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ACYLINDRICITY OF THE ACTION OF RIGHT-ANGLED
ARTIN GROUPS ON EXTENSION GRAPHS
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ABSTRACT. The action of a right-angled Artin group on its extension graph is known to be acylindrical
because the cardinality of the so-called r-quasi-stabilizer of a pair of distant points is bounded above by
a function of r. The known upper bound of the cardinality is an exponential function of r. In this paper
we show that the r-quasi-stabilizer is a subset of a cyclic group and its cardinality is bounded above by
a linear function of r. This is done by exploring lattice theoretic properties of group elements, studying
prefixes of powers and extending the uniqueness of quasi-roots from word length to star length. We
also improve the known lower bound for the minimal asymptotic translation length of a right angled

Artin group on its extension graph.
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1. INTRODUCTION

Throughout the paper I denotes a finite simplicial graph, not necessarily connected, with vertex set
V(I') and edge set E(I'). The right-angled Artin group A(I') with the underlying graph I is the group
generated by V(I') such that the defining relations are the commutativity between adjacent vertices,

hence A(T") has the group presentation
A) = (v e V() | viv; = vju; for each {v;,v;} € E(I)).

Right-angled Artin groups are important groups in geometric group theory, which played a key role
in Agol’s proof of the virtual Haken conjecture [1, [I5] 29].

The extension graph I'® is the graph such that the vertex set V(I'°) is the set of all elements of A(T")
that are conjugate to a vertex of I', and two vertices v{" and v5> are adjacent in I'® if and only if they

commute when considered as elements of A(T). (Here, v9 denotes the conjugate g~ 'vg.) Therefore
V(I = {07 :v € V(T), g€ AD)},
B(T) = { (o o} : vf'off = ofof" in A(T) ).
Extension graphs are usually infinite and locally infinite. They are very useful in the study of right-
angled Artin groups such as the embeddability problem between right-angled Artin groups [17) 19}
23], 24, [16] and the purely loxodromic subgroups which are analogous to convex cocompact subgroups

of the mapping class groups of surfaces [21]. It is known that I'® is a quasi-tree, hence a d-hyperbolic
graph [17].

Definition 1.1 (acylindrical action). When a group G acts on a path-metric space (X, d) isometrically
from the right, the action is called acylindrical if for any r > 0, there exist R, N > 0 such that whenever
x and y are two points of X with d(x,y) > R, the cardinality of the set

E(x,y;r) ={g9 € G :d(zg,z) <r and d(yg,y) <r}
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is at most N. The set {(z, y; ) is called the r-quasi-stabilizer of the pair of points (z,y). We sometimes
use the notation & x 4)(z,y;r) for the set {(z,y;r). Notice that R and N are functions of . When we
need to specify the acylindricity constants R and N, we say that the action is (R, N)-acylindrical.

There have been many works on properties and examples of groups with an acylinrical action on a
geodesic hyperbolic metric space. For example, see [5], 27, [§].

Let d denote the graph metric of I'. The right-angled Artin group A(T") acts on (I'¢, d) isometrically
from the right by conjugation, i.e. the image of the vertex v" under the action of g € A(T) is v"9. The
action of A(T") on I'® behaves much like the action of the mapping class group Mod(.S) of a hyperbolic
surface S on the curve graph C(S). One of the fundamental properties is that the action of A(I') on
I'® is acylindrical, which is shown by Kim and Koberda [I8].

Theorem 1.2 ([I8, Theorem 30]). The action of A(T') on I'® is acylindrical.
More precisely, it is shown that the action is (R, N)-acylindrical with

R=R(r)=D2r+4D +7),

where D = diam(I") is the diameter of I' and V' = |V/(I')| is the cardinality of V(I"). Notice that N(r)

is an exponential function of r.

For a graph I, let I’ denote the complement graph of T, i.e. the graph on the same vertices as T’
such that two distinct vertices are adjacent in I if and only if they are not adjacent in T.

For the reader’s convenience, we give some remarks on the cases where |V(I')| is small and where
I or T is disconnected.

The following are known for the extension graph I'¢ [I7, Lemma 3.5]: if T" is disconnected, then I'¢
has countably infinite number of path-components; if I' is disconnected, i.e. I is a join, then I'¢ is also
a join, hence diam(T¢) < 2; if [V/(T)| = 1, then |V(I'¢)| = 1. If |[V(T)| € {2,3}, then either I or T
is disconnected. In fact, I'® is a connected graph with infinite diameter if and only if |[V(I')| > 4 and
both I and T' are connected. Therefore, when we consider the action of A(T") on I', it is natural to
require that |V(I')| > 4 and both " and T" are connected.

In the study of extension graphs, we use the star length metric d, on A(T"). (See §4for the definition
of star length.) The metric space (A(I'),d,) is quasi-isometric to the extension graph (I'°,d). If
|V([)] = 1 or if T is disconnected, then (A(T'),d,) has diameter at most 2, which is not interesting.
Therefore, when we consider the action of A(I") on (A(T"),d.), it is natural to require that |V (I")| > 2
and T is connected (see Remark [(.2]).

From the above discussions, the following settings are natural.

(i) When we consider the action of A(T") on (I'¢,d), we will assume that |V(T')| > 4 and both T’
and T are connected.
(i) When we consider the action of A(T') on (A(T'),d,), we will assume that |V (I')| > 2 and T is

connected.

The following is the main result of this paper, which shows that we can take N(r) as a linear

function of r and furthermore the quasi-stabilizer (z,y;r) is a subset of a cyclic group.
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Theorem A (Theorem B2) Let I' be a finite simplicial graph such that |V (T')| = 4 and both T’ and
[ are connected. Then the action of A(T') on T is (R, N)-acylindrical with

R=R(r) = D2V +7)(r + 1) + 10D,
N=N(r)=2(V-2)r—1,

where D = diam(I') and V = |V(I")|. Moreover, for any x,y € V(I'®) with d(x,y) > R, if &(x,y;r) #
{1}, then there exists a loxodromic element g € A(T") such that

(i) &(z,y;7) C {1,971, %2, ..., 9T} for some 1 <k < (V —2)r — 1;

(ii) the Hausdorff distance between the (g)-orbit of x and that of y is at most D(2r + 7).

The following is an easy example to come up with for g € £(x,y;r). Let g be a loxodromic element
with a quasi-axis L = 2'9 = {29" : m € Z} for some z € V(I'®) such that d(z7, z) is sufficiently small.
If both z and y are close enough to L, then d(z9, x) and d(y7, y) are also small so that g € &(x,y;7)\{1}.
In this case, the Hausdorff distance between the (g)-orbits 29 and 39 is small. Theorem says
that, in some sense, this is the only case where g € {(z,y;7) \ {1} happens: g is loxodromic and the
Hausdorff distance between {9 and 39 is small. Moreover, by Theorem B2(i), the set &(z,y;7) \ {1}
is purely loxodromic, that is, there is no elliptic element that r-quasi-stabilizes a pair of sufficiently

distant points.

In order to prove Theorem A, we develop several tools such as lattice theoretic properties of group
elements, decomposition of conjugating elements, properties of prefixes of powers, and then extend
the uniqueness of quasi-roots in [25] from word length to star length. Using these tools, we also obtain
a new lower bound for the minimal asymptotic translation length of the action of A(T") on I'°.

Definition 1.3. When a group G acts on a connected metric space (X, d) by isometries from right,
the asymptotic translation length of an element g € G is defined by

. d(zg",x
& (9) = Tixay(9) = lim 19T
where € X. This limit always exists, is independent of the choice of = € X, and satisfies 7(¢") =
In|7(g) and 7(h~'gh) = 7(g) for all g,h € G and n € Z. If 7(g) > 0, g is called lozodromic. If
{d(zg™, z)}72, is bounded, g is called elliptic. If 7(g) = 0 and {d(zg",z)} 2, is unbounded, g is

called parabolic. For a subgroup H of G, the minimal asymptotic translation length of H for the
action on (X, d) is defined by

(2) Lx,q)(H) = min{7(x q)(h) : h € H, 7(xa)(h) > 0}.

There have been many works on minimal asymptotic translation lengths of the action of mapping
class groups on curve graphs. Let S, denote a closed orientable surface of genus g. For the action of

the mapping class group Mod(S,) on the curve graph C(S,), Gadre and Tsai [12] proved that
1
Le(s,)(Mod(Sy)) = ek
where f(g) =< h(g) denotes that there exist positive constants A and B such that Af(g) < h(g) <
Bf(g). The braid group B,, can be regarded as the mapping class group of the n-punctured disk D,,
fixing boundary pointwise. The pure braid group PB,, is the subgroup of B,, consisting of mapping
classes that fix each puncture. Kin and Shin [20] and Baik and Shin [3] showed that

1
Le(p,)(Br) < 2 Le(p,)(PBy) <

1
n
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For the action of A(T") on I'®, it follows from a result of Kim and Koberda [18] that
1
Lire y(AT)) 2> ===
(T 7d)( ( )) 2‘V(P)‘2
Baik, Seo and Shin [2] proved that all loxodromic elements of A(I') on I'® have rational asymptotic
translation lengths with a common denominator.
In this paper, we show the following, where the denominator of the lower bound is improved from

a quadratic function to a linear function of |V (I')|.

Theorem B (Theorem [6.5]) Let I' be a finite simplicial graph such that |V (I')| = 4 and both I' and

T are connected. Then

1
ﬁ(FE,d)(A(F)) > W

In the remaining of this section, we explain briefly our ideas and the structure of this paper.

1.1. Idea for the acylindricity. Let us first explain our idea for the acylindricity. For g € A(T),
let ||g|| denote the word length of g with respect to the generating set V(I')*!, and let d; denote
temporarily the word length metric defined by dy(g, k) = ||gh™!|| for g, h € A(T). The right multipli-

cation induces an isometric action of A(T') on (A(T),dy). Since &(z,y;7) = 27 1E(1, yo~!

;7)x for any
x,y € A(T), it suffices to consider r-quasi-stabilizers of the form £(1,w;r) for the acylindricity.
Suppose that we are given R > 0 large, 7 > 0 small and w € A(T") with ||w| = d¢(w,1) > R. Let

g € (1, w;r) \ {1}. Since ||g|| = de(g,1) < 7 and ||wgw™!|| = d¢(wg,w) < 7, we have

(%) lwll > R, gl <7, Jwgw™ | <

In other words, |Jwl|| is large whereas ||g| and ||wgw™!|| are small. This happens typically when
(%) w =ag", neZ, acATl)

with ||a|| small and |n| large. In this case, d¢(w, g"™) = de(ag™, g") = ||a|| is small, hence we can say
that w is “close to a power of ¢”.

Even though it is clearly over-optimistic and false, one may hope that the following hold: given a
triple (R, r,w) as above (i.e. R > 0 is large, r > 0 is small and w € A(T") with ||w| > R),

(i) if (%) holds, then (*x) holds for some n € Z and a € A(T") with ||a|| small;
(ii) only a small number of triples (a, g,n) with |ja|| small and ||g|| < r satisfy (*x).

Of course, the above statements are not true at least as they are written. Moreover, the metric
spaces (A(I"),d;) and (I'¢,d) are not quasi-isometric, hence the above statements do not imply the
acylindricity of (I'°,d). However, we will see that this approach in fact works in the study of the
acylindricity of the action of A(T") on (I'¢,d) if we replace the word length metric with the star length

metric.

1.2. Lattice structure. In § we collect basic combinatorial group theoretic properties of right-
angled Artin groups. Those properties are stated using lattice theoretic notations.

The motivation comes from Garside groups which are a lattice theoretic generalization of braid
groups and finite type Artin groups. For Garside groups, there are elegant tools especially for the
word and conjugacy problems and the asymptotic translation length [13, 6] 111 4} [10] O, 22| 26].
Right-angled Artin groups are not Garside groups, except free abelian groups, hence we cannot apply
Garside theory to right angled-Artin groups. However, some ideas from Garside theory are very useful

in our approach.
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For g € A(T"), the support of g, denoted supp(g), is the set of generators that appear in a shortest
word on V(I')*! representing g.

For g1,92 € A(T'), we say that g1 and go disjointly commute, denoted g1 = g2, if supp(g1) N
supp(g2) = 0 and each vy € supp(g1) commutes with each vy € supp(gs).

Let g = g1---gx for some g,g1,...,9r € A(I'). We say that the decomposition is geodesic if
lgll = llgrll + -+ + llgk||- If g = g1g2 is geodesic, we say that ¢; is a prefiz of g, denoted g1 <, g, and
that g is a right multiple of g;.

The relation <y, is a partial order on A(T"), hence the notions of ged g1 Az g2 and lem g1 Vi go
make sense. Theorem shows that for g1, g2 € A(T'), the ged g1 AL g2 always exists and the lem

g1 VI go exists if and only if g1 and go have a common right multiple. Moreover, in this case, there

exist g, g5 € A(T) such that g; = (g1 AL g2)g; for i = 1,2, ¢} = g4 and g1 V1, g2 = (g1 AL 92)71 -

1.3. Cyclic conjugations. In §3 we study conjugations g* = v~ 'gu. The decomposition u~!gu is
not geodesic in general, i.e. ||u"tgu|| # ||u™t| + ||lgll + ||u.

Let g be cyclically reduced, i.e. the word length ||g|| is minimal in its conjugacy class. If u <, g, then
g = ugi is geodesic for some g1 € A(T) and g* = v~ (ug;)u = giu. In other words, the conjugation of
g by u moves the prefix u to the right. An iteration of this type of conjugations is called a left cyclic
conjugation. The right cyclic conjugation is defined similarly. The cyclic conjugation is an iteration
of left and right cyclic conjugations.

Proposition B.8 shows that for a cyclically reduced element g, the conjugation g% is a left cyclic
conjugation of ¢ if and only if u <z, ¢g" for some n > 1.

Theorem [3.9] shows that given g,u € A(T") with g cyclically reduced, there exists a unique geodesic
decomposition u = ujugus such that w; disjointly commutes with g; ¢“? is a cyclic conjugation;
g% = uz'g"™us is geodesic, i.e. ||uz'g"2us| = |luzt| + [lg“2|| + |lus||. Furthermore, there is a geodesic
decomposition uy = ubu such that g¥2 (resp. g“2) is a left (resp. right) cyclic conjugation and uf, = u4.

1.4. Star length. An element g € A(T") is called a star-word if supp(g) is contained in the star of some
vertex. The star length, denoted ||g||«, of g is the minimum ¢ such that g can be written as a product
of £ star-words. Let d denote the metric on A(T") induced by the star length: du(g1,92) = [lg195 *|l«-
The right multiplication induces an isometric action of A(I') on (A(T'),d.). The metric spaces
(A(T"),d,) and (I'°,d) are quasi-isometric [I8]. It seems that, for some algebraic tools, (A(I'),d,) is
easier to work with than (I'¢,d).
In §l we study basic properties of the star length concerning the prefix order <z and the geodesic

decomposition of group elements. For example, Corollary .8 shows that if g1go is geodesic, then

lgall + llgalls — 2 < llgrgzll« < llgulls + llgzl«-

1.5. Prefixes of powers of cyclically reduced elements. Recall that, for a cyclically reduced
element g, if g* is a left cyclic conjugation, then u <7 ¢ for some m > 1, i.e. u is a prefix of some
power of g. In §8l we study prefixes of powers. In particular, we show that if g is cyclically reduced
and non-split and if v <z, ¢ for some m > 1, then u = ¢g"a is geodesic for some 0 < n < m and
a € A(T') with ||a|l« < ||gl|l« + 1 (see Corollary (.6)).

