
ar
X

iv
:2

21
2.

02
70

8v
1 

 [
m

at
h.

G
T

] 
 6

 D
ec

 2
02

2

ACYLINDRICITY OF THE ACTION OF RIGHT-ANGLED

ARTIN GROUPS ON EXTENSION GRAPHS

EON-KYUNG LEE AND SANG-JIN LEE

Abstract. The action of a right-angled Artin group on its extension graph is known to be acylindrical

because the cardinality of the so-called r-quasi-stabilizer of a pair of distant points is bounded above by

a function of r. The known upper bound of the cardinality is an exponential function of r. In this paper

we show that the r-quasi-stabilizer is a subset of a cyclic group and its cardinality is bounded above by

a linear function of r. This is done by exploring lattice theoretic properties of group elements, studying

prefixes of powers and extending the uniqueness of quasi-roots from word length to star length. We

also improve the known lower bound for the minimal asymptotic translation length of a right angled

Artin group on its extension graph.
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1. Introduction

Throughout the paper Γ denotes a finite simplicial graph, not necessarily connected, with vertex set

V (Γ) and edge set E(Γ). The right-angled Artin group A(Γ) with the underlying graph Γ is the group

generated by V (Γ) such that the defining relations are the commutativity between adjacent vertices,

hence A(Γ) has the group presentation

A(Γ) = 〈 v ∈ V (Γ) | vivj = vjvi for each {vi, vj} ∈ E(Γ) 〉.

Right-angled Artin groups are important groups in geometric group theory, which played a key role

in Agol’s proof of the virtual Haken conjecture [1, 15, 29].

The extension graph Γe is the graph such that the vertex set V (Γe) is the set of all elements of A(Γ)

that are conjugate to a vertex of Γ, and two vertices vg11 and v
g2
2 are adjacent in Γe if and only if they

commute when considered as elements of A(Γ). (Here, vg denotes the conjugate g−1vg.) Therefore

V (Γe) = {vg : v ∈ V (Γ), g ∈ A(Γ)},

E(Γe) = { {vg11 , v
g2
2 } : vg11 v

g2
2 = v

g2
2 v

g1
1 in A(Γ) }.

Extension graphs are usually infinite and locally infinite. They are very useful in the study of right-

angled Artin groups such as the embeddability problem between right-angled Artin groups [17, 19,

23, 24, 16] and the purely loxodromic subgroups which are analogous to convex cocompact subgroups

of the mapping class groups of surfaces [21]. It is known that Γe is a quasi-tree, hence a δ-hyperbolic

graph [17].

Definition 1.1 (acylindrical action). When a group G acts on a path-metric space (X, d) isometrically

from the right, the action is called acylindrical if for any r > 0, there exist R,N > 0 such that whenever

x and y are two points of X with d(x, y) > R, the cardinality of the set

ξ(x, y; r) = {g ∈ G : d(xg, x) 6 r and d(yg, y) 6 r}
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is at most N . The set ξ(x, y; r) is called the r-quasi-stabilizer of the pair of points (x, y). We sometimes

use the notation ξ(X,d)(x, y; r) for the set ξ(x, y; r). Notice that R and N are functions of r. When we

need to specify the acylindricity constants R and N , we say that the action is (R,N)-acylindrical.

There have been many works on properties and examples of groups with an acylinrical action on a

geodesic hyperbolic metric space. For example, see [5, 27, 8].

Let d denote the graph metric of Γe. The right-angled Artin group A(Γ) acts on (Γe, d) isometrically

from the right by conjugation, i.e. the image of the vertex vh under the action of g ∈ A(Γ) is vhg. The

action of A(Γ) on Γe behaves much like the action of the mapping class group Mod(S) of a hyperbolic

surface S on the curve graph C(S). One of the fundamental properties is that the action of A(Γ) on

Γe is acylindrical, which is shown by Kim and Koberda [18].

Theorem 1.2 ([18, Theorem 30]). The action of A(Γ) on Γe is acylindrical.

More precisely, it is shown that the action is (R,N)-acylindrical with

R = R(r) = D(2r + 4D + 7),

N = N(r) =
(
V 22V

)r+2D+1
,

where D = diam(Γ) is the diameter of Γ and V = |V (Γ)| is the cardinality of V (Γ). Notice that N(r)

is an exponential function of r.

For a graph Γ, let Γ̄ denote the complement graph of Γ, i.e. the graph on the same vertices as Γ

such that two distinct vertices are adjacent in Γ̄ if and only if they are not adjacent in Γ.

For the reader’s convenience, we give some remarks on the cases where |V (Γ)| is small and where

Γ or Γ̄ is disconnected.

The following are known for the extension graph Γe [17, Lemma 3.5]: if Γ is disconnected, then Γe

has countably infinite number of path-components; if Γ̄ is disconnected, i.e. Γ is a join, then Γe is also

a join, hence diam(Γe) 6 2; if |V (Γ)| = 1, then |V (Γe)| = 1. If |V (Γ)| ∈ {2, 3}, then either Γ or Γ̄

is disconnected. In fact, Γe is a connected graph with infinite diameter if and only if |V (Γ)| > 4 and

both Γ and Γ̄ are connected. Therefore, when we consider the action of A(Γ) on Γe, it is natural to

require that |V (Γ)| > 4 and both Γ and Γ̄ are connected.

In the study of extension graphs, we use the star length metric d∗ on A(Γ). (See §4 for the definition

of star length.) The metric space (A(Γ), d∗) is quasi-isometric to the extension graph (Γe, d). If

|V (Γ)| = 1 or if Γ̄ is disconnected, then (A(Γ), d∗) has diameter at most 2, which is not interesting.

Therefore, when we consider the action of A(Γ) on (A(Γ), d∗), it is natural to require that |V (Γ)| > 2

and Γ̄ is connected (see Remark 6.2).

From the above discussions, the following settings are natural.

(i) When we consider the action of A(Γ) on (Γe, d), we will assume that |V (Γ)| > 4 and both Γ

and Γ̄ are connected.

(ii) When we consider the action of A(Γ) on (A(Γ), d∗), we will assume that |V (Γ)| > 2 and Γ̄ is

connected.

The following is the main result of this paper, which shows that we can take N(r) as a linear

function of r and furthermore the quasi-stabilizer ξ(x, y; r) is a subset of a cyclic group.
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Theorem A (Theorem 8.2) Let Γ be a finite simplicial graph such that |V (Γ)| > 4 and both Γ and

Γ̄ are connected. Then the action of A(Γ) on Γe is (R,N)-acylindrical with

R = R(r) = D(2V + 7)(r + 1) + 10D,

N = N(r) = 2(V − 2)r − 1,

where D = diam(Γ) and V = |V (Γ)|. Moreover, for any x, y ∈ V (Γe) with d(x, y) > R, if ξ(x, y; r) 6=

{1}, then there exists a loxodromic element g ∈ A(Γ) such that

(i) ξ(x, y; r) ⊂ {1, g±1, g±2, . . . , g±k} for some 1 6 k 6 (V − 2)r − 1;

(ii) the Hausdorff distance between the 〈g〉-orbit of x and that of y is at most D(2r + 7).

The following is an easy example to come up with for g ∈ ξ(x, y; r). Let g be a loxodromic element

with a quasi-axis L = z〈g〉 = {zg
m

: m ∈ Z} for some z ∈ V (Γe) such that d(zg, z) is sufficiently small.

If both x and y are close enough to L, then d(xg, x) and d(yg, y) are also small so that g ∈ ξ(x, y; r)\{1}.

In this case, the Hausdorff distance between the 〈g〉-orbits x〈g〉 and y〈g〉 is small. Theorem 8.2 says

that, in some sense, this is the only case where g ∈ ξ(x, y; r) \ {1} happens: g is loxodromic and the

Hausdorff distance between x〈g〉 and y〈g〉 is small. Moreover, by Theorem 8.2(i), the set ξ(x, y; r)\{1}

is purely loxodromic, that is, there is no elliptic element that r-quasi-stabilizes a pair of sufficiently

distant points.

In order to prove Theorem A, we develop several tools such as lattice theoretic properties of group

elements, decomposition of conjugating elements, properties of prefixes of powers, and then extend

the uniqueness of quasi-roots in [25] from word length to star length. Using these tools, we also obtain

a new lower bound for the minimal asymptotic translation length of the action of A(Γ) on Γe.

Definition 1.3. When a group G acts on a connected metric space (X, d) by isometries from right,

the asymptotic translation length of an element g ∈ G is defined by

(1) τ(g) = τ(X,d)(g) = lim
n→∞

d(xgn, x)

n
,

where x ∈ X. This limit always exists, is independent of the choice of x ∈ X, and satisfies τ(gn) =

|n|τ(g) and τ(h−1gh) = τ(g) for all g, h ∈ G and n ∈ Z. If τ(g) > 0, g is called loxodromic. If

{d(xgn, x)}∞n=1 is bounded, g is called elliptic. If τ(g) = 0 and {d(xgn, x)}∞n=1 is unbounded, g is

called parabolic. For a subgroup H of G, the minimal asymptotic translation length of H for the

action on (X, d) is defined by

(2) L(X,d)(H) = min{τ(X,d)(h) : h ∈ H, τ(X,d)(h) > 0}.

There have been many works on minimal asymptotic translation lengths of the action of mapping

class groups on curve graphs. Let Sg denote a closed orientable surface of genus g. For the action of

the mapping class group Mod(Sg) on the curve graph C(Sg), Gadre and Tsai [12] proved that

LC(Sg)(Mod(Sg)) ≍
1

g2
,

where f(g) ≍ h(g) denotes that there exist positive constants A and B such that Af(g) 6 h(g) 6

Bf(g). The braid group Bn can be regarded as the mapping class group of the n-punctured disk Dn

fixing boundary pointwise. The pure braid group PBn is the subgroup of Bn consisting of mapping

classes that fix each puncture. Kin and Shin [20] and Baik and Shin [3] showed that

LC(Dn)(Bn) ≍
1

n2
, LC(Dn)(PBn) ≍

1

n
.
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For the action of A(Γ) on Γe, it follows from a result of Kim and Koberda [18] that

L(Γe, d)(A(Γ)) >
1

2|V (Γ)|2
.

Baik, Seo and Shin [2] proved that all loxodromic elements of A(Γ) on Γe have rational asymptotic

translation lengths with a common denominator.

In this paper, we show the following, where the denominator of the lower bound is improved from

a quadratic function to a linear function of |V (Γ)|.

Theorem B (Theorem 6.5) Let Γ be a finite simplicial graph such that |V (Γ)| > 4 and both Γ and

Γ̄ are connected. Then

L(Γe, d)(A(Γ)) >
1

|V (Γ)| − 2
.

In the remaining of this section, we explain briefly our ideas and the structure of this paper.

1.1. Idea for the acylindricity. Let us first explain our idea for the acylindricity. For g ∈ A(Γ),

let ‖g‖ denote the word length of g with respect to the generating set V (Γ)±1, and let dℓ denote

temporarily the word length metric defined by dℓ(g, h) = ‖gh−1‖ for g, h ∈ A(Γ). The right multipli-

cation induces an isometric action of A(Γ) on (A(Γ), dℓ). Since ξ(x, y; r) = x−1ξ(1, yx−1; r)x for any

x, y ∈ A(Γ), it suffices to consider r-quasi-stabilizers of the form ξ(1, w; r) for the acylindricity.

Suppose that we are given R > 0 large, r > 0 small and w ∈ A(Γ) with ‖w‖ = dℓ(w, 1) > R. Let

g ∈ ξ(1, w; r) \ {1}. Since ‖g‖ = dℓ(g, 1) 6 r and ‖wgw−1‖ = dℓ(wg,w) 6 r, we have

(∗) ‖w‖ > R, ‖g‖ 6 r, ‖wgw−1‖ 6 r.

In other words, ‖w‖ is large whereas ‖g‖ and ‖wgw−1‖ are small. This happens typically when

(∗∗) w = agn, n ∈ Z, a ∈ A(Γ)

with ‖a‖ small and |n| large. In this case, dℓ(w, g
n) = dℓ(ag

n, gn) = ‖a‖ is small, hence we can say

that w is “close to a power of g”.

Even though it is clearly over-optimistic and false, one may hope that the following hold: given a

triple (R, r,w) as above (i.e. R > 0 is large, r > 0 is small and w ∈ A(Γ) with ‖w‖ > R),

(i) if (∗) holds, then (∗∗) holds for some n ∈ Z and a ∈ A(Γ) with ‖a‖ small;

(ii) only a small number of triples (a, g, n) with ‖a‖ small and ‖g‖ 6 r satisfy (∗∗).

Of course, the above statements are not true at least as they are written. Moreover, the metric

spaces (A(Γ), dℓ) and (Γe, d) are not quasi-isometric, hence the above statements do not imply the

acylindricity of (Γe, d). However, we will see that this approach in fact works in the study of the

acylindricity of the action of A(Γ) on (Γe, d) if we replace the word length metric with the star length

metric.

1.2. Lattice structure. In §2, we collect basic combinatorial group theoretic properties of right-

angled Artin groups. Those properties are stated using lattice theoretic notations.

The motivation comes from Garside groups which are a lattice theoretic generalization of braid

groups and finite type Artin groups. For Garside groups, there are elegant tools especially for the

word and conjugacy problems and the asymptotic translation length [13, 6, 11, 4, 10, 9, 22, 26].

Right-angled Artin groups are not Garside groups, except free abelian groups, hence we cannot apply

Garside theory to right angled-Artin groups. However, some ideas from Garside theory are very useful

in our approach.
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For g ∈ A(Γ), the support of g, denoted supp(g), is the set of generators that appear in a shortest

word on V (Γ)±1 representing g.

For g1, g2 ∈ A(Γ), we say that g1 and g2 disjointly commute, denoted g1 ⇋ g2, if supp(g1) ∩

supp(g2) = ∅ and each v1 ∈ supp(g1) commutes with each v2 ∈ supp(g2).

Let g = g1 · · · gk for some g, g1, . . . , gk ∈ A(Γ). We say that the decomposition is geodesic if

‖g‖ = ‖g1‖+ · · ·+ ‖gk‖. If g = g1g2 is geodesic, we say that g1 is a prefix of g, denoted g1 6L g, and

that g is a right multiple of g1.

The relation 6L is a partial order on A(Γ), hence the notions of gcd g1 ∧L g2 and lcm g1 ∨L g2

make sense. Theorem 2.12 shows that for g1, g2 ∈ A(Γ), the gcd g1 ∧L g2 always exists and the lcm

g1 ∨L g2 exists if and only if g1 and g2 have a common right multiple. Moreover, in this case, there

exist g′1, g
′
2 ∈ A(Γ) such that gi = (g1 ∧L g2)g

′
i for i = 1, 2, g′1 ⇋ g′2 and g1 ∨L g2 = (g1 ∧L g2)g

′
1g

′
2.

1.3. Cyclic conjugations. In §3, we study conjugations gu = u−1gu. The decomposition u−1gu is

not geodesic in general, i.e. ‖u−1gu‖ 6= ‖u−1‖+ ‖g‖ + ‖u‖.

Let g be cyclically reduced, i.e. the word length ‖g‖ is minimal in its conjugacy class. If u 6L g, then

g = ug1 is geodesic for some g1 ∈ A(Γ) and gu = u−1(ug1)u = g1u. In other words, the conjugation of

g by u moves the prefix u to the right. An iteration of this type of conjugations is called a left cyclic

conjugation. The right cyclic conjugation is defined similarly. The cyclic conjugation is an iteration

of left and right cyclic conjugations.

Proposition 3.8 shows that for a cyclically reduced element g, the conjugation gu is a left cyclic

conjugation of g if and only if u 6L gn for some n > 1.

Theorem 3.9 shows that given g, u ∈ A(Γ) with g cyclically reduced, there exists a unique geodesic

decomposition u = u1u2u3 such that u1 disjointly commutes with g; gu2 is a cyclic conjugation;

gu = u−1
3 gu2u3 is geodesic, i.e. ‖u−1

3 gu2u3‖ = ‖u−1
3 ‖+ ‖gu2‖+ ‖u3‖. Furthermore, there is a geodesic

decomposition u2 = u′2u
′′
2 such that gu

′

2 (resp. gu
′′

2 ) is a left (resp. right) cyclic conjugation and u′2 ⇋ u′′2 .

1.4. Star length. An element g ∈ A(Γ) is called a star-word if supp(g) is contained in the star of some

vertex. The star length, denoted ‖g‖∗, of g is the minimum ℓ such that g can be written as a product

of ℓ star-words. Let d∗ denote the metric on A(Γ) induced by the star length: d∗(g1, g2) = ‖g1g
−1
2 ‖∗.

The right multiplication induces an isometric action of A(Γ) on (A(Γ), d∗). The metric spaces

(A(Γ), d∗) and (Γe, d) are quasi-isometric [18]. It seems that, for some algebraic tools, (A(Γ), d∗) is

easier to work with than (Γe, d).

In §4, we study basic properties of the star length concerning the prefix order 6L and the geodesic

decomposition of group elements. For example, Corollary 4.8 shows that if g1g2 is geodesic, then

‖g1‖∗ + ‖g2‖∗ − 2 6 ‖g1g2‖∗ 6 ‖g1‖∗ + ‖g2‖∗.

1.5. Prefixes of powers of cyclically reduced elements. Recall that, for a cyclically reduced

element g, if gu is a left cyclic conjugation, then u 6L gm for some m > 1, i.e. u is a prefix of some

power of g. In §5, we study prefixes of powers. In particular, we show that if g is cyclically reduced

and non-split and if u 6L gm for some m > 1, then u = gna is geodesic for some 0 6 n 6 m and

a ∈ A(Γ) with ‖a‖∗ 6 ‖g‖∗ + 1 (see Corollary 5.6).

1.6. Asymptotic translation length. In §6, we prove Theorem B by using the results in §5.

1.7. Uniqueness of quasi-roots. An element g is called a quasi-root of h if there is a decomposition

h = agnb
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for some n > 1 and a, b ∈ A(Γ) such that ‖h‖ = ‖a‖+n‖g‖+‖b‖. It is called an (A,B, r)-quasi-root if

‖a‖ 6 A, ‖b‖ 6 B and ‖g‖ 6 r and an (A,B, r)∗-quasi-root if ‖a‖∗ 6 A, ‖b‖∗ 6 B and ‖g‖∗ 6 r. The

conjugates aga−1 and b−1gb are called the leftward- and the rightward-extraction of the quasi-root g,

respectively.

In [25], it is shown that if ‖h‖ > A + B + (2|V (Γ)| + 1)r, then strongly non-split and primitive

(A,B, r)-quasi-roots of h are unique up to conjugacy, and their leftward- and rightward-extractions

are unique. (See §4 and §7 for the definitions of strongly non-split elements and primitive elements.)

In §7, we extend the above result to (A,B, r)∗-quasi-roots: if ‖h‖∗ > 2A+2B+(2|V (Γ)|+3)r+2, then

primitive (A,B, r)∗-quasi-roots of h are unique up to conjugacy, and their leftward- and rightward-

extractions are unique.

