form R;‘af), or of the form Rj_”bgs), where n € {0} UN. Clearly, all such
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monomials are equal in G and in kF/Z. We take the set of binomials

-1
{7(c§8) — d§8)) IR, € R, R = MO0 Nk,

J 7

o, d? e {Ryal”, By | n € {0} UN}}

J

and add them to the initial set {R; — 1},c;. We denote the obtained set
by R. That is,

S S s_l
R ={R; - 1}]€JU{7(C |R € Ra, Rj=aV " yek,
S,d(s e{ ) R \ne{O}UN}}.

Let us show that R satisfies properties |(1){(iii)|

Obviously, R generates as an ideal the same ideal Z. Since R is closed
under taking cyclic shifts, we see that R satisfies Compatibility Axiom. Let
us show that the rest of the properties are satisfied as well.

(87)

2°  Let us study Sg(R), a set of all small pieces with respect to R in the
sense of Definition 2.1, and show that R satisfies Small Cancellation Axiom
with the constant 7 = [2] — 1 ([%] is the integer part of 2).

In the following proposition we assume that G = (X | R¢) satisfies the
following condition: for every two different R; , R;, € R¢ neither R, is a
subword of Rj,, nor R;, is a subword of R;. Notice that this condition is

equivalent to small cancellation condition C(2).

Proposition 11.4. Assume a group G = (X | Rg), where R¢g is closed
under taking cyclic shifts and inverses of relators, and every R; € R¢g is a
cyclically reduced word. For every two different R;,, R;, € Rg we assume
that neither R;, is a subword of R;,, nor R;, is a subword of R; . Let R be
defined by [87), Sr(R) be a set of all small pieces with respect to R in the
sense of Definition[21. Then Sg(R¢g) = Sr(R).

Proof. Assume ¢ € F, ¢ ¢ Sg(R¢). Let us show that ¢ ¢ Sg(R). Assume
that ¢ is an occurrence in monomials in two polynomials 7;,7T, € R. By the
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definition of R, there exist R;,, R;, € R¢ such that

Ty = y(c1 — dy), Ty = vo(ca — da), where
Rj, = a;, j_11’ Rjz = Qj, ]‘_217

c1,dy € {R} a;,, R;"b;, | n € {0} UNY,
Co,dy € {R;L2aj2,R_” i | n e {O} UN},

J2
Y1572 S k

Without loss of generality, we assume that ¢ is an occurrence in ¢; and in cs.
Let ¢; = uycvy and ¢y = uqgcvy. Then

T, = 71(01 - dl) = 71(U101)1 - dl),
Ty = ya(ca — da) = 7y2(ugcvy — dy).

In order to show that ¢ ¢ Sg(R), we need to prove that

-1 1

ug - uy - Ty =y (ugcvy —ug - uy - dy) € R,
1 1

Ty vy - v =y (urcvy —dy - vy - v3) € R.

Assume that c is a proper subword of R, or of a cyclic shift of R;,. Then
Lemma [IT.1] implies that positions of occurrences of ¢ in R}, m € N, differ
by a multiple of length of the smallest period of R;,. Assume c contains R;,
or some cyclic shift of R;,. Then, similarly to Lemma [IT.T], one can show
that positions of occurrences of ¢ in Rj, m € N, also differ by a multiple
of length of the smallest period of le By the same reason, positions of
occurrences of ¢ in R}, m € N, differ by a multiple of length of the smallest
period of Rj,.

Since ¢ is an occurrence in ¢;, we get that c is a prefix of éfll, where éjl
is a cyclic shift of R;, or Rj_ll, ky € N. Similarly, since ¢ is an occurrence in

co, we get that c is a prefix of Rf;, where Ejz is a cyclic shift of R;, or Rjzl,

ko € N. Since R is closed under taking inverses and cyclic shifts of relators,
we obtain le, R]2 € Rg- Since ¢ ¢ S¢(Rg), LemmalT.2limplies that either

le is a proper prefix of Rjz, or RJ2 is a proper preﬁx of Rﬁ, or R]2 = RJ2 It
follows from our initial assumptlons that neither le is a proper subword of

RJZ, nor RJ2 is a proper subword of le Hence, we get RJ2 = R]2 Therefore,
either I?;, is a cyclic shift of R;,, or R]2 is a cyclic shift of R;,.
Consider a graph of the form (86) for 73.
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R; is equal to the bypass,
starting from some point

J1

F.

J1

It follows from the latter observation that ¢y, dy correspond to paths in the
same graph with some other initial point /; and final point F},. We proved
above that the positions of all occurrences of ¢ in Rj}, m € N, differ by a
multiple of length of the smallest period of R;. Hence, we can choose the
points I;, and F}, such that the paths in the above graph that correspond to
c1 = ujcv; and cp = uscve have a common subpath that corresponds to the
occurrences of ¢ under consideration.

J1
J1
the occurrences of ¢ in

urcvy and uacvs

Therefore, the monomials uscv; and us - ul_l - dy correspond to paths in the
above graph with the initial point /;, and the final point [} . Similarly, the
monomials uycvy and dy - vy 1. vy correspond to paths with the initial point

I;, and the final point F},. So, by definition (&7]),

ug - uyt T = yi(ugevy —up - upt - dy) € R,

T -7t vy = yi(urcvg — dy - vyt -wp) € R

Thus, ¢ ¢ Sr(R). So, we obtain Sg(R¢g) 2 Sr(R).

Let us show that Sg(Reg) C Sg(R). Assume ¢ € Sg(Rg). We need to
prove that ¢ € Sg(R). If ¢ = 1, then ¢ belongs to Sg(R), by definition. In
what follows we assume that ¢ # 1.