1.6. Asymptotic translation length. In §6] we prove Theorem B by using the results in §5l

1.7. Uniqueness of quasi-roots. An element g is called a quasi-root of h if there is a decomposition

h=ag"b
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for some n > 1 and a,b € A(T') such that ||h]| = ||a||+n|lg||+ ||b]|. It is called an (A, B, r)-quasi-root if
llal] < A, [|b]| < B and ||g|]| < r and an (A4, B,r)*-quasi-root if ||al|« < A, ||b]|« < B and ||g||« < r. The

1 and b~ 1gb are called the leftward- and the rightward-extraction of the quasi-root g,

conjugates aga
respectively.

In [25], it is shown that if ||h|| > A+ B + (2|V(I')| + 1)r, then strongly non-split and primitive
(A, B, r)-quasi-roots of h are unique up to conjugacy, and their leftward- and rightward-extractions
are unique. (See 4 and 7] for the definitions of strongly non-split elements and primitive elements.)

In §7] we extend the above result to (A, B, r)*-quasi-roots: if |hl|« > 244+2B+(2|V(I")|4+3)r+2, then
primitive (A, B,r)*-quasi-roots of h are unique up to conjugacy, and their leftward- and rightward-

extractions are unique.

1.8. Proof of the acylindricity. In §8 we first compute the acylindricity constants for the action
of A(T") on (A(T"),ds) (Theorem BJ]) by combining the results from the previous sections. Then we
prove Theorem A using the quasi-isometry between (A(T"),d,) and (T'¢, d).

1.9. Conventions and notations. Throughout the paper, all the group actions are right-actions.
For graphs I'y and T', the disjoint union I'y U T is the graph such that

V(Pl L Pg) = V(Fl) L V(Pz),
E(Pl L Pg) = E(Fl) ] E(Pg)

The join T'y % I'y is the graph such that I'; * I's = I'; LTy, hence

V(I #Tg) = V(') UV (),
E(Pl * FQ) = E(Pl) L E(Fg) L { {01,1)2} v € V(Fl), Vo € V(Fg) }

A graph is called a join if it is the join of two nonempty graphs. A subgraph that is a join is called a
subjoin.
For X ¢ V(I'), I'[X] denotes the subgraph of I" induced by X, i.e.

V(P[X]) =X, E(F[X]) = {{01,1)2} S E(F) 1 U1,V € X}

For g € A(T'), the subgraphs I'[supp(g)] and T'[supp(g)] are abbreviated to I'[g] and T'[g], respectively.
For v € V(I') and X C V(I'), the sets Lkr(v), Str(v) and Stp(X) are defined as follows:

Lkr(v) = {v1 € V(T) : {v1,v} € E(T)},
Str(v) = {U} U Lkr(v),
Str U Str

veX

They are called the link of v, the star of v and the star of X, respectively. They will be written as
Lk(v), St(v) and St(X) by omitting I" whenever the context is clear.
The path graph Py = (vi,ve, ..., vx) is the graph with V(Py) = {v1, ..., v} and E(Py) = {{vi, viy1} :

1<i<k—1}, hencePklookshke *— o - o9 .
v V2 V-1 Vg

A path in a graph T is a tuple (vy,ve,...,vx) of vertices of I' such that {v;,v;11} € E(I") for all
1 <i<k—1. (We do not assume that the vertices or the edges in the path are mutually distinct.

Hence it means the walk in the graph theoretical terminology.)
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2. LATTICE STRUCTURES

In this section we study lattice structures in right-angled Artin groups.

An element of V(T')*! = V(I')UV(I')~! is called a letter. A word means a finite sequence of letters.
For words wy and w», the notation w; = wy means that wy and wy coincide as sequences of letters. A
word w' is called a subword of a word w if w = wyw'wy for (possibly empty) words wy and ws.

Suppose that g € A(T) is expressed as a word w on V(I')*!. The word w is called reduced if w is
a shortest word among all the words representing ¢g. In this case, the length of w is called the word

length of g and denoted by ||g]|.

Definition 2.1 (support). For g € A(T"), the support of g, denoted supp(g), is the set of generators
that appear in a reduced word representing g. It is known that supp(g) is well defined (by [14]), i.e.

it does not depend on the choice of a reduced word representing g.

Definition 2.2 (disjointly commute). We say that g1, g2 € A(T") disjointly commute, denoted g1 = g2,
if supp(g1) Nsupp(g2) = 0 and each v; € supp(g1) commutes with each v9 € supp(g2). (In particular,
the identity element 1 € A(I") disjointly commutes with any g € A(T").)

The notation I'[g] is an abbreviation of I'[supp(g)], the subgraph of I induced by supp(g). From a
graph theoretical viewpoint, g; = go means that supp(g1) N supp(g2) = @ and T'[g1g2] = T'[g1] U T'[go]
in the complement graph T' (or equivalently T'[g1g2] = T[g1] * [[g2] in the graph T'). Recall that
Str(supp(g)) denotes the star of supp(g) in the complement graph T'. The following lemma is now

obvious.

Lemma 2.3. For g1,92 € A(T'), the following are equivalent:
(i) g1 = g2 in A(D);
(i) St (supp(g1)) Nsupp(g2) = 0.

Let w be a (non-reduced) word on V(I')*1. A subword v*!w;vF! of w, where v € V(T'), is called a
cancellation of v in w if supp(w;) C Str(v), i.e. each v1 € supp(w;) commutes with v. If, furthermore,
no letter in wy is equal to v or v™!, it is called an innermost cancellation of v in w. It is known that
the following are equivalent:

(i) w is a reduced word;
(ii) w has no cancellation;
(iii) w has no innermost cancellation.

Abusing terminology, we do not distinguish between an element g € A(T") and a reduced word w
representing ¢ if there is no confusion. For example, if there is a cancellation in wjws, where each w;
is a reduced word representing an element g;, then we just say that there is a cancellation in g;go.

Definition 2.4 (geodesic decomposition). For k > 1 and g, ¢1,...,gr € A(T"), we say that the decom-
position g = g1 - - - g is geodesic, or gy - - - gi is geodesic, if ||g]| = ||g1]| + -+ + [|g&]l-
If g1 - - - g is geodesic, then the following are obvious from the definition:
(i) gkflg,;ll e gfl is geodesic;
(i) gpgp+1---gq is geodesic for any 1 < p < ¢ < k;
(iii) supp(g1 -+~ gk) = supp(g1) U - - U supp(g)-
Definition 2.5 (prefix order). Let g = g192 be geodesic for g, g1, g2 € A(I"). We say that gy is a prefiz

(or a left divisor) of g, denoted g1 <1, g, and that g is a right multiple of g;. Similarly, we say that go
is a suffiz (or a right divisor) of g, denoted g2 <pr g, and that g is a left multiple of gs.
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Clearly both <y and <p are partial orders on A(I'). The following lemma shows their basic
properties. The proof is straightforward, hence we omit it.

Lemma 2.6. Let g,q1,...,9n, h1,ho € A(T).

(i) g1 <L g2 if and only if 7' <p g;"
(ii) If gg1 and ggs are geodesic, then gg1 <p, ggo if and only if g1 <r, go.
(iii) ¢ gn 1s geodesic if and only if g1+ g <L g1 ka1 for all 1 <k <n—1.
(iv) Suppose g192 = hihs such that both gigo and hihy are geodesic. Then g1 <r, h1 if and only if

ha <R 92.

Definition 2.7 (gcd and lem). For g, h € A(T"), the symbols g A h and g vV, h denote the greatest
common divisor (ged) and the least common multiple (lem) with respect to <p. In other words, gAp h
is an element such that (i) g Aph <p g and gAph <p h; (i) if uw <z, g and u <y, h for some u € A(T),
then u <7, g Ap h. Similarly, g V1 h is an element such that (i) g <z g Vp h and h <z g vV h; (ii) if
g <ruand h <p, u for some u € A(T'), then g Vi h <1, u.

The symbols g Ar h and g Vi h denote the gcd and lem respectively with respect to <g.

The elements g Ap, h and gV, h are unique if they exist. In Theorem we will show that g Ap h
always exists and that g V, h exists if and only if g and A admit a common right multiple.

Note that g and h have no nontrivial common prefix if and only if g A h = 1, i.e. the ged g Ar h
exists and is equal to the identity. Therefore even though we did not prove yet the existence of g Ap h
for arbitrary g and h, we can safely use the expression g Ap h = 1.

The following lemma is an easy consequence of the fact that a word is reduced if and only if it has

no innermost cancellation.

Lemma 2.8. Let u,g,91,...,9x € A(l).

(i) Suppose that gy --- gi is not geodesic. Then there exist 1 < p < q < k and x € V(I')* such

that

' <rgpy, v<pgy T=gjforalp<j<ag

Furthermore, if both g1 ---grx—1 and go - - - g are geodesic, then p=1 and q = k.
(ii) Suppose that for each 1 < p < q < k, either g,g4 is geodesic or g,g;, - - - g5, 9q 5 geodesic for
somep <j1 <---<jr<q. Then g1 ---gi is geodesic.
(iii) Suppose that gg is geodesic. For any n > 2 and a,b € A(T'), the following are equivalent:
(a) agb is geodesic;
(b) agg---gb is geodesic;
——

(c) ag"bnz's geodesic.
In particular, g" = gg--- g is geodesic for any n > 2.

(iv) Suppose that g;g; is geodesic for all 1 < i < k and that ajgiasgs - - apgraks1 is geodesic for
some ay,...,ap41 € A(T'). Then aigi asgy? - - - argy*ag41 is geodesic for any n; > 1.

Proof. (i) Let w; be a reduced word representing g; for i = 1,..., k. Since g - - - g is not geodesic, the

word w = w1 - - - wg is not reduced, hence it has an innermost cancellation. Since each w; is reduced,

-1

the cancellation must occur between r~! in w, and z in w, for some 1 < p < ¢ < k and x € V(I)*!

Therefore w, and w, are of the form w, = wpx 1wp and w, = wqqu such that = disjointly commutes

with wy, wpy1, ..., w1, wy, hence ' <pgp, v < ggand x = g; for all p < j < q.
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If either p > 1 or ¢ < k, then either go---gr or g1 ---gr_1 is not geodesic. Therefore if both
g1+ gr—1 and go - - - gi are geodesic, then p =1 and ¢ = k.

(i) Assume that g; - -- g; is not geodesic. By (i), there exist 1 < p < ¢ < k and = € V(I')*! such
that 27! <g 9ps T <L gq and x = g, for all j with p < j < ¢. Therefore none of g,g, and g,g;, - - - ;.94
(p <j1 <---<jr<q)is geodesic, which contradicts the hypothesis.

(i) (a) = (b): Let hy =a, hy =g fori=2,...,n+ 1 and hy4o = b. Then hy,..., hyio satisfy
the hypothesis of (ii), hence hihg -+ hpi1hpio =ag--- gb is geodesic.

—

n
(b) = (a): Since ag---gb is geodesic, ag and gb are geodesic. If agb is not geodesic, then there
S—

exists € V(I')*! such ‘:hat 7' <pa,z <p band x = g by (i). Hence ag---gb is not geodesic,
which is a contradiction.

(b) & (c): From (a) = (b) witha=0b=1, ¢" = gg---g is geodesic, i.e. ||g"|| = n||g||. Therefore
llag"b|| = |la|l + |lg"|| + ||0]] if and only if |ag™d|| = ||al| + n||lg| + ||b]|, i-e. ag™b is geodesic if and only
if agg---gb is geodesic.

n

(iv) Applying (iii) with @ = a1, g = g1, b = a2g2 - - - ax41 and n = ny, we get that a197"a2g2 - - - ag+1
is geodesic. Then applying (iii) with a = ajg7'a2, g = g2, b = asgs---ag+1 and n = ng, we get
that a197" a2gy?asgs - - - ar41 is geodesic. Iterating this process, we get that a1gy"azgs? - - - argy* axs1
is geodesic. O

Lemma 2.9. Let g1,92 € A(T') and x € V/(I')*.

(i) If g1go is not geodesic, then there exists y € V(I')*! such that y=' <gr g1 and y <r g2.
(ii) Let g1g2 be geodesic. If x <p gi1g2 and x L1, g1, then © <1, g2 and x = ¢;.
(iii) Let g1go be geodesic. If © <gr g192 and x LR g2, then x <g g1 and x = go.

Proof. (i) It follows from Lemma [2.8(i) with k = 2.

(ii) Since = €1, g1, the decomposition x 1 - g1 is geodesic. Since x <7 g192, the decomposition
21 g1go is not geodesic. Since both 271 g and g; - g are geodesic, there exists y € V(I')*! such that
y !<pa!, y <y g0 and y = g1 (by Lemma 28(i)), hence x = y. Therefore x <, g2 and = = g;.

(iii) The proof is analogous to (ii). O

Lemma 2.10. Let g € A(T') and x # y € V(I')*! (possibly y = z71).
(i) If x <1 g and y <R g, then g = zhy is geodesic for some h € A(T).
r).

(ii) If z,y <r g, then x = y and g = xyh is geodesic for some h € A(
(iii) If z,y <gr g, then © =y and g = hxy is geodesic for some h € A(T).

Proof. (i) Since y <gr g, g = ¢'y is geodesic for some ¢’ € A(T"). Since z <1, g = ¢'y, if x €1, ¢/, then
x <z y (by Lemma [2.9(ii)), which contradicts the hypothesis x # y. Thus x <y, ¢, hence ¢’ = zh is
geodesic for some h € A(T'). Therefore g = ¢'y = xhy is geodesic.

(ii) Since z <, g, g = xg’ is geodesic for some ¢’ € A(T"). Since y # x (hence y €1 x) and y <, ¢/,
we have y = z and y <p, ¢’ (by Lemmal[ZI|(ii)), hence ¢’ = yh is geodesic for some h € A(T'). Therefore
g = xg' = xyh is geodesic.

(iii) The proof is analogous to (ii). O

Lemma 2.11. Let g1, g2, h1, ho,h € A(T') with both g1g2 and hihs geodesic.
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91 g2

hy

/
g1 ha g
/!

9o

g1

FIGURE 1. van Kampen diagram for Lemma 2.TT(ii)

(1) Ifh AL g1 = h AL g2 = 1, then h/\L (9192) =1.
(ii) If h <1 g192 and h A, g1 =1, then h = g1 and h <y, ¢2.
(iii) Let g1g2 = haha. If g1 AL by = g2 AR ha =1, then g1 = hy, g1 = hy and go = hy.

Proof. (i) If h AL (g1g2) # 1, then there exists x € V(I')*! such that <y h and = <g, g1go. Since
x <g hand hAp g1 =hAp go =1, we have x €7, g1 and x £, g2. Since x <7, 9192 and x L1, g1, we
have x <, g2 by Lemma [2.9(ii), which is a contradiction.

(ii) We use induction on ||A]|.

If ||h|| = 0, there is nothing to prove. If ||h|| = 1, it holds by Lemma [2.9]ii).

Assume ||h|| > 2. Then h = hyz is geodesic for some h; € A(T) and z € V(I')*!'. See Figure [
Notice that h; <r, g192 and hy Ap g1 = 1. By the induction hypothesis, h; = g1 and h; <, g2, hence
g2 = h1g} is geodesic for some g5 € A(T).

Since h; = g1, we have g192 = g1h1g5 = higigh. Since g1go is geodesic, so is higigh. Since
hiz = h <1, g192 = h1g195 and both hyx and hyg; g are geodesic, we have x <1, g145.

Observe x €1, g1. (If z <, g1, then x = hy because hy = ¢1. Since h = hyx = xhy is geodesic, we
have x <y, h. Thus z is a common prefix of g; and h, which contradicts the hypothesis h Af, g1 = 1.)
By Lemma [Z.9(ii), we get = g1 and = <, ¢, hence gh = x4} is geodesic for some g € A(T).