1.8. Proof of the acylindricity. In §8, we first compute the acylindricity constants for the action

of A(Γ) on (A(Γ), d∗) (Theorem 8.1) by combining the results from the previous sections. Then we

prove Theorem A using the quasi-isometry between (A(Γ), d∗) and (Γe, d).

1.9. Conventions and notations. Throughout the paper, all the group actions are right-actions.

For graphs Γ1 and Γ2, the disjoint union Γ1 ⊔ Γ2 is the graph such that

V (Γ1 ⊔ Γ2) = V (Γ1) ⊔ V (Γ2),

E(Γ1 ⊔ Γ2) = E(Γ1) ⊔ E(Γ2).

The join Γ1 ∗ Γ2 is the graph such that Γ1 ∗ Γ2 = Γ̄1 ⊔ Γ̄2, hence

V (Γ1 ∗ Γ2) = V (Γ1) ⊔ V (Γ2),

E(Γ1 ∗ Γ2) = E(Γ1) ⊔ E(Γ2) ⊔ {{v1, v2} : v1 ∈ V (Γ1), v2 ∈ V (Γ2) }.

A graph is called a join if it is the join of two nonempty graphs. A subgraph that is a join is called a

subjoin.

For X ⊂ V (Γ), Γ[X] denotes the subgraph of Γ induced by X, i.e.

V (Γ[X]) = X, E(Γ[X]) = { {v1, v2} ∈ E(Γ) : v1, v2 ∈ X}.

For g ∈ A(Γ), the subgraphs Γ[supp(g)] and Γ̄[supp(g)] are abbreviated to Γ[g] and Γ̄[g], respectively.

For v ∈ V (Γ) and X ⊂ V (Γ), the sets LkΓ(v), StΓ(v) and StΓ(X) are defined as follows:

LkΓ(v) = {v1 ∈ V (Γ) : {v1, v} ∈ E(Γ)},

StΓ(v) = {v} ∪ LkΓ(v),

StΓ(X) =
⋃

v∈X

StΓ(v).

They are called the link of v, the star of v and the star of X, respectively. They will be written as

Lk(v), St(v) and St(X) by omitting Γ whenever the context is clear.

The path graph Pk = (v1, v2, . . . , vk) is the graph with V (Pk) = {v1, . . . , vk} and E(Pk) = {{vi, vi+1} :

1 6 i 6 k − 1}, hence Pk looks like
v1
•

v2
•

vk−1
•

vk
•· · · .

A path in a graph Γ is a tuple (v1, v2, . . . , vk) of vertices of Γ such that {vi, vi+1} ∈ E(Γ) for all

1 6 i 6 k − 1. (We do not assume that the vertices or the edges in the path are mutually distinct.

Hence it means the walk in the graph theoretical terminology.)
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2. Lattice structures

In this section we study lattice structures in right-angled Artin groups.

An element of V (Γ)±1 = V (Γ)∪V (Γ)−1 is called a letter. A word means a finite sequence of letters.

For words w1 and w2, the notation w1 ≡ w2 means that w1 and w2 coincide as sequences of letters. A

word w′ is called a subword of a word w if w ≡ w1w
′w2 for (possibly empty) words w1 and w2.

Suppose that g ∈ A(Γ) is expressed as a word w on V (Γ)±1. The word w is called reduced if w is

a shortest word among all the words representing g. In this case, the length of w is called the word

length of g and denoted by ‖g‖.

Definition 2.1 (support). For g ∈ A(Γ), the support of g, denoted supp(g), is the set of generators

that appear in a reduced word representing g. It is known that supp(g) is well defined (by [14]), i.e.

it does not depend on the choice of a reduced word representing g.

Definition 2.2 (disjointly commute). We say that g1, g2 ∈ A(Γ) disjointly commute, denoted g1 ⇋ g2,

if supp(g1) ∩ supp(g2) = ∅ and each v1 ∈ supp(g1) commutes with each v2 ∈ supp(g2). (In particular,

the identity element 1 ∈ A(Γ) disjointly commutes with any g ∈ A(Γ).)

The notation Γ[g] is an abbreviation of Γ[supp(g)], the subgraph of Γ induced by supp(g). From a

graph theoretical viewpoint, g1 ⇋ g2 means that supp(g1) ∩ supp(g2) = ∅ and Γ̄[g1g2] = Γ̄[g1] ⊔ Γ̄[g2]

in the complement graph Γ̄ (or equivalently Γ[g1g2] = Γ[g1] ∗ Γ[g2] in the graph Γ). Recall that

StΓ̄(supp(g)) denotes the star of supp(g) in the complement graph Γ̄. The following lemma is now

obvious.

Lemma 2.3. For g1, g2 ∈ A(Γ), the following are equivalent:

(i) g1 ⇋ g2 in A(Γ);

(ii) StΓ̄(supp(g1)) ∩ supp(g2) = ∅.

Let w be a (non-reduced) word on V (Γ)±1. A subword v±1w1v
∓1 of w, where v ∈ V (Γ), is called a

cancellation of v in w if supp(w1) ⊂ StΓ(v), i.e. each v1 ∈ supp(w1) commutes with v. If, furthermore,

no letter in w1 is equal to v or v−1, it is called an innermost cancellation of v in w. It is known that

the following are equivalent:

(i) w is a reduced word;

(ii) w has no cancellation;

(iii) w has no innermost cancellation.

Abusing terminology, we do not distinguish between an element g ∈ A(Γ) and a reduced word w

representing g if there is no confusion. For example, if there is a cancellation in w1w2, where each wi

is a reduced word representing an element gi, then we just say that there is a cancellation in g1g2.

Definition 2.4 (geodesic decomposition). For k > 1 and g, g1, . . . , gk ∈ A(Γ), we say that the decom-

position g = g1 · · · gk is geodesic, or g1 · · · gk is geodesic, if ‖g‖ = ‖g1‖+ · · ·+ ‖gk‖.

If g1 · · · gk is geodesic, then the following are obvious from the definition:

(i) g−1
k g−1

k−1 · · · g
−1
1 is geodesic;

(ii) gpgp+1 · · · gq is geodesic for any 1 6 p < q 6 k;

(iii) supp(g1 · · · gk) = supp(g1) ∪ · · · ∪ supp(gk).

Definition 2.5 (prefix order). Let g = g1g2 be geodesic for g, g1, g2 ∈ A(Γ). We say that g1 is a prefix

(or a left divisor) of g, denoted g1 6L g, and that g is a right multiple of g1. Similarly, we say that g2

is a suffix (or a right divisor) of g, denoted g2 6R g, and that g is a left multiple of g2.
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Clearly both 6L and 6R are partial orders on A(Γ). The following lemma shows their basic

properties. The proof is straightforward, hence we omit it.

Lemma 2.6. Let g, g1, . . . , gn, h1, h2 ∈ A(Γ).

(i) g1 6L g2 if and only if g−1
1 6R g−1

2 .

(ii) If gg1 and gg2 are geodesic, then gg1 6L gg2 if and only if g1 6L g2.

(iii) g1 · · · gn is geodesic if and only if g1 · · · gk 6L g1 · · · gk+1 for all 1 6 k 6 n− 1.

(iv) Suppose g1g2 = h1h2 such that both g1g2 and h1h2 are geodesic. Then g1 6L h1 if and only if

h2 6R g2.

Definition 2.7 (gcd and lcm). For g, h ∈ A(Γ), the symbols g ∧L h and g ∨L h denote the greatest

common divisor (gcd) and the least common multiple (lcm) with respect to 6L. In other words, g∧Lh

is an element such that (i) g ∧L h 6L g and g ∧L h 6L h; (ii) if u 6L g and u 6L h for some u ∈ A(Γ),

then u 6L g ∧L h. Similarly, g ∨L h is an element such that (i) g 6L g ∨L h and h 6L g ∨L h; (ii) if

g 6L u and h 6L u for some u ∈ A(Γ), then g ∨L h 6L u.

The symbols g ∧R h and g ∨R h denote the gcd and lcm respectively with respect to 6R.

The elements g ∧L h and g ∨L h are unique if they exist. In Theorem 2.12 we will show that g ∧L h

always exists and that g ∨L h exists if and only if g and h admit a common right multiple.

Note that g and h have no nontrivial common prefix if and only if g ∧L h = 1, i.e. the gcd g ∧L h

exists and is equal to the identity. Therefore even though we did not prove yet the existence of g ∧L h

for arbitrary g and h, we can safely use the expression g ∧L h = 1.

The following lemma is an easy consequence of the fact that a word is reduced if and only if it has

no innermost cancellation.

Lemma 2.8. Let u, g, g1, . . . , gk ∈ A(Γ).

(i) Suppose that g1 · · · gk is not geodesic. Then there exist 1 6 p < q 6 k and x ∈ V (Γ)±1 such

that

x−1 6R gp, x 6L gq, x ⇋ gj for all p < j < q.

Furthermore, if both g1 · · · gk−1 and g2 · · · gk are geodesic, then p = 1 and q = k.

(ii) Suppose that for each 1 6 p < q 6 k, either gpgq is geodesic or gpgj1 · · · gjrgq is geodesic for

some p < j1 < · · · < jr < q. Then g1 · · · gk is geodesic.

(iii) Suppose that gg is geodesic. For any n > 2 and a, b ∈ A(Γ), the following are equivalent:

(a) agb is geodesic;

(b) a gg · · · g
︸ ︷︷ ︸

n

b is geodesic;

(c) agnb is geodesic.

In particular, gn = gg · · · g is geodesic for any n > 2.

(iv) Suppose that gigi is geodesic for all 1 6 i 6 k and that a1g1a2g2 · · · akgkak+1 is geodesic for

some a1, . . . , ak+1 ∈ A(Γ). Then a1g
n1

1 a2g
n2

2 · · · akg
nk

k ak+1 is geodesic for any ni > 1.

Proof. (i) Let wi be a reduced word representing gi for i = 1, . . . , k. Since g1 · · · gk is not geodesic, the

word w ≡ w1 · · ·wk is not reduced, hence it has an innermost cancellation. Since each wi is reduced,

the cancellation must occur between x−1 in wp and x in wq for some 1 6 p < q 6 k and x ∈ V (Γ)±1.

Therefore wp and wq are of the form wp ≡ w′
px

−1w′′
p and wq ≡ w′

qxw
′′
q such that x disjointly commutes

with w′′
p , wp+1, . . . , wq−1, w

′
q, hence x−1 6R gp, x 6L gq and x ⇋ gj for all p < j < q.
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If either p > 1 or q < k, then either g2 · · · gk or g1 · · · gk−1 is not geodesic. Therefore if both

g1 · · · gk−1 and g2 · · · gk are geodesic, then p = 1 and q = k.

(ii) Assume that g1 · · · gk is not geodesic. By (i), there exist 1 6 p < q 6 k and x ∈ V (Γ)±1 such

that x−1 6R gp, x 6L gq and x ⇋ gj for all j with p < j < q. Therefore none of gpgq and gpgj1 · · · gjrgq
(p < j1 < · · · < jr < q) is geodesic, which contradicts the hypothesis.

(iii) (a) ⇒ (b): Let h1 = a, hi = g for i = 2, . . . , n + 1 and hn+2 = b. Then h1, . . . , hn+2 satisfy

the hypothesis of (ii), hence h1h2 · · · hn+1hn+2 = a g · · · g
︸ ︷︷ ︸

n

b is geodesic.

(b) ⇒ (a): Since a g · · · g
︸ ︷︷ ︸

n

b is geodesic, ag and gb are geodesic. If agb is not geodesic, then there

exists x ∈ V (Γ)±1 such that x−1 6R a, x 6L b and x ⇋ g by (i). Hence ag · · · gb is not geodesic,

which is a contradiction.

(b) ⇔ (c): From (a) ⇒ (b) with a = b = 1, gn = gg · · · g is geodesic, i.e. ‖gn‖ = n‖g‖. Therefore

‖agnb‖ = ‖a‖ + ‖gn‖+ ‖b‖ if and only if ‖agnb‖ = ‖a‖+ n‖g‖ + ‖b‖, i.e. agnb is geodesic if and only

if a gg · · · g
︸ ︷︷ ︸

n

b is geodesic.

(iv) Applying (iii) with a = a1, g = g1, b = a2g2 · · · ak+1 and n = n1, we get that a1g
n1

1 a2g2 · · · ak+1

is geodesic. Then applying (iii) with a = a1g
n1

1 a2, g = g2, b = a3g3 · · · ak+1 and n = n2, we get

that a1g
n1

1 a2g
n2

2 a3g3 · · · ak+1 is geodesic. Iterating this process, we get that a1g
n1

1 a2g
n2

2 · · · akg
nk

k ak+1

is geodesic. �

Lemma 2.9. Let g1, g2 ∈ A(Γ) and x ∈ V (Γ)±1.

(i) If g1g2 is not geodesic, then there exists y ∈ V (Γ)±1 such that y−1 6R g1 and y 6L g2.

(ii) Let g1g2 be geodesic. If x 6L g1g2 and x 66L g1, then x 6L g2 and x ⇋ g1.

(iii) Let g1g2 be geodesic. If x 6R g1g2 and x 66R g2, then x 6R g1 and x ⇋ g2.

Proof. (i) It follows from Lemma 2.8(i) with k = 2.

(ii) Since x 66L g1, the decomposition x−1 · g1 is geodesic. Since x 6L g1g2, the decomposition

x−1 ·g1g2 is not geodesic. Since both x−1 ·g1 and g1 ·g2 are geodesic, there exists y ∈ V (Γ)±1 such that

y−1 6R x−1, y 6L g2 and y ⇋ g1 (by Lemma 2.8(i)), hence x = y. Therefore x 6L g2 and x ⇋ g1.

(iii) The proof is analogous to (ii). �

Lemma 2.10. Let g ∈ A(Γ) and x 6= y ∈ V (Γ)±1 (possibly y = x−1).

(i) If x 6L g and y 6R g, then g = xhy is geodesic for some h ∈ A(Γ).

(ii) If x, y 6L g, then x ⇋ y and g = xyh is geodesic for some h ∈ A(Γ).

(iii) If x, y 6R g, then x ⇋ y and g = hxy is geodesic for some h ∈ A(Γ).

Proof. (i) Since y 6R g, g = g′y is geodesic for some g′ ∈ A(Γ). Since x 6L g = g′y, if x 66L g′, then

x 6L y (by Lemma 2.9(ii)), which contradicts the hypothesis x 6= y. Thus x 6L g′, hence g′ = xh is

geodesic for some h ∈ A(Γ). Therefore g = g′y = xhy is geodesic.

(ii) Since x 6L g, g = xg′ is geodesic for some g′ ∈ A(Γ). Since y 6= x (hence y 66L x) and y 6L xg′,

we have y ⇋ x and y 6L g′ (by Lemma 2.9(ii)), hence g′ = yh is geodesic for some h ∈ A(Γ). Therefore

g = xg′ = xyh is geodesic.

(iii) The proof is analogous to (ii). �

Lemma 2.11. Let g1, g2, h1, h2, h ∈ A(Γ) with both g1g2 and h1h2 geodesic.
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g1

❄❄
❄❄

❄❄
❄❄

h1 g1

❄❄
❄❄

❄❄
❄❄

x g1

g2

❄❄
❄❄

❄❄
❄❄

h1

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

g′2

❄❄
❄❄

❄❄
❄❄

x

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

g′′2

Figure 1. van Kampen diagram for Lemma 2.11(ii)

(i) If h ∧L g1 = h ∧L g2 = 1, then h ∧L (g1g2) = 1.

(ii) If h 6L g1g2 and h ∧L g1 = 1, then h ⇋ g1 and h 6L g2.

(iii) Let g1g2 = h1h2. If g1 ∧L h1 = g2 ∧R h2 = 1, then g1 ⇋ h1, g1 = h2 and g2 = h1.

Proof. (i) If h ∧L (g1g2) 6= 1, then there exists x ∈ V (Γ)±1 such that x 6L h and x 6L g1g2. Since

x 6L h and h ∧L g1 = h ∧L g2 = 1, we have x 66L g1 and x 66L g2. Since x 6L g1g2 and x 66L g1, we

have x 6L g2 by Lemma 2.9(ii), which is a contradiction.

(ii) We use induction on ‖h‖.

If ‖h‖ = 0, there is nothing to prove. If ‖h‖ = 1, it holds by Lemma 2.9(ii).

Assume ‖h‖ > 2. Then h = h1x is geodesic for some h1 ∈ A(Γ) and x ∈ V (Γ)±1. See Figure 1.

Notice that h1 6L g1g2 and h1 ∧L g1 = 1. By the induction hypothesis, h1 ⇋ g1 and h1 6L g2, hence

g2 = h1g
′
2 is geodesic for some g′2 ∈ A(Γ).

Since h1 ⇋ g1, we have g1g2 = g1h1g
′
2 = h1g1g

′
2. Since g1g2 is geodesic, so is h1g1g

′
2. Since

h1x = h 6L g1g2 = h1g1g
′
2 and both h1x and h1g1g

′
2 are geodesic, we have x 6L g1g

′
2.

Observe x 66L g1. (If x 6L g1, then x ⇋ h1 because h1 ⇋ g1. Since h = h1x = xh1 is geodesic, we

have x 6L h. Thus x is a common prefix of g1 and h, which contradicts the hypothesis h ∧L g1 = 1.)

By Lemma 2.9(ii), we get x ⇋ g1 and x 6L g′2, hence g′2 = xg′′2 is geodesic for some g′′2 ∈ A(Γ).

Since g2 = h1g
′
2 = h1xg

′′
2 = hg′′2 and since hg′′2 is geodesic, we have h 6L g2. On the other hand,

since h1 ⇋ g1 and x ⇋ g1, we have h = h1x ⇋ g1.

(iii) Since g1 6L h1h2, h1 6L g1g2 and g1 ∧L h1 = 1, we have g1 ⇋ h1, g1 6L h2 and h1 6L g2 (by

(ii)). Thus h2 = g1h
′
2 and g2 = h1g

′
2 are geodesic for some g′2, h

′
2 ∈ A(Γ).

Observe g1h1g
′
2 = g1g2 = h1h2 = h1g1h

′
2 = g1h1h

′
2, which implies g′2 = h′2. Since g2 ∧R h2 = 1, we

have g′2 = h′2 = 1, hence g1 = h2 and g2 = h1. �

The following is the main result of this section.

Theorem 2.12. For g1, g2 ∈ A(Γ), the gcd g1 ∧L g2 always exists and the lcm g1 ∨L g2 exists if and

only if g1 and g2 have a common right multiple.

More precisely, if g0 is a maximal common prefix of g1 and g2, hence g1 = g0g
′
1 and g2 = g0g

′
2 are

geodesic for some g′1, g
′
2 ∈ A(Γ) with g′1 ∧L g′2 = 1, then the following hold.