Since ¢ € Sg(Rg), there exist Rj, R;, € Rg such that R;, = cR,
Rj, = cR,, and R # R}, as words in the corresponding free group. We can
assume that ¢ is a maximal common prefix of R;, and Rj,, since Sg(R) is

closed under taking subwords.
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Assume ¢ ¢ Sg(R). By definition (87) of R, we have

Ry —1=cR, —1€R,
Ry, —-1=cR,-1€R.

Since ¢ ¢ Sr(R), we obtain
(CR;i -1 R;d_l ' R;é - CR;Q o R;d_le'z = Rj, — R;d_le'z € R.
By definition (87) of R, there exists Rj, € R¢ such that

Rj, = ab;t and Ry, R, 'R, € {R%a;,, R;"bj, | n € {0} UN}.

J3

It follows from our initial assumptions that R;;l are not proper prefixes of
R;,. Therefore, Rj, can not be of the form R}, a;,, R;"bj, for n > 0. Similarly,
Rj, is not a proper prefix of Rjigl. Hence, R, can not be of the form aj,, bj,
if at least one of aj, and bj, is not empty. Therefore, either a;, is empty, or
b;, is empty.

Assume aj, is empty. Then b;, = Rj_gl. Therefore,

Rj, e {R}, R, [n € {0} UN}.

Hence, we get R;, = Rj;m, m € N. Since Rj;l are not proper prefixes of Rj,,
this implies R;, = Rjigl. Similarly, if b;, is empty, R;, = Rj;l.

Since R;, = Rj;l and one of aj, or b;, is empty, we have
-1 n -n
R, "R, € {R},R)"|ne{0}UN}.

Hence, R;d_lR;z = Rjj;m, m € N. Notice that since neither R;, = cR} is a

subword of Rj, = cR) , nor R;, is a subword of R;, we get that both R}
and R, are not empty.

First assume that R91_1R92 = RY. Since c is a prefix of Rj,, we get that
c and R} 1_1 have a common prefix. However, this is not possible, because
Rj, = cR is a cyclically reduced word. Now assume that R 1_1R;-2 = R,".
Then R}, and Rj_Ql = R}z_lc_1 have a common suffix. This is not possible,
because R;, = cR, is a cyclically reduced word. A contradiction. Therefore,

(CR;i -1 R;d_l ' R;é - CR;Q o R;d_le'z = Rj, — R;d_le'z ¢R.
Thus, ¢ € Sg(R). Proposition [[T.4] is proved. O
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So, in what follows in the current section we do not need to distinguish
small pieces in the group sense and in the ring sense.

Proposition 11.5. Assume a group G = (X | Rg), where R¢g is closed
under taking cyclic shifts and inverses of relators, and every R; € Rq is
a cyclically reduced word. Assume the group G satisfies small cancellation
condition C(m), m > 2. Then the set R defined by ([8T7) satisfies Small

Cancellation Aziom with the constant T = [%} — 1.

Proof. Let T' € R. Then there exists R; € R¢ such that

T =1(cj — dj), where Rj=a;b;",y €k,

88
Cj,dj c {R;Laj,Rj_”bj ‘ n e {O} UN} . ( )

Recall that there exists a graph of the form (86) such that the monomials ¢;
and d; correspond to two different paths in this graph with the same initial
points and the same final points.

R; is equal to the bypass,

starting from the point I;

F;

Condition C'(m) implies that R; can not be written as a product of less than
m small pieces from Si(R¢). Therefore, at least one of a; and b; can not be

written as a product of less than [ﬂ} small pieces from Sg(R¢). Hence, at

least one of ¢; and d; can not be Wr?tten as a product of less than [%] small
pieces from Sg(R¢). It follows from Proposition [T 4l that S¢(R¢) 2 Sr(R).
Hence, at least one of ¢; and d; can not be written as a product of less than
[%} small pieces from Sg(R). Therefore, Small Cancellation Axiom with the
constant 7 = [%} — 1 holds for every single polynomial of R.

Now consider an arbitrary linear combination Zle v 1., where T, € R,
v, € k. By definition (87) of R, we see that for every T, there exists R, € R
and a fragmentation R; = ajrbjr_l with property (88]). Let us collect all T,
such that they correspond to the same R; € R¢ up to taking inverse and
the same fragmentation of R; . Without loss of generality we can assume

that the obtained sets are
{I1,.... T}, {Tns1, - T0} (89)
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Let us consider every set from (89]) and the corresponding linear combi-
nation separately. Without loss of generality we can consider the first set
{T1,...,T,,} and the corresponding linear combination » "', ~,T,. So, all
monomlals of Ty, ..., T,, belong to the set

{R" G0 R=npl) |y e {0} U N} where R;, € Ra, Ry, = aVpe) ™

1% Ay 05 ’ J1 > T J1 n
Since all T, are binomials, we obtain that either ZT, 1 VL. =0, or Z:il ¥ 1
after additive cancellations contains at least two different monomials. There-
fore, in the same way as above we obtain that at least one of these monomials
can not be written as a product of less than [%] small pieces from Sg(R).
So, Small Cancellation Axiom with the constant 7 = [%] — 1 holds for every
linear combination that corresponds to a single set from (89)).