Since g2 = h1gh = hizgy = hgl and since hgj is geodesic, we have h <z, go. On the other hand,
since h1 = ¢1 and = = g1, we have h = hiz = ¢g1.

(iii) Since g1 <p, h1h2, h1 < 9192 and g1 Ap hy = 1, we have g1 = hy, g1 <p, he and hy <z, g2 (by
(i)). Thus hy = g1hf and gy = h1g} are geodesic for some gh, hfy € A(T).

Observe g1h1gh = g1g2 = hihe = higihy, = gihih}, which implies g}, = hf,. Since ga Ag ha = 1, we
have gh = hl, = 1, hence g; = hs and go = h;. O

The following is the main result of this section.

Theorem 2.12. For g1,g2 € A(T), the ged g1 AL g2 always exists and the lem gy Vi, go exists if and
only if g1 and g have a common right multiple.

More precisely, if go is a mazimal common prefix of g1 and g2, hence g1 = gogy and g2 = gogh are
geodesic for some gy, gy € A(T) with g) A, gh =1, then the following hold.

(i) g1 and ga have a common right multiple if and only if g) = g¢4. In this case, g1 V1, g2 exists

and g1 VL g2 = G195 = 9291 = 9091 95- In particular, supp(g1 V1, g2) = supp(g1) U supp(ga).
(ii) g1 AL 92 = go-

Proof. (i) Assume g} = gb. Then g}g, is geodesic (otherwise there exists 2 € V(I')*! such that
27! <g ¢} and x <y, g) by Lemma 29(i), hence ¢} and g} do not disjointly commute). Since gog],
gogy and g} gh are all geodesic, gog)gs is geodesic (by Lemma 2:8(ii)). Therefore gogigh = 9195 = 929}

is a common right multiple of g; and go.
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91 hi

do 0
92 ho

FIGURE 2. van Kampen diagram for Theorem 2.12]

Conversely, assume that g; and g have a common right multiple h. Then h = g1h; = goho are
geodesic for some hy, hy € A(T'). We need to show that ¢f = gb.

Let hy be a maximal common suffix of h; and hg. Then h; = hlhg and he = hihy are geodesic for
some R, hl, € A(T') with b} A b, = 1. See Figure 2 Notice that gjh} = g5hh} and that g}, g, b}, hf
satisfy the hypotheses of Lemma 2T11(iii). Therefore g = gj.

Lemma [2ZTT(iii) also claims ¢ = h} and g5 = b}, hence h = g1h1 = gogihho = 909} g5ho. Therefore
gog1g5 is a prefix of any common right multiple h of g1 and go, namely, g1 VL g2 = gogigh. It
follows immediately that supp(g; Vi g2) = supp(g1) U supp(gz2). Since gogigh = goghg], we have
91 VL g2 = 909195 = 9195 = 924, -

(ii) Let ug be a common prefix of g; and go. Since g; and g2 are common right multiples of gy and
ug, the lem go Vr ug exists (by (i)) and is a prefix of both g; and go, hence gg V1 ug is a common prefix
of g1 and g». Since gg V1, ug is a right multiple of gg and since gg is a maximal common prefix of ¢;

and g9, we have gg = gg V1, ug, hence ug <z, go. Therefore gy = g1 AL go. ]

Obviously we can replace (A, Vr) in Theorem 212 with (Ag, Vg) as follows.

Theorem 2.13. For g1,g92 € A(T), the ged g1 AR g2 always exists and the lem g1 Vg g2 exists if and
only if g1 and gs have a common left multiple.
More precisely, if go is a mazimal common suffiz of g1 and gz, hence g1 = gigo and g2 = ghgo are
geodesic for some g\, gy € A(T) with g] Ar gy = 1, then the following hold.
(i) g1 and g2 have a common left multiple if and only if ¢) = ¢5. In this case, g1 VR go exists
and g1 VR g2 = 9591 = 9192 = 919390- In particular, supp(g1 Vg g2) = supp(g1) U supp(gz)-
(ii) 91 AR 92 = go-

Observe that the geds g1 Az g2 and g1 AR g2 exist for any g1,92 € A(T") by the above theorems.
The following lemma is obvious, hence we omit the proof.

Lemma 2.14. Let g1,92 € A(T).

M) (g1 AL g2) ™ =g ARyt
(i) If » = gog) and g2 = gogh are geodesic, then g1 AL g2 = go(9 AL gb). In particular, if
91 AL g5 =1, then g1 AL g2 = go-
(iii) If g1 <L g2, then (h AL g1) <1 (h AL g2) for any h € A(T).
(iv) The statements analogous to (ii) and (i) also hold for (<gr,AR).

Lemma 2.15. Let g1, g2, h € A(T) with g1g2 geodesic.

(i) If h = g1, then h AL (g192) = h AL g2.
(ii) If supp(h) Nsupp(ge) = 0, then h AL (9192) = h AL g1
(iii) If h <1 g192 and h = g1, then h <z, gs.
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(iv) If h <1 g192 and supp(h) Nsupp(ge) = 0, then h <r, g1.
(v) The statements analogous to (i)—(iv) also hold for (<r,AR).

Proof. (i) Let hg = h AL ga. Then h = hoh' and go = hogh are geodesic for some 1/, g5 € A(T') with
h' AL gh =1. Since h = g1 and h = hoh' is geodesic, we have hg = g1 and b’ = ¢1, hence W' A, g1 = 1.

Notice that g1 ¢4 is geodesic because g1 g2(= g1hogh) = hogigh is geodesic. Since W' Apg1 = W' A gh =
1, we have b/ Ar (g195) = 1 (by Lemma [ZTT](i)). Therefore by Lemma 2141 (ii)

h AL (g192) = (hoh') AL (g1hogh) = (hoh') AL (hogigs)
= ho(W AL (9195)) = ho = h AL g2.

(ii)) Let hg = h AL g1. Then h = hoh’ and g1 = hog} are geodesic for some h',g; € A(T') with
h'Arg) = 1. Since supp(h)Nsupp(g2) = 0 and since h = hoh’ is geodesic, we have supp(h')Nsupp(g2) =
(0, hence h' A, g2 = 1.

Notice that ¢}g2 is geodesic because gi1g2 = hog}g2 is geodesic. Since b Ap g] = h' A g2 = 1, we
have b/ Ar (¢1g2) = 1 (by Lemma [ZT1)i)). Therefore by Lemma 2141 (ii)

h AL (9192) = (hoh') AL (hogige) = ho(h' AL (g192)) = ho = h AL g1.

(iii) and (iv) are direct consequences of (i) and (ii), respectively.
(v) The proof is analogous to (i)—(iv). O
Corollary 2.16. Suppose that a set C C A(T") satisfies the following conditions.

(P1) C is prefiz-closed, i.e. if g € C and h <r, g, then h € C .
(P2) For g € A(T") and z,y € V(I')*' such that both gz and gy are geodesic, if gx,gy € C and
x =1y, then gry € C.

Then C' is lem-closed, i.e. if g1,g0 € C and g1 V1, go exists, then g1 Vi go € C.

Proof. Let g1, g2 € C such that g1 V go exists. Let g = g1 AL g2. Then

g1 =9091 and g2 = gogh

are geodesic for some ¢/, g5 € A(T"). By Theorem [Z12], ¢ = ¢4 and g1 VL 92 = 904} g5

We use induction on || g} || +1|g5]]- If ||g;]] = 0 or ||g5|| = 0, then g1V 1,g2 is either gs or g1, respectively,
hence there is nothing to prove. If ||¢}|| = ||g5]| = 1, then ¢1 VL g2 = gogy g5 € C by (P2). Therefore
we may assume [lgf| + lg5] > 3 and g, 4]l > 1.

Then ¢} = ¢/x; and g, = g§xs are geodesic for some g, g € A(T") and 1,25 € V(I')*!. Thus

g1 =gogir1 and g2 = goghTa

are geodesic, where g{z1 = ghs.
Since g1, g2 € C, we have gog{, gogy € C by (P1), hence by the induction hypothesis we have

91 VL (9093) = gogigax1 € C and  gogi Vi g2 = gogi gy € C.

Therefore g1 V1, g2 = gogi gyx122 € C by (P2). O
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3. CYCLIC CONJUGATIONS

Definition 3.1 (cyclically reduced). An element g € A(T") is called cyclically reduced if it has the

minimal word length in its conjugacy class.

Servatius [28], Proposition on p. 38] showed that every g € A(T") has a unique geodesic decomposition
g=uthu
with h cyclically reduced. The following lemma shows that u is determined from g by v =g Ag g~ '.

Lemma 3.2. Let g,h,u € A(T).
(i) If g = uthu is geodesic with h cyclically reduced, then u = g Ap g~ *.

(ii) g is cyclically reduced if and only if g AR g~ ! = 1.

Proof. (i) We have two geodesic decompositions g = u~'hu and ¢g=! = u='h~'u. By Lemma 214l it
suffices to show (u='h) Ag (u=th™1) =1 or equivalently (hu) Az (h~1u) = 1.

Assume (hu) Ap (h~'u) # 1. Then there exists x € V(I')*! with z <z, hu and = <z, h™ .

If €7 h, then 2 = h (hence z = h™') and = <y, v (by Lemma 23(ii)). Let u = 2u; be geodesic
for some u; € A(T"). Then g = uthu = uflx_lhxul = uflhul. This contradicts that ¢ = v~ 'hu is
geodesic. Therefore x <;, h. By the same reason, z <7, h~', hence 27! <y h.

Since * <7 h and 27! <g h, h = zhyx~! is geodesic for some h; (by Lemma ZI0(i)), which
contradicts that h is cyclically reduced. Therefore (hu) Ay (h~1u) = 1.

(ii) It follows from (i). O

Definition 3.3 (starting set). For g € A(T"), the starting set S(g) of g is defined as
S(g)={ze V(D) :z<p g}

Lemma 3.4. The following hold.

(i) For any g € A(T"), the following are equivalent.
(a) g is cyclically reduced.
(b) There is no geodesic decomposition such as g = u~*hu, where u,h € A(T) with u # 1.
c) For any geodesic decomposition g = g1g2, g2g1 is geodesic.
d) For any g1 € A(T) with ¢1 <1, g, gg1 is geodesic.
e) g" =gg---g is geodesic (i.e. ||g"|| =n|g|l) for some n > 2.
) g" =gg---g is geodesic (i.e. ||g"|| = n|lgll) for all n > 2
g) g" is cyclically reduced for some n > 2.
h) g™ is cyclically reduced for all n > 2.
(i) Let g1--- gi be geodesic (z' e. lgr--- gl = llgrll +- -+ llgll ). Then gi*---g.* is geodesic (i.e.
97+ P = 7+ -+ 1) for any positive integers .
(iii) For any g € A(I") and n > 2, supp(g") = supp(g) and S(g") = S(g).

Proof. (i) The equivalences between (a), (b), (¢), (e), (f) are easy to prove. For example, see [25]

Lemma 2.1]. We show the remaining equivalences assuming the known equivalences.

(a) = (d): Assume that g; <p, g but gg; is not geodesic. Then there exists a letter = € V(I')*! such
that z <z g and 27! <y, g1 (by Lemma Z9(i)). Since g1 <z, g, we have 71 <y, g, hence 2 <r g~ .

Now z <p g Ar g ', hence g Ar g~! # 1. By Lemma B.2(ii), ¢ is not cyclically reduced.
(d) = (e): Since g <1, g, gg is geodesic.
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(f) = (h): Let n > 2. Since [|g°"|| = 2nllg|| and [|g"|| = nlg|l, we have [|g*"|| = 2||g"|, hence g" - "
is geodesic. Because (a) and (e) are equivalent, g" is cyclically reduced.

(h) = (g): It is obvious.

(g) = (a): Assume that g is not cyclically reduced. Then g = u~'hu is geodesic for some u, h € A(T')
such that u # 1 and h is cyclically reduced [28]. Observe that hh is geodesic (by (a) < (f)). Hence g"
has a geodesic decomposition u~th"u for any n > 2 (by Lemma 2.8). Therefore g is not cyclically
reduced for any n > 2 (by (a) < (b)).

(ii) Let g; = ui_lhiui be a geodesic decomposition of g; with h; cyclically reduced for i =1,..., k.
Then

—1 —1
g1+ Gk = uy hyuy - -ug hgug,

atgt = uflh’flul e u;lhzkuk.

In particular, ul_lhlul . --u;lhkuk is geodesic because g; - -- gr and each ¢g; = ui_lhiui are geodesic.
Notice that each h;h; is geodesic by (i). Applying Lemma 2.8(iv), we get that uflh?lul e u,;lhzkuk

s

is geodesic. Therefore gi'* --- g,* is geodesic.

(iii) Let g = u~'hu be a geodesic decomposition of g with h cyclically reduced. Then
(3) g =uth"u=u"th-- hu

are each geodesic decompositions of ¢" (by Lemma [2.8](iii)).

Notice that supp(u) = supp(u~!) and that if g - - - g is a geodesic decomposition, then supp(g; - - - gr) =
supp(gy) U - - - Usupp(gr). Therefore supp(g) = supp(u) U supp(h) = supp(g™) from (3.

Observe that x <y, h™ if and only if x <z, h: if z < h, then it is obvious that z <, h"; if z £, h,
then = €, h"™ (otherwise, z <y h" = h - R"~1 implies = h and z <; K" !, which contradicts that
supp(h) = supp(h"~1)).

Since g = u~'hu is geodesic, <y, g if and only if one of the following holds (by Lemma Z9(ii)):

() z <pu™l; (i) o <gp hand o = v~ (iii) # <, v and £ = u~'h. Notice that (iii) cannot happen.
Since x <y, h if and only if x < A", we can conclude that x < ¢ if and only if z <p ¢". Therefore
S(g) = S(g")- O

Definition 3.5 (cycling, cyclic conjugation). Let g € A(T") be cyclically reduced.
(i) For a letter z € V(I')*!, the conjugation g* = x =gz is called a left (resp. right) cycling if
x <z g (resp. 7! <g g). Left and right cyclings are collectively called cyclings.
(ii) For an element u € A(T'), the conjugation g% = u~'gu is called a cyclic conjugation of g by
w if ||g*|| = |lg|| and supp(u) C supp(g). A cyclic conjugation g* is called a left (resp. right)

cyclic conjugation if gu (resp. u'g) is geodesic.

For g € A(T) and = € V(I')*!, if g is a left cycling, i.e.  <r g, then g = xh is geodesic for some
h € A(T') and ¢° = v 'gx = hx is geodesic. Therefore the left cycling g% is obtained from g = zh
by moving the first letter x to the last. Similarly, if g” is a right cycling, then ¢g” is obtained from
g = hz~! by moving the last letter 2! to the first.

If ¢* is a cycling, then it is easy to see that ||g”|| = ||g|| and supp(z) C supp(g), hence ¢g* is a
cyclic conjugation. Conversely, we will show in Lemma [B.7 that a cyclic conjugation ¢g* is obtained by
iterated application of cyclings.

If g € A(T) is cyclically reduced and g* is a cyclic conjugation, then ||g“|| = ||g||, hence g" is also
cyclically reduced.
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Lemma 3.6. Let g € A(T') and z,y € V(I')*! with g cyclically reduced.

(i) The conjugation g* cannot be both a left cycling and a right cycling.
(i) Let y # x~ L. If ¢° and (¢*)Y are cyclings of different type, then x = y.
(ili) Let x = y. If both g* and (g*)Y are cyclings, then so are g¥ and (g¥)*.
(iv) Let x = y. If both g* and ¢¥ are cyclings, then so are (g*)Y and (g¥)".
In (ii1) and (iv), the types of cyclings depend only on the conjugating letters. For example, if g* is a
left cycling, then (g¥)* is also a left cycling, and so on.