(i) g1 and g2 have a common right multiple if and only if g′1 ⇋ g′2. In this case, g1 ∨L g2 exists

and g1 ∨L g2 = g1g
′
2 = g2g

′
1 = g0g

′
1g

′
2. In particular, supp(g1 ∨L g2) = supp(g1) ∪ supp(g2).

(ii) g1 ∧L g2 = g0.

Proof. (i) Assume g′1 ⇋ g′2. Then g′1g
′
2 is geodesic (otherwise there exists x ∈ V (Γ)±1 such that

x−1 6R g′1 and x 6L g′2 by Lemma 2.9(i), hence g′1 and g′2 do not disjointly commute). Since g0g
′
1,

g0g
′
2 and g′1g

′
2 are all geodesic, g0g

′
1g

′
2 is geodesic (by Lemma 2.8(ii)). Therefore g0g

′
1g

′
2 = g1g

′
2 = g2g

′
1

is a common right multiple of g1 and g2.



ACYLINDRICITY OF THE ACTION OF RAAGS ON EXTENSION GRAPHS 11

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

g1

g0

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

g2

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

g′1

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

g′2

❄❄❄❄❄❄❄❄❄❄❄❄❄

h′1

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

h′2

❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

h1

h0

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

h2

Figure 2. van Kampen diagram for Theorem 2.12

Conversely, assume that g1 and g2 have a common right multiple h. Then h = g1h1 = g2h2 are

geodesic for some h1, h2 ∈ A(Γ). We need to show that g′1 ⇋ g′2.

Let h0 be a maximal common suffix of h1 and h2. Then h1 = h′1h0 and h2 = h′2h0 are geodesic for

some h′1, h
′
2 ∈ A(Γ) with h′1 ∧R h′2 = 1. See Figure 2. Notice that g′1h

′
1 = g′2h

′
2 and that g′1, g

′
2, h

′
1, h

′
2

satisfy the hypotheses of Lemma 2.11(iii). Therefore g′1 ⇋ g′2.

Lemma 2.11(iii) also claims g′1 = h′2 and g′2 = h′1, hence h = g1h1 = g0g
′
1h

′
1h0 = g0g

′
1g

′
2h0. Therefore

g0g
′
1g

′
2 is a prefix of any common right multiple h of g1 and g2, namely, g1 ∨L g2 = g0g

′
1g

′
2. It

follows immediately that supp(g1 ∨L g2) = supp(g1) ∪ supp(g2). Since g0g
′
1g

′
2 = g0g

′
2g

′
1, we have

g1 ∨L g2 = g0g
′
1g

′
2 = g1g

′
2 = g2g

′
1.

(ii) Let u0 be a common prefix of g1 and g2. Since g1 and g2 are common right multiples of g0 and

u0, the lcm g0∨L u0 exists (by (i)) and is a prefix of both g1 and g2, hence g0∨L u0 is a common prefix

of g1 and g2. Since g0 ∨L u0 is a right multiple of g0 and since g0 is a maximal common prefix of g1

and g2, we have g0 = g0 ∨L u0, hence u0 6L g0. Therefore g0 = g1 ∧L g2. �

Obviously we can replace (∧L,∨L) in Theorem 2.12 with (∧R,∨R) as follows.

Theorem 2.13. For g1, g2 ∈ A(Γ), the gcd g1 ∧R g2 always exists and the lcm g1 ∨R g2 exists if and

only if g1 and g2 have a common left multiple.

More precisely, if g0 is a maximal common suffix of g1 and g2, hence g1 = g′1g0 and g2 = g′2g0 are

geodesic for some g′1, g
′
2 ∈ A(Γ) with g′1 ∧R g′2 = 1, then the following hold.

(i) g1 and g2 have a common left multiple if and only if g′1 ⇋ g′2. In this case, g1 ∨R g2 exists

and g1 ∨R g2 = g′2g1 = g′1g2 = g′1g
′
2g0. In particular, supp(g1 ∨R g2) = supp(g1) ∪ supp(g2).

(ii) g1 ∧R g2 = g0.

Observe that the gcds g1 ∧L g2 and g1 ∧R g2 exist for any g1, g2 ∈ A(Γ) by the above theorems.

The following lemma is obvious, hence we omit the proof.

Lemma 2.14. Let g1, g2 ∈ A(Γ).

(i) (g1 ∧L g2)
−1 = g−1

1 ∧R g−1
2 .

(ii) If g1 = g0g
′
1 and g2 = g0g

′
2 are geodesic, then g1 ∧L g2 = g0(g

′
1 ∧L g′2). In particular, if

g′1 ∧L g′2 = 1, then g1 ∧L g2 = g0.

(iii) If g1 6L g2, then (h ∧L g1) 6L (h ∧L g2) for any h ∈ A(Γ).

(iv) The statements analogous to (ii) and (iii) also hold for (6R,∧R).

Lemma 2.15. Let g1, g2, h ∈ A(Γ) with g1g2 geodesic.

(i) If h ⇋ g1, then h ∧L (g1g2) = h ∧L g2.

(ii) If supp(h) ∩ supp(g2) = ∅, then h ∧L (g1g2) = h ∧L g1.

(iii) If h 6L g1g2 and h ⇋ g1, then h 6L g2.
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(iv) If h 6L g1g2 and supp(h) ∩ supp(g2) = ∅, then h 6L g1.

(v) The statements analogous to (i)–(iv) also hold for (6R,∧R).

Proof. (i) Let h0 = h ∧L g2. Then h = h0h
′ and g2 = h0g

′
2 are geodesic for some h′, g′2 ∈ A(Γ) with

h′∧L g
′
2 = 1. Since h ⇋ g1 and h = h0h

′ is geodesic, we have h0 ⇋ g1 and h′ ⇋ g1, hence h
′∧L g1 = 1.

Notice that g1g
′
2 is geodesic because g1g2(= g1h0g

′
2) = h0g1g

′
2 is geodesic. Since h

′∧Lg1 = h′∧Lg
′
2 =

1, we have h′ ∧L (g1g
′
2) = 1 (by Lemma 2.11(i)). Therefore by Lemma 2.14.(ii)

h ∧L (g1g2) = (h0h
′) ∧L (g1h0g

′
2) = (h0h

′) ∧L (h0g1g
′
2)

= h0(h
′ ∧L (g1g

′
2)) = h0 = h ∧L g2.

(ii) Let h0 = h ∧L g1. Then h = h0h
′ and g1 = h0g

′
1 are geodesic for some h′, g′1 ∈ A(Γ) with

h′∧Lg
′
1 = 1. Since supp(h)∩supp(g2) = ∅ and since h = h0h

′ is geodesic, we have supp(h′)∩supp(g2) =

∅, hence h′ ∧L g2 = 1.

Notice that g′1g2 is geodesic because g1g2 = h0g
′
1g2 is geodesic. Since h′ ∧L g′1 = h′ ∧L g2 = 1, we

have h′ ∧L (g′1g2) = 1 (by Lemma 2.11(i)). Therefore by Lemma 2.14.(ii)

h ∧L (g1g2) = (h0h
′) ∧L (h0g

′
1g2) = h0(h

′ ∧L (g′1g2)) = h0 = h ∧L g1.

(iii) and (iv) are direct consequences of (i) and (ii), respectively.

(v) The proof is analogous to (i)–(iv). �

Corollary 2.16. Suppose that a set C ⊂ A(Γ) satisfies the following conditions.

(P1) C is prefix-closed, i.e. if g ∈ C and h 6L g, then h ∈ C .

(P2) For g ∈ A(Γ) and x, y ∈ V (Γ)±1 such that both gx and gy are geodesic, if gx, gy ∈ C and

x ⇋ y, then gxy ∈ C.

Then C is lcm-closed, i.e. if g1, g2 ∈ C and g1 ∨L g2 exists, then g1 ∨L g2 ∈ C.

Proof. Let g1, g2 ∈ C such that g1 ∨L g2 exists. Let g0 = g1 ∧L g2. Then

g1 = g0g
′
1 and g2 = g0g

′
2

are geodesic for some g′1, g
′
2 ∈ A(Γ). By Theorem 2.12, g′1 ⇋ g′2 and g1 ∨L g2 = g0g

′
1g

′
2.

We use induction on ‖g′1‖+‖g′2‖. If ‖g
′
1‖ = 0 or ‖g′2‖ = 0, then g1∨Lg2 is either g2 or g1, respectively,

hence there is nothing to prove. If ‖g′1‖ = ‖g′2‖ = 1, then g1 ∨L g2 = g0g
′
1g

′
2 ∈ C by (P2). Therefore

we may assume ‖g′1‖+ ‖g′2‖ > 3 and ‖g′1‖, ‖g′2‖ > 1.

Then g′1 = g′′1x1 and g′2 = g′′2x2 are geodesic for some g′′1 , g
′′
2 ∈ A(Γ) and x1, x2 ∈ V (Γ)±1. Thus

g1 = g0g
′′
1x1 and g2 = g0g

′′
2x2

are geodesic, where g′′1x1 ⇋ g′′2x2.

Since g1, g2 ∈ C, we have g0g
′′
1 , g0g

′′
2 ∈ C by (P1), hence by the induction hypothesis we have

g1 ∨L (g0g
′′
2 ) = g0g

′′
1g

′′
2x1 ∈ C and g0g

′′
1 ∨L g2 = g0g

′′
1g

′′
2x2 ∈ C.

Therefore g1 ∨L g2 = g0g
′′
1g

′′
2x1x2 ∈ C by (P2). �
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3. Cyclic conjugations

Definition 3.1 (cyclically reduced). An element g ∈ A(Γ) is called cyclically reduced if it has the

minimal word length in its conjugacy class.

Servatius [28, Proposition on p. 38] showed that every g ∈ A(Γ) has a unique geodesic decomposition

g = u−1hu

with h cyclically reduced. The following lemma shows that u is determined from g by u = g ∧R g−1.

Lemma 3.2. Let g, h, u ∈ A(Γ).

(i) If g = u−1hu is geodesic with h cyclically reduced, then u = g ∧R g−1.

(ii) g is cyclically reduced if and only if g ∧R g−1 = 1.

Proof. (i) We have two geodesic decompositions g = u−1hu and g−1 = u−1h−1u. By Lemma 2.14, it

suffices to show (u−1h) ∧R (u−1h−1) = 1 or equivalently (hu) ∧L (h−1u) = 1.

Assume (hu) ∧L (h−1u) 6= 1. Then there exists x ∈ V (Γ)±1 with x 6L hu and x 6L h−1u.

If x 66L h, then x ⇋ h (hence x ⇋ h−1) and x 6L u (by Lemma 2.9(ii)). Let u = xu1 be geodesic

for some u1 ∈ A(Γ). Then g = u−1hu = u−1
1 x−1hxu1 = u−1

1 hu1. This contradicts that g = u−1hu is

geodesic. Therefore x 6L h. By the same reason, x 6L h−1, hence x−1 6R h.

Since x 6L h and x−1 6R h, h = xh1x
−1 is geodesic for some h1 (by Lemma 2.10(i)), which

contradicts that h is cyclically reduced. Therefore (hu) ∧L (h−1u) = 1.

(ii) It follows from (i). �

Definition 3.3 (starting set). For g ∈ A(Γ), the starting set S(g) of g is defined as

S(g) = {x ∈ V (Γ)±1 : x 6L g}.

Lemma 3.4. The following hold.

(i) For any g ∈ A(Γ), the following are equivalent.

(a) g is cyclically reduced.

(b) There is no geodesic decomposition such as g = u−1hu, where u, h ∈ A(Γ) with u 6= 1.

(c) For any geodesic decomposition g = g1g2, g2g1 is geodesic.

(d) For any g1 ∈ A(Γ) with g1 6L g, gg1 is geodesic.

(e) gn = gg · · · g is geodesic (i.e. ‖gn‖ = n‖g‖) for some n > 2.

(f) gn = gg · · · g is geodesic (i.e. ‖gn‖ = n‖g‖) for all n > 2.

(g) gn is cyclically reduced for some n > 2.

(h) gn is cyclically reduced for all n > 2.

(ii) Let g1 · · · gk be geodesic (i.e. ‖g1 · · · gk‖ = ‖g1‖+ · · ·+ ‖gk‖). Then gn1

1 · · · gnk

k is geodesic (i.e.

‖gn1

1 · · · gnk

k ‖ = ‖gn1

1 ‖+ · · ·+ ‖gnk

k ‖) for any positive integers ni.

(iii) For any g ∈ A(Γ) and n > 2, supp(gn) = supp(g) and S(gn) = S(g).

Proof. (i) The equivalences between (a), (b), (c), (e), (f) are easy to prove. For example, see [25,

Lemma 2.1]. We show the remaining equivalences assuming the known equivalences.

(a) ⇒ (d): Assume that g1 6L g but gg1 is not geodesic. Then there exists a letter x ∈ V (Γ)±1 such

that x 6R g and x−1 6L g1 (by Lemma 2.9(i)). Since g1 6L g, we have x−1 6L g, hence x 6R g−1.

Now x 6R g ∧R g−1, hence g ∧R g−1 6= 1. By Lemma 3.2(ii), g is not cyclically reduced.

(d) ⇒ (e): Since g 6L g, gg is geodesic.
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(f) ⇒ (h): Let n > 2. Since ‖g2n‖ = 2n‖g‖ and ‖gn‖ = n‖g‖, we have ‖g2n‖ = 2‖gn‖, hence gn · gn

is geodesic. Because (a) and (e) are equivalent, gn is cyclically reduced.

(h) ⇒ (g): It is obvious.

(g) ⇒ (a): Assume that g is not cyclically reduced. Then g = u−1hu is geodesic for some u, h ∈ A(Γ)

such that u 6= 1 and h is cyclically reduced [28]. Observe that hh is geodesic (by (a) ⇔ (f)). Hence gn

has a geodesic decomposition u−1hnu for any n > 2 (by Lemma 2.8). Therefore gn is not cyclically

reduced for any n > 2 (by (a) ⇔ (b)).

(ii) Let gi = u−1
i hiui be a geodesic decomposition of gi with hi cyclically reduced for i = 1, . . . , k.

Then

g1 · · · gk = u−1
1 h1u1 · · · u

−1
k hkuk,

gn1

1 · · · gnk

k = u−1
1 hn1

1 u1 · · · u
−1
k h

nk

k uk.

In particular, u−1
1 h1u1 · · · u

−1
k hkuk is geodesic because g1 · · · gk and each gi = u−1

i hiui are geodesic.

Notice that each hihi is geodesic by (i). Applying Lemma 2.8(iv), we get that u−1
1 hn1

1 u1 · · · u
−1
k h

nk

k uk

is geodesic. Therefore gn1

1 · · · gnk

k is geodesic.

(iii) Let g = u−1hu be a geodesic decomposition of g with h cyclically reduced. Then

(3) gn = u−1hnu = u−1h · · · hu

are each geodesic decompositions of gn (by Lemma 2.8(iii)).

Notice that supp(u) = supp(u−1) and that if g1 · · · gk is a geodesic decomposition, then supp(g1 · · · gk) =

supp(g1) ∪ · · · ∪ supp(gk). Therefore supp(g) = supp(u) ∪ supp(h) = supp(gn) from (3).

Observe that x 6L hn if and only if x 6L h: if x 6L h, then it is obvious that x 6L hn; if x 66L h,

then x 66L hn (otherwise, x 6L hn = h · hn−1 implies x ⇋ h and x 6L hn−1, which contradicts that

supp(h) = supp(hn−1)).

Since g = u−1hu is geodesic, x 6L g if and only if one of the following holds (by Lemma 2.9(ii)):

(i) x 6L u−1; (ii) x 6L h and x ⇋ u−1; (iii) x 6L u and x ⇋ u−1h. Notice that (iii) cannot happen.

Since x 6L h if and only if x 6L hn, we can conclude that x 6L g if and only if x 6L gn. Therefore

S(g) = S(gn). �

Definition 3.5 (cycling, cyclic conjugation). Let g ∈ A(Γ) be cyclically reduced.

(i) For a letter x ∈ V (Γ)±1, the conjugation gx = x−1gx is called a left (resp. right) cycling if

x 6L g (resp. x−1 6R g). Left and right cyclings are collectively called cyclings.

(ii) For an element u ∈ A(Γ), the conjugation gu = u−1gu is called a cyclic conjugation of g by

u if ‖gu‖ = ‖g‖ and supp(u) ⊂ supp(g). A cyclic conjugation gu is called a left (resp. right)

cyclic conjugation if gu (resp. u−1g) is geodesic.

For g ∈ A(Γ) and x ∈ V (Γ)±1, if gx is a left cycling, i.e. x 6L g, then g = xh is geodesic for some

h ∈ A(Γ) and gx = x−1gx = hx is geodesic. Therefore the left cycling gx is obtained from g = xh

by moving the first letter x to the last. Similarly, if gx is a right cycling, then gx is obtained from

g = hx−1 by moving the last letter x−1 to the first.

If gx is a cycling, then it is easy to see that ‖gx‖ = ‖g‖ and supp(x) ⊂ supp(g), hence gx is a

cyclic conjugation. Conversely, we will show in Lemma 3.7 that a cyclic conjugation gu is obtained by

iterated application of cyclings.

If g ∈ A(Γ) is cyclically reduced and gu is a cyclic conjugation, then ‖gu‖ = ‖g‖, hence gu is also

cyclically reduced.
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Lemma 3.6. Let g ∈ A(Γ) and x, y ∈ V (Γ)±1 with g cyclically reduced.

(i) The conjugation gx cannot be both a left cycling and a right cycling.

(ii) Let y 6= x−1. If gx and (gx)y are cyclings of different type, then x ⇋ y.

(iii) Let x ⇋ y. If both gx and (gx)y are cyclings, then so are gy and (gy)x.

(iv) Let x ⇋ y. If both gx and gy are cyclings, then so are (gx)y and (gy)x.

In (iii) and (iv), the types of cyclings depend only on the conjugating letters. For example, if gx is a

left cycling, then (gy)x is also a left cycling, and so on.

Proof. (i) If gx is both a left cycling and a right cycling, then x 6L g and x−1 6R g, hence g = xhx−1

is geodesic for some h ∈ A(Γ) (by Lemmas 2.10(i)). Thus g is not cyclically reduced (by Lemma 3.4(i)).

(ii) Assume that gx is a left cycling and (gx)y is a right cycling. (An analogous argument applies

to the case where gx is a right cycling and (gx)y is a left cycling.)

Since gx is a left cycling, we have x 6L g, hence g = xh is geodesic for some h ∈ A(Γ). Notice that

gx = hx is geodesic. Since (gx)y is a right cycling, y−1 6R gx = hx.

Since y−1 6= x, we have x ⇋ y−1 (by Lemma 2.9(iii)) and hence x ⇋ y.