Let T,,,T,, be two different polynomials from R. Let a be a monomial
of T} and of Ty, and a ¢ Sgr(R). There exists R;, € R that satisfies
property (88)) for 77. There exists R;, € R¢ that satisfies property (88]) for
T5. Therefore,

ac {Rgatl ) R | e {0} U N} N {Rg al*? Rob) | e {0} U N} ,
where Ry, = aifl)bgl V- 1, R, = aﬁj”bﬁjz)_l
(90)

In particular, either a is a prefix of R}, or a is a prefix of R, ™" for some
my € N. Similarly, either a is a prefix of R;,?, or a is a prefix of R, for
some my € N. Recall that, by Proposition 1.4, we have Sg(R) = Sa(Ra).
Since a ¢ Sgr(R) = S¢(R¢) and G satisfies condition C'(2), it follows from
Lemma that R, = R

If Ry, = Ry,, then it follows from (Q0) that agf = a£s2 and btfl = b(s2 .

If R, = R;,', then it follows from ([@0) that aﬁfl) = bt? and bgfl = agf).
Therefore, T,,,T,, belong to the same set from (89). So, non-small pieces
that belong to different sets from (89) are not equal to each other. Hence, if
non-small pieces cancel in the linear combination Y ", 4,7, then they cancel
inside the linear combination Zf*nl 4171 that corresponds to a single set
from (89)). Combining this with the above, we obtain that Small Cancellation

Axiom with the constant 7 = [%} — 1 holds for R. O

From the very beginning for the argument in the presented paper we re-
quire the constant 7 > 10 in Small Cancellation Axiom. So, Proposition [[T.5]
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implies that we obtain the required value of the constant 7 for the group
algebra kG = kF /T if G = (X | Rg) satisfies small cancellation condition
C(m) with m > 22.

Corollary 11.6. Assume a group G = (X | Rg), where R is closed un-
der taking cyclic shifts and inverses of relators, and every R; € Rg is a
cyclically reduced word. Assume the group G satisfies small cancellation con-

dition C(m) with m > 22. Then the set R defined by (87) satisfies Small
Cancellation Aziom with the constant T > 10.

3° As above, assume a group G = (X | Rg), where R is closed under
taking cyclic shifts and inverses of relators, and every R; € R¢ is a cyclically
reduced word. Assume the group G satisfies small cancellation condition
C(m), m > 2. We will prove that both Isolation Axioms (left-sided and
right-sided) are satisfied for R defined by (87).

First notice that Add(R) = R (see the beginning of Section [0 for the
definition of Add(R)). Indeed, assume 71,75 € R, T1 = y(a —by), T1 =
va(a — by), and A(a) = 7 — 2. Let us show that

71_1T1—72_1T2:a—bl—(a—b2):bg—blER.

There exists R;, € R and its fragmentation with property (88) for 77. There
exists Rj, € R and its fragmentation with property (88) for 7. Since a
is not a small piece, we can argue in the same way as at the end of the
proof of Proposition and obtain that R; = R;;l and the corresponding
fragmentations are the same. Therefore, the monomials a, by, by correspond
to paths in the graph for R;, of the form (85]) with the same initial point and
the same final points. Thus, by definition, by — b; € R.

Recall that, by definition, M is a set of monomials of polynomials from R.
So, in the current case M consists of all subwords of powers of all relators
from Rg.

Let mq,ma,...,m; be a sequence of monomials of M such that all of
them are of A-measure > 7 — 2 and the consecutive monomials are incident.
Since Add(R) = R, it follows from Lemma that m; and my are in-
cident monomials. So, we need to check Isolation Axiom only for incident
monomials.
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Let us show that right-sided Isolation Axiom is satisfied for R. Let
my, me € M be two incident monomials, my # mo, A(my) = 7—2, A(my) >
7 — 2. We will prove even a slightly stronger condition. Namely, we take
a € M such that A(a) > 7 — 2, mya, mea ¢ M, m; is a maximal occurrence
in mya, my is a maximal occurrence in mga (that is, we omit the last condi-
tion on a in right-sided Isolation Axiom). Let s;a be a maximal occurrence in
mya that contains a, and ssa be a maximal occurrence in msya that contains
a. We will show that

my - 87 # mg - syt

Assume the contrary, namely, assume that my-s;' = my-s,* = m. Then
we have m; = ms;, mo = ms,. Since s; and s, are overlaps of maximal
occurrences, $1 and s, are small pieces. So, m is not empty, because A(m;) >
T—2>1and A(mg) > 7—2 > 1. Since my; and my are two incident
monomials, they are monomials of some polynomial 7" € R. So, by definition,
there exists R; € R¢ such that

mi, Mo € {R;Laj,Rj_nbj | n c {O} UN} s where Rj = aj ]-_1.

So, the monomials m; and msy correspond to two paths in the graph of the
form (85)) for R; with the same initial points and the same final points.
Denote their initial point by /; and their final point by F.

R; is equal to the bypass,

starting from the point I;

F.

J

Assume m; is of the form Ria; and msy is of the form Rj_"bj. Then the
first letters of m; and my are different, because R; is a cyclically reduced
word. Hence, it is not possible that m; = ms; and that my = mss,.

Now assume that m; = R;“aj, me = R;-Lzaj, where nq,n5 € N, ny # ns.
Then at least one of s; and sy contains a cyclic shift of R;. Since G satisfies
condition C(2), every cyclic shift of R; is not a small piece. So, this is not
possible, because s; and s, are small pieces.

Finally assume that m; = Rj_"lbj and my = Rj_"zbj where nqy,ny € N,
ny # no. Similarly, at least one of s; and sy contains a cyclic shift of Rj_l.
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Since G satisfies condition C'(2), every cyclic shift of Rj_l is not a small piece.
So, again this is not possible, because s; and s, are small pieces. Thus, we
obtain m; - 571 # my - 55" Right-sided Isolation Axiom for R is proved.
Left-sided Isolation Axiom for R is checked in the same way.