Proof. (i) If g% is both a left cycling and a right cycling, then x <z, g and 27! <g g, hence g = xha ™!
is geodesic for some h € A(T") (by Lemmas[2Z.10(i)). Thus g is not cyclically reduced (by Lemma[3.4i)).

(ii) Assume that ¢” is a left cycling and (¢”)¥ is a right cycling. (An analogous argument applies
to the case where ¢ is a right cycling and (¢*)¥ is a left cycling.)

Since ¢* is a left cycling, we have x <y, g, hence g = zh is geodesic for some h € A(T"). Notice that
g% = hx is geodesic. Since (¢%)Y is a right cycling, y~! <g ¢° = ha.

Since y~! # z, we have = y~! (by Lemma 23(iii)) and hence z = y.

(iii) and (iv) Assume that ¢* and (¢g*)¥ are left cyclings, hence x <p, g and y <y, ¢*. Since x <y, g,
g = zhy is geodesic for some hy € A(T'), hence g* = hyx is also geodesic. Since y <z ¢* = hjz and
y = x (hence y €1, x), we have y <y, hy, hence hy = yho is geodesic for some hy € A(T'). Now we
know that

g = xhy = xyhs = yxhy

and ¢g¥ = xhey are all geodesic, hence y <z ¢ and = <y, ¢¥. This means that ¢¥ and (¢¥)* are left
cyclings.

For the other cases, it is easy to see that ¢ has a geodesic decomposition as one of xyh, xhy ™!,

yhe~! and ha~'y~! depending on the types of cyclings, from which the conclusions follow. O

Lemma 3.7. Let g,u,ui,us € A(I') with g cyclically reduced.
(i) The following are equivalent:

(a) g
(b) there exists a reduced word wo = y; - - - Yy, representing u such that (g¥'"Yi=1)¥i is a cycling

% is a cyclic (resp. left cyclic, right cyclic) conjugation;

(resp. left cycling, right cycling) for all 1 <i < k;

(c) for any reduced word w = xy-- -z representing w, (g*1Fi=1)Ti is a cycling (resp. left
cycling, right cycling) for all 1 <1i < k.

In particular, if g* is a cyclic conjugation, then supp(g*) = supp(g).

(ii) Let u = uyug be geodesic. Then g“ is a cyclic (resp. left cyclic, right cyclic) conjugation if
and only if both g"* and (g"*)"2 are cyclic (resp. left cyclic, right cyclic) conjugations.

(iii) If g"* and g“2 are cyclic (resp. left cyclic, right cyclic) conjugations and uy V' ug exists, then
g VLu2 s also a cyclic (resp. left cyclic, right cyclic) conjugation.

(iv) Let uy = ug. Suppose that g"* and g“? are a left cyclic conjugation and a right cyclic
conjugation, respectively. Then (g"2)"1 and (g"*)"2 are a left cyclic conjugation and a right
cyclic conjugation, respectively. Moreover, u;lgul s geodesic.

(v) Suppose that g* is a cyclic conjugation. Then there is a geodesic decomposition u = ujug such
that uy = ug and g"* (resp. g“2) is a left (resp. right) cyclic conjugation. Moreover, uglgul

s geodesic.
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Proof. The statements (i)—(iii) concern three types of cyclic conjugations. We prove only the case of
cyclic conjugations. The other cases (i.e. left and right cyclic conjugations) can be proved analogously.

We use the following claim.

Claim 1. If g% is a cyclic conjugation for some u € A(I')\{1}, then there exists y; € V(I')*! and
uy € A(T") such that u = yyu; is geodesic, g¥* is a cycling and (g¥!)*! is a cyclic conjugation.

Proof of Claim 1. Since ||g*|| = ||g]|, the decomposition v~ gu is not geodesic. If both u~!g and gu are
geodesic, then there exists z € V(I')*! such that 27! <g ™!, 2 <, w and = ¢ (by Lemma ZXi)).
However, the relation x = ¢ is impossible because x g r u and supp(u) C supp(g). Hence either
u"'g or gu is not geodesic, i.e. there exists y; € V(I')*! such that either y1 <gulandy <1 g
or y1 <z u and yl_1 <pgr g. This means that ¢g¥! is a cycling and that u = yjuy is geodesic for some
u; € A(T"). Therefore (¢g¥1)* is a cyclic conjugation because |[(¢¥*)"!|| = |l¢*] = llg|| = ||g¥*| and
supp(u1) C supp(u) C supp(g) = supp(g*"). O

(i) We may assume u # 1 because otherwise there is nothing to prove.

(a) = (b): Suppose that g" is a cyclic conjugation. By Claim 1, there is a geodesic decomposition
u = yjuy such that ¢g¥! is a cycling and (g¥')“! is a cyclic conjugation. Applying Claim 1 again to
(g¥1)*r, we have a geodesic decomposition u; = yous such that (¢g¥*)¥? is a cycling and (g¥1¥2)"2 is a
cyclic conjugation. Iterating this process, we get a desired reduced word wg = y1 .. . Yi.

(b) = (c): Let w =z -z be a reduced word representing u. Notice that the word wg = y1 - - - yx
can be transformed into the word w = 1 - - - z; by using only commutation relations. Therefore each
(g*rTi-1)Ti is a cycling (by Lemma [3.0](iii)).

(c) = (a): Let w = z1---x), be a reduced word representing u, where z; = v;*, v; € V(I') and

= =41 for all 1 <4 < k. Then, for each 1 < i < k, (g™ "%-1)% is a cycling, hence
g5 = g and v € supp(gFt 1) = supp(g ).
Thus g™+ = [lg| and {vi,...,ve} C supp(g™"**) = supp(g). Therefore [g"|| = ||g|| and

supp(u) C supp(g), hence g* is a cyclic conjugation.

(ii) Let up =y - --xj and ug = xjy1--- 1) be geodesic decompositions, where 1 ---xj, € V(I“)il

% is a cyclic conjugation if

Then u = x1 - - - 21 is also geodesic because u = u1u2 is geodesic. By (i), g
and only if (¢®'""*i-1)% is a cycling for each 1 < i < k, and this happens if and only if both ¢g*! and

(g")"2 are cyclic conjugations.

(iii) Let C(g) be the set of all u € A(T") such that g* is a cyclic conjugation. Then C(g) satisfies
(P1) in Corollary by (ii) in this lemma. Therefore it suffices to show that C(g) satisfies (P2) in
Corollary

Let uz,uy € C(g) (i.e. ¢"* and g"¥ are cyclic conjugations) such that ux and uy are geodesic and
x =1y, where u € A(T') and z,y € V(I')*'. Then both (¢*)* and (g*)¥ are cyclings of g* (by (ii)). By
Lemma B6l(iv), (¢“*)Y is a cycling, hence ¢g"*¥ is a cyclic conjugation (by (ii)). Therefore uxy € C(g),
hence C(g) satisfies (P2) in Corollary

(iv) Notice that u; Vi us = ujus = uguj and that both ujus and uguy are geodesic, because
u1 = ug. Since both ¢g“! and g2 are cyclic conjugations, so are g“1"2, (¢g“1)“2 and (¢“2)** (by (ii) and
(iii)).

Let us show that the cyclic conjugation (¢“2)“! is a left cyclic conjugation, i.e. the decomposition

g"2uy is geodesic. (The proof for (¢g“1)“2? is analogous.) Observe

—1 U —1
Uy gul = g P uruy
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Since both u, Ly and gu; are geodesic and since u; = ug, Uy Yguy is geodesic (by Lemma 2.8(ii)). Since

1

llg“2]| = ||g||, the decomposition g“2uju, ~ is also geodesic. Therefore g“2u; is geodesic.

(v) We use induction on |Ju|. If ||u|| = 1, there is nothing to prove.
Suppose that v = u'z is geodesic for some u/ € A(I')\ {1} and = € V(I')*'. Then g% is a

xT

cyclic conjugation and (¢g*)* is a cycling (by (ii)). Suppose that (¢g*)* is a left cycling. (The proof

is analogous for the case where (g”,):” is a right cycling.) By the induction hypothesis, we have a
geodesic decomposition u/ = uju} such that u/ = u) and ¢g*i (resp. g"2) is a left (resp. right) cyclic
conjugation.

Claim 2. z = u), and u = ujxu), is geodesic.

Proof of Claim 2. Let ul, = yi - - - yx be geodesic, where y1,. ..,y € V(I')*L. Then u has the following

three geodesic decompositions:
!/ ! ! /
U=1UT = U UsT = UYL * - - YRT.

Let hg = g* and h; = g“1%1"% for 1 < i < k. Then each h; is cyclically reduced (by (ii)), and
hi = h¥"|. Since (g"1)"2 is a right cyclic conjugation (by (iv)), each hY | = (g“¥1"¥i-1)¥i is a right
cycling (by (i)).

Since u = u}y; - - yrx is geodesic, we have y # 1. We know that h%’“_ | is aright cycling and that
(hYF)* = (g“/)x is a left cycling, hence = y;, (by Lemma [B.6(ii)). Therefore u = ujy1 - yr—12Yk
and hi_, is a left cycling (by Lemma B.6l(iii)).

Applying the above argument to the right cyclings hZ’“_*Ql, ..., h§" in this order iteratively, we obtain
x =y, for all 1 <4 < k. Therefore x = w5 and hence v = vjubr = ujzul. Since wjuhHz is geodesic,

so is ujzub,. O

Let u; = u’lx and uy = u'2 Then v = wjug is geodesic, u; = uy and g"' (resp. g*?) is a left
(resp. right) cyclic conjugation. Moreover, uy 'gu; is geodesic (by (iv)) O

For a cyclically reduced g € A(T"), if u <z, g, then ¢g" is obviously a left cyclic conjugation. The
following proposition is concerned with the opposite direction.

Proposition 3.8. Let g,u € A(T') with g cyclically reduced. Then the following are equivalent.
(i) g* is a left (resp. right) cyclic conjugation.
(ii) u <p g™ (resp. u=! <R g") for some n > 1.

Proof. We prove the equivalence only for the left cyclic conjugation. The proof for the right cyclic
conjugation is analogous. We may assume ||g|| > 2 and ||u|| > 1 (otherwise it is obvious).

(ii) = (i): We may assume n > 2 (otherwise it is obvious). We proceed by induction on ||ul|. If
|lu|| = 1, then u is a letter. In this case, u <p ¢" implies u <y ¢ (by Lemma [3.4(iii)), hence g* is a
left cycling.

Suppose |lu|| > 2. Then u = xu; is geodesic for some z € V(I')*!' and u; € A(T)\{1}. Since
zup =u <y, ", we get © <z, ¢" and hence x <, g (by Lemma B4((iii)). Therefore g = x¢; is geodesic
for some g; € A(T'), and ¢g* = g1z is also geodesic. Since both g---¢g and g = xg; are geodesic,
rgizgr - - - xgrx is geodesic, hence the following three decompositions are all geodesic.

g"r =xqixgr - xT = ﬂf(gz)n

Since zu; = u <, ¢" <, ¢"z = z(¢*)", we have u; <r, (¢*)" (by Lemma [2.6](ii)). By the induction
hypothesis, (¢%)"! is a left cyclic conjugation. And ¢* is also a left cyclic conjugation because x <y, g.

Therefore g“ is a left cyclic conjugation (by Lemma [B.7](ii)).
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(i) = (ii): As before, we use induction on |lu||. If ||u| = 1, g* is a left cycling, hence u <y, g.
Suppose |lu|| > 2. Then u = 2u; is geodesic for some x € V(I')* and u; € A(T')\{1}. Since g* is a
left cyclic conjugation, both ¢g* and (¢%)“! are left cyclic conjugations (by Lemma B.7|(ii)). Since g*
is a left cyclic conjugation and z is a letter, we have = < g. Since (¢%)"! is a left cyclic conjugation,
uy <z, (¢*)" for some n by the induction hypothesis. Using a similar argument as above, we get that
z(g®)" and ¢g"x are geodesic, hence u = zu; <p, z(¢%)" = g"x < g"h O
From the above proposition, g* is a right cyclic conjugation if and only if (g_l)u is a left cyclic
conjugation.
Theorem 3.9. Let g,u € A(T") with g cyclically reduced. Then there exists a unique geodesic decom-
position u = ujugug such that
(i) wy disjointly commutes with g;
(ii) g“2 is a cyclic conjugation;
(ili) g

Moreover, the following hold: uq is the mazimal prefix of u that disjointly commutes with g; us is the

“=uz'g“us is geodesic, i.c. ||g|| = lluz || + g“l| + llusll = llgll + 2lus].-

mazimal prefiz of u such that g*2 is a cyclic conjugation; uz = g* Ag (g*)~1. In particular, u; = us.

Proof. We first prove the existence of the decomposition u = ujusus.

If v} and u/ are prefixes of u such that v} = g and u{ = g, then v} Vv uf exists (because v} and
uf] have a common right multiple u). Observe that v} Vp u/ is also a prefix of u and also disjointly
commutes with g (by Theorem [2.12]). Therefore there exists a unique maximal prefix u; of u that
disjointly commutes with g.

If u) and w4 are prefixes of u such that g2 and g“2 are cyclic conjugations, then uh Vp, uf exists
(because uf and uj have a common right multiple u) and is also a prefix of u, and g"2VIu2 ig also a
cyclic conjugation (by Lemma [3.7(iii)). Therefore there exists a unique maximal prefix us of u such
that g“2 is a cyclic conjugation.

Notice that u; = ug because supp(ug) C supp(g) and u; = g. Thus w3 V ugs = ujug is a prefix of

u and ujug is geodesic, hence u = ujugus is geodesic for some uz € A(T"). Observe
w_ -1 -1, —1 -1 -1 R P
9" = Uz Uy U] GUIURUZ = U Uy GULUZ = Uz § U3,

Let us show that ug Lgu2y4 is geodesic.
If g“2u3 is not geodesic, then there exists € V(I')*! such that x <y u3z and 27! < ¢** (by
Lemma [2.9(i)), hence (¢“2)* is a cyclic conjugation. Notice that usz is geodesic. By Lemma B7(ii),

g
and hence usx <y, u. This contradicts the maximality of us. Therefore g“2us is geodesic. Similarly

U2 is also a cyclic conjugation, hence = € supp(g), which implies 2 = u;. Consequently, usx = uy

Ug Lgu2 is geodesic.

Since both ug Lgu2 and g“2ug are geodesic, if Usg Lgu2q4 is not geodesic, then there exists z € V(I)*!
such that © <p u3, 27! <g uz ' and x = g** (by Lemma Z8[i)). Since supp(g) = supp(g*?), we
have r = ¢, hence x = uy and ujx = ¢g. Notice that u;z is geodesic. Since ujx is a prefix of u, this
contradicts the maximality of u;. Therefore ugl g“?us is geodesic.

Since g% = uglgmug is geodesic such that ¢g“2 is cyclically reduced, ug satisfies the formula ug =
g“ Ar (g*)~! (by Lemma B.21i)).

So far we have shown that © = ujusus is a desired decomposition. We will now show the uniqueness
of the decomposition. Let u = ujubuf be another geodesic decomposition satisfying the conditions

(i), (ii) and (iii) of the theorem.
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Since uf, and u} satisfy the conditions (ii) and (iii), we have u} = g* Ag (¢*)~! (by Lemma B.2(i)),
hence
ug =uh, g*= gul2 and  ujus = ujul.
Since both u; and u) are prefixes of u that disjointly commute with ¢, so is w3 Vp u} (by Theo-
rem [Z12]). By the maximality of uj, we have uy Vy v} <p, u1, hence v} <z u;.
Similarly, since g“2 and g“/2 are cyclic conjugations, so is g”2vL”,2 (by Lemma[3.7). By the maximality
of ug, we have ug V, uf <p, ug, hence uly <r, usg.