(iii) and (iv) Assume that gx and (gx)y are left cyclings, hence x 6L g and y 6L gx. Since x 6L g,

g = xh1 is geodesic for some h1 ∈ A(Γ), hence gx = h1x is also geodesic. Since y 6L gx = h1x and

y ⇋ x (hence y 66L x), we have y 6L h1, hence h1 = yh2 is geodesic for some h2 ∈ A(Γ). Now we

know that

g = xh1 = xyh2 = yxh2

and gy = xh2y are all geodesic, hence y 6L g and x 6L gy. This means that gy and (gy)x are left

cyclings.

For the other cases, it is easy to see that g has a geodesic decomposition as one of xyh, xhy−1,

yhx−1 and hx−1y−1 depending on the types of cyclings, from which the conclusions follow. �

Lemma 3.7. Let g, u, u1, u2 ∈ A(Γ) with g cyclically reduced.

(i) The following are equivalent:

(a) gu is a cyclic (resp. left cyclic, right cyclic) conjugation;

(b) there exists a reduced word w0 ≡ y1 · · · yk representing u such that (gy1···yi−1)yi is a cycling

(resp. left cycling, right cycling) for all 1 6 i 6 k;

(c) for any reduced word w ≡ x1 · · · xk representing u, (gx1···xi−1)xi is a cycling (resp. left

cycling, right cycling) for all 1 6 i 6 k.

In particular, if gu is a cyclic conjugation, then supp(gu) = supp(g).

(ii) Let u = u1u2 be geodesic. Then gu is a cyclic (resp. left cyclic, right cyclic) conjugation if

and only if both gu1 and (gu1)u2 are cyclic (resp. left cyclic, right cyclic) conjugations.

(iii) If gu1 and gu2 are cyclic (resp. left cyclic, right cyclic) conjugations and u1 ∨L u2 exists, then

gu1∨Lu2 is also a cyclic (resp. left cyclic, right cyclic) conjugation.

(iv) Let u1 ⇋ u2. Suppose that gu1 and gu2 are a left cyclic conjugation and a right cyclic

conjugation, respectively. Then (gu2)u1 and (gu1)u2 are a left cyclic conjugation and a right

cyclic conjugation, respectively. Moreover, u−1
2 gu1 is geodesic.

(v) Suppose that gu is a cyclic conjugation. Then there is a geodesic decomposition u = u1u2 such

that u1 ⇋ u2 and gu1 (resp. gu2) is a left (resp. right) cyclic conjugation. Moreover, u−1
2 gu1

is geodesic.
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Proof. The statements (i)–(iii) concern three types of cyclic conjugations. We prove only the case of

cyclic conjugations. The other cases (i.e. left and right cyclic conjugations) can be proved analogously.

We use the following claim.

Claim 1. If gu is a cyclic conjugation for some u ∈ A(Γ)\{1}, then there exists y1 ∈ V (Γ)±1 and

u1 ∈ A(Γ) such that u = y1u1 is geodesic, gy1 is a cycling and (gy1)u1 is a cyclic conjugation.

Proof of Claim 1. Since ‖gu‖ = ‖g‖, the decomposition u−1gu is not geodesic. If both u−1g and gu are

geodesic, then there exists x ∈ V (Γ)±1 such that x−1 6R u−1, x 6L u and x ⇋ g (by Lemma 2.8(i)).

However, the relation x ⇋ g is impossible because x 6L u and supp(u) ⊂ supp(g). Hence either

u−1g or gu is not geodesic, i.e. there exists y1 ∈ V (Γ)±1 such that either y−1
1 6R u−1 and y1 6L g

or y1 6L u and y−1
1 6R g. This means that gy1 is a cycling and that u = y1u1 is geodesic for some

u1 ∈ A(Γ). Therefore (gy1)u1 is a cyclic conjugation because ‖(gy1)u1‖ = ‖gu‖ = ‖g‖ = ‖gy1‖ and

supp(u1) ⊂ supp(u) ⊂ supp(g) = supp(gy1). �

(i) We may assume u 6= 1 because otherwise there is nothing to prove.

(a) ⇒ (b): Suppose that gu is a cyclic conjugation. By Claim 1, there is a geodesic decomposition

u = y1u1 such that gy1 is a cycling and (gy1)u1 is a cyclic conjugation. Applying Claim 1 again to

(gy1)u1 , we have a geodesic decomposition u1 = y2u2 such that (gy1)y2 is a cycling and (gy1y2)u2 is a

cyclic conjugation. Iterating this process, we get a desired reduced word w0 ≡ y1 . . . yk.

(b) ⇒ (c): Let w ≡ x1 · · · xk be a reduced word representing u. Notice that the word w0 ≡ y1 · · · yk
can be transformed into the word w ≡ x1 · · · xk by using only commutation relations. Therefore each

(gx1···xi−1)xi is a cycling (by Lemma 3.6(iii)).

(c) ⇒ (a): Let w ≡ x1 · · · xk be a reduced word representing u, where xi = vǫii , vi ∈ V (Γ) and

ǫi = ±1 for all 1 6 i 6 k. Then, for each 1 6 i 6 k, (gx1···xi−1)xi is a cycling, hence

‖gx1···xi−1‖ = ‖gx1···xi‖ and vi ∈ supp(gx1···xi−1) = supp(gx1···xi).

Thus ‖gx1···xk‖ = ‖g‖ and {v1, . . . , vk} ⊂ supp(gx1···xk) = supp(g). Therefore ‖gu‖ = ‖g‖ and

supp(u) ⊂ supp(g), hence gu is a cyclic conjugation.

(ii) Let u1 = x1 · · · xj and u2 = xj+1 · · · xk be geodesic decompositions, where x1 · · · xk ∈ V (Γ)±1.

Then u = x1 · · · xk is also geodesic because u = u1u2 is geodesic. By (i), gu is a cyclic conjugation if

and only if (gx1···xi−1)xi is a cycling for each 1 6 i 6 k, and this happens if and only if both gu1 and

(gu1)u2 are cyclic conjugations.

(iii) Let C(g) be the set of all u ∈ A(Γ) such that gu is a cyclic conjugation. Then C(g) satisfies

(P1) in Corollary 2.16 by (ii) in this lemma. Therefore it suffices to show that C(g) satisfies (P2) in

Corollary 2.16.

Let ux, uy ∈ C(g) (i.e. gux and guy are cyclic conjugations) such that ux and uy are geodesic and

x ⇋ y, where u ∈ A(Γ) and x, y ∈ V (Γ)±1. Then both (gu)x and (gu)y are cyclings of gu (by (ii)). By

Lemma 3.6(iv), (gux)y is a cycling, hence guxy is a cyclic conjugation (by (ii)). Therefore uxy ∈ C(g),

hence C(g) satisfies (P2) in Corollary 2.16.

(iv) Notice that u1 ∨L u2 = u1u2 = u2u1 and that both u1u2 and u2u1 are geodesic, because

u1 ⇋ u2. Since both gu1 and gu2 are cyclic conjugations, so are gu1u2 , (gu1)u2 and (gu2)u1 (by (ii) and

(iii)).

Let us show that the cyclic conjugation (gu2)u1 is a left cyclic conjugation, i.e. the decomposition

gu2u1 is geodesic. (The proof for (gu1)u2 is analogous.) Observe

u−1
2 gu1 = gu2u1u

−1
2 .
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Since both u−1
2 g and gu1 are geodesic and since u1 ⇋ u2, u

−1
2 gu1 is geodesic (by Lemma 2.8(ii)). Since

‖gu2‖ = ‖g‖, the decomposition gu2u1u
−1
2 is also geodesic. Therefore gu2u1 is geodesic.

(v) We use induction on ‖u‖. If ‖u‖ = 1, there is nothing to prove.

Suppose that u = u′x is geodesic for some u′ ∈ A(Γ) \ {1} and x ∈ V (Γ)±1. Then gu
′

is a

cyclic conjugation and (gu
′

)x is a cycling (by (ii)). Suppose that (gu
′

)x is a left cycling. (The proof

is analogous for the case where (gu
′

)x is a right cycling.) By the induction hypothesis, we have a

geodesic decomposition u′ = u′1u
′
2 such that u′1 ⇋ u′2 and gu

′

1 (resp. gu
′

2) is a left (resp. right) cyclic

conjugation.

Claim 2. x ⇋ u′2, and u = u′1xu
′
2 is geodesic.

Proof of Claim 2. Let u′2 = y1 · · · yk be geodesic, where y1, . . . , yk ∈ V (Γ)±1. Then u has the following

three geodesic decompositions:

u = u′x = u′1u
′
2x = u′1y1 · · · ykx.

Let h0 = gu
′

1 and hi = gu
′

1
y1···yi for 1 6 i 6 k. Then each hi is cyclically reduced (by (ii)), and

hi = h
yi
i−1. Since (gu

′

1)u
′

2 is a right cyclic conjugation (by (iv)), each h
yi
i−1 = (gu

′

1
y1···yi−1)yi is a right

cycling (by (i)).

Since u = u′1y1 · · · ykx is geodesic, we have yk 6= x−1. We know that hykk−1 is a right cycling and that

(hykk−1)
x = (gu

′

)x is a left cycling, hence x ⇋ yk (by Lemma 3.6(ii)). Therefore u = u′1y1 · · · yk−1xyk

and hxk−1 is a left cycling (by Lemma 3.6(iii)).

Applying the above argument to the right cyclings h
yk−1

k−2 , . . . , h
y1
0 in this order iteratively, we obtain

x ⇋ yi for all 1 6 i 6 k. Therefore x ⇋ u′2 and hence u = u′1u
′
2x = u′1xu

′
2. Since u′1u

′
2x is geodesic,

so is u′1xu
′
2. �

Let u1 = u′1x and u2 = u′2. Then u = u1u2 is geodesic, u1 ⇋ u2 and gu1 (resp. gu2) is a left

(resp. right) cyclic conjugation. Moreover, u−1
2 gu1 is geodesic (by (iv)) �

For a cyclically reduced g ∈ A(Γ), if u 6L g, then gu is obviously a left cyclic conjugation. The

following proposition is concerned with the opposite direction.

Proposition 3.8. Let g, u ∈ A(Γ) with g cyclically reduced. Then the following are equivalent.

(i) gu is a left (resp. right) cyclic conjugation.

(ii) u 6L gn (resp. u−1 6R gn) for some n > 1.

Proof. We prove the equivalence only for the left cyclic conjugation. The proof for the right cyclic

conjugation is analogous. We may assume ‖g‖ > 2 and ‖u‖ > 1 (otherwise it is obvious).

(ii) ⇒ (i): We may assume n > 2 (otherwise it is obvious). We proceed by induction on ‖u‖. If

‖u‖ = 1, then u is a letter. In this case, u 6L gn implies u 6L g (by Lemma 3.4(iii)), hence gu is a

left cycling.

Suppose ‖u‖ > 2. Then u = xu1 is geodesic for some x ∈ V (Γ)±1 and u1 ∈ A(Γ)\{1}. Since

xu1 = u 6L gn, we get x 6L gn and hence x 6L g (by Lemma 3.4(iii)). Therefore g = xg1 is geodesic

for some g1 ∈ A(Γ), and gx = g1x is also geodesic. Since both g · · · g and g = xg1 are geodesic,

xg1xg1 · · · xg1x is geodesic, hence the following three decompositions are all geodesic.

gnx = xg1xg1 · · · xg1x = x(gx)n

Since xu1 = u 6L gn 6L gnx = x(gx)n, we have u1 6L (gx)n (by Lemma 2.6(ii)). By the induction

hypothesis, (gx)u1 is a left cyclic conjugation. And gx is also a left cyclic conjugation because x 6L g.

Therefore gu is a left cyclic conjugation (by Lemma 3.7(ii)).
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(i) ⇒ (ii): As before, we use induction on ‖u‖. If ‖u‖ = 1, gu is a left cycling, hence u 6L g.

Suppose ‖u‖ > 2. Then u = xu1 is geodesic for some x ∈ V (Γ)± and u1 ∈ A(Γ)\{1}. Since gu is a

left cyclic conjugation, both gx and (gx)u1 are left cyclic conjugations (by Lemma 3.7(ii)). Since gx

is a left cyclic conjugation and x is a letter, we have x 6L g. Since (gx)u1 is a left cyclic conjugation,

u1 6L (gx)n for some n by the induction hypothesis. Using a similar argument as above, we get that

x(gx)n and gnx are geodesic, hence u = xu1 6L x(gx)n = gnx 6L gn+1. �

From the above proposition, gu is a right cyclic conjugation if and only if
(
g−1

)u
is a left cyclic

conjugation.

Theorem 3.9. Let g, u ∈ A(Γ) with g cyclically reduced. Then there exists a unique geodesic decom-

position u = u1u2u3 such that

(i) u1 disjointly commutes with g;

(ii) gu2 is a cyclic conjugation;

(iii) gu = u−1
3 gu2u3 is geodesic, i.e. ‖gu‖ = ‖u−1

3 ‖+ ‖gu2‖+ ‖u3‖ = ‖g‖ + 2‖u3‖.

Moreover, the following hold: u1 is the maximal prefix of u that disjointly commutes with g; u2 is the

maximal prefix of u such that gu2 is a cyclic conjugation; u3 = gu ∧R (gu)−1. In particular, u1 ⇋ u2.

Proof. We first prove the existence of the decomposition u = u1u2u3.

If u′1 and u′′1 are prefixes of u such that u′1 ⇋ g and u′′1 ⇋ g, then u′1 ∨L u′′1 exists (because u′1 and

u′′1 have a common right multiple u). Observe that u′1 ∨L u′′1 is also a prefix of u and also disjointly

commutes with g (by Theorem 2.12). Therefore there exists a unique maximal prefix u1 of u that

disjointly commutes with g.

If u′2 and u′′2 are prefixes of u such that gu
′

2 and gu
′′

2 are cyclic conjugations, then u′2 ∨L u′′2 exists

(because u′2 and u′′2 have a common right multiple u) and is also a prefix of u, and gu
′

2
∨Lu

′′

2 is also a

cyclic conjugation (by Lemma 3.7(iii)). Therefore there exists a unique maximal prefix u2 of u such

that gu2 is a cyclic conjugation.

Notice that u1 ⇋ u2 because supp(u2) ⊂ supp(g) and u1 ⇋ g. Thus u1 ∨L u2 = u1u2 is a prefix of

u and u1u2 is geodesic, hence u = u1u2u3 is geodesic for some u3 ∈ A(Γ). Observe

gu = u−1
3 u−1

2 u−1
1 gu1u2u3 = u−1

3 u−1
2 gu2u3 = u−1

3 gu2u3.

Let us show that u−1
3 gu2u3 is geodesic.

If gu2u3 is not geodesic, then there exists x ∈ V (Γ)±1 such that x 6L u3 and x−1 6R gu2 (by

Lemma 2.9(i)), hence (gu2)x is a cyclic conjugation. Notice that u2x is geodesic. By Lemma 3.7(ii),

gu2x is also a cyclic conjugation, hence x ∈ supp(g), which implies x ⇋ u1. Consequently, u2x ⇋ u1

and hence u2x 6L u. This contradicts the maximality of u2. Therefore gu2u3 is geodesic. Similarly

u−1
3 gu2 is geodesic.

Since both u−1
3 gu2 and gu2u3 are geodesic, if u−1

3 gu2u3 is not geodesic, then there exists x ∈ V (Γ)±1

such that x 6L u3, x
−1 6R u−1

3 and x ⇋ gu2 (by Lemma 2.8(i)). Since supp(g) = supp(gu2), we

have x ⇋ g, hence x ⇋ u2 and u1x ⇋ g. Notice that u1x is geodesic. Since u1x is a prefix of u, this

contradicts the maximality of u1. Therefore u−1
3 gu2u3 is geodesic.

Since gu = u−1
3 gu2u3 is geodesic such that gu2 is cyclically reduced, u3 satisfies the formula u3 =

gu ∧R (gu)−1 (by Lemma 3.2(i)).

So far we have shown that u = u1u2u3 is a desired decomposition. We will now show the uniqueness

of the decomposition. Let u = u′1u
′
2u

′
3 be another geodesic decomposition satisfying the conditions

(i), (ii) and (iii) of the theorem.
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Since u′2 and u′3 satisfy the conditions (ii) and (iii), we have u′3 = gu ∧R (gu)−1 (by Lemma 3.2(i)),

hence

u3 = u′3, gu2 = gu
′

2 and u1u2 = u′1u
′
2.

Since both u1 and u′1 are prefixes of u that disjointly commute with g, so is u1 ∨L u′1 (by Theo-

rem 2.12). By the maximality of u1, we have u1 ∨L u′1 6L u1, hence u′1 6L u1.

Similarly, since gu2 and gu
′

2 are cyclic conjugations, so is gu2∨Lu
′

2 (by Lemma 3.7). By the maximality

of u2, we have u2 ∨L u′2 6L u2, hence u′2 6L u2.

Since u′1 6L u1, u
′
2 6L u2 and u1u2 = u′1u

′
2, we have u1 = u′1 and u2 = u′2. �

The following seems to be well known to experts.

Corollary 3.10. Let g1, g2 ∈ A(Γ) be cyclically reduced. If g1 and g2 are conjugate, then they are

cyclically conjugate.

Proof. Since g1 and g2 are conjugate, g2 = gu1 for some u ∈ A(Γ). Let u = u1u2u3 be the geodesic

decomposition for gu1 as in Theorem 3.9. Since u1 ⇋ g1, we may assume u1 = 1. Since u−1
3 gu2

1 u3 is

a geodesic decomposition of g2 and since ‖g2‖ = ‖g1‖ = ‖gu2

1 ‖, we have u3 = 1. Therefore u = u2,

hence g1 is cyclically conjugate to g2. �

4. Star length

Star lengths of elements of A(Γ), introduced in [18], induce a metric d∗ on A(Γ) such that the metric

space (A(Γ), d∗) is quasi-isometric to the extension graph (Γe, d), preserving the right action of A(Γ).

In this section, we study basic properties of star lengths.

It is known that the centralizer Z(v) of v ∈ V (Γ) in A(Γ) is generated by the vertices in StΓ(v).

Definition 4.1 (star-word, star length). An element in the centralizer Z(v) of some vertex v is called

a star-word. The star length of g ∈ A(Γ), denoted ‖g‖∗, is the minimum ℓ such that g is written as a

product of ℓ star-words. Let d∗ denote the right-invariant metric on A(Γ) induced by the star length:

d∗(g1, g2) = ‖g1g
−1
2 ‖∗.

The following example illustrates that the decompositions into star-words are not unique.

Example 4.2. Let Γ = P̄5, where P5 = (v1, . . . , v5) is a path graph, and let the underlying right-

angled Artin group here be A(Γ), hence vivj = vjvi whenever |i − j| > 2. Let g = v1v3v5v2v4. The

following shows various decompositions of g into two star-words.

g = (v1v3v5)(v2v4) = (v1v3v5v2)(v4) = (v1v3v5v4)(v2)

= (v1v3v2)(v5v4) = (v3v5v4)(v1v2) = (v3v5)(v4v1v2).