11.2 Equating of a binomial to a single monomial in a
group algebra of a free group

Here we refer to paper [2].

Let F be a free group with at least four free generators. We fix a set of
free generators of F. Let w € F be an arbitrary cyclically reduced primitive
word. Let x and y be letters from the set of free generators of F such that
the initial and the final letter of w and w~! differ from 2** and y*!. Consider
the word

ni+1

UZI”lyx y'”xnzya ny, 2 GN,

such that |w| < ny < ne (namely, ny — |w| > 0 and ny —ny > 21). This are
assumptions that we fix for Subsection

The word v exhibits small cancellation properties, because a subword
of v™, m € Z, containing at least two letters y*™!, appears in v™ uniquely
modulo a shift by multiple of |v|. Since the initial and the final letter of w
and w™! differ from z*! and y*!, we obtain that v*'w*! and w*lv*! with
any combination of signs have no cancellations.

We consider a group algebra kF, where k is a field. Let Z be an ideal of
kF generated by the polynomial v=! — 1 — w as an ideal. That is,

I=@w"'=1-w),.

Let us show how to construct a set of generators of Z as an ideal, starting
from v=! — 1 — w, that satisfies Compatibility Axiom, Small Cancellation
Axiom and Isolation Axiom. Let us notice that in paper [2] we take k = Zs
in order to simplify calculations. However, a set of generators of Z that we
will construct satisfies all necessary conditions over an arbitrary field.

1° Let us put Ry = {v7' —w — 1}. One can see that R; does not satisfy
Compatibility Axiom. We can do the following natural procedure. We start
adding to R, relations of the form 2z, - (v™' — 1 —w) such that z; is a prefix
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of v1

or w, and of the form (v™' —1 — w) - z;* such that 2, is a suffix of

v~ or w. After that we repeat the same procedure with the obtained set

of relations, then again with the set of relations obtained after the second

step, etc. Then, by construction, the union of all sets obtained in this way

satisfies Compatibility Axiom. However, we make another more explicit and
transparent procedure. Let us explain this procedure in detail.

Similarly to a Cayley graph of a group, we consider oriented graphs with

edges marked by generators of the group F. Take such a graph of the form

w

(91)

(the word w is written on the small arc, the word v is written on the big arc).
Assume that we have an oriented path in the graph (OI). We mean that it
is possible to pass edges in the positive and negative direction. When we go
along this path, we can write down the mark of an edge if we pass the edge
in the positive direction, and we can write down the inverse to the mark of
an edge if we pass the edge in the negative direction. So, speaking formally,
every connected pair of vertices in (O1]) is connected by two oriented edges:
one is marked by a free generator of F and another one is marked by the
same generator in power —1. Hence, vertex O is of degree 4 and all other
vertices are of degree 2.

A path in the graph (@1]) with the initial and the final vertex O naturally
corresponds to a monomial over v*!, w*! and vice versa. So, we can match
every Laurent polynomial over v, w with a collection of such paths. In par-
ticular, the polynomial v~! — 1 — w corresponds to the set of three paths
in (@I that start and end at the point O.
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We can consider paths in the graph (O1]) with arbitrary initial and final
points, which do not have to be equal to O. For instance, let v = v;v,,,v¢.

w

vy

Um

Then monomials of the form v M (v, w)v;, where M (v, w) is a non-commutative
reduced monomial over v*! and w*?!, correspond to paths in the above graph
with the initial point I and the final point F'.

Assume that z; is a prefix of v™! or w. Then one can see that z; - (v~ —
1 —w) corresponds to an agreed shifting of the initial point of the paths that
correspond to v™! — 1 — w in graph (@I). Assume 2, is a suffix of v™! or
w. Similarly, one can see that (v™' — 1 — w) - z; ' corresponds to an agreed
shifting of the final point of the paths that correspond to v=! — 1 — w in
graph ([@)). Now we take all possible agreed shifts of the initial and the final
points of the paths with the initial and the final point O that correspond to
v~! —1 —w in graph (@), not only shifts by inverses of prefixes and suffixes
of v™! and w, and add the corresponding polynomials to R;. Denote the

obtained set of generators by Rs. So,

Ry = {’VML (vt =1=w) - Mg | v = 00,05, w = wywyuwy,y € k,
My, € {vp My (v, w), v; ' My (v, w), weMy (v, w), w7 My (v, w)},
Mg € {Ma(v, w)vi, Ma(v, w)vy, Ma(v, w)wi, My (v, w)w;'},

M;(v,w), Ma(v,w) are non-commutative reduced monomials over v=", w*'}.

Clearly, R, generates as an ideal the same ideal Z.
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Let us show that R, satisfies Compatibility Axiom. Assume
T=yMp-(v'=1—-w)-Mp €R,.

The monomial M}, corresponds to a path in graph [Tl with some initial point [
and the final point O. The monomial Mg corresponds to a path in graph
with the initial point O and some final point F'. So, the polynomial T
corresponds to a collection of paths with the initial point I and the final
point F. Assume a letter 2! cancels from the left with some monomial in 7.
Then 27! corresponds to a path with the final point I. Hence, 271 - M,
corresponds to a path with the final point O. That is, z=! - M}, belongs to
the set {vy M (v, w),v; "M (v, w), wsM(v,w),w; ' M(v,w)}. Therefore,

VT =~ "My - (v —1—w)- Mg €R,.

Similarly, if a letter 271 cancels from the right with some monomial in 7', we
obtain T+ 27! € Ro.

Obviously, in the current case the set of monomials M for Ry consists of
all subwords of non-commutative reduced monomials over v*!, w*!. We call

such subwords (v, w)-generalized fractional powers.