Since u} <r, u1, uh <g, ug and ujug = uvjuh, we have ug = v} and ug = u. O
The following seems to be well known to experts.

Corollary 3.10. Let g1,92 € A(T') be cyclically reduced. If g1 and go are conjugate, then they are

cyclically conjugate.

Proof. Since g; and gy are conjugate, go = g} for some u € A(T"). Let u = ujusus be the geodesic
decomposition for gi as in Theorem B.9 Since u; = g1, we may assume u; = 1. Since ug 1g¥2u;>, is
a geodesic decomposition of gy and since ||g2|| = [lg1|| = ||9}|l, we have ug = 1. Therefore u = us,
hence g; is cyclically conjugate to gs. 0

4. STAR LENGTH

Star lengths of elements of A(I"), introduced in [I§], induce a metric d, on A(I") such that the metric
space (A(I'),d,) is quasi-isometric to the extension graph (I'°, d), preserving the right action of A(T").
In this section, we study basic properties of star lengths.

It is known that the centralizer Z(v) of v € V(I') in A(T") is generated by the vertices in Str(v).

Definition 4.1 (star-word, star length). An element in the centralizer Z(v) of some vertex v is called
a star-word. The star length of g € A(T"), denoted ||g|«, is the minimum ¢ such that g is written as a
product of ¢ star-words. Let d, denote the right-invariant metric on A(T") induced by the star length:

di(g1,92) = |lg195 ||+

The following example illustrates that the decompositions into star-words are not unique.

Example 4.2. Let I' = P5, where P5 = (vy,...,vs) is a path graph, and let the underlying right-
angled Artin group here be A(I"), hence v;v; = vjv; whenever |i — j| > 2. Let g = vivzvsvavs. The
following shows various decompositions of g into two star-words.
g = (v1v305)(v204) = (V1v3V5v2)(va) = (V1v3V5V4)(v2)
= (v1v3v2)(v5v4) = (v3U5V4)(V1V2) = (V3U5)(V4v1V2).

Notice that all the parenthesized words are star-words. For example, vivgvs € Z(v;) for ¢ = 1,3,5,
v4 € Z(v;) for i =1,2,4, vivgvsvy € Z(vs) and so on. Since supp(g) = {v1,...,vs} is not contained in
St(v;) for any 1 < i < 5, we have ||g. = 2.

The group A(T") acts on (A(T"), d,) by right multiplication w — wg. Recall that A(T") acts on (I'°, d)
by conjugation v* — v*9. For any v € V(TI'), the following map is equivariant.

Gy A(F) - Fe, va(w) ="

Lemma 4.3. [I8, Lemma 19] Let I' be connected and let D = diam(I"). The following holds between
the metric d on T'° and the star length || - ||« on A(T'): for any g € A(T') and v € V(I'),

lglls =1 < d(v?,v) < D(|lgll« + 1)
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Notice that d(¢y(g), dv(h)) = d(v9,v") = d(v9" ™", v) and d,(g,h) = |[gh™"|x. Therefore the above
lemma implies that d.(g,h) — 1 < ( v") < D(d,(g,h) + 1), and hence that ¢, is a quasi-isometry.

The above lemma also yields the follovvlng corollary for the asymptotic translation length.
Corollary 4.4. Let I' be connected and let D = diam(I"). For every g € A(T),
TAr),d)(9) < Tre,a)(9) < DTiary),a.)(9)-

Proof. Notice that

n—o0 n n—00 n
d(v9",v)
(re.a)(9) = lim ————,

where v is any vertex of I'. By Lemma [£.3]

nil _ g™ n
"l ~1 _ dee” ) _ D(lgll + 1)
n n n

By taking n to infinity, we get the desired inequalities. O

The following lemma shows basic properties of star length.

Lemma 4.5. Let g1, 92,93,9,h € A(T).

(i) If 919295 is geodesic, then |gigall. < llg1g2gsll.. In particular, if g <p h or g <g h, then

lgll« < IRl
(i) g™« < |lg" ||« for all1 < m < n.

(i) If g = h and h # 1, then HgH <L

Proof. Let us denote g <¢ h if a reduced word representing g can be obtained by deleting some letters
from a reduced word representing h. For example, if v;’s are distinct vertices, then viv3 <o v1v2v3V4.
It is proved in [I8, Lemma 20(i)] that if g <o h, then ||g|l« < ||A||«.

(1) Since g1g2gs is geodesic, we have g193 <o 919293, hence [|g1g3|x < [|g19295 ]|«

(ii) Let ¢ = u~'hu be geodesic such that h is cyclically reduced. Then ¢* = u='h---hu is also

geodesic for all k > 1 (by Lemma [28[(iii)). Therefore g™ <o g™, hence ||g™]|« < ||g"||«-

<
<1 O

(iii) Since h # 1, there is a vertex v € supp(h). Then g € Z(v), namely | g||«

Lemma 4.6. Suppose that g1,92 € A(T') have a common right multiple and that none of them is a
prefiz of the other, i.e. g1 41 go and go <1 g1. Then |lg7 galls < 2 and ||g1|s — ||lg2|l« € {0, £1}.

Proof. Let g; = (91 AL g2)g; for i = 1,2. Since g; and go have a common right multiple, ¢; = g5 (by
Theorem [Z12)). Since g1 €1, g2 and g2 €1, g1, both ¢} and ¢} are nontrivial, hence ||¢ [/« = ||g5ll« =1
(by Lemma [£5[(iii)). Therefore

lgr " g2ll« = llo " galls < llgills + lgall =1+ 1 =2.
Furthermore, for each i = 1, 2,
g1 AL g2ll« < llgills < llg1 AL g2ll« + llgills = llg1 AL g2lls + 1,
hence ||gill« = |lg1 AL 92|/« + €, where €; € {0,1}. Therefore ||g1]l« — ||g2]|« = €1 — €2 € {0, +1}. O

Corollary 4.7. Let g1,g2,h € A(T') with gi1g2 geodesic. If h <p gi1g2 and ||g1||« = ||h||« + 2, then
h<p g
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Proof. Observe that g1 £ h (otherwise ||g1|l« < ||h]|«). Assume h £ g;. Since g1 and h have a
common right multiple, say ¢1g2, we have ||g1||« — ||2|l« € {0,£1} (by Lemma [£.6). This contradicts
that [|g1[l« = [[Al[« + 2. O

Corollary 4.8. Let g1,92 € A(T). If g192 is geodesic, then
lg1lls + llg2lls — 2 < llgrg2lls < llgnlls + llgzlls-

Proof. Let r = ||g1]|+, s = ||g2]|« and ¢t = ||g1g2||«. Then it is obvious that ¢ < r + s, hence it suffices

to show ¢ > r 4+ s — 2. Since g2 <g ¢g192, we have t = ||g192]|« = ||92]|« = s (by Lemma [A.5)). We may

\YARW;

assume r > 3 because otherwise t > s > r + s — 2. Let

g192 = wiwz - - - Wy

be a geodesic decomposition of g; g into star-words. Then wy - - w,—2 <r, g1 (by Corollary [4.7]), hence
g2 <R Wy_1 - wy. Therefore s = ||ga||« < ||wr—1 - wi|lx =t —7+ 2, namely t > r+s— 2. O

The following example shows that the upper and lower bounds in the above corollary are sharp.

Example 4.9. Let I' = P5, where Ps = (v1,...,vs5), and let the underlying right-angled Artin group
here be A(T).

(i) Let g1 = vive and g2 = vsvy. Then g1 = v5 and g2 = v; and hence g1/« = [|g2]|« = 1. Since
9192 = v1vav3vy € Z(v;) for any 1 < <5, we have [|g1gz||« > 2. Since [|g1g2/[« < llg1lls + [lg2ll+ = 2,
we have [[g192[[« = [|g1][« + [lg2[|+ in this case.

(ii) Let g1 = go = vovsvy. Then g1g2 = vov3Vy - VV3V4 = VoU3Vy - V4V3V4. Since vavsve € Z(v5) and
v4v3vy € Z(v1), we have ||vavsvall« = ||vgvsvy|lx = 1. Tt is easy to see that ||g1 ||« = |lg2]l« = |lg192]/« = 2.
Therefore ||g192/l« = |lg1][« + [lg2]l« — 2 in this case.

The following is an immediate consequence of Lemma [£.5(ii) and Corollary .8

Corollary 4.10. Let g € A(T") be cyclically reduced. Then {||g" ||+ }>2 is an increasing sequence such
that the following hold.
(i) If ||g|l« = 1, then ||g"||« =1 for alln > 1.
(i) If llgll =2, then [lg"~ s < llg"ll« < g™ lls +2 for alln > 1.
(iii) If ||lgll« = 3, then ||g" ||+ = [lg" |« + 1 and hence ||g"||« = n +2 for all n > 1.

Corollary 4.11. Let g,u € A(T") with g cyclically reduced. If ||g||« = 3 and g £ v <p, g" for some
n>1, then u <z, g°.

Proof. We may assume n > 3 and u £, g (otherwise it is obvious). Since g and u have a common
right multiple, say ¢", there exist ¢’ and u' such that g¢’ = wu' = g Vpu <p ¢" and v’ = ¢ (by
Theorem 2.12)), where gg’ and uu’ are geodesic. Since g¢' <z, ¢" = g¢" ', (by Lemma 2.6)

d<cg" =997

Since u €1, g and g €1, u, both ¢’ and ' are nontrivial, hence ||¢’||« = ||u/||« = 1. Since ||¢'||« = 1 and
llgll« = 3, we get ¢’ <r g (by Corollary B7). Therefore u <p uv’ = gg' <z, g°. O

Lemma 4.12. Let 1,492,935 € A(T") be such that both g1g2 and ga2gs are geodesic. If | ga||« = 2, then
g1g2g3 1S geodesic.
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g€ A®D) r T
g is split I'[g] is a join I'[g] is disconnected
g is non-split I'[g] is not a join I'[g] is connected
g is strongly non-split I'[g] is not contained in I'[g] is connected and
a subjoin of I' Sty (supp(g)) = V(I)

TABLE 1. Equivalent conditions for g € A(T") to be split, non-split and strongly non-split

Proof. Assume that g1g2gs is not geodesic. Since g1go and gogz are geodesic, there exists 2 € V(I')*!
such that 271 <g g1, © <1, g3 and 2 = g2 (by Lemma[Z8(i)). Observe that z = g5 implies ||ga|« < 1,
which contradicts the hypothesis ||g2]. = 2. O

We introduce the notion of strongly non-split elements. We will see (in Lemma [6.3]and Remark [6.4])
that if |[V(I')] > 4 and both T" and T are connected, then a cyclically reduced element g € A(T) is

strongly non-split if and only if g is loxodromic on the extension graph I'°.

Definition 4.13 (non-split, strongly non-split). Let g € A(T") \ {1}.
(i) g is called split if g has a nontrivial geodesic decomposition g = g1g2 with g1 = go.
(ii) g is called non-split if it is not split.
(iii) g is called strongly non-split if g is non-split and g 7= v for any v € V/(I').

It is easy to see that g € A(T") is split if and only if I'[g] is a join (equivalently, I'[g] is disconnected).
Similarly, one can characterize the property of being non-split and strongly non-split using the graphs
I'[g] and T'[g] as shown in Table [Tl

From definition, the existence of a strongly non-split element implies that I' is connected.

Remark 4.14. Let n > 2 and g,h € A(T") \ {1}. Observe that strongly non-splitness of an element
depends only on its support. Note that supp(g—!) = supp(g) = supp(g") (by Lemma [34)), and that if

either g <z, h or g <g h, then supp(g) C supp(h). Therefore

1 is strongly non-split;

(i) g is strongly non-split if and only if g~
(ii) g is strongly non-split if and only if ¢" is strongly non-split;

(iii) if g is strongly non-split and either g <z h or g <g h, then h is also strongly non-split.
Strongly non-splitness is related to the star length as follows.

Lemma 4.15. Let g € A(T') \ {1}.
(1) If |lgll« = 3, then g is strongly non-split.
(ii) g is strongly non-split with |supp(g)| = 2 if and only if g is non-split with ||g||. > 2.

Proof. (i) Assume that g is not strongly non-split. If ¢ is split, then clearly ||g||. < 2. If ¢ is non-split
but not strongly non-split, then there is v € V(I')\ supp(g) with v = g, hence ||g||x = 1. In either
case, |lg« < 2.

(ii) Suppose that g is strongly non-split with |supp(g)| = 2. Then ¢ is non-split by definition.
Assume ||g||x = 1. Then there exists v € V(I') with supp(g) C Z(v). Since g is strongly non-split,
v € supp(g). Since |supp(g)| > 2 and supp(g) C Z(v), g = v"g; is geodesic for some n # 0 and
g1 € A(I)\{1} with g; = v. Namely, ¢ is split, which is a contradiction. Therefore ||g|. > 2.

Conversely, suppose that g is non-split with ||g||« = 2. Then |supp(g)| > 2 and there does not exit
v € V(I')\ supp(g) with v = g. Therefore g is strongly non-split. O
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5. PREFIXES OF POWERS OF CYCLICALLY REDUCED ELEMENTS

In this section, we study prefixes of powers of cyclically reduced elements. The main result is
Theorem (.3, which plays important roles in the study of the asymptotic translation length and the
acylindricity of the action of A(T") on I'°.

Lemma 5.1. Let u,91,92,---,9m € A). If g1g2 - gm 1s geodesic, then for each 1 < k < m there
exists a geodesic decomposition g = apby such that
(i) unL (g1 gk) = a1---ag;
(ii) ap =0bj forall1 < j<k—1;
(i) ay---akby...by is a geodesic decomposition of g1 -+ gi.

Proof. The relation uAf (g1 - gx) = a1 - - - ag determines the elements ay, inductively for k = 1,...,m.
Then the relation gi = apbp determines the elements by for all 1 < k < m. Therefore we get elements
a1, Qm,b1,..., by such that uAp (g1 gx) = a1+ - a, and g = agby for all 1 < k < m.

Since g1 - - - g, is geodesic, g1+ gk <L g1 gk+1 for each 1 < k < m — 1 (by Lemma 26]), hence

ap--ap =uAL (91 gk) <L UAL (g1 Gk+1) = Q1 Qg1

Therefore a; - - - a,, and hence each ay - - - ay are geodesic (by Lemma again).
For each 1 < k < m, let up € A(T") be the element such that u = a; - - - agug. Then each a; - - agug
is geodesic because a; - - - ap <, u.

Claim. For each 1 <k < m,
(a) ar <L gk, hence g = aby is geodesic;
(b) ap =bj forall 1 <j<k—-1,
(¢c) ay---agby - b is a geodesic decomposition of g - - - gg.