Notice that all the parenthesized words are star-words. For example, v1v3v5 ∈ Z(vi) for i = 1, 3, 5,

v4 ∈ Z(vi) for i = 1, 2, 4, v1v3v5v2 ∈ Z(v5) and so on. Since supp(g) = {v1, . . . , v5} is not contained in

St(vi) for any 1 6 i 6 5, we have ‖g‖∗ = 2.

The group A(Γ) acts on (A(Γ), d∗) by right multiplication w 7→ wg. Recall that A(Γ) acts on (Γe, d)

by conjugation vw 7→ vwg. For any v ∈ V (Γ), the following map is equivariant.

φv : A(Γ) → Γe, φv(w) = vw

Lemma 4.3. [18, Lemma 19] Let Γ be connected and let D = diam(Γ). The following holds between

the metric d on Γe and the star length ‖ · ‖∗ on A(Γ): for any g ∈ A(Γ) and v ∈ V (Γ),

‖g‖∗ − 1 6 d(vg, v) 6 D(‖g‖∗ + 1).



20 EON-KYUNG LEE AND SANG-JIN LEE

Notice that d(φv(g), φv(h)) = d(vg, vh) = d(vgh
−1

, v) and d∗(g, h) = ‖gh−1‖∗. Therefore the above

lemma implies that d∗(g, h) − 1 6 d(vg , vh) 6 D(d∗(g, h) + 1), and hence that φv is a quasi-isometry.

The above lemma also yields the following corollary for the asymptotic translation length.

Corollary 4.4. Let Γ be connected and let D = diam(Γ). For every g ∈ A(Γ),

τ(A(Γ),d∗)(g) 6 τ(Γe,d)(g) 6 Dτ(A(Γ),d∗)(g).

Proof. Notice that

τ(A(Γ),d∗)(g) = lim
n→∞

d∗(g
n, 1)

n
= lim

n→∞

‖gn‖∗
n

,

τ(Γe,d)(g) = lim
n→∞

d(vg
n

, v)

n
,

where v is any vertex of Γ. By Lemma 4.3,

‖gn‖∗ − 1

n
6

d∗(v
gn , v)

n
6

D(‖gn‖∗ + 1)

n
.

By taking n to infinity, we get the desired inequalities. �

The following lemma shows basic properties of star length.

Lemma 4.5. Let g1, g2, g3, g, h ∈ A(Γ).

(i) If g1g2g3 is geodesic, then ‖g1g3‖∗ 6 ‖g1g2g3‖∗. In particular, if g 6L h or g 6R h, then

‖g‖∗ 6 ‖h‖∗.

(ii) ‖gm‖∗ 6 ‖gn‖∗ for all 1 6 m 6 n.

(iii) If g ⇋ h and h 6= 1, then ‖g‖∗ 6 1.

Proof. Let us denote g 40 h if a reduced word representing g can be obtained by deleting some letters

from a reduced word representing h. For example, if vi’s are distinct vertices, then v1v3 40 v1v2v3v4.

It is proved in [18, Lemma 20(i)] that if g 40 h, then ‖g‖∗ 6 ‖h‖∗.

(i) Since g1g2g3 is geodesic, we have g1g3 40 g1g2g3, hence ‖g1g3‖∗ 6 ‖g1g2g3‖∗.

(ii) Let g = u−1hu be geodesic such that h is cyclically reduced. Then gk = u−1 h · · · h
︸ ︷︷ ︸

k

u is also

geodesic for all k > 1 (by Lemma 2.8(iii)). Therefore gm 40 g
n, hence ‖gm‖∗ 6 ‖gn‖∗.

(iii) Since h 6= 1, there is a vertex v ∈ supp(h). Then g ∈ Z(v), namely ‖g‖∗ 6 1. �

Lemma 4.6. Suppose that g1, g2 ∈ A(Γ) have a common right multiple and that none of them is a

prefix of the other, i.e. g1 66L g2 and g2 66L g1. Then ‖g−1
1 g2‖∗ 6 2 and ‖g1‖∗ − ‖g2‖∗ ∈ {0,±1}.

Proof. Let gi = (g1 ∧L g2)g
′
i for i = 1, 2. Since g1 and g2 have a common right multiple, g′1 ⇋ g′2 (by

Theorem 2.12). Since g1 66L g2 and g2 66L g1, both g′1 and g′2 are nontrivial, hence ‖g′1‖∗ = ‖g′2‖∗ = 1

(by Lemma 4.5(iii)). Therefore

‖g−1
1 g2‖∗ = ‖g′−1

1 g′2‖∗ 6 ‖g′1‖∗ + ‖g′2‖∗ = 1 + 1 = 2.

Furthermore, for each i = 1, 2,

‖g1 ∧L g2‖∗ 6 ‖gi‖∗ 6 ‖g1 ∧L g2‖∗ + ‖g′i‖∗ = ‖g1 ∧L g2‖∗ + 1,

hence ‖gi‖∗ = ‖g1 ∧L g2‖∗ + ǫi, where ǫi ∈ {0, 1}. Therefore ‖g1‖∗ − ‖g2‖∗ = ǫ1 − ǫ2 ∈ {0,±1}. �

Corollary 4.7. Let g1, g2, h ∈ A(Γ) with g1g2 geodesic. If h 6L g1g2 and ‖g1‖∗ > ‖h‖∗ + 2, then

h 6L g1.
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Proof. Observe that g1 66L h (otherwise ‖g1‖∗ 6 ‖h‖∗). Assume h 66L g1. Since g1 and h have a

common right multiple, say g1g2, we have ‖g1‖∗ − ‖h‖∗ ∈ {0,±1} (by Lemma 4.6). This contradicts

that ‖g1‖∗ > ‖h‖∗ + 2. �

Corollary 4.8. Let g1, g2 ∈ A(Γ). If g1g2 is geodesic, then

‖g1‖∗ + ‖g2‖∗ − 2 6 ‖g1g2‖∗ 6 ‖g1‖∗ + ‖g2‖∗.

Proof. Let r = ‖g1‖∗, s = ‖g2‖∗ and t = ‖g1g2‖∗. Then it is obvious that t 6 r + s, hence it suffices

to show t > r + s − 2. Since g2 6R g1g2, we have t = ‖g1g2‖∗ > ‖g2‖∗ = s (by Lemma 4.5). We may

assume r > 3 because otherwise t > s > r + s− 2. Let

g1g2 = w1w2 · · ·wt

be a geodesic decomposition of g1g2 into star-words. Then w1 · · ·wr−2 6L g1 (by Corollary 4.7), hence

g2 6R wr−1 · · ·wt. Therefore s = ‖g2‖∗ 6 ‖wr−1 · · ·wt‖∗ = t− r + 2, namely t > r + s− 2. �

The following example shows that the upper and lower bounds in the above corollary are sharp.

Example 4.9. Let Γ = P̄5, where P5 = (v1, . . . , v5), and let the underlying right-angled Artin group

here be A(Γ).

(i) Let g1 = v1v2 and g2 = v3v4. Then g1 ⇋ v5 and g2 ⇋ v1 and hence ‖g1‖∗ = ‖g2‖∗ = 1. Since

g1g2 = v1v2v3v4 6∈ Z(vi) for any 1 6 i 6 5, we have ‖g1g2‖∗ > 2. Since ‖g1g2‖∗ 6 ‖g1‖∗ + ‖g2‖∗ = 2,

we have ‖g1g2‖∗ = ‖g1‖∗ + ‖g2‖∗ in this case.

(ii) Let g1 = g2 = v2v3v4. Then g1g2 = v2v3v4 · v2v3v4 = v2v3v2 · v4v3v4. Since v2v3v2 ∈ Z(v5) and

v4v3v4 ∈ Z(v1), we have ‖v2v3v2‖∗ = ‖v4v3v4‖∗ = 1. It is easy to see that ‖g1‖∗ = ‖g2‖∗ = ‖g1g2‖∗ = 2.

Therefore ‖g1g2‖∗ = ‖g1‖∗ + ‖g2‖∗ − 2 in this case.

The following is an immediate consequence of Lemma 4.5(ii) and Corollary 4.8.

Corollary 4.10. Let g ∈ A(Γ) be cyclically reduced. Then {‖gn‖∗}
∞
n=0 is an increasing sequence such

that the following hold.

(i) If ‖g‖∗ = 1, then ‖gn‖∗ = 1 for all n > 1.

(ii) If ‖g‖∗ = 2, then ‖gn−1‖∗ 6 ‖gn‖∗ 6 ‖gn−1‖∗ + 2 for all n > 1.

(iii) If ‖g‖∗ > 3, then ‖gn‖∗ > ‖gn−1‖∗ + 1 and hence ‖gn‖∗ > n+ 2 for all n > 1.

Corollary 4.11. Let g, u ∈ A(Γ) with g cyclically reduced. If ‖g‖∗ > 3 and g 66L u 6L gn for some

n > 1, then u 6L g2.

Proof. We may assume n > 3 and u 66L g (otherwise it is obvious). Since g and u have a common

right multiple, say gn, there exist g′ and u′ such that gg′ = uu′ = g ∨L u 6L gn and u′ ⇋ g′ (by

Theorem 2.12), where gg′ and uu′ are geodesic. Since gg′ 6L gn = ggn−1, (by Lemma 2.6)

g′ 6L gn−1 = g · gn−2.

Since u 66L g and g 66L u, both g′ and u′ are nontrivial, hence ‖g′‖∗ = ‖u′‖∗ = 1. Since ‖g′‖∗ = 1 and

‖g‖∗ > 3, we get g′ 6L g (by Corollary 4.7). Therefore u 6L uu′ = gg′ 6L g2. �

Lemma 4.12. Let g1, g2, g3 ∈ A(Γ) be such that both g1g2 and g2g3 are geodesic. If ‖g2‖∗ > 2, then

g1g2g3 is geodesic.
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g ∈ A(Γ) Γ Γ̄

g is split Γ[g] is a join Γ̄[g] is disconnected

g is non-split Γ[g] is not a join Γ̄[g] is connected

g is strongly non-split Γ[g] is not contained in Γ̄[g] is connected and

a subjoin of Γ StΓ̄(supp(g)) = V (Γ)

Table 1. Equivalent conditions for g ∈ A(Γ) to be split, non-split and strongly non-split

Proof. Assume that g1g2g3 is not geodesic. Since g1g2 and g2g3 are geodesic, there exists x ∈ V (Γ)±1

such that x−1 6R g1, x 6L g3 and x ⇋ g2 (by Lemma 2.8(i)). Observe that x ⇋ g2 implies ‖g2‖∗ 6 1,

which contradicts the hypothesis ‖g2‖∗ > 2. �

We introduce the notion of strongly non-split elements. We will see (in Lemma 6.3 and Remark 6.4)

that if |V (Γ)| > 4 and both Γ and Γ̄ are connected, then a cyclically reduced element g ∈ A(Γ) is

strongly non-split if and only if g is loxodromic on the extension graph Γe.

Definition 4.13 (non-split, strongly non-split). Let g ∈ A(Γ) \ {1}.

(i) g is called split if g has a nontrivial geodesic decomposition g = g1g2 with g1 ⇋ g2.

(ii) g is called non-split if it is not split.

(iii) g is called strongly non-split if g is non-split and g 6⇋ v for any v ∈ V (Γ).

It is easy to see that g ∈ A(Γ) is split if and only if Γ[g] is a join (equivalently, Γ̄[g] is disconnected).

Similarly, one can characterize the property of being non-split and strongly non-split using the graphs

Γ[g] and Γ̄[g] as shown in Table 1.

From definition, the existence of a strongly non-split element implies that Γ̄ is connected.

Remark 4.14. Let n > 2 and g, h ∈ A(Γ) \ {1}. Observe that strongly non-splitness of an element

depends only on its support. Note that supp(g−1) = supp(g) = supp(gn) (by Lemma 3.4), and that if

either g 6L h or g 6R h, then supp(g) ⊂ supp(h). Therefore

(i) g is strongly non-split if and only if g−1 is strongly non-split;

(ii) g is strongly non-split if and only if gn is strongly non-split;

(iii) if g is strongly non-split and either g 6L h or g 6R h, then h is also strongly non-split.

Strongly non-splitness is related to the star length as follows.

Lemma 4.15. Let g ∈ A(Γ) \ {1}.

(i) If ‖g‖∗ > 3, then g is strongly non-split.

(ii) g is strongly non-split with | supp(g)| > 2 if and only if g is non-split with ‖g‖∗ > 2.

Proof. (i) Assume that g is not strongly non-split. If g is split, then clearly ‖g‖∗ 6 2. If g is non-split

but not strongly non-split, then there is v ∈ V (Γ)\ supp(g) with v ⇋ g, hence ‖g‖∗ = 1. In either

case, ‖g‖∗ 6 2.

(ii) Suppose that g is strongly non-split with | supp(g)| > 2. Then g is non-split by definition.

Assume ‖g‖∗ = 1. Then there exists v ∈ V (Γ) with supp(g) ⊂ Z(v). Since g is strongly non-split,

v ∈ supp(g). Since | supp(g)| > 2 and supp(g) ⊂ Z(v), g = vng1 is geodesic for some n 6= 0 and

g1 ∈ A(Γ)\{1} with g1 ⇋ v. Namely, g is split, which is a contradiction. Therefore ‖g‖∗ > 2.

Conversely, suppose that g is non-split with ‖g‖∗ > 2. Then | supp(g)| > 2 and there does not exit

v ∈ V (Γ)\ supp(g) with v ⇋ g. Therefore g is strongly non-split. �
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5. Prefixes of powers of cyclically reduced elements

In this section, we study prefixes of powers of cyclically reduced elements. The main result is

Theorem 5.3, which plays important roles in the study of the asymptotic translation length and the

acylindricity of the action of A(Γ) on Γe.

Lemma 5.1. Let u, g1, g2, . . . , gm ∈ A(Γ). If g1g2 · · · gm is geodesic, then for each 1 6 k 6 m there

exists a geodesic decomposition gk = akbk such that

(i) u ∧L (g1 · · · gk) = a1 · · · ak;

(ii) ak ⇋ bj for all 1 6 j 6 k − 1;

(iii) a1 · · · akb1 . . . bk is a geodesic decomposition of g1 · · · gk.

Proof. The relation u∧L (g1 · · · gk) = a1 · · · ak determines the elements ak inductively for k = 1, . . . ,m.

Then the relation gk = akbk determines the elements bk for all 1 6 k 6 m. Therefore we get elements

a1, . . . , am, b1, . . . , bm such that u ∧L (g1 · · · gk) = a1 · · · ak and gk = akbk for all 1 6 k 6 m.

Since g1 · · · gm is geodesic, g1 · · · gk 6L g1 · · · gk+1 for each 1 6 k 6 m− 1 (by Lemma 2.6), hence

a1 · · · ak = u ∧L (g1 · · · gk) 6L u ∧L (g1 · · · gk+1) = a1 · · · ak+1.

Therefore a1 · · · am and hence each a1 · · · ak are geodesic (by Lemma 2.6 again).

For each 1 6 k 6 m, let uk ∈ A(Γ) be the element such that u = a1 · · · akuk. Then each a1 · · · akuk
is geodesic because a1 · · · ak 6L u.

Claim. For each 1 6 k 6 m,

(a) ak 6L gk, hence gk = akbk is geodesic;

(b) ak ⇋ bj for all 1 6 j 6 k − 1;

(c) a1 · · · akb1 · · · bk is a geodesic decomposition of g1 · · · gk.

Proof of Claim. We use induction on k.

For k = 1, (a) and (c) hold because a1 = u ∧L g1 6L g1 and g1 = a1b1, and (b) is vacuously true.

Assume that the claim holds for some 1 6 k < m. We now have the following geodesic decomposi-

tions at hand:

u = (a1 · · · ak)uk,

g1 · · · gk = (a1 · · · ak)(b1 . . . bk),

g1 · · · gk+1 = (a1 · · · ak)(b1 · · · bk)gk+1.

Since u ∧L (g1 · · · gk) = a1 · · · ak, we have uk ∧L (b1 · · · bk) = 1 (by Lemma 2.14).

Since u ∧L (g1 · · · gk+1) = a1 · · · ak+1, we have ak+1 = uk ∧L (b1 · · · bkgk+1), hence

ak+1 6L uk and ak+1 6L (b1 · · · bk)gk+1.

Since ak+1 6L uk, we have ak+1 ∧L (b1 · · · bk) 6L uk ∧L (b1 · · · bk) = 1 (by Lemma 2.14).

Since ak+1 6L (b1 · · · bk)gk+1 and ak+1 ∧L (b1 · · · bk) = 1, we have

ak+1 ⇋ b1 · · · bk and ak+1 6L gk+1

(by Lemma 2.11(ii)). In particular, ak+1 ⇋ bj for all 1 6 j 6 k. Therefore (a) and (b) hold for k + 1.

Since ak+1 ⇋ bj for all 1 6 j 6 k, we have

g1 · · · gkgk+1 = (a1 · · · ak)(b1 · · · bk)(ak+1bk+1)

= (a1 · · · ak+1)(b1 · · · bk+1).
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The above three decompositions are all geodesic because g1 · · · gkgk+1, gk+1 = ak+1bk+1 and g1 · · · gk =

a1 · · · akb1 · · · bk are all geodesic. Therefore (c) holds for k + 1. �

The above claim completes the proof. �

In the following, we frequently use the notation StΓ̄[g](X), for X ⊂ supp(g), which denotes the star

of X in Γ̄[g] = Γ̄[supp(g)]. Hence, v ∈ StΓ̄[g](X) if and only if either v ∈ X or v ∈ supp(g) and {v, v1}

is an edge in Γ̄ for some v1 ∈ X. Therefore

StΓ̄[g](X) = StΓ̄(X) ∩ supp(g).

When g1 = · · · = gm in Lemma 5.1, we have the following.

Corollary 5.2. Let m > 1 and g, u ∈ A(Γ) with g cyclically reduced. Then for each 1 6 k 6 m there

exists a geodesic decomposition g = akbk such that

(i) u∧Lg
k = a1a2 · · · ak, ak ⇋ bj for all 1 6 j < k and a1 · · · akb1 . . . bk is a geodesic decomposition

of gk;

(ii) {ak}
m
k=1 is descending with respect to 6L such that

1 6L am 6L · · · 6L a2 6L a1 6L g,

StΓ̄[g](supp(ak+1)) ⊂ supp(ak);

(iii) {bk}
m
k=1 is ascending with respect to 6R such that

1 6R b1 6R b2 6R · · · 6R bm 6R g,

StΓ̄[g](supp(bk)) ⊂ supp(bk+1).

In (ii) and (iii), we let am+1 = 1 and bm+1 = g for notational convenience.

Proof. Since g is cyclically reduced, gg · · · g is geodesic. By Lemma 5.1, there exists a geodesic decom-

position g = akbk for 1 6 k 6 m satisfying (i).

Since g = akbk = ak+1bk+1, we have ak+1 6L akbk. Since ak+1 ⇋ bk, we have ak+1 6L ak (by

Lemma 2.15(iv)), hence {ak}
m
k=1 is descending with respect to 6L. Since a1 6L g and 1 6L am,

1 6L am 6L · · · 6L a2 6L a1 6L g.