2° Let a be a subword of M(v,w), where M (v, w) is a non-commutative

reduced monomial over v*!, w*!. Then, as we noticed above, a corresponds

to a path in graph ([@1]). There are two types of subwords of M (v, w).

e A subword that corresponds to a unique path in (OI]). For example,
yxny’ ny < n < na.

e A subword that corresponds to more than one path in ([@I]). For exam-
ple, xy.

Proposition 11.7. A word ¢ € M 1is not a small piece with respect to R
(in the sence of Definition[21)) if and only if ¢ corresponds to a unique path

in graph (@I).

Proof. Assume ¢ corresponds to a unique path in graph (OI) with the initial
point I and the final point F. Let us show that c¢ is not a small piece with
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respect to Ry. Assume

ni
T, = Oé/dlc/dg + g Qja; € RQ,
Jj=1

n2
Ty = Bbichy + Y _ Bib; € Ra.
j=1
Then we need to show that

ni
by 51_1 T = Oéblcag + E Oéjbl 51_1 “aj € RQ,
J=1

n2
T1 62_1 'bg :Oéale2+ E Q5 62_1 'bg GRQ.
Jj=1

Since R, satisfies Compatibility Axiom, we have 61_1 -T1 € Ry. So,
a;' Ty =yMp - (v! — 1 —w) - Mg, where

My, € {vy My (v, w),v; "My (v, w), weMi (v, w), w; My (v,w)},
Mg € {My(v, w)v;, My(v, w)oy, My(v, w)w;, My(v, w)w;'},

where My (v, w), My(v, w) are non-commutative

reduced monomials over v, w*t,

The key step is as follows. Assume M, corresponds to a path in graph (1)
with some initial point I; and the final point O and Mpg corresponds to a
path in graph (@I) with the initial point O and some final point Fj. Then,
on the one hand, all monomials of YMy, - (v™! — 1 — w) - My correspond to
a set of paths with the initial point /; and the final point F}. On the other
hand, the monomial ¢ corresponds to the unique path with the initial point /.
Therefore, every path that corresponds to the monomial ca, has the initial
point I. So, since cdsy is a monomial of YMy - (v™! — 1 — w) - Mg, we obtain
that I; has to be equal to I. That is, the monomial M| corresponds to a
path in graph (OI]) with the initial point I and the final point O.

The monomial glc € M corresponds to some path in graph (@1I). Since
the monomial ¢ corresponds to the unique path with the initial point 7, we
obtain that b; corresponds to a path with some initial point I; and the final
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point I. Hence, the monomial El - M7, corresponds to a path with the initial
point I, and the final point O. Therefore,

by - My € {vM(v, w), v; "M (v, w), wM(v,w), w; M(v,w)},
where M (v,w) is a non-commutative
+1 41

reduced monomial over v, w

A~

So, v(by - Mp) - (v —1 —w) - Mg € Ry. Hence, we obtain
31 al_l 'Tl :’7(81 ML) . ('U_l -1 —w) 'MR € R2.

In the same way, one can show that 7} - a; ! @2 € Rs.

Let us show that if a word corresponds to more than one path in graph (@),
then this word is a small piece. The following words always correspond to
more than one path:

(1) ", ya™, 2™y for ny < n < no;

(2) 27", y~tam, a7yt for ny < n < no;

+

(3) subwords of w*™ that appear in w*™ more than once modulo the period

w:l:l.

)

The following words may correspond to more than one path:

-1 -1 1,1
(4) vpwi, vewy, v wg, v Wy,
—1 . |
W, Wy v, WUy, Wy Vg
where w; is a prefix of w, wy is a suffix of w, v; is a prefix of v, vy is a

suffix of v such that v; and vy contain not more than one letter y.

Let ¢ be a word of the form |(1)[(4). Notice that for every type of ¢ it is
enough to find a specific example of two polynomials from R, that satisfy
Definition 21l Let us take ¢ of the form and construct a corresponding
example of two polynomials. Examples for types [(2)(4)| can be produced
similarly.

Let v = vv,vy = vgv;nv} be two different fragmentations of v such that
U, = ), are words of the form [(I)] Since the fragmentations are differ-
ent, we see that v; # v; and vy # vj. Clearly, we can take such different
fragmentations of v for every word type . We have

v-(vt—w—1)=1—vw—vER,.
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We take T = T, € R, but consider different occurrences of ¢ = v, = v/ in

m
their monomials:

Th=1—vw—v=1—00,0f — 0;0,VW,

o o A A
Ih=1—-vw—v=1—=vv,v; — v, V;w.

Looking at the explicit form of v, we see that for every word of type |(1)| we
can take fragmentations of v such that both v; and v contain more than two
letters y. Then v; corresponds to a unique path in (@) and v corresponds
to a unique path in (@1]). Clearly, these paths differ only by the final points.
Do be definite, assume that |v;| > |v]].

w w
Uy
F V!
vy
U
I
7
Um = Uy,

We consider

, p—
vi-v, Iy =

-1
. UZ .

-1
)

(1—v—ow)=v)-v;" (1 = VU,VF — VURVFW) =

=

!
i
!
i " U

— VjUR U — ViU VW,

Let us show that vjv,vyw ¢ M. Assume the contrary. The word w cor-
responds to the unique path in (@) with the beginning and the end at the
point O. Hence, vjv,,vy, which is a prefix of vjv,,vsw, corresponds to a path
with the end at the point O. Since v} corresponds to the unique path with
the beginning point O, every path that corresponds to vjv,,vs starts at the
point O. Since the path that corresponds to v} is contained in wv-arc and
ends at point I’ # O, we obtain that every path that corresponds to vjv,,vs
is contained in v-arc. We have |v| = |v;| + |vnvy| = [vj| + |}, 0|, Since
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lvi| > [vi], we get |v,vp| < |v,v}]. Combining these observations, we get
that vjv,,v; can not end at the point O because of length. A contradiction.
So, vivpvrw ¢ M.