Proof of Claim. We use induction on k.
For k =1, (a) and (c) hold because a1 = u A g1 <1, g1 and g1 = a1by, and (b) is vacuously true.
Assume that the claim holds for some 1 < k < m. We now have the following geodesic decomposi-

tions at hand:

w=(ay - ag)ug,
by .. bp).
b bi)ght1-

glaaagk fr— (al---ak)(
g1 gr1 = (a1 - ag)(
Since u Ar, (g1 -+ gk) = a1 - - ag, we have ug Ar, (by -+ bg) = 1 (by Lemma 2T4]).
Since u Ar, (g1 gk+1) = a1 -+ - k41, we have a1 = ug AL (b1 -+ - bpgr+1), hence
apy1 <pup and  agyr <p (b1 bk)gry-
Since ag11 <r, uk, we have agiq Ar (by -+ br) <p ug AL (by---bx) =1 (by Lemma 2.14]).
Since ag11 <r, (b1 -+ bg)gk+1 and a1 A (b -+~ b) = 1, we have
g1 =01 b and agy1 <L Grt1
(by Lemma 2.1T[(ii)). In particular, az41 = b; for all 1 < j < k. Therefore (a) and (b) hold for k + 1.
Since ap41 = b; for all 1 < j < k, we have
g1 GkGk+1 = (a1 - ag)(b -~ b)(ag41be41)

= (al .. '(Zk+1)(b1 .. 'bk-‘,-l)-
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The above three decompositions are all geodesic because g1 - - - g gx+1, gk+1 = Gkr1bp+1 and g1 -+ - gx =
aj ---agby - - - by are all geodesic. Therefore (c¢) holds for k + 1. O

The above claim completes the proof. O

In the following, we frequently use the notation Sty (X), for X C supp(g), which denotes the star
of X in T'[g] = T'[supp(g)]. Hence, v € St (X) if and only if either v € X or v € supp(g) and {v, v1}

is an edge in I for some v; € X. Therefore
Strg (X) = Stp(X) N supp(g).
When g1 = -+ - = g, in Lemma 5] we have the following.

Corollary 5.2. Let m > 1 and g,u € A(T") with g cyclically reduced. Then for each 1 < k < m there

exists a geodesic decomposition g = apby such that
(i) uALg® = aras---ap, ap = bj foralll < j <k anday---agby...by is a geodesic decomposition
of g;
(ii) {ar}iy is descending with respect to <r, such that
I<pam<r---<pax<pa <Ly,
Stryg (supp(ax+1)) C supp(ax);
(ili) {br}p, is ascending with respect to <gr such that
1<prbi<rb2<p - <rRbm<RrY,
Strig) (supp(bi)) C supp(by1)-
In (ii) and (ii), we let a1 = 1 and by,41 = g for notational convenience.
Proof. Since g is cyclically reduced, gg - - - g is geodesic. By Lemma[5.0], there exists a geodesic decom-
position g = agby for 1 < k < m satisfying (i).

Since g = agbr = agy1br+1, we have agy1 <p agby. Since agi1 = b, we have agy1 <z ag (by
Lemma 2I5(iv)), hence {ax}}"; is descending with respect to <r. Since a1 <r, g and 1 <y, apm,

I<pam<r---<pa2<ra <Ly
Since g = agby, it follows immediately from the above inequalities that the sequence {by}} is
ascending with respect to <p such that
1<pbi <Rb2<p " <Rbn<Rrg
Since supp(g) = supp(a;) Usupp(b;) for j =k, k + 1,
supp(g) — supp(ak+1) C supp(be+1),
supp(g) — supp(bk) C supp(ax)-

Since agy1 = bg, by Lemma 2.3

supp(bx) N Stp(supp(ag+1)) = 0,
supp(ag+1) N Str(supp(by)) = 0
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Hence
Stryg }(supp(akﬂ)) pp(g) N Stp(supp(ak+1))
p(g) supp(by,) C supp(ax),
Stryg) (supp(bk)) upp(g) N St (supp(bk))
C Supp(g) supp(ag+1) C supp(be1)-
Therefore (ii) and (iii) are proved. O

Theorem 5.3. Let m > 2 and g,u € A(T") with g cyclically reduced and non-split. If

m—1

g&ru¥krn g and u<g g™

then the following hold.

(i) m < diam([[g]). In particular, m < |supp(g)| —1 < |V(I)| - 1.
(ii) There is a geodesic decomposition g = Gmgm—1--- 9190 such that
(a) gr # 1 for all0 < k< m;
(b) gi = g; whenever |i —j| > 2
() uALG" = (gm - 91)(gm - 92)  (gm - gk) for all 1 <k < m.
In particular, u=uAr g™ = (gm -+ g1)(gm - 92) = (gmGm—1)(gm)-
(i) [l < flgll + 1.
(iv) If ||gll« = 3, then m = 2. (Equivalently, if m > 3, then ||g|« < 2.)

Proof. For each k > 1, let g = axby be the geodesic decomposition given by Corollary Then

e uAL gF =ay---a is geodesic and aj = bj for all 1 < j < k;
o {ap}p2, is descendlng with respect to <z, such that 1 < --- < a2 < a1 <1, ¢;
o {by}72, is ascending with respect to <g such that 1 <g b1 <rbs <gr - - <R g.

The following claim is a result of the hypothesis that ¢ £ u €7, ¢™ ' and u <z, g™

Claim 1. For each 1 <k <m, ap & {1,9,axy1} and hence by & {1,g,bxy1}. For each k > m, a =1
and hence by = g.

Proof of Claim 1. For each k > 1, a1---ax <p w and ay---ar <p, gk (because aj ---a = u Ap gk).
Furthermore, u = u Ar, ¢™ = a1 - - - a, (from the hypothesis u <z ¢™). Therefore

m—1
a1 LU, a1 Qpm-1 <L G , Q1 Gy = U

If ey = g, then g <; wu, which contradicts the hypothesis ¢ € u. If a, = 1, then u =
a1 Qpe1Gm = Q1" Q1 <L, gmfl, which contradicts the hypothesis u £z, gmfl. Thus a1 # ¢
and a,, # 1. Therefore, for each 1 < k < m, we get ax & {1,g} (because 1 <, ay, <p ar <1, a1 <1, 9)
and hence by, & {1, g} (because g = ayby).

Assume that ap = a1 for some 1 < k < m. Then a; = by because ax11 = bg. Since g = aibg
and both aj and by are nontrivial, this contradicts that g is non-split. Therefore ay # agy1 and hence
by # bpyq for all 1 <k < m.

Let j > 1. Since u <z g™ and g is cyclically reduced, we have u <; ¢"17, hence u A, g™ =
w = u Ar, g™, Therefore ai - am = ai - - AmQm+1 - *  Gmyj, hence apmyq -+ amq; = 1. Since the
decomposition @, 41 -+ Gpmyj is geodesic, we have ap,4; = 1. Namely, for all k > m, a;, = 1 and hence
b, =g. O
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Define {gx}}, by go = b1 and g = a,;ilak (hence ay = agy1gx) for 1 < k < m. Then ay = agi19k
is geodesic for all 1 < k < m because a1 <r, ag.

Claim 2. The decomposition ¢ = gmgm—1 - g1go is geodesic such that
(a) gr # 1 forall 0 <k < mj
(b) gi = g; whenever |i — j| > 2;
(©) uALG" = (gm--91)(gm---92) - (gm - g&) for all 1 <k <my;
(d) ar = gmgm—1--gr and by = gx_1gx—2---go for all 1 <k <m

Proof of Claim 2. Since ar, = ap419x is geodesic, ||gxll = |lak| — ||ak+1]| for all 1 < k& < m. Since
go = b1, ams1 =1 and g = a1b; is geodesic,

g0l + lgall + -+ - + llgmll
= [lball + (lasll = llazll) + - - + (lamll = llam+1l))
= [[ball + llas ]| = lams1ll = llgll-

Consequently, [lgl| = [lgoll + lg1ll + - -~ + llgm |-
For 1 <k <m, ap = ap419k = Qk420k+19k = *** = Qmi19m " Gk = Gm " ** gk because a1 = 1.
Therefore we have the following decompositions:

ap = gm - gr forall 1 <k <m,

g =aiby = (gm - 91)90 = gm - 9o,
bk:aglg:gk,l---go forall 1 <k <m.

Observe that g = g, - - - go is geodesic because ||g|| = [lgoll + g1l + - - + || gm |-

The decompositions for aj and by in the above prove (d).

For each 1 <k <m,unr g =ajas---ar = (gm--91)(Gm---92) - (gm - gr). This proves (c).

By Claim 1, go = b1 # 1 and g; = al;ilak # 1 for all 1 < k < m. This proves (a).

For each (i,7) with 0 < j < j 4+ 2 < i < m, we know that a; = bjq1. Since a; = g, ---¢; and
bjt1 = g; - - go are geodesic, we have g; <g a; and g; <, bj11, hence g; = g;. This proves (b). g

Recall from Claim 2 that both gy = b; and ¢,, = a,,, are nontrivial.

Claim 3. For any path (vg,v1,...,v_1,v,) in T'[g] such that vy € supp(go) = supp(b1) and v, €

supp(gm,) = supp(an,), we have m < r. In particular, m < diam(I'[g]).
Proof of Claim 3. Using induction on k, we first show that

vy, € supp(bg1)

for all 0 < k& < min{m — 1,7 — 1}. By the hypothesis of the claim, vy € supp(b;). Assume that
vy € supp(bry1) for some 0 < k < min{m — 2,7 — 2}. Since {vg,vr41} is an edge in I'[g], we have
Vg+1 € Stpyg(vg). Since vy € supp(by11) by induction hypothesis, Sty (vk) C Sty (supp(br-+1)),
hence vg11 € Stpyg(supp(br+1)). By Corollary B.2, Stpyy (supp(b+1)) C supp(be+2), hence vgy1 €
supp(bx-+2)-

If m > r, then a,, = b, (by Corollary 5.2]). Since v, € supp(a,,) and v,_1 € supp(b,), we have
v = v,_1, which contradicts that {v,_1,v,} is an edge in T'. Therefore m < r.

Since I'[g] is connected and both gg and g,, are nontrivial (by Claim 2), we may assume that
(vo,...,v,) is a shortest path from vy € supp(go) to v, € supp(gm) in I'[g], hence r < diam(T'[g]).

Therefore m < r < diam(I'[g]). O
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Claim 3 proves (i) and Claim 2 proves (ii).
Since go # 1 and g; = go for all j > 2, we have [[(gm -~ 92) =+ * (gmGm—1)gm|[« < 1. Since gm -~ g1 <1
g, we have ||gm -+ g1/« < ||g]|«. Therefore

[ulle < Ngm - gulls +11(gm -~ 92) - (gmgm—1)gmll« < [lgll+ + 1.

This proves (iii).
Assume m > 3. Since go # 1, gm # 1, gm - 92 = go and g1g0 = gm, we have [|gp, - - 2]« < 1 and
llg190]|« < 1. Therefore [|g]l« < ||gm - - 92l + ||g190]|« < 2. This proves (iv). O

Remark 5.4. From the disjoint commutativity g; = g; for |i — j| > 2, the following decompositions
are geodesic for all 1 < k < m.

9" = (gm--90)(Gm - 90) -+ (gm - 90)
= ((gm - 91) - (90))((gm -+~ g2) - (9190)) - - ((gm -~ 9k) - (Gr—1" " go0))
= (gm - 91)(gm - 92) -+ (gm - 9x) - (90)(9190) - - (Gk—1"" " 9o)
= (u AL ¢")(90)(9190) -~ (gr—1 -~ 90)

In particular, g™ = wu/ is geodesic, where

= (gm - 91)(gm - 92) - (gm),

u' = (90)(9190) -+ (gm—1--- 90).
The following example shows that the upper bounds m < diam(['[g]) and m < |[V(T)| — 1 in
Theorem [(.3[(i) are sharp.

Example 5.5. Let I' = P;, where P; = (vq,...,v4) is a path graph, and let the underlying right-
angled Artin group here be A(T'). Let g = vivovzvy and u = v?v9v3v3v9v1. Then g is clearly cyclically
reduced and non-split. It is easy to see that ¢ £ u and u £, ¢>. (By Lemma 2.6, if g <z u then
V4 <y, v%vgvl, and if v <y, g2 then vy <p, v4v3v4.) On the other hand, u <p, g3 because

(U%?}21}31}4)(U%0203U4)(1}%?}2?}3U4)
(v%v2v3 . 1)4)(1)%2}2 - v3v4) (V1 - V1V2U3VY)
i

3 _

g =
_ 2

= (vivaus - VIV - V1) (Vg - V3V4 - V]V2U3VY)

u(vy - v3V4 - V1VV3VY).

In the notation of Theorem [5.3]

m = 3 = diam(I") = diam(I'[g]) = |supp(g)| — 1 = |[V(T')| — 1.
Thus the bounds of m in Theorem [5.3](i) are sharp.

Corollary 5.6. Let g,u € A(T") with g cyclically reduced and non-split. If u < g" for some m > 1,
then u = g*a is geodesic for some 0 < k < m and a € A(T') with ||a|l« < ||g|l« + 1.

Proof. We may assume that v £, g™ . Let k = max{l > 0:¢' <y u}. Then 0 < k < m and u = g*a
is geodesic for some a € A(T) with ¢ €7, a €1 ¢™ %1 and a <p g™ %,

If m — k < 1, then it is obvious that [[a|« < [|g]l« < |lg]l« + 1.

If m —k > 2, then ||a||« < ||g]|« + 1 by Theorem (.3 O
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For a cyclically reduced element g € A(T'), we have seen in Corollary [4.I0] that the sequence
{llg" ||+ }52 is increasing. In particular, if ||g||. > 3, then Hg”“H llg" ||« + 1 for all n > 0. However,
if ||g|lx = 2, then it may happen that |g|[« = ||¢?[l+ = --- = ||g"[|+ = 2 for some n > 2. The following
proposition finds m with ||¢" ||« > 3 when ||g||. = 2.

Proposition 5.7. Let g € A(T") be cyclically reduced and non-split with ||g||« = 2. Then the following
hold.

(i) Let m > 2. If either m > |V(T)| — 2 or m > diam(T'[g]) + 1, then ||g™|« = 3
(i) Let m = 2. If ||g™|l« = 2, then m < |[V(T')| — 3 and m < diam(T'[g]).
(iii) If [V(D)] <4, then [|g°]|« >

Proof. The statements (i) and (ii) are equivalent, and (iii) follows from (i). Therefore we prove only
(ii).

Since g is non-split, [[g] is connected. Suppose that ||g™ || = 2 for some m > 2. Then there is a
geodesic decomposition

for some u,u’ € A(T') with ||ull, = |||« = 1.
Claim 1. g <7 u €z ¢™ ! and u <z, g™
Proof of Claim 1. Since ¢™ = uu’ is geodesic, u <z, g". Since ||ullx = 1 and ||g||« = 2, g €1 u. If

u < g™ 1, then g <z ' (by Lemma Z6l(iv)), which is impossible because |[«'|s = 1 and ||g|/« = 2.
Therefore u £z, g™ . 0

By Claim 1, we can apply Theorem [5.3, hence m < diam(I'[g]), which is the second inequality of
(ii).

By Theorem E)B] and Remark [5.4] there is a geodesic decomposition g = ¢mgm-_1 -+ go such that
gi # 1 for all 0 < i <m, g; = g; whenever |i — j| > 2 and

= (gm .- -gl)(gm e '92) T (gm)a
u' = (90)(9190) =+ (gm—1""" 90)-

Since |lull« = ||u'[|« = 1, there exist vertices =,y € V(I") such that u € Z(z) and v’ € Z(y), where Z(-)
denotes the centralizer. Since |Juv'||« = 2, x # y. Notice that

supp(g1); - - - , Supp(gm) C Z (),
supp(go)7 ooy supp(gm-1) C Z(y).

Claim 2. There is a path (x,vg,v1,v2,...,0,_1,v,¥) in I such that
(a) vo € supp(go) and v, € supp(gm);
(b) the subpath (vg,...,v,) is a shortest path from vy to v, in I'[g];
(c) all the vertices on the path are mutually distinct.