Since g = akbk, it follows immediately from the above inequalities that the sequence {bk}
m
k=1 is

ascending with respect to 6R such that

1 6R b1 6R b2 6R · · · 6R bm 6R g.

Since supp(g) = supp(aj) ∪ supp(bj) for j = k, k + 1,

supp(g) − supp(ak+1) ⊂ supp(bk+1),

supp(g) − supp(bk) ⊂ supp(ak).

Since ak+1 ⇋ bk, by Lemma 2.3

supp(bk) ∩ StΓ̄(supp(ak+1)) = ∅,

supp(ak+1) ∩ StΓ̄(supp(bk)) = ∅.
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Hence

StΓ̄[g](supp(ak+1)) = supp(g) ∩ StΓ̄(supp(ak+1))

⊂ supp(g) − supp(bk) ⊂ supp(ak),

StΓ̄[g](supp(bk)) = supp(g) ∩ StΓ̄(supp(bk))

⊂ supp(g) − supp(ak+1) ⊂ supp(bk+1).

Therefore (ii) and (iii) are proved. �

Theorem 5.3. Let m > 2 and g, u ∈ A(Γ) with g cyclically reduced and non-split. If

g 66L u 66L gm−1 and u 6L gm,

then the following hold.

(i) m 6 diam(Γ̄[g]). In particular, m 6 | supp(g)| − 1 6 |V (Γ)| − 1.

(ii) There is a geodesic decomposition g = gmgm−1 · · · g1g0 such that

(a) gk 6= 1 for all 0 6 k 6 m;

(b) gi ⇋ gj whenever |i− j| > 2;

(c) u ∧L gk = (gm · · · g1)(gm · · · g2) · · · (gm · · · gk) for all 1 6 k 6 m.

In particular, u = u ∧L gm = (gm · · · g1)(gm · · · g2) · · · (gmgm−1)(gm).

(iii) ‖u‖∗ 6 ‖g‖∗ + 1.

(iv) If ‖g‖∗ > 3, then m = 2. (Equivalently, if m > 3, then ‖g‖∗ 6 2.)

Proof. For each k > 1, let g = akbk be the geodesic decomposition given by Corollary 5.2. Then

• u ∧L gk = a1 · · · ak is geodesic and ak ⇋ bj for all 1 6 j < k;

• {ak}
∞
k=1 is descending with respect to 6L such that 1 6L · · · 6L a2 6L a1 6L g;

• {bk}
∞
k=1 is ascending with respect to 6R such that 1 6R b1 6R b2 6R · · · 6R g.

The following claim is a result of the hypothesis that g 66L u 66L gm−1 and u 6L gm.

Claim 1. For each 1 6 k 6 m, ak 6∈ {1, g, ak+1} and hence bk 6∈ {1, g, bk+1}. For each k > m, ak = 1

and hence bk = g.

Proof of Claim 1. For each k > 1, a1 · · · ak 6L u and a1 · · · ak 6L gk (because a1 · · · ak = u ∧L gk).

Furthermore, u = u ∧L gm = a1 · · · am (from the hypothesis u 6L gm). Therefore

a1 6L u, a1 · · · am−1 6L gm−1, a1 · · · am = u.

If a1 = g, then g 6L u, which contradicts the hypothesis g 66L u. If am = 1, then u =

a1 · · · am−1am = a1 · · · am−1 6L gm−1, which contradicts the hypothesis u 66L gm−1. Thus a1 6= g

and am 6= 1. Therefore, for each 1 6 k 6 m, we get ak 6∈ {1, g} (because 1 6L am 6L ak 6L a1 6L g)

and hence bk 6∈ {1, g} (because g = akbk).

Assume that ak = ak+1 for some 1 6 k 6 m. Then ak ⇋ bk because ak+1 ⇋ bk. Since g = akbk

and both ak and bk are nontrivial, this contradicts that g is non-split. Therefore ak 6= ak+1 and hence

bk 6= bk+1 for all 1 6 k 6 m.

Let j > 1. Since u 6L gm and g is cyclically reduced, we have u 6L gm+j , hence u ∧L gm =

u = u ∧L gm+j . Therefore a1 · · · am = a1 · · · amam+1 · · · am+j , hence am+1 · · · am+j = 1. Since the

decomposition am+1 · · · am+j is geodesic, we have am+j = 1. Namely, for all k > m, ak = 1 and hence

bk = g. �
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Define {gk}
m
k=0 by g0 = b1 and gk = a−1

k+1ak (hence ak = ak+1gk) for 1 6 k 6 m. Then ak = ak+1gk

is geodesic for all 1 6 k 6 m because ak+1 6L ak.

Claim 2. The decomposition g = gmgm−1 · · · g1g0 is geodesic such that

(a) gk 6= 1 for all 0 6 k 6 m;

(b) gi ⇋ gj whenever |i− j| > 2;

(c) u ∧L gk = (gm · · · g1)(gm · · · g2) · · · (gm · · · gk) for all 1 6 k 6 m;

(d) ak = gmgm−1 · · · gk and bk = gk−1gk−2 · · · g0 for all 1 6 k 6 m.

Proof of Claim 2. Since ak = ak+1gk is geodesic, ‖gk‖ = ‖ak‖ − ‖ak+1‖ for all 1 6 k 6 m. Since

g0 = b1, am+1 = 1 and g = a1b1 is geodesic,

‖g0‖+ ‖g1‖+ · · · + ‖gm‖

= ‖b1‖+ (‖a1‖ − ‖a2‖) + · · ·+ (‖am‖ − ‖am+1‖)

= ‖b1‖+ ‖a1‖ − ‖am+1‖ = ‖g‖.

Consequently, ‖g‖ = ‖g0‖+ ‖g1‖+ · · ·+ ‖gm‖.

For 1 6 k 6 m, ak = ak+1gk = ak+2gk+1gk = · · · = am+1gm · · · gk = gm · · · gk because am+1 = 1.

Therefore we have the following decompositions:

ak = gm · · · gk for all 1 6 k 6 m,

g = a1b1 = (gm · · · g1)g0 = gm · · · g0,

bk = a−1
k g = gk−1 · · · g0 for all 1 6 k 6 m.

Observe that g = gm · · · g0 is geodesic because ‖g‖ = ‖g0‖+ ‖g1‖+ · · ·+ ‖gm‖.

The decompositions for ak and bk in the above prove (d).

For each 1 6 k 6 m, u ∧L gk = a1a2 · · · ak = (gm · · · g1)(gm · · · g2) · · · (gm · · · gk). This proves (c).

By Claim 1, g0 = b1 6= 1 and gk = a−1
k+1ak 6= 1 for all 1 6 k 6 m. This proves (a).

For each (i, j) with 0 6 j < j + 2 6 i 6 m, we know that ai ⇋ bj+1. Since ai = gm · · · gi and

bj+1 = gj · · · g0 are geodesic, we have gi 6R ai and gj 6L bj+1, hence gi ⇋ gj . This proves (b). �

Recall from Claim 2 that both g0 = b1 and gm = am are nontrivial.

Claim 3. For any path (v0, v1, . . . , vr−1, vr) in Γ̄[g] such that v0 ∈ supp(g0) = supp(b1) and vr ∈

supp(gm) = supp(am), we have m 6 r. In particular, m 6 diam(Γ̄[g]).

Proof of Claim 3. Using induction on k, we first show that

vk ∈ supp(bk+1)

for all 0 6 k 6 min{m − 1, r − 1}. By the hypothesis of the claim, v0 ∈ supp(b1). Assume that

vk ∈ supp(bk+1) for some 0 6 k 6 min{m − 2, r − 2}. Since {vk, vk+1} is an edge in Γ̄[g], we have

vk+1 ∈ StΓ̄[g](vk). Since vk ∈ supp(bk+1) by induction hypothesis, StΓ̄[g](vk) ⊂ StΓ̄[g](supp(bk+1)),

hence vk+1 ∈ StΓ̄[g](supp(bk+1)). By Corollary 5.2, StΓ̄[g](supp(bk+1)) ⊂ supp(bk+2), hence vk+1 ∈

supp(bk+2).

If m > r, then am ⇋ br (by Corollary 5.2). Since vr ∈ supp(am) and vr−1 ∈ supp(br), we have

vr ⇋ vr−1, which contradicts that {vr−1, vr} is an edge in Γ̄. Therefore m 6 r.

Since Γ̄[g] is connected and both g0 and gm are nontrivial (by Claim 2), we may assume that

(v0, . . . , vr) is a shortest path from v0 ∈ supp(g0) to vr ∈ supp(gm) in Γ̄[g], hence r 6 diam(Γ̄[g]).

Therefore m 6 r 6 diam(Γ̄[g]). �
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Claim 3 proves (i) and Claim 2 proves (ii).

Since g0 6= 1 and gj ⇋ g0 for all j > 2, we have ‖(gm · · · g2) · · · (gmgm−1)gm‖∗ 6 1. Since gm · · · g1 6L

g, we have ‖gm · · · g1‖∗ 6 ‖g‖∗. Therefore

‖u‖∗ 6 ‖gm · · · g1‖∗ + ‖(gm · · · g2) · · · (gmgm−1)gm‖∗ 6 ‖g‖∗ + 1.

This proves (iii).

Assume m > 3. Since g0 6= 1, gm 6= 1, gm · · · g2 ⇋ g0 and g1g0 ⇋ gm, we have ‖gm · · · g2‖∗ 6 1 and

‖g1g0‖∗ 6 1. Therefore ‖g‖∗ 6 ‖gm · · · g2‖∗ + ‖g1g0‖∗ 6 2. This proves (iv). �

Remark 5.4. From the disjoint commutativity gi ⇋ gj for |i− j| > 2, the following decompositions

are geodesic for all 1 6 k 6 m.

gk = (gm · · · g0)(gm · · · g0) · · · (gm · · · g0)

= ((gm · · · g1) · (g0))((gm · · · g2) · (g1g0)) · · · ((gm · · · gk) · (gk−1 · · · g0))

= (gm · · · g1)(gm · · · g2) · · · (gm · · · gk) · (g0)(g1g0) · · · (gk−1 · · · g0)

= (u ∧L gk)(g0)(g1g0) · · · (gk−1 · · · g0)

In particular, gm = uu′ is geodesic, where

u = (gm · · · g1)(gm · · · g2) · · · (gm),

u′ = (g0)(g1g0) · · · (gm−1 · · · g0).

The following example shows that the upper bounds m 6 diam(Γ̄[g]) and m 6 |V (Γ)| − 1 in

Theorem 5.3(i) are sharp.

Example 5.5. Let Γ = P̄4, where P4 = (v1, . . . , v4) is a path graph, and let the underlying right-

angled Artin group here be A(Γ). Let g = v21v2v3v4 and u = v21v2v3v
2
1v2v1. Then g is clearly cyclically

reduced and non-split. It is easy to see that g 66L u and u 66L g2. (By Lemma 2.6, if g 6L u then

v4 6L v21v2v1, and if u 6L g2 then v1 6L v4v3v4.) On the other hand, u 6L g3 because

g3 = (v21v2v3v4)(v
2
1v2v3v4)(v

2
1v2v3v4)

= (v21v2v3 · v4)(v
2
1v2 · v3v4)(v1 · v1v2v3v4)

= (v21v2v3 · v
2
1v2 · v1)(v4 · v3v4 · v1v2v3v4)

= u(v4 · v3v4 · v1v2v3v4).

In the notation of Theorem 5.3,

m = 3 = diam(Γ̄) = diam(Γ̄[g]) = | supp(g)| − 1 = |V (Γ)| − 1.

Thus the bounds of m in Theorem 5.3(i) are sharp.

Corollary 5.6. Let g, u ∈ A(Γ) with g cyclically reduced and non-split. If u 6L gm for some m > 1,

then u = gka is geodesic for some 0 6 k 6 m and a ∈ A(Γ) with ‖a‖∗ 6 ‖g‖∗ + 1.

Proof. We may assume that u 66L gm−1. Let k = max{l > 0 : gl 6L u}. Then 0 6 k 6 m and u = gka

is geodesic for some a ∈ A(Γ) with g 66L a 66L gm−k−1 and a 6L gm−k.

If m− k 6 1, then it is obvious that ‖a‖∗ 6 ‖g‖∗ 6 ‖g‖∗ + 1.

If m− k > 2, then ‖a‖∗ 6 ‖g‖∗ + 1 by Theorem 5.3. �
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For a cyclically reduced element g ∈ A(Γ), we have seen in Corollary 4.10 that the sequence

{‖gn‖∗}
∞
n=0 is increasing. In particular, if ‖g‖∗ > 3, then ‖gn+1‖∗ > ‖gn‖∗ +1 for all n > 0. However,

if ‖g‖∗ = 2, then it may happen that ‖g‖∗ = ‖g2‖∗ = · · · = ‖gn‖∗ = 2 for some n > 2. The following

proposition finds m with ‖gm‖∗ > 3 when ‖g‖∗ = 2.

Proposition 5.7. Let g ∈ A(Γ) be cyclically reduced and non-split with ‖g‖∗ = 2. Then the following

hold.

(i) Let m > 2. If either m > |V (Γ)| − 2 or m > diam(Γ̄[g]) + 1, then ‖gm‖∗ > 3.

(ii) Let m > 2. If ‖gm‖∗ = 2, then m 6 |V (Γ)| − 3 and m 6 diam(Γ̄[g]).

(iii) If |V (Γ)| 6 4, then ‖g2‖∗ > 3.

Proof. The statements (i) and (ii) are equivalent, and (iii) follows from (i). Therefore we prove only

(ii).

Since g is non-split, Γ̄[g] is connected. Suppose that ‖gm‖∗ = 2 for some m > 2. Then there is a

geodesic decomposition

gm = uu′

for some u, u′ ∈ A(Γ) with ‖u‖∗ = ‖u′‖∗ = 1.

Claim 1. g 66L u 66L gm−1 and u 6L gm.

Proof of Claim 1. Since gm = uu′ is geodesic, u 6L gm. Since ‖u‖∗ = 1 and ‖g‖∗ = 2, g 66L u. If

u 6L gm−1, then g 6R u′ (by Lemma 2.6(iv)), which is impossible because ‖u′‖∗ = 1 and ‖g‖∗ = 2.

Therefore u 66L gm−1. �

By Claim 1, we can apply Theorem 5.3, hence m 6 diam(Γ̄[g]), which is the second inequality of

(ii).

By Theorem 5.3 and Remark 5.4, there is a geodesic decomposition g = gmgm−1 · · · g0 such that

gi 6= 1 for all 0 6 i 6 m, gi ⇋ gj whenever |i− j| > 2 and

u = (gm . . . g1)(gm · · · g2) · · · (gm),

u′ = (g0)(g1g0) · · · (gm−1 · · · g0).

Since ‖u‖∗ = ‖u′‖∗ = 1, there exist vertices x, y ∈ V (Γ) such that u ∈ Z(x) and u′ ∈ Z(y), where Z(·)

denotes the centralizer. Since ‖uu′‖∗ = 2, x 6= y. Notice that

supp(g1), . . . , supp(gm) ⊂ Z(x),

supp(g0), . . . , supp(gm−1) ⊂ Z(y).

Claim 2. There is a path (x, v0, v1, v2, . . . , vr−1, vr, y) in Γ̄ such that

(a) v0 ∈ supp(g0) and vr ∈ supp(gm);

(b) the subpath (v0, . . . , vr) is a shortest path from v0 to vr in Γ̄[g];

(c) all the vertices on the path are mutually distinct.

Proof of Claim 2. If either supp(g) ⊂ Z(x) or supp(g) ⊂ Z(y), then ‖g‖∗ = 1, hence supp(g)\Z(x) 6= ∅

and supp(g) \ Z(y) 6= ∅.

Choose any vertices vx ∈ supp(g)\Z(x) and vy ∈ supp(g)\Z(y), equivalently, vx, vy ∈ supp(g) such

that {vx, x}, {vy , y} ∈ E(Γ̄). Since vx ∈ supp(g)\Z(x) = (
⋃m

k=0 supp(gk))\Z(x) and
⋃m

k=1 supp(gk) ⊂

Z(x), we have vx ∈ supp(g0). Similarly, vy ∈ supp(gm). Furthermore, vx 6= vy and {vx, vy} 6∈ E(Γ̄)

because g0 ⇋ gm.
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Since {vx, x}, {vy , y} ∈ E(Γ̄) and Γ̄[g] is connected, there is a path in Γ̄ from x to y

(x, v0 = vx, v1, v2, . . . , vr−1, vr = vy, y)

such that vk ∈ supp(g) for all 0 6 k 6 r. Observe that v0 = vx ∈ supp(g0) and vr = vy ∈ supp(gm).

We may assume that it is a shortest path among all the paths from x to y such that vk ∈ supp(g)

for all 0 6 k 6 r. Then the subpath (v0, · · · , vr) must be a shortest path from v0 to vr in Γ̄[g], hence

v0, . . . , vr are mutually distinct.

If x = vj for some 0 6 j 6 r−1, then the path (x, vj+1, . . . , vr, y) is shorter than the original one, all

of whose middle vertices belong to supp(g). This contradicts that (x, v0, · · · , vr, y) is a shortest path

among such paths. If x = vr then {x, vx} 6∈ E(Γ̄) (because x = vr ∈ supp(gm), vx = v0 ∈ supp(g0)

and g0 ⇋ gm). This is a contradiction. Therefore x 6= vj for any 0 6 j 6 r. Similarly, y 6= vj for

any 0 6 j 6 r. Since x 6= y, all the vertices on the path (x, v0, v1, v2, . . . , vr−1, vr, y) are mutually

distinct. �

Since the (r + 3) points on the path in Claim 2 are mutually distinct, |V (Γ)| > r + 3. By Claim 3

in the proof of Theorem 5.3, we have m 6 r. Therefore |V (Γ)| > r + 3 > m+ 3. This proves the first

inequality of (ii), hence (ii) is proved. �

The following example illustrates that the upper bounds m 6 |V (Γ)| − 3 and m 6 diam(Γ̄[g]) in

Proposition 5.7(ii) are sharp.

Example 5.8. Let Γ = P̄6, where P6 = (v0, v1, . . . , v5) is a path graph, and let the underlying

right-angled Artin group here be A(Γ). Let g = v1v2v3v4. It is easy to see that ‖g‖∗ = 2. Since

supp(g) = {v1, v2, v3, v4}, diam(Γ̄[g]) = 3. Observe

g3 = (v1v2v3v4) · (v1v2v3v4) · (v1v2v3v4)

= (v1v2v3 · v4) · (v1v2 · v3v4) · (v1 · v2v3v4)

= (v1v2v3 · v1v2 · v1)(v4 · v3v4 · v2v3v4).

Let u = v1v2v3v1v2v1 and u′ = v4v3v4v2v3v4. Then g3 = uu′ is geodesic. Since u ∈ Z(v5) and

u′ ∈ Z(v0), we have ‖u‖∗ = ‖u′‖∗ = 1, hence ‖g3‖∗ = 2. Notice that 3 = |V (Γ)| − 3 = diam(Γ̄[g]).