Since v/v,,v;w ¢ M, we obtain that all the more v/ -v; ' - Ty ¢ Ry. Thus,
Uy, = v, 1s a small piece with respect to Ry. Proposition [1.7is proved. O

So, there are three types of words that are necessarily non-small pieces
for an arbitrary w:

(NSP1) subwords of v*! that contain at least two letters y*' and the sub-
word xt"2;

(NSP2) w*" or its cyclic shift;
(NSP3) subwords of w*" that appear in w*" uniquely modulo the period w*!.

Notice that words of the form

VW, Ufwgl, Ui_lwi, vi_lwfl,
w vy, wi_lvi, wfvjjl, wi_lvlfl,
where v; is a prefix of v, vy is a suffix of v, w; is a prefix of w, wy is a suffix
of w, may be non-small pieces for some w as well.
One can show that R, satisfies Small Cancellation Axiom with the con-
stant 7 > 10 and Isolation Axiom. So, we can work with Rs. However, one

can see that Add(R,) # Ro. Indeed, 1 —v —vw, v — v? —v*w € Ry, wherein
1—v—vw— (v—2*—2v*w)=1—vw+v*+v*w ¢ Ry,

because all polynomials from R, are trinomials. Let us further extend R,
in order to produce additively closed set of generators with the same set of
small pieces.

Lemma 11.8. Let k(t) be the field of rational functions in one variable t over
the field k. Let P(xq,x2) be a non-commutative Laurent polynomial over the
field k such that P((1+t)7',t) = 0 as an element of k(t). Then P(v,w) € .

Proof. First assume that P(x,z5) is an arbitrary non-commutative Laurent
polynomial over the field k& without any additional conditions. Let

P(xy,29) = E N1 Ty’ + g Gijxs xy’, ni,ng, ki, kj € Z.
i7j

1,J
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Then
P1+4)" Z”” 1+t +Z<” 1+t

Let us decompose every fraction of the form %Zm in the above expression
to elementary fractions and make all possible additive cancellations. Then

we obtain
P((1 +t E T + E O™ 2

Let us show that the last equality holds in kF/Z if we replace t by w+Z
and (1+¢)~! by v +Z. That is, we will show that

Pv,w)+ZT = Z 7 V" W™+ Z Cijwkivkj +7= nyrvnr + Z osw™ +T.
4,J %7 r S

Indeed, when we decompose — to elementary fractions, we use only iden-

(1+t)
tities that hold in an arbitrary ring (adding and subtracting the same value

and the binomial formula) and the equality
1 B 1
1+t (1+t)n

(1+1t)" (1+t)"=1, neN.

Clearly, we have the same equality in kF/Z if we replace (1+¢)"' by v +Z

and t by w +Z. Thatis, v"- (1 +w)"+Z =(1+w)"-v""+Z =1+T in
kF/Z. Therefore, if

t?’L
_— = —'— Stns
(1+t)m Z (1) Z P
is the decomposition to elementary fractions, the corresponding equality
v"w™ + T = Z a,, V" + Z Bow™ + T
holds in kF/Z. So, we have in kF /T

Pv,w)+T= an nJ+ZCZJ o T =

_Z% “r+25w"s+z
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Now assume that P((1 +¢)7',¢) = 0 as an element of k(¢). It is well
known that {ﬁ,t" |ne{0}U N} is a set of linearly independent ele-
ments in k(). So, since P((1+t)~!,¢) = 0, we obtain that every v, = 0 and
every 65 = 0 in (92)). Hence, (@3) implies that P(v,w)+Z = Z in kF/T.
Thus, P(v,w) € Z. 0O

We define

R = {ML -P(v,w) - Mg | v = 00,0, w = wywnwy,
My, € {vy M (v, w), v; "My (v, w), wp My (v, w), w; My (v, w)},
Mg € {Ms(v,w)v;, Mg(v,w)vjfl, Mo (v, w)w;, My(v, w)w;l},
M, (v, w), My(v,w) are non-commutative reduced monomials over v=", w*",
P(x1,x9) is a non-commutative Laurent polynomial over the field k,
P((1+1¢)7",t) =0 as an elelent of k(t)}.
(94)

Since P(v,w) € Z, we get that R generates as an ideal the same ideal Z.
Using the same argument that is used for Ro, one can show that R satisfies
Compatibility Axiom. Using the same argument as in Proposition [[1.7], one
can show that the set of small pieces with respect to R is the same as the
set of small pieces with respect to Rs.

Lemma 11.9. We have Add(R) = R.
Proof. As usual, 7 is a natural number > 10. Let
ni n2
T1:OKC—|—ZOéjaj, TQIﬁC—FZﬁjbjGR,
=1 i=

where A(c) > 7—2. Let us show that v;71+72T5 € R for arbitrary 71, v2 € k.
By the definition of R, we have

T =MD - Pi(v,w)- My, Ty =M - Py(v,w) - M

(see (O4) for a definition of MS), Py (v, w), M}(zl), Mf), Py(v,w), Mg))). Since
A(c) > 7—2, cis not a small piece. Therefore, it follows from Proposition T1.7]
that ¢ corresponds to a unique path in graph (@II) (particularly, with unique
initial and final points). Denote the initial point of this path by I and the
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final point by F. Notice that for incident monomials there exist paths in (91I)
with the same initial and the same final points. Therefore, a;, 7 =1,...,ny,
and b;, j = 1,...,ny, correspond to paths in graph (9I) with the initial point
I and the final point F'. Hence, there exits M, 1 € M that corresponds to a
path with the initial point O and the final point I, and there exists Mgz € M
that corresponds to a path with the initial point F' and the final point O
such that My, - T} - Mg and My, - Ts - Mg correspond to collections of paths
with the initial point O and the ﬁnal oint 0. .