Proof of Claim 2. If either supp(g) C Z(z) or supp(g) C Z(y), then ||g||. = 1, hence supp(g9)\Z(z) # 0

and supp(g) \ Z(y) # 0.
Choose any vertices v, € supp(g)\ Z(z) and v, € supp(g) \ Z(y), equivalently, v,, v, € supp(g) such

that {vg, 2}, {vy,y} € E(T). Since v, € supp(g9)\ Z(z) = (Ui supp(gr)) \ Z(z) and ;- supp(gx) C
Z(z), we have v, € supp(go). Similarly, v, € supp(gm,). Furthermore, v, # v, and {v,,v,} € E(T)

because gy = gm.
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Since {v,, 2}, {vy,y} € E(I') and I'[g] is connected, there is a path in I from z to y
(2,00 = Vg, V1,02, - .+, Vp—1, Up = Uy, YY)

such that v € supp(g) for all 0 < k < r. Observe that vy = v, € supp(go) and v, = v, € supp(gm).

We may assume that it is a shortest path among all the paths from z to y such that vy € supp(g)
for all 0 < k < r. Then the subpath (vg, -+ ,v,) must be a shortest path from vy to v, in T'[g], hence
vg, . .., U, are mutually distinct.

If x = v; for some 0 < j < r—1, then the path (,vj41,...,vr,y) is shorter than the original one, all
of whose middle vertices belong to supp(g). This contradicts that (z,vg,- - ,v,,y) is a shortest path
among such paths. If z = v, then {z,v,} € E(T') (because z = v, € supp(gm), vz = vo € supp(go)
and go = ¢m). This is a contradiction. Therefore x # v; for any 0 < j < r. Similarly, y # v; for
any 0 < j < r. Since x # y, all the vertices on the path (x,vg,v1,ve,...,v,—1,0y,y) are mutually
distinct. O

Since the (r + 3) points on the path in Claim 2 are mutually distinct, |V (I')| > r + 3. By Claim 3
in the proof of Theorem 53], we have m < r. Therefore |V(I')| > r + 3 > m + 3. This proves the first
inequality of (ii), hence (ii) is proved. O

The following example illustrates that the upper bounds m < |V(I')| — 3 and m < diam(T[g]) in
Proposition (.7(ii) are sharp.

Example 5.8. Let I' = Ps, where Ps = (vg,v1,...,v5) is a path graph, and let the underlying
right-angled Artin group here be A(T"). Let g = vivgusvy. It is easy to see that ||g||« = 2. Since

supp(g) = {v1,v2,v3,v4}, diam(I'[g]) = 3. Observe

93 = (v1v203v4) - (V1V2V3V4) - (V1V2V3V4)
= (v1v2v3 - vg) - (V12 - V3V4) - (V1 - V2V3V4)
= (v1vv3 - V1V - V1) (Vg - V3Vy - V2V3VY).
Let v = vivovsvivevy and v = wvgv3v4v9v3v4. Then ¢2 = wu' is geodesic. Since u € Z(vs) and
u' € Z(vg), we have |Jul|« = ||u'[|+ = 1, hence [|g3|+ = 2. Notice that 3 = |V(I')| — 3 = diam(T'[g]).

6. ASYMPTOTIC TRANSLATION LENGTH

In this section, we study asymptotic translation lengths of elements of A(T') on (A(T"),d,) and on
("¢, d), and then find a lower bound of the minimal asymptotic translation length of A(T") on T'°.

Proposition 6.1. If g € A(T) is cyclically reduced and non-split with ||g|l« = 2, then

1
S .
T(A(r).d.)(9) = max{2, [V(I')| — 2}

Proof. Let 7, denote 7(q(r).4,), and let V' = [V(I')|.

Notice that if ||g||. > 3, then ||g"||« = n + 2 for all n > 1 (by Corollary .I0]), hence
g™ I« n+?2

e = T, 2t

Suppose ||g||« = 2. By Proposition 5.7} if V' < 4 then ||g?||« > 3, and if V >
max{ZV—Q}H>k gmax{27V—2}) >

5 then |lg" 2|, > 3.
Therefore ||g > 3. From the above discussion, 7( 1 and hence 7.(g) >

1
max{2,V—2}" O
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Remark 6.2. When we study the action of A(T") on (A(T"),d.), we will assume that “|V(I')| > 2 and
I is connected” because otherwise ||g|l« < 2 for all g € A(T) and hence (A(T),d,) has diameter at
most 2: if |[V(I')| = 1, then ||g[« < 1 for all g € A(T); if T is disconnected (i.e. I' is a join), then
llglls <2 for all g € A(T).

Lemma 6.3. Suppose that |V (I')| > 2 and T is connected. The following are equivalent for a cyclically
reduced element g € A(T).

(i) g is strongly non-split and |supp(g)| > 2.

(i) g is non-split and ||g||« =

(i

)
i)

(iv) g is lozodromic on (A(T'),d.), i.e. T(ar),a.)(g9) > 0.
)

=R

ii) ||g"||« = 3 for some n > 1.

V) Tam),a)(9) 2 mmpme -

Proof of Lemmal6.3. (1)< (ii) follows from Lemma

(ii)=(v) follows from Proposition

(v)=(iv) and (iv)=-(iii) are obvious.

(iii)=-(i): Since ||g"[|« = 3, g™ is strongly non-split (by Lemma E.TI5]), hence g is also strongly
non-split (see Remark [A.14]). It is obvious that |supp(g)| > 2. O
Remark 6.4. Suppose that [V(TI')] > 4 and both T' and T' are connected. Then the condition
|supp(g)| = 2 of Lemma [6.3(i) is not necessary because all strongly non-split elements g must have
|supp(g)| = 2. Moreover, g is loxodromic on (A(T"),d,) if and only if it is loxodromic on (I'¢,d) by
Corollary 4l Therefore, if [V(T')| > 4 and both T and T are connected, then (i) and (iv) in the above
lemma are equivalent to the following (i) and (iv’) respectively.

(") g is strongly non-split.
(iv') g is loxodromic on (I'%,d), i.e. T(re gy(g) > 0.

Kim and Koberda [I8, Lemma 33] showed that if g € A(T") is cyclically reduced and strongly

non-split, then ||g>"VII*||, > n for all n > 1. Therefore (by Corollary E4)
1
T(Fe,d)(g) P T(A(F),d*)(g) 2"/( )‘2
From this, a lower bound of the minimal asymptotic translation length of A(I') on I'® follows:
1
Lre a)(AT)) =
(T'e,d) 2V

We improve the denominator of the lower bound from a quadratic function to a linear function of
|[V(T')| as follows.

Theorem 6.5. Let I be a finite simplicial graph such that |V (T')| > 4 and both T and T are connected.

Then
1

ﬁ(Fe,d)(A(P)) > m .

Proof. Since |V(I')| > 4, |V(I')| — 2 = max{2, |V(T")| — 2}. Let g € A(T") be loxodromic on (I'°, d) and
hence on (A(T),d,) (by Remark [6.4]). We may assume that g is cyclically reduced because asymptotic
translation lengths are invariant under conjugation. By Corollary 4.4 and Lemma [6.3]

(9) > O P —
T(re,a)\g) Z T(AT),d)\G) Z V()] 9

Therefore L e q)(A(T')) > W(pl)|_2- -
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7. UNIQUENESS OF QUASI-ROOTS

The notion of quasi-roots in A(I") was introduced in [25], where the quasi-roots are defined using
word length. The uniqueness up to conjugacy was established by using the normal form of elements
introduced by Crisp, Godelle and Wiest [7]. In this section, we extend the uniqueness of quasi-roots

from word length to star length.

Definition 7.1. (quasi-root) An element g € A(T')\{1} is called a quasi-root of h € A(T') if there is a

decomposition
h=ag"b

for some n > 1 and a,b € A(T") such that ||h|| = [la]| + ||b]] + n||g||. The decomposition is called a

-1

quasi-root decomposition of h. The conjugates aga—' and b~!gb are called the leftward-extraction and

the rightward-extraction of the quasi-root g, respectively. We consider the following two cases.
(i) g is called an (A, B,r)-quasi-root of h if ||a|]| < A, [|b]| < B and ||g|]| < r.
(ii) g is called an (A, B,r)*-quasi-root of h if |jal|« < A, ||b]l« < B and |[|g[|« < 7.

In the above definition, the condition ||h| = |a| + ||b]| + n||g|| implies ||g"|| = n||g||, hence g is
cyclically reduced when n > 2.
Notice that if g; = aga™! and go = b~ !gb are respectively the leftward- and the rightward-extractions

of g, then we have decompositions h = g{'ab = abgy , which are not necessarily geodesic.

Definition 7.2 (primitive). An element g € A(T')\{1} is called primitive if g is not a nontrivial power
of another element, i.e. ¢ = A" never holds for any n > 2 and h € A(T).

The following proposition is Proposition 3.5 in [25] written in the setting of this paper. It shows a
kind of uniqueness property of quasi-roots in right-angled Artin groups.

Proposition 7.3 ([25, Proposition 3.5]). Let h € A(T"), A,B>0 andr > 1. If
|h|| > A+ B+ (2V 4+ 1)r,

where V. = |V(T')|, then strongly non-split and primitive (A, B,r)-quasi-roots of h are conjugate to
each other, and moreover, their leftward- and rightward-extractions are unique.

In other words, Proposition [.3] shows that if
h = a197"b1 = a2g52bo

are two quasi-root decompositions of h such that for each i = 1,2, g; is strongly non-split and primitive,

laill < A, lbi]l < B, gl <,
k|| > A+ B+ (2V + 1)r,

then g1 and go are conjugate, and moreover, alglafl = a292a51 and bflglbl = b5192b2.

The following theorem is the main result of this section. It is a star length version of Proposition [7.3],
which plays an important role in the proof of Theorem We remark that the word length and the
star length are quite independent, hence the word length version does not naively extend to a star
length version. We exploit lattice structures developed in §2

We also remark that in the following theorem since ||h|. > 2A+2B+(2V +3)r+2 > 3r+2 > 5, the
existence of such an element h implies that |V (I')| > 2 and T is connected (as explained in Remark [6.2)).
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Theorem 7.4. Let h € AT'), A,B>0 andr > 1. If
|h]l« = 2A+2B + (2V +3)r + 2,

where V. = |V(I")|, then primitive (A, B, r)*-quasi-roots of h are conjugate to each other, and moreover,
their leftward- and rightward-extractions are unique. In other words, if

h = a1g97"b1 = azg5°by

are two quasi-root decompositions of h such that for each i = 1,2, g; is primitive and

laill« <A, [lbille < B, lgill« <,
Al = 2A + 2B + 2V + 3)r + 2,

then g1 and go are conjugate to each other such that

argray' = azgoay’  and b7 'giby = by gabs.

Proof. Let i =1, 2.
Claim 1. n; >4 and g; is cyclically reduced and strongly non-split with ||g;|[« > 2.
Proof of Claim 1. If n; < 3, then

12l = llaigi" bill+ < llaills + nallgslls + [[bill« < A+ 3r + B.

This contradicts the hypothesis |||, > 2A + 2B + (2V + 3) r 4+ 2. Therefore n; > 4 and hence g; is
cyclically reduced (see the paragraph following Definition [T.]).
Observe that ||g;" ||« > 5 because

g Il = [1All« = llaill« = [Ibills = A+ B+ 2V +3)r+2 2 3r+2>5.
Therefore g; is strongly non-split and ||g;||« = 2 (by Lemma [6.3]). O
Let «; and (; be integers defined by

A+ 2},
B +2}.

k
L flgg' |«
k
L flgg' |«
The numbers «; and f3; are well-defined because the sequence {||g¥ l«}32, is increasing such that

limy, o0 [|gF|ls = oo (by Claim 1, Lemmas and 63). Since [|gf]l — (g5 s < [lgill« < 7 for all
k> 1, we get

Z
Z

A+2< g« <A+1+m,
B+2< g I« < B+1+r

Claim 2. n; —«a; — 3; 22V + 1.
Proof of Claim 2. Observe that

lgi" Il = 1Al = llaill« = 1bell« = [IAlle — A= B,

195 Il = g% e = 15" [l = Nlg5 1< = ll g 11
(IAlls =A=B) = (A+1+7r)—(B+1+7)

Ay — 24— 2B —2r —2 > (2V + ).

ARV
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Since {||gF|«}22, is increasing and [|g}"* ||, — ||gal+6l\| > (2V + 1)r > 0, we have n; > a; + ;. Since

(ni — i — Bi)llgill« |gaz+BZH

> g7 ™"l = llgi I« -
Z 2V 4+ 1r = 2V + 1)|gill«

we get n; — a; — B; = 2V + 1 as desired. O
Let ag = a1 A ag and by = by Ag ba. Then we have geodesic decompositions
{ a; = apal, { by = b by,
as = apal, by = blbg
for some a’y,a, b}, b, € A(T) with a} Ap, ah, =1 and b} Ar by, = 1. Observe that

!/
ez ]«

1711+

laill« < A,

il < B

NN

Since h = a197 b1 = azg52be, we have h = ap(a) gy b))bo = ao(abgy?bh)bo.
Let hg = ag 1hba L Then hg has the following two geodesic decompositions.
(4) ho = ay g}ty = apgy>by
On the other hand, since a; and ay have a common right multiple, say h, we have a} = a} (by
Theorem [212)). Since a} <r, abgy?bh and afy <, afgi*b}, we have (by Lemma 2.15])
ay <1 g5%by and ahy <p g7tbl.

Let A" = [lay || + [la5 || and B" = [[bq [ + (|5

Claim 3. ||ho|| = A + B'+ (2V + 1)||g]-

Proof of Claim 3. We know that n; — oy > 0 (by Claim 2) and a) <z, ¢1'b) = g1 g1' " 'b}. Since
g1t - g1t b is geodesic and [[g7 . = A+ 2 > |lab]l. + 2, we have af, < g* (by Corollary [4.7).
Similarly, b, <g gf . (In other words, gi* has a geodesic decomposition ¢! = gi'* - g;* =™~ A gf !

such that a, <p, g7 and b, <p gf '.) Therefore

lasll < llgi* Il = eallgall,
18511 < llga™ I = Bullga I

Since hy = aj g7 by = abgy?bhy, we get

lholl = (A" + B') = (lai | + nallgall + 1o111) = (el + llagll) = (41 + 1165 1)
= nllgill = llag ]l = 1Be]l = mallgull = eallgall — Bullgl
= (n1—a1—=B)llgrl = 2V + Dllgall.
In the same way, we get ||ho|| — (A" + B') = (2V + 1)]g2]|. O

Notice that [|a}|| < A" and ||b}|| < B’. Let ' = max{]|g1],]|g2/|}. Then each a)g;"V; in @) is a
(A’, B',r")-quasi-root decomposition of hg such that ||ho|| > A"+ B’ + (2V + 1)7/
Applying Proposition [73 to @) yields a}gia; ! = abgeal, ' and b g1b] = by gably,. Consequently
argrayt = ap(digray Hag' = ag(ahgedy agt = asgeay !,

by gy = by (Bt gibh)bo = byt (b L gabh)bo = by L gaba.
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8. ACYLINDRICITY OF THE ACTION OF A(I') oN I'®

In this section, we prove the following two theorems.
Theorem 8.1. Let ' be a finite simplicial graph such that |V (I')| > 2 and T is connected. Then the
action of A(I") on (A(T'),dy) is (R, N)-acylindrical with
R=R(r)= 2V +T)r+38s,
N=N(r)=2(V-2)(r—1)-1,
where V = max{4, |V (I')|}. Moreover, for any x,y € A(I") with d«(x,y) = R, if {(x,y;r) # {1}, then

there exists a loxodromic element g € A(T') such that
(1) &(z,yr) = {L g™ g™ .. g™} for some 1<k < (V =2)(r —1) = 1;
(ii) the Hausdorff distance between the (g)-orbit of x and that of y is at most 2r + 3.