6. Asymptotic translation length

In this section, we study asymptotic translation lengths of elements of A(Γ) on (A(Γ), d∗) and on

(Γe, d), and then find a lower bound of the minimal asymptotic translation length of A(Γ) on Γe.

Proposition 6.1. If g ∈ A(Γ) is cyclically reduced and non-split with ‖g‖∗ > 2, then

τ(A(Γ),d∗)(g) >
1

max{2, |V (Γ)| − 2}
.

Proof. Let τ∗ denote τ(A(Γ),d∗), and let V = |V (Γ)|.

Notice that if ‖g‖∗ > 3, then ‖gn‖∗ > n+ 2 for all n > 1 (by Corollary 4.10), hence

τ∗(g) = lim
n→∞

‖gn‖∗
n

> lim
n→∞

n+ 2

n
> 1.

Suppose ‖g‖∗ = 2. By Proposition 5.7, if V 6 4 then ‖g2‖∗ > 3, and if V > 5 then ‖gV −2‖∗ > 3.

Therefore ‖gmax{2,V−2}‖∗ > 3. From the above discussion, τ∗(g
max{2,V−2}) > 1 and hence τ∗(g) >

1
max{2,V−2} . �
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Remark 6.2. When we study the action of A(Γ) on (A(Γ), d∗), we will assume that “|V (Γ)| > 2 and

Γ̄ is connected” because otherwise ‖g‖∗ 6 2 for all g ∈ A(Γ) and hence (A(Γ), d∗) has diameter at

most 2: if |V (Γ)| = 1, then ‖g‖∗ 6 1 for all g ∈ A(Γ); if Γ̄ is disconnected (i.e. Γ is a join), then

‖g‖∗ 6 2 for all g ∈ A(Γ).

Lemma 6.3. Suppose that |V (Γ)| > 2 and Γ̄ is connected. The following are equivalent for a cyclically

reduced element g ∈ A(Γ).

(i) g is strongly non-split and | supp(g)| > 2.

(ii) g is non-split and ‖g‖∗ > 2.

(iii) ‖gn‖∗ > 3 for some n > 1.

(iv) g is loxodromic on (A(Γ), d∗), i.e. τ(A(Γ),d∗)(g) > 0.

(v) τ(A(Γ),d∗)(g) >
1

max{2, |V (Γ)|−2} .

Proof of Lemma 6.3. (i)⇔(ii) follows from Lemma 4.15.

(ii)⇒(v) follows from Proposition 6.1.

(v)⇒(iv) and (iv)⇒(iii) are obvious.

(iii)⇒(i): Since ‖gn‖∗ > 3, gn is strongly non-split (by Lemma 4.15), hence g is also strongly

non-split (see Remark 4.14). It is obvious that | supp(g)| > 2. �

Remark 6.4. Suppose that |V (Γ)| > 4 and both Γ and Γ̄ are connected. Then the condition

| supp(g)| > 2 of Lemma 6.3(i) is not necessary because all strongly non-split elements g must have

| supp(g)| > 2. Moreover, g is loxodromic on (A(Γ), d∗) if and only if it is loxodromic on (Γe, d) by

Corollary 4.4. Therefore, if |V (Γ)| > 4 and both Γ and Γ̄ are connected, then (i) and (iv) in the above

lemma are equivalent to the following (i′) and (iv′) respectively.

(i′) g is strongly non-split.

(iv′) g is loxodromic on (Γe, d), i.e. τ(Γe,d)(g) > 0.

Kim and Koberda [18, Lemma 33] showed that if g ∈ A(Γ) is cyclically reduced and strongly

non-split, then ‖g2n|V (Γ)|2‖∗ > n for all n > 1. Therefore (by Corollary 4.4)

τ(Γe,d)(g) > τ(A(Γ),d∗)(g) >
1

2|V (Γ)|2
.

From this, a lower bound of the minimal asymptotic translation length of A(Γ) on Γe follows:

L(Γe, d)(A(Γ)) >
1

2|V (Γ)|2
.

We improve the denominator of the lower bound from a quadratic function to a linear function of

|V (Γ)| as follows.

Theorem 6.5. Let Γ be a finite simplicial graph such that |V (Γ)| > 4 and both Γ and Γ̄ are connected.

Then

L(Γe, d)(A(Γ)) >
1

|V (Γ)| − 2
.

Proof. Since |V (Γ)| > 4, |V (Γ)| − 2 = max{2, |V (Γ)| − 2}. Let g ∈ A(Γ) be loxodromic on (Γe, d) and

hence on (A(Γ), d∗) (by Remark 6.4). We may assume that g is cyclically reduced because asymptotic

translation lengths are invariant under conjugation. By Corollary 4.4 and Lemma 6.3,

τ(Γe,d)(g) > τ(A(Γ),d∗)(g) >
1

|V (Γ)| − 2
.

Therefore L(Γe, d)(A(Γ)) >
1

|V (Γ)|−2 . �



ACYLINDRICITY OF THE ACTION OF RAAGS ON EXTENSION GRAPHS 31

7. Uniqueness of quasi-roots

The notion of quasi-roots in A(Γ) was introduced in [25], where the quasi-roots are defined using

word length. The uniqueness up to conjugacy was established by using the normal form of elements

introduced by Crisp, Godelle and Wiest [7]. In this section, we extend the uniqueness of quasi-roots

from word length to star length.

Definition 7.1. (quasi-root) An element g ∈ A(Γ)\{1} is called a quasi-root of h ∈ A(Γ) if there is a

decomposition

h = agnb

for some n > 1 and a, b ∈ A(Γ) such that ‖h‖ = ‖a‖ + ‖b‖ + n‖g‖. The decomposition is called a

quasi-root decomposition of h. The conjugates aga−1 and b−1gb are called the leftward-extraction and

the rightward-extraction of the quasi-root g, respectively. We consider the following two cases.

(i) g is called an (A,B, r)-quasi-root of h if ‖a‖ 6 A, ‖b‖ 6 B and ‖g‖ 6 r.

(ii) g is called an (A,B, r)∗-quasi-root of h if ‖a‖∗ 6 A, ‖b‖∗ 6 B and ‖g‖∗ 6 r.

In the above definition, the condition ‖h‖ = ‖a‖ + ‖b‖ + n‖g‖ implies ‖gn‖ = n‖g‖, hence g is

cyclically reduced when n > 2.

Notice that if g1 = aga−1 and g2 = b−1gb are respectively the leftward- and the rightward-extractions

of g, then we have decompositions h = gn1 ab = abgn2 , which are not necessarily geodesic.

Definition 7.2 (primitive). An element g ∈ A(Γ)\{1} is called primitive if g is not a nontrivial power

of another element, i.e. g = hn never holds for any n > 2 and h ∈ A(Γ).

The following proposition is Proposition 3.5 in [25] written in the setting of this paper. It shows a

kind of uniqueness property of quasi-roots in right-angled Artin groups.

Proposition 7.3 ([25, Proposition 3.5]). Let h ∈ A(Γ), A,B > 0 and r > 1. If

‖h‖ > A+B + (2V + 1)r,

where V = |V (Γ)|, then strongly non-split and primitive (A,B, r)-quasi-roots of h are conjugate to

each other, and moreover, their leftward- and rightward-extractions are unique.

In other words, Proposition 7.3 shows that if

h = a1g
n1

1 b1 = a2g
n2

2 b2

are two quasi-root decompositions of h such that for each i = 1, 2, gi is strongly non-split and primitive,

‖ai‖ 6 A, ‖bi‖ 6 B, ‖gi‖ 6 r,

‖h‖ > A+B + (2V + 1)r,

then g1 and g2 are conjugate, and moreover, a1g1a
−1
1 = a2g2a

−1
2 and b−1

1 g1b1 = b−1
2 g2b2.

The following theorem is the main result of this section. It is a star length version of Proposition 7.3,

which plays an important role in the proof of Theorem 8.2. We remark that the word length and the

star length are quite independent, hence the word length version does not naively extend to a star

length version. We exploit lattice structures developed in §2.

We also remark that in the following theorem since ‖h‖∗ > 2A+2B+(2V +3)r+2 > 3r+2 > 5, the

existence of such an element h implies that |V (Γ)| > 2 and Γ̄ is connected (as explained in Remark 6.2).
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Theorem 7.4. Let h ∈ A(Γ), A,B > 0 and r > 1. If

‖h‖∗ > 2A+ 2B + (2V + 3)r + 2,

where V = |V (Γ)|, then primitive (A,B, r)∗-quasi-roots of h are conjugate to each other, and moreover,

their leftward- and rightward-extractions are unique. In other words, if

h = a1g
n1

1 b1 = a2g
n2

2 b2

are two quasi-root decompositions of h such that for each i = 1, 2, gi is primitive and

‖ai‖∗ 6 A, ‖bi‖∗ 6 B, ‖gi‖∗ 6 r,

‖h‖∗ > 2A+ 2B + (2V + 3)r + 2,

then g1 and g2 are conjugate to each other such that

a1g1a
−1
1 = a2g2a

−1
2 and b−1

1 g1b1 = b−1
2 g2b2.

Proof. Let i = 1, 2.

Claim 1. ni > 4 and gi is cyclically reduced and strongly non-split with ‖gi‖∗ > 2.

Proof of Claim 1. If ni 6 3, then

‖h‖∗ = ‖aig
ni

i bi‖∗ 6 ‖ai‖∗ + ni‖gi‖∗ + ‖bi‖∗ 6 A+ 3r +B.

This contradicts the hypothesis ‖h‖∗ > 2A + 2B + (2V + 3) r + 2. Therefore ni > 4 and hence gi is

cyclically reduced (see the paragraph following Definition 7.1).

Observe that ‖gni

i ‖∗ > 5 because

‖gni

i ‖∗ > ‖h‖∗ − ‖ai‖∗ − ‖bi‖∗ > A+B + (2V + 3)r + 2 > 3r + 2 > 5.

Therefore gi is strongly non-split and ‖gi‖∗ > 2 (by Lemma 6.3). �

Let αi and βi be integers defined by

αi = min{k > 1 : ‖gki ‖∗ > A+ 2},

βi = min{k > 1 : ‖gki ‖∗ > B + 2}.

The numbers αi and βi are well-defined because the sequence {‖gki ‖∗}
∞
k=1 is increasing such that

limk→∞ ‖gki ‖∗ = ∞ (by Claim 1, Lemmas 4.5 and 6.3). Since ‖gki ‖∗ − ‖gk−1
i ‖∗ 6 ‖gi‖∗ 6 r for all

k > 1, we get

A+ 2 6 ‖gαi

i ‖∗ 6 A+ 1 + r,

B + 2 6 ‖gβi

i ‖∗ 6 B + 1 + r.

Claim 2. ni − αi − βi > 2V + 1.

Proof of Claim 2. Observe that

‖gni

i ‖∗ > ‖h‖∗ − ‖ai‖∗ − ‖bi‖∗ > ‖h‖∗ −A−B,

‖gni

i ‖∗ − ‖gαi+βi

i ‖∗ > ‖gni

i ‖∗ − ‖gαi

i ‖∗ − ‖gβi

i ‖∗

> (‖h‖∗ −A−B)− (A+ 1 + r)− (B + 1 + r)

= ‖h‖∗ − 2A− 2B − 2r − 2 > (2V + 1)r.
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Since {‖gki ‖∗}
∞
k=1 is increasing and ‖gni

i ‖∗ − ‖gαi+βi

i ‖∗ > (2V + 1)r > 0, we have ni > αi + βi. Since

(ni − αi − βi)‖gi‖∗ > ‖gni−αi−βi

i ‖∗ > ‖gni

i ‖∗ − ‖gαi+βi

i ‖∗

> (2V + 1)r > (2V + 1)‖gi‖∗,

we get ni − αi − βi > 2V + 1 as desired. �

Let a0 = a1 ∧L a2 and b0 = b1 ∧R b2. Then we have geodesic decompositions
{

a1 = a0a
′
1,

a2 = a0a
′
2,

{

b1 = b′1b0,

b2 = b′2b0

for some a′1, a
′
2, b

′
1, b

′
2 ∈ A(Γ) with a′1 ∧L a′2 = 1 and b′1 ∧R b′2 = 1. Observe that

‖a′i‖∗ 6 ‖ai‖∗ 6 A,

‖b′i‖∗ 6 ‖bi‖∗ 6 B.

Since h = a1g
n1

1 b1 = a2g
n2

2 b2, we have h = a0(a
′
1g

n1

1 b′1)b0 = a0(a
′
2g

n2

2 b′2)b0.

Let h0 = a−1
0 hb−1

0 . Then h0 has the following two geodesic decompositions.

(4) h0 = a′1g
n1

1 b′1 = a′2g
n2

2 b′2

On the other hand, since a1 and a2 have a common right multiple, say h, we have a′1 ⇋ a′2 (by

Theorem 2.12). Since a′1 6L a′2g
n2

2 b′2 and a′2 6L a′1g
n1

1 b′1, we have (by Lemma 2.15)

a′1 6L gn2

2 b′2 and a′2 6L gn1

1 b′1.

Let A′ = ‖a′1‖+ ‖a′2‖ and B′ = ‖b′1‖+ ‖b′2‖.

Claim 3. ‖h0‖ > A′ +B′ + (2V + 1)‖gi‖.

Proof of Claim 3. We know that n1 − α1 > 0 (by Claim 2) and a′2 6L gn1

1 b′1 = gα1

1 · gn1−α1

1 b′1. Since

gα1

1 · gn1−α1

1 b′1 is geodesic and ‖gα1

1 ‖∗ > A + 2 > ‖a′2‖∗ + 2, we have a′2 6L gα1

1 (by Corollary 4.7).

Similarly, b′2 6R g
β1

1 . (In other words, gn1

1 has a geodesic decomposition gn1

1 = gα1

1 · gn1−α1−β1

1 · gβ1

1

such that a′2 6L gα1

1 and b′2 6R g
β1

1 .) Therefore

‖a′2‖ 6 ‖gα1

1 ‖ = α1‖g1‖,

‖b′2‖ 6 ‖gβ1

1 ‖ = β1‖g1‖.

Since h0 = a′1g
n1

1 b′1 = a′2g
n2

2 b′2, we get

‖h0‖ − (A′ +B′) = (‖a′1‖+ n1‖g1‖+ ‖b′1‖)− (‖a′1‖+ ‖a′2‖)− (‖b′1‖+ ‖b′2‖)

= n1‖g1‖ − ‖a′2‖ − ‖b′2‖ > n1‖g1‖ − α1‖g1‖ − β1‖g1‖

= (n1 − α1 − β1)‖g1‖ > (2V + 1)‖g1‖.

In the same way, we get ‖h0‖ − (A′ +B′) > (2V + 1)‖g2‖. �

Notice that ‖a′i‖ 6 A′ and ‖b′i‖ 6 B′. Let r′ = max{‖g1‖, ‖g2‖}. Then each a′ig
ni

i b′i in (4) is a

(A′, B′, r′)-quasi-root decomposition of h0 such that ‖h0‖ > A′ +B′ + (2V + 1)r′.

Applying Proposition 7.3 to (4) yields a′1g1a
′−1
1 = a′2g2a

′−1
2 and b′−1

1 g1b
′
1 = b′−1

2 g2b
′
2. Consequently

a1g1a
−1
1 = a0(a

′
1g1a

′−1
1 )a−1

0 = a0(a
′
2g2a

′−1
2 )a−1

0 = a2g2a
−1
2 ,

b−1
1 g1b1 = b−1

0 (b′−1
1 g1b

′
1)b0 = b−1

0 (b′−1
2 g2b

′
2)b0 = b−1

2 g2b2.
�
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8. Acylindricity of the action of A(Γ) on Γe

In this section, we prove the following two theorems.

Theorem 8.1. Let Γ be a finite simplicial graph such that |V (Γ)| > 2 and Γ̄ is connected. Then the

action of A(Γ) on (A(Γ), d∗) is (R,N)-acylindrical with

R = R(r) = (2V + 7)r + 8,

N = N(r) = 2(V − 2)(r − 1)− 1,

where V = max{4, |V (Γ)|}. Moreover, for any x, y ∈ A(Γ) with d∗(x, y) > R, if ξ(x, y; r) 6= {1}, then

there exists a loxodromic element g ∈ A(Γ) such that

(i) ξ(x, y; r) = {1, g±1, g±2, . . . , g±k} for some 1 6 k 6 (V − 2)(r − 1)− 1;

(ii) the Hausdorff distance between the 〈g〉-orbit of x and that of y is at most 2r + 3.

Theorem 8.2. Let Γ be a finite simplicial graph such that |V (Γ)| > 4 and both Γ and Γ̄ are connected.

Then the action of A(Γ) on Γe is (R,N)-acylindrical with

R = R(r) = D(2V + 7)(r + 1) + 10D,

N = N(r) = 2(V − 2)r − 1,

where D = diam(Γ) and V = |V (Γ)|. Moreover, for any x, y ∈ V (Γe) with d(x, y) > R, if ξ(x, y; r) 6=

{1}, then there exists a loxodromic element g ∈ A(Γ) such that

(i) ξ(x, y; r) ⊂ {1, g±1, g±2, . . . , g±k} for some 1 6 k 6 (V − 2)r − 1;

(ii) the Hausdorff distance between the 〈g〉-orbit of x and that of y is at most D(2r + 7).

The following lemma connects the acylindricities of the actions of A(Γ) on (A(Γ), d∗) and on (Γe, d).

It is an improvement of the argument of Kim and Koberda in the proof of Theorem 30 in [18].

Lemma 8.3. Suppose that |V (Γ)| > 4 and both Γ and Γ̄ are connected. Let D = diam(Γ). If

the action of A(Γ) on (A(Γ), d∗) is (R1(r), N1(r))-acylindrical, then the action of A(Γ) on (Γe, d) is

(R2(r), N2(r))-acylindrical with

R2(r) = D · R1(r + 1) + 2D,

N2(r) = N1(r + 1).

More precisely, for any vw1

1 , vw2

2 ∈ V (Γe), where v1, v2 ∈ V (Γ) and w1, w2 ∈ A(Γ), if d(vw1

1 , vw2

2 ) >

R2(r), then

(i) d∗(w1, w2) > R1(r + 1);

(ii) ξ(Γe,d)(v
w1

1 , vw2

2 ; r) is contained in ξ(A(Γ),d∗)(w1, w2; r + 1).