Consider monomials M ML , 1 - Mg, My, - M ), Mg) - M. Since ¢
corresponds to a unique path in graph @D Wlth the 1n1t1al point I and the
final point F’, this implies that M S) and M f) correspond to paths with the

initial point I and the final point O. Similarly, M }(21 and M }(22 correspond
to paths with the initial point O and the final point F'. Therefore, it follows
from the above definition of M;, and M r that

My - MY = M (0,w), MY - Mg = MY (v, w),

My, - MP = MP (v,w), MY - Mg = MY (v, w)

(possibly after the cancellations), where MS) (21, 22), ]\4(1 (x1, 22), MS) (21, 22),

1 . :
M }(g)(%, T3) are non-commutative monomials in 27!, inl.

Consider non-commutative Laurent polynomials

Q1(x1,33) = M (21, 23) - Pi(1,23) - MY (21, 23),
Qa(1, m3) = M (21, 23) - Po(1, ) - MY (21, 33).
Combining the above equalities, we obtain
Q1(v,w) = MM (v, w) - Pi(v,w) - MY (v,w) =
= ML . Ml(/l) . Pl(’U,U)) . M}(g) . MR = ML 'Tl . MR,
Qs (v, w) = MP (v, w) - Py(v,w) - MY (v, w) =
= ML . M£2) . PQ(’U,U)) . Méz) . MR = ML 'T2 . MR.

0and Py((1+t)71,¢) = 0, we get Q1 ((1+t)71,¢) =

Since Py ((14¢t)71,t) =
= (0. Let us take

0 and Qo((1 +1t)74,t)

Q(r1,22) = 1Q1(T1, 12) + 72Q2(71, T2).
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Then, evidently, Q((1 +¢)~',¢) = 0. We have

I + 1y = Vlﬂfl - Q1(v,w) - Mﬁl +72]\7L_1 Q2 (v,w) - Mﬁl =
= ML_I - Q(v,w) - ]’\‘4’};1.

Thus, we obtain 17T} + 15 € R. O

It is proved in paper [2] that Small Cancellation Axiom with a constant
7 > 10 holds for R (see [2], Proposition 3.1, Transversality Condition). In
fact, we proved in [2] even more.

Proposition 11.10 (Transversality Condition). Let Ty,...,T, € R, and
Z;L=1 v;T; be non-zero element of kF. Then 2?21 v;T; after additive cancel-
lations contains a monomial A that contains separate subwords of v=™ such
that they contain in total > 7+ 1 letters from the set {y,y~'} (1 > 10).

Although in paper [2] we worked with k = Z,, the argument in Transver-
sality Condition works for an arbitrary field with very small changes.

Remark 11.4. Let us also notice that in [2] we use a measure A’ on monomi-
als of M that slightly differs from A-measure. In order to define A’ we count
only letters y*! in subwords of v*™. Namely, let u be a subword of a reduced
monomial over v+, w*!, then A’(u) is equal to the number of letters y** in
total in all maximal occurrences of subwords of v*™ in u. So, all subwords
of w*™ have A’ equal to 0, and all subwords of v*! of the form z*" have A’
equal to 0.

It is possible to use measure A’, because Small Cancellation Axiom holds
for R in a stronger form, which is stated in Proposition 110

3° Let us check Isolation Axiom for the set R. Let mqy,ms,...,my be a
sequence of monomials of M such that all of them are of A-measure > 7 — 2
and the consecutive monomials are incident. Since Add(R) = R, it follows
from Lemma that m; and m,, are incident monomials. So, we need to
check Isolation Axiom only for incident monomials.

Notice that incident monomials correspond to paths in (@]) with the same
initial and the same final points.

Let us check right-sided Isolation Axiom. Let mi, my € M be incident
monomials, my; # mg, A(my) > 7 — 2, A(mg) > 7 — 2. We will prove even
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a slightly stronger condition. Namely, we take a € M such that A(a) >
T — 2, mya, mea & M, m; is a maximal occurrence in mya, msy is a maximal
occurrence in moa (that is, we omit the last condition on a in right-sided
Isolation Axiom). Let sja be a maximal occurrence in mqa that contains a,
and ssa be a maximal occurrence in moa that contains a. Then we will show
that
my - syt # my syt

Assume the contrary, namely, assume that m; - 57" = my - 55,0 = m.
Then we have m; = ms;, mo = msy. By definition, s; and sy are overlaps of
maximal occurrences. Hence, s; and s are small pieces. Since A(my) > 7—2
and A(mg) > 7—2, we obtain A(m) > 7—2—1=7—3 > 7. Therefore, m is
not a small piece. So, m corresponds to a unique path in graph (91]). Hence,
paths that correspond to m; and ms start with one path, which corresponds
to m. Since m; and msy are incident monomials, they correspond to paths
in ([@I) with the same initial and the same final points. Combining these
facts, we obtain that s; and s, correspond to paths in graph (@I with the
same initial and the same final points.

Since ms; # mss, we get s; # so. We can write s; and sy in the form
s = ss} and sy = ssh, where s and s, do not have a common prefix. Then,
in the same way as above, we obtain that ms corresponds to a unique path
in graph ([@I]) and that s} and s}, correspond to paths in graph (@I]) with the
same initial and the same final points.

On the one hand, s} and s} do not have a common prefix, on the other
hand, s} and s/, prolong without any cancellations the path that corresponds
to ms. Therefore, s} and s/, can not start at a vertex of degree 2.

/ ms !
51 51
/ /
82 82 ms
s] has sh has
cancellations cancellations
with ms with ms

So, s} and s, start at point O.
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Let us calculate possible forms of s} and s}. Since s; and sy are small
pieces, we get that s} and s}, are small pieces as well. It follows from Defi-
nition 2.1] that a small piece can not contain non-small pieces as subwords.
Hence, s} and s, do not contain subwords that are non-small pieces. Recall
that s} and s, end at the same point. Therefore, s] and s, can end only
inside w-arc and be of the form w; and w;l, where w = w;w; and both w;
and w; are non-empty. Otherwise, at least one of s} and s} contains w*! or
a subword of v*! of A-measure > 1A(v). Denote their final point by F. To

be definite, assume that s| = w; and s, = wj?l.

In particular, we obtain that s and s}, have no common suffix.

Now let us look at a and consider s} and s, as prolongations of a to the
left. Since s} and s, have no common suffix and they prolong a from the
left without any cancellations, we get that a can not start at a vertex of
degree 2. Hence, a starts at point O. By the initial assumptions, s = wj
starts with a letter different from z*' and y*'. So, since |s}| < |w| < |v], s}
can be contained only inside w-arc. Similarly, s, = w;' starts with a letter
different from x*! and y*!'. Hence, since |s}| < |w| < |v], s, can be contained
only inside w-arc. Since s} and s}, have no common suffix, they end by two
different edges that come in vertex O. Since
1| —

|1+ Is5] = wil + Jwy | = |w,

we obtain that s} and s} start at one point at w-arc. Denote this point by I.
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O O

So, we obtain that either w = s, s, = wi_lwfl, or w = sy '8 = wyw;.
Notice that wsw; is a cyclic shift of w = w;wy. Therefore, the equality
w = wsw; is not possible in F, because w is a primitive word.

. 1 1 _
Now consider the case w = s} s, = w; 1wf1. We have w = wywy =

w; 1wJ71. Since w;wy and w; 1wJ71 have no cancellations inside, this implies
w; = w; " and w = w;l in the free group F. Since at least one of w; and wy is
not equal to 1, this is not possible. A contradiction. Thus, my-s7" # my-s5 .
So, right-sided Isolation Axiom holds for R. Left-sided Isolation Axiom holds

for R as well and is checked similarly.
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12 Table of notations

F
S
kF
R
A
M

AB and A- B
S

A-measure
-

small cancellation
condition C'(m)

the free group

the set of free generators of F

the group algebra of F over a field k
the set of relations in kF

the ideal generated by R (as an ideal)

the set of summands of elements

from R

the set of small pieces with respect to R

a fixed natural number > 10

the set of layouts of multi-turns of
members of the chart of all monomials

the set of maximal occurrences in a
monomaial U

a replacement of an occurrence ay by
a; such that ap and a; are incident-
monomials

the set of elements of Max(U) fully cov-
ered by other elements of Max(U)

the set of elements of Max(U) not fully
covered by other elements of Max(U)

a covering of a monomial U
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page 27, see also
page [20]
Definition 2.1]

page 29
page
pages [33]

page M3l see also

page M3

Definition

page [68] see also
page 39,

Definition

page [0, see also
page [34]

Definition

page [73]

page [73]

page



MinCov(U)
Max>3(U)
MaxS?(U)

V()

NVirt(U)

Equal-f(U)q4
Lower-f(U )4
F.(kF)

L(Y)

the set of elements of C;(U) that inter-
sects with Z, where Z is an occurrence
in U

the size of a minimal covering of U

the set of elements of Max(U) of A-
measure = 3

the set of elements of Max(U) of A-
measure < 2

the set of virtual members of the chart

of U

the number of virtual members of the
chart of U

the set of layouts of multi-turns of vir-
tual members of the chart of all mono-
maals

f-characteristic of a monomial U

a replacement of an occurrence ap in a
monomial U by a; such that aj, and a;
are U-incident-monomaials

the subspace of kF linearly generated
by all derived monomials of U

the set of derived monomials of U with
f-characteristic equal to f(U)

the set of derived monomials of U with
f-characteristic smaller than f(U)

the filtration on kJF based on f-
characteristic
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page Rl

page [[19, see also
page 119,
Definition
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page 127,
Definition

page [I41] see also
page [T40,
Definition [7.3]

page [[72]
Definition [B.I] see
also page [126],
Definition [71]
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page

page [I71]
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<f

GreedyAlg(<;, Add(R))

the space of dependencies on 'Y, where
Y is a linear subspace of kF

the set of layouts of multi-turns of all
monomials from 'Y, where'Y s a linear

subspace of kF

subspaces of kJF linearly generated by
special subsets of M that depend on a
monomial U

all layouts of all multi-turns of the i-
th virtual members of the chart of the
monomials of Equal-f(U)g4

the set of dependencies that come from
monomials of Equal-f(U)y

a graded component that corresponds to
the filtration F,,

the additive closure of R

the set of layouts of multi-turns of vir-
tual members of the chart of all mono-
mials that come from Add(R)

the total ordering of monomials based
on f-characteristic

page [I74]
Definition [R.3]

page 174

page [I81]

page [183]
Definition [84]

page [186], see
Lemma B8

page

page
page

page
page

page [228]
Definition [[0.1]

page 230,
Definition [10.2]
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