Proof. Note that D = diam(Γ) 6= 0. Let d(vw1

1 , vw2

2 ) > R2(r) for vw1

1 , vw2

2 ∈ V (Γe). Since Γ is

connected, we can apply Lemma 4.3 and obtain

d∗(w1, w2) = ‖w2w
−1
1 ‖∗

>
d(v2, v

w2w
−1

1

2 )

D
− 1 >

d(v1, v
w2w

−1

1

2 )− d(v1, v2)

D
− 1

>
d(vw1

1 , vw2

2 )−D

D
− 1 >

R2(r)− 2D

D
= R1(r + 1),

which proves (i).
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Let g ∈ ξ(Γe,d)(v
w1

1 , vw2

2 ; r). Then d(vwig
i , v

wi

i ) 6 r for i = 1, 2. By Lemma 4.3 again,

d∗(wig,wi) = ‖wigw
−1
i ‖∗ 6 d(v

wigw
−1

i

i , vi) + 1

= d(vwig
i , vwi

i ) + 1 6 r + 1

for i = 1, 2, hence g ∈ ξ(A(Γ),d∗)(w1, w2; r+ 1). This shows that the set ξ(Γe,d)(v
w1

1 , vw2

2 ; r) is contained

in ξ(A(Γ),d∗)(w1, w2; r + 1), hence (ii) is proved.

Since ξ(Γe,d)(v
w1

1 , vw2

2 ; r) ⊂ ξ(A(Γ),d∗)(w1, w2; r + 1) and d∗(w1, w2) > R1(r + 1), the (R1, N1)-

acylindricity of the action of A(Γ) on (A(Γ), d∗) implies that

|ξ(Γe,d)(v
w1

1 , vw2

2 ; r)| 6 |ξ(A(Γ),d∗)(w1, w2; r + 1)| 6 N1(r + 1) = N2(r).

Therefore the action of A(Γ) on (Γe, d) is (R2(r), N2(r))-acylindrical. �

Proposition 8.4. Let g,w ∈ A(Γ) \ {1} and r,R > 1 such that

‖g‖∗ 6 r, ‖w−1gw‖∗ 6 r, ‖w‖∗ > R, R > 3r + 7.

Then there exists a quasi-root decomposition

w = a(gǫ1)
nb,

where a, b, g1 ∈ A(Γ), ǫ ∈ {±1} and n > 2 such that

(i) ‖a‖∗ 6 1
2r + 1 and ‖b ‖∗ 6 3

2r + 2;

(ii) g1 is cyclically reduced and g = ag1a
−1 is geodesic.

Notice that ‖w‖∗ > R > 3r+7 > 7, hence the existence of such an element w implies that |V (Γ)| > 2

and Γ̄ is connected (as explained in Remark 6.2).

Proof. Let g = ag1a
−1 be the geodesic decomposition such that g1 is cyclically reduced. Let h =

w−1gw. Then

h = w−1ag1a
−1w = (a−1w)−1g1(a

−1w).

By Theorem 3.9, there exists a geodesic decomposition of a−1w

(5) a−1w = w1w2w3

such that (i) w1 ⇋ g1; (ii) g
w2

1 is a cyclic conjugation; (iii) h = w−1
3 · gw2

1 · w3 is geodesic.

Claim 1. The following hold.

(i) ‖w2‖∗ > 3, hence w2 is strongly non-split.

(ii) gw2

1 is either a left cyclic conjugation or a right cyclic conjugation.

Proof of Claim 1. Since both g = ag1a
−1 and h = w−1

3 gw2

1 w3 are geodesic decompositions,

‖g1‖∗ + 2‖a‖∗ − 4 6 ‖g‖∗ 6 ‖g1‖∗ + 2‖a‖∗,

‖gw2

1 ‖∗ + 2‖w3‖∗ − 4 6 ‖h‖∗ 6 ‖gw2

1 ‖∗ + 2‖w3‖∗

(by Corollary 4.8), whence

‖g‖∗ − ‖g1‖∗
2

6 ‖a‖∗ 6
‖g‖∗ − ‖g1‖∗

2
+ 2,

‖h‖∗ − ‖gw2

1 ‖∗
2

6 ‖w3‖∗ 6
‖h‖∗ − ‖gw2

1 ‖∗
2

+ 2.
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Since w1 ⇋ g1 6= 1, we have ‖w1‖∗ 6 1. Since g1 6= 1 and both g = ag1a
−1 and h = w−1

3 gw2

1 w3 are

geodesic, we have 1 6 ‖g1‖∗ 6 ‖g‖∗ 6 r and 1 6 ‖gw2

1 ‖∗ 6 ‖h‖∗ 6 r. Since a−1w = w1w2w3,

‖w‖∗ 6 ‖a‖∗ + ‖w1‖∗ + ‖w2‖∗ + ‖w3‖∗

6

(
‖g‖∗ − ‖g1‖∗

2
+ 2

)

+ 1 + ‖w2‖∗ +

(
‖h‖∗ − ‖gw2

1 ‖∗
2

+ 2

)

6

(
r − 1

2
+ 2

)

+ 1 + ‖w2‖∗ +

(
r − 1

2
+ 2

)

= ‖w2‖∗ + r + 4.

Therefore ‖w2‖∗ > ‖w‖∗ − r − 4 > R − r − 4 > 2r + 3 > 3, hence w2 is strongly non-split (by

Lemma 4.15). This proves (i).

Assume that the cyclic conjugation gw2

1 is neither a left cyclic conjugation nor a right cyclic con-

jugation. Then, by Proposition 3.7(v), w2 = w′
2w

′′
2 is geodesic for some w′

2, w
′′
2 ∈ A(Γ) \ {1} such

that g
w′

2

1 (resp. g
w′′

2

1 ) is a left (resp. right) cyclic conjugation and w′
2 ⇋ w′′

2 . Since both w′
2 and w′′

2

are nontrivial, we have ‖w′
2‖∗ = ‖w′′

2‖∗ = 1, hence ‖w2‖∗ = ‖w′
2w

′′
2‖∗ 6 ‖w′

2‖∗ + ‖w′′
2‖∗ = 2, which

contradicts ‖w2‖∗ > 3. Therefore gw2

1 is either a left cyclic conjugation or a right cyclic conjugation.

This proves (ii). �

Claim 2. The following hold.

(i) g1 is strongly non-split with | supp(g1)| > 2 and 2 6 ‖g1‖∗ 6 r.

(ii) ‖a‖∗ 6 1
2r + 1, w1 = 1, ‖w2‖∗ > R− r − 2 and ‖w3‖∗ 6

1
2r + 1.

Proof of Claim 2. (i) Since gw2

1 is either a left or a right cyclic conjugation (by Claim 1),

w2 6L gn1 or w−1
2 6R gn1

for some n > 1 (by Proposition 3.8). Since ‖w2‖∗ > 3, we have ‖gn1 ‖∗ > 3. By Lemma 6.3, g1 is

strongly non-split with | supp(g1)| > 2 and ‖g1‖∗ > 2. On the other hand, ‖g1‖∗ 6 ‖g‖∗ 6 r because

g = ag1a
−1 is geodesic.

(ii) If w1 6= 1, then ‖g1‖∗ 6 1 because g1 ⇋ w1, which contradicts ‖g1‖∗ > 2. Therefore w1 = 1.

Since g1 is strongly non-split and gw2

1 is a cyclic conjugation, gw2

1 is also strongly non-split and

| supp(gw2

1 )| = | supp(g1)| > 2. Therefore ‖gw2

1 ‖∗ > 2 (by Lemma 4.15).

Since w1 = 1, ‖g‖∗ 6 r, ‖h‖∗ 6 r, ‖g1‖∗ > 2 and ‖gw2

1 ‖∗ > 2, using the inequalities in the proof of

Claim 1, we have

‖a‖∗ 6
‖g‖∗ − ‖g1‖∗

2
+ 2 6

r − 2

2
+ 2 =

r

2
+ 1,

‖w3‖∗ 6
‖h‖∗ − ‖gw2

1 ‖∗
2

+ 2 6
r − 2

2
+ 2 =

r

2
+ 1,

‖w‖∗ 6 ‖a‖∗ + ‖w1‖∗ + ‖w2‖∗ + ‖w3‖∗

6

(r

2
+ 1

)

+ 0 + ‖w2‖∗ +
(r

2
+ 1

)

= ‖w2‖∗ + r + 2.

Therefore ‖a‖∗ 6
1
2r + 1, ‖w3‖∗ 6

1
2r + 1 and ‖w2‖∗ > ‖w‖∗ − r − 2 > R− r − 2. �

Claim 3. Let ǫ = 1 (resp. ǫ = −1) if gw2

1 is a left (resp. right) cyclic conjugation. Then there exists

a quasi-root decomposition

w = a(gǫ1)
nb
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such that n > 2 and ‖b ‖∗ 6 3
2r + 2.

Proof of Claim 3. Suppose that gw2

1 is a left cyclic conjugation. Then w2 6L gk1 for some k > 1 (by

Proposition 3.8). Hence

w2 = gn1 d

is geodesic for some 0 6 n 6 k and d ∈ A(Γ) with ‖d‖∗ 6 ‖g1‖∗ + 1 (by Corollary 5.6). Notice that

n > 2 because ‖g1‖∗ 6 r whereas

‖gn1 ‖∗ > ‖w2‖∗ − ‖d‖∗ > (R − r − 2)− (r + 1) = R− 2r − 3 > r + 4.

Since a−1w = w1w2w3 and w1 = 1, we have

w = aw2w3 = agn1 dw3.

We will now prove that the decomposition w = agn1 dw3 is geodesic. Since g = ag1a
−1 is geodesic

and g1 is cyclically reduced, agn1 is geodesic (by Lemmas 2.8 and 3.4). Since both w2w3 and w2 = gn1 d

are geodesic, gn1 dw3 is also geodesic. Recall ‖gn1 ‖∗ > r+ 4 > 2. Therefore w = agn1 dw3 is geodesic (by

Lemma 4.12).

Let b = dw3. Then w = agn1 b is geodesic and

‖b‖∗ 6 ‖d‖∗ + ‖w3‖∗ 6
(

‖g1‖∗ + 1
)

+
(r

2
+ 1

)

6 r + 1 +
r

2
+ 1 =

3

2
r + 2.

Therefore w = agn1 b is a quasi-root decomposition with the desired properties.

Now suppose that gw2

1 is a right cyclic conjugation. Then
(
g−1
1

)w2

is a left cyclic conjugation (by

Proposition 3.8). From the above argument, w = a(g−1
1 )nb is a quasi-root decomposition with the

desired properties. �

The proof is now completed. �

Remark 8.5. In Proposition 8.4, notice that

w = a(gǫ1)
nb = (a(gǫ1)

na−1)ab = (gǫ)nab,

‖ab‖∗ 6 ‖a‖∗ + ‖b‖∗ 6 (12r + 1) + (32r + 2) = 2r + 3.

Thus one could understand Proposition 8.4 as follows: if ‖w‖∗ is large but both ‖g‖∗ and ‖w−1gw‖∗
are small, then w = gnc for some integer n and c ∈ A(Γ) with ‖c‖∗ small.

If ‖w−1gw‖∗ 6 r and g = ag1a
−1 in the statement of Proposition 8.4 are respectively replaced with

‖wgw−1‖∗ 6 r and g = a−1g1a, then we have the following corollary.

Corollary 8.6. Let g,w ∈ A(Γ) \ {1} and r,R > 1 such that

‖g‖∗ 6 r, ‖wgw−1‖∗ 6 r, ‖w‖∗ > R, R > 3r + 7.

Then there exists a quasi-root decomposition

w = b(gǫ1)
na,

where a, b, g1 ∈ A(Γ), ǫ ∈ {±1} and n > 2 such that

(i) ‖a‖∗ 6 1
2r + 1 and ‖b ‖∗ 6 3

2r + 2;

(ii) g1 is cyclically reduced and g = a−1g1a is geodesic.

We will now prove Theorem 8.1.
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Proof of Theorem 8.1. Choose x, y ∈ A(Γ) with d∗(x, y) > R. Let w = yx−1, hence ‖w‖∗ = d∗(x, y) >

R.

We may assume ξ(1, w; r) 6= {1} because otherwise ξ(x, y; r) = x−1ξ(1, w; r)x = {1} and there is

nothing to prove.

By Lemma 4.5(ii), the set ξ(1, w; r) is closed under taking a root, i.e. if hk ∈ ξ(1, w; r) for some

h ∈ A(Γ) and k > 1, then h ∈ ξ(1, w; r). Therefore there exists a primitive element g0 in ξ(1, w; r)\{1},

hence ‖g0‖∗ = d∗(g0, 1) 6 r and ‖wg0w
−1‖∗ = d∗(wg0, w) 6 r.

We will now show that g±1
0 is uniquely determined from w = yx−1. Let

g0 = a−1g1a

be the geodesic decomposition such that g1 is cyclically reduced. Then g1 is also primitive and

‖g1‖∗ 6 ‖g0‖∗ 6 r. Since R = (2V + 7)r + 8 > 3r + 7, (w, g0, g1, a,R, r) satisfies the conditions on

(w, g, g1 , a,R, r) in Corollary 8.6, hence there exists a quasi-root decomposition

w = b(gǫ1)
na,

where b ∈ A(Γ), ǫ ∈ {±1}, n > 2, ‖a‖∗ 6 1
2r + 1 and ‖b‖∗ 6 3

2r + 2.

Let A = 1
2r + 1 and B = 3

2r + 2. Then gǫ1 is a primitive (B,A, r)∗-quasi-root of w. Observe that

2A+ 2B + (2V + 3)r + 2 = (r + 2) + (3r + 4) + (2V + 3)r + 2 = (2V + 7)r + 8 = R, hence

‖w‖∗ > R = 2A+ 2B + (2V + 3)r + 2.

The tuple (w, gǫ1, b, a,B,A, r) now satisfies the conditions on (h, g1, a1, b1, A,B, r) in Theorem 7.4.

Therefore the primitive element gǫ0 is uniquely determined from w because gǫ0 = a−1gǫ1a is the

rightward-extraction of the (B,A, r)∗-quasi-root gǫ1. This means that each element of ξ(1, w; r) is

a power of g0, hence ξ(1, w; r) ⊂ 〈g0〉. Since

‖gn1 ‖∗ = ‖(gǫ1)
n‖∗ > ‖w‖∗ − ‖b‖∗ − ‖a‖∗ > R−B −A

> A+B + (2V + 3)r + 2 > 3,

the cyclically reduced element g1 is loxodromic (by Lemma 6.3), hence ‖g
(V −2)j
1 ‖∗ > j + 2 for all

j > 1 (by Lemma 6.3, Proposition 5.7 and Corollary 4.10). Since g0 is conjugate to g1, g0 is

also loxodromic. Since g
(V −2)j
0 = a−1g

(V −2)j
1 a is a geodesic decomposition (by Lemma 2.8(iii)),

‖g
(V −2)j
0 ‖∗ > ‖g

(V −2)j
1 ‖∗ > j + 2 for all j > 1.

If k > (V −2)(r−1), then ‖gk0‖∗ > ‖g
(V −2)(r−1)
0 ‖∗ > (r−1)+2 = r+1, hence gk0 6∈ ξ(1, w; r). From

this fact and Lemma 4.5, it follows that

ξ(1, w; r) = {1, g±1
0 , . . . , g±k

0 }

for some 1 6 k 6 (V − 2)(r − 1)− 1.

Let g = x−1g0x. Then g is also loxodromic. Since ξ(x, y; r) = x−1 · ξ(1, w; r) · x,

ξ(x, y; r) = {1, g±1, . . . , g±k},

hence (i) is proved.

Let N(r) = 2(V − 2)(r− 1)− 1. Since |ξ(x, y; r)| = 2k+1 6 2(V − 2)(r− 1)− 1 = N(r), the action

of A(Γ) on (A(Γ), d∗) is (R(r), N(r))-acylindrical.

Since g0 = a−1g1a, g = x−1g0x and yx−1 = w = b(gǫ1)
na, we get

y = wx = b(gǫ1)
nax = bax · x−1a−1(gǫ1)

nax = bax(gǫ)n.
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Hence d∗(y, x(g
ǫ)n) = d∗(bax(g

ǫ)n, x(gǫ)n) = ‖ba‖∗ 6 ‖b‖∗ + ‖a‖∗ 6 2r + 3. Therefore the Hausdorff

distance between the 〈g〉-orbits x〈g〉 and y〈g〉 is at most 2r + 3, hence (ii) is proved. �

Remark 8.7. The above proof shows that gǫ1 is a primitive
(
3
2r + 2, 12r + 1, r

)∗
-quasi-root of w =

b(gǫ1)
na. Notice that the rightward-extraction of gǫ1 is a−1gǫ1a, and that xgx−1 = a−1g1a. Therefore

either xgx−1 or xg−1x−1 is the rightward-extraction of a primitive (32r + 2, 12r + 1, r)∗-quasi-root of

yx−1.

We are now ready to prove Theorem 8.2.

Proof of Theorem 8.2. By Theorem 8.1, the action of A(Γ) on (A(Γ), d∗) is (R1(r), N1(r))-acylindrical

with

R1(r) = (2V + 7)r + 8,

N1(r) = 2(V − 2)(r − 1)− 1.

Applying Lemma 8.3 to the above, the action of A(Γ) on (Γe, d) is (R(r), N(r))-acylindrical with

R(r) = D ·R1(r + 1) + 2D = D(2V + 7)(r + 1) + 10D,

N(r) = N1(r + 1) = 2(V − 2)r − 1.

Choose x, y ∈ V (Γe) with d(x, y) > R(r) and ξ(Γe,d)(x, y; r) 6= {1}. Then there exist v1, v2 ∈ V (Γ)

and w1, w2 ∈ A(Γ) such that x = vw1

1 and y = vw2

2 . By Lemma 8.3,

d∗(w1, w2) > R1(r + 1),

ξ(Γe,d)(v
w1

1 , vw2

2 ; r) ⊂ ξ(A(Γ),d∗)(w1, w2; r + 1).

Since ξ(Γe,d)(v
w1

1 , vw2

2 ; r) 6= {1}, we have ξ(A(Γ),d∗)(w1, w2; r + 1) 6= {1}. Hence (w1, w2) satisfies all

the conditions on (x, y) in Theorem 8.1. Therefore, by Theorem 8.1(i),

ξ(Γe,d)(x, y; r) ⊂ ξ(A(Γ),d∗)(w1, w2; r + 1) = {1, g±1, g±2, . . . , g±k}

for some loxodromic element g ∈ A(Γ) and 1 6 k 6 (V − 2)r − 1, hence (i) is proved.

Since the Hausdorff distance between the 〈g〉-orbits of w1 and w2 is at most 2(r + 1) + 3 = 2r + 5

(by Theorem 8.1(ii)), w2 = cw1g
n for some n ∈ Z and c ∈ A(Γ) with ‖c‖∗ 6 2r+5. Hence we get (by

Lemma 4.3)

d(xg
n

, y) = d(vw1g
n

1 , vw2

2 ) = d(v1, v
w2g

−nw−1

1

2 ) = d(v1, v
c
2)

6 d(v1, v2) + d(v2, v
c
2) 6 D +D(‖c‖∗ + 1)

= D(‖c‖∗ + 2) 6 D(2r + 7).

Therefore the Hausdorff distance between x〈g〉 and y〈g〉 is at most D(2r+ 7), hence (ii) is proved. �
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