Theorem 8.2. Let T be a finite simplicial graph such that |V (T')| > 4 and both T and T are connected.
Then the action of A(I') on I'® is (R, N)-acylindrical with
R=R(r) = D2V +7)(r +1) + 10D,
N=N(r)=2(V-2)r—1,
where D = diam(T") and V = |V(T')|. Moreover, for any x,y € V(I'®) with d(z,y) > R, if &(z,y;r) #
{1}, then there exists a lozodromic element g € A(T") such that
(1) &(@,yir) C{1,g™ 972, g™} for some 1<k < (V —2)r — 1
(ii) the Hausdorff distance between the (g)-orbit of x and that of y is at most D(2r + 7).

The following lemma connects the acylindricities of the actions of A(T") on (A(T"),d.) and on (I'¢, d).

It is an improvement of the argument of Kim and Koberda in the proof of Theorem 30 in [18].

Lemma 8.3. Suppose that |[V(I')] > 4 and both T and T are connected. Let D = diam(T'). If
the action of A(T") on (A(T'),ds) is (Ri(r), N1(r))-acylindrical, then the action of A(I') on (I'¢,d) is
(Ra(r), Na(r))-acylindrical with

Ro(r)=D - Ri(r+1)+2D,

NQ(T’) = Nl(T’ + 1)
More precisely, for any v\*,vy?* € V(I'°), where vi,vy € V(') and wi,we € AT), if d(vi*,vy?) >
Ry(r), then

(i) di(wr,wz) > Ry(r+1);
(ii) &(re,q)(v)™,v5%;57) ds contained in § Ay q,) (w1, we; T +1).

Proof. Note that D = diam(I') # 0. Let d(v}"",v5?) > Ra(r) for v ,vy? € V(I'®). Since I is
connected, we can apply Lemma 3] and obtain
di (w1, ws) = [[waw; .

1
d(UQ’ v;Ule )

A", v¥?) — D Ry(r) — 2D
> 4 ’%) —1272(% = Ry(r +1),

which proves (i).
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Let g € Epe ) (v, v57;7). Then d(v;", v;"") <r for i = 1,2. By Lemma E.3 again,

-1
w;gw;
i

=d(v;"? v +1<r+1

d*(wlg7wl) = ”wzgwil”* < d(U 7Ui) +1

for i = 1,2, hence g € §o(r),a,) (w1, w2; 7 + 1). This shows that the set {pe g)(v]", vy?;7) is contained
in &amy),a.) (w1, wa;r + 1) hence (ii) is proved.
Slnce Ere,ay (V1 v5%51) C §amy,a (Wi, we;r 4+ 1) and di(wr,w2) = Ri(r + 1), the (Ry, N1)-
acylindricity of the action of A(T") on (A(T"),d,) implies that
[€re,ay (01 v9 %) < 1Ay a.) (w1, wasr + 1) < Ni(r + 1) = Na(r).
Therefore the action of A(T") on (I'°,d) is (Ra(r), No(r))-acylindrical. O
Proposition 8.4. Let g,w € A(T') \ {1} and r, R > 1 such that
lglls <7, Jlw™tgwlls <7 Jwll >R, R>3r+7.
Then there exists a quasi-root decomposition
w = a(g1)"b,
where a,b, g1 € A(I'), e € {£1} and n > 2 such that
(i) llall« < 3r+1 and [|b]|. < 3r+2;
(ii) g1 is cyclically reduced and g = agia™' is geodesic.
Notice that ||w|[« = R > 3r+7 > 7, hence the existence of such an element w implies that |V (T")| > 2
and T is connected (as explained in Remark [6.2]).

Proof. Let ¢ = agia™! be the geodesic decomposition such that g; is cyclically reduced. Let h =

wtgw. Then
h=wtagia'w = (e w) g (a tw).
By Theorem [3.9], there exists a geodesic decomposition of a~1w

(5) ailw = W1wWaWs3

1

1% is a cyclic conjugation; (iii) h = wy - g)* - w3 is geodesic.

such that (i) w; = g1; (ii) g7

Claim 1. The following hold.

(i) |Jwe|l« = 3, hence ws is strongly non-split.

(ii) g} is either a left cyclic conjugation or a right cyclic conjugation.
Proof of Claim 1. Since both g = agia™! and h = wy ! g1 ?ws are geodesic decompositions,

911l + 2llallx —
gy 1« + 2[|wsll+ —

l9ll« < llgull« + 2lall,
Al < llgy™ [« + 2llws]l«

//\ //\

(by Corollary [4.8]), whence
lgll« = llgall« lgll« = llgall«
< lafle <

2

2 2 e
h 2 h 2
1721« 2||g I o sl < 172l 2||g [E
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Since wy = g1 # 1, we have ||lw;||« < 1. Since g; # 1 and both g = agia™" and h = w3 ' ¢}*ws are

geodesic, we have 1 < [|g1]]« < [lgll« <7 and 1 < [|g{|l« < ||A]l« < 7. Since a™lw = wywows,

[wll« < llalle + lwills + lwall« + [[ws]]«
* * h 2
<<ng ol +2>+1+szu*+<ll -~ o™ +2>

r—1 1
<< 5 +2>+1+Hw2|! +<T+2>

= ||lwa||« + 7 + 4.

Therefore ||wall« = |Jw|ls —7—4 > R—7r —4 > 2r +3 > 3, hence wsy is strongly non-split (by
Lemma [.15]). This proves (i).

Assume that the cyclic conjugation g™

is neither a left cyclic conjugation nor a right cyclic con-
jugation. Then, by Proposition B7(v), we = whw! is geodesic for some wh,wl € A(T') \ {1} such

that g, (resp. gy ) is a left (resp. right) cyclic conjugation and w) = wf. Since both w) and w}

are nontrivial, we have ||wh|« = [|[w}]|[« = 1, hence ||wall« = ||whwh]l. < ||whll« + [|[wh]« = 2, which
contradicts ||wz|[« = 3. Therefore g} is either a left cyclic conjugation or a right cyclic conjugation.
This proves (ii). O

Claim 2. The following hold.

(i) ¢1 is strongly non-split with |supp(g1)| = 2 and 2 < ||g1]|« < 7
(i) fall < ir+1, w1 =1, |lwalls > R—r —2 and |jws|[« < 37+ 1.

Proof of Claim 2. (i) Since g;* is either a left or a right cyclic conjugation (by Claim 1),
wy <L gy or wy' <g gt

for some n > 1 (by Proposition B.8). Since ||wa|/« > 3, we have ||g}'||« > 3. By Lemma 6.3] ¢; is
strongly non-split with |supp(g1)| = 2 and ||¢g1]|« = 2 On the other hand llg1ll« < |lgll« < r because

g = agia~! is geodesic.

(ii) If wy # 1, then [|g1]|« < 1 because g1 = wy, which contradicts ||g; ||« > 2. Therefore w; = 1.

2 2

Since ¢ is strongly non-split and ¢;"? is a cyclic conjugation, gy’
|supp(g7?)| = |supp(g1)| = 2. Therefore ||g;"|/« = 2 (by Lemma [A.TI5).

Since w1 =1, ||gll« <7, ||h]l« <7, |lg1]l« = 2 and ||g;*||« = 2, using the inequalities in the proof of
Claim 1, we have

is also strongly non-split and

lgll« — llg1ll« r—2 r
< R Lo —C42=-+41,
llall« 5 + 5 + 5 +

[l = llgi™ I« —2
20 7 191 W= 4 9 < 2=—+1
2 tES T TETy 3+

[wlle < llall + [lwifle + lwl + [[ws]l«

[Jws [« <

T T
<(5+1) +0+fwolle + (5 +1) = lhwalle +7+2.

Therefore ||afl« < 37+ 1, [Jws|l« < 37+ 1 and |Jwa|s > |w|s —7—2> R—7r—2. O

Claim 3. Let ¢ =1 (resp. e = —1) if ¢;" is a left (resp. right) cyclic conjugation. Then there exists
a quasi-root decomposition

w = a(g])"b



ACYLINDRICITY OF THE ACTION OF RAAGS ON EXTENSION GRAPHS 37

such that n > 2 and [|b||. < 3r +2.

Proof of Claim 3. Suppose that g is a left cyclic conjugation. Then wy <p, gt for some k > 1 (by
Proposition [3.8]). Hence

wy = gi'd
is geodesic for some 0 < n < k and d € A(") with ||d|[« < ||g1]|« + 1 (by Corollary B.6]). Notice that

n > 2 because ||g1|[« < r Whereas

g1l = l[wall« = lldll« = (R =7 =2) = (r+1) = R=2r =3>r+4.

-1

Since a”'w = wywows and wy = 1, we have

w = awsws = agy dws.

-1

We will now prove that the decomposition w = agj'dws is geodesic. Since g = agia™" is geodesic

and ¢ is cyclically reduced, ag} is geodesic (by Lemmas 2.8 and B.4]). Since both wows and we = ¢i'd
are geodesic, g dws is also geodesic. Recall ||g7|l« = 7+ 4 > 2. Therefore w = ag'dws is geodesic (by

Lemma A.12)).

Let b = dws. Then w = ag}'b is geodesic and

3
81l < lllle + lsll- < (lgalle +1) + (5+1) Sr+14+5+1=3r+2

Therefore w = ag'b is a quasi-root decomposition with the desired properties.

w2

Now suppose that g, is a right cyclic conjugation. Then (gf )w2 is a left cyclic conjugation (by

Proposition B.8)). From the above argument, w = a(g; b is a quasi-root decomposition with the

desired properties. O
The proof is now completed. O
Remark 8.5. In Proposition B4l notice that
w = a(g})"b = (a(gf)"a™")ab = (¢°)"ab,
lad]l. < llafl + [IBll« < (7 +1) + (5r +2) = 2r + 3.

Thus one could understand Proposition B4 as follows: if ||w]|. is large but both ||g||« and ||w™!gw||.

are small, then w = g"c for some integer n and ¢ € A(I") with [|¢||, small.

If |lw'gw||« <7 and g = agia~! in the statement of Proposition 84 are respectively replaced with

lwgwt||« < r and g = a~'g1a, then we have the following corollary.

Corollary 8.6. Let g,w € A(T') \ {1} and r, R > 1 such that
lgll« <7 Jwgw . <ry o Jlwle >R, R>3r+T7.
Then there exists a quasi-root decomposition
w = b(g1)"a,
where a,b, g1 € A(T'), e € {£1} and n > 2 such that

(i) llall« < 3r+1 and [|b]|. < 3r+2;
(ii) g1 ds cyclically reduced and g = a™1gia is geodesic.

We will now prove Theorem Rl
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Proof of Theorem [81. Choose x,y € A(T') with dy(z,y) > R. Let w = yx !, hence ||w||« = di(z,y) >
R.

We may assume &(1,w;7) # {1} because otherwise &(z,y;7) = v~ 1¢(1,w;r)x = {1} and there is
nothing to prove.

By Lemma FE5(ii), the set £(1,w;r) is closed under taking a root, i.e. if h*¥ € £(1,w;r) for some
h e A(T') and k > 1, then h € £(1,w; ). Therefore there exists a primitive element go in £(1, w; )\ {1},
hence |gol|l« = d(g0,1) < r and ||wgow ™|+ = di(wgo, w) < 7.

We will now show that goil is uniquely determined from w = yz~!. Let

go=a ‘gia

be the geodesic decomposition such that g; is cyclically reduced. Then g¢; is also primitive and
llgill« < |lgoll« < 7. Since R = 2V +7)r+8 > 3r + 7, (w, 90, 01, a, R, r) satisfies the conditions on
(w,g,91,a, R,r) in Corollary 86 hence there exists a quasi-root decomposition

w = b(g})"a,

where b € A(), e € {£1}, n > 2, [lalls < 3r+ 1 and ||b]. < 2r +2.
Let A = %’I“ +1and B = %’I“ + 2. Then ¢§ is a primitive (B, A, r)*-quasi-root of w. Observe that
2A4+2B+ 2V +3)r+2=(r+2)+Br+4)+ 2V +3)r+2= 2V +7)r+8 =R, hence

|w|l« > R =2A+2B+ (2V + 3)r + 2.

The tuple (w, g§,b,a, B, A,r) now satisfies the conditions on (h, g1,a1,b1, A, B,r) in Theorem [74]
Therefore the primitive element gj is uniquely determined from w because gf = a~lg{a is the
rightward-extraction of the (B, A,r)*-quasi-root g{. This means that each element of £(1,w;r) is

a power of gg, hence £(1,w;r) C (go). Since
g1 ll« = 11(91)" I+ = llwll« = [[bll« = llall > R =B —A
> A+ B+ 2V +3)r+2 >3,

the cyclically reduced element g¢; is loxodromic (by Lemma [6.3]), hence || ggvf2)j I« = 7+ 2 for all
j = 1 (by Lemma [63] Proposition (.7 and Corollary ETI0). Since go is conjugate to g1, go is

also loxodromic. Since g(()vf2)j = a_lg§vf2)j a is a geodesic decomposition (by Lemma [2Z8|iii)),
V—2)j V—2)j . .

lg6” 2l = 119t "Il > ji+2 for all j > 1.
If k> (V—2)(r—1), then ||gk|. > HQ(()V%)(PI)H* > (r—1)+2=r+1, hence gf ¢ ¢(1,w;r). From

this fact and Lemma [£.5] it follows that

£ wir) ={L g5 05"}

for some 1 <k < (V—-2)(r—1)—1.
Let g = 2 'gox. Then g is also loxodromic. Since &(z,y;7) = 271 - £(1,w;r) -,

E(x,y;r) = {1,671 g™FY,

hence (i) is proved.
Let N(r) =2(V —2)(r —1) — 1. Since [{(z,y;r)| =2k+1<2(V —-2)(r —1)—1 = N(r), the action
of A(T") on (A(T'),d,) is (R(r), N(r))-acylindrical.

1

Since go = a tg1a, g = v goz and yz~! = w = b(g5)"a, we get

y = we = b(g)"ax = bax -~ a”(g5)"ax = bax(g")".
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Hence d,(y,z(9%)") = di(bax(g®)™, z(g¢)") = ||ball« < ||b]l« + ||al|« < 2r + 3. Therefore the Hausdorff
distance between the (g)-orbits z(g) and y(g) is at most 2r + 3, hence (ii) is proved. O

Remark 8.7. The above proof shows that ¢{ is a primitive (%r + 2, %7“ + 1,7“) *_quasi-root of w =

1

b(g5)"a. Notice that the rightward-extraction of g¢ is a !g¢a, and that xgr~! = a~'gja. Therefore

either xgz—! or xzg~'2~! is the rightward-extraction of a primitive (%r + 2, %7“ + 1, r)*-quasi-root of

yr L.

We are now ready to prove Theorem
Proof of Theorem [82. By Theorem [R1] the action of A(I") on (A(T"),d,) is (R1(r), Ni(r))-acylindrical
with

Ri(r) =2V +7)r +38,
Ni(r) =2(V =2)(r—1) -

Applying Lemma [83] to the above, the action of A(T') on (I'¢,d) is (R(r), N(r))-acylindrical with
R(r) =D Ry(r+1)+2D = D2V + 7)(r + 1) + 10D,
N(r)=Ni(r+1)=2(V -2)r — 1.

Choose z,y € V(I'*) with d(x,y) > R(r) and §re g)(z,y;7) # {1}. Then there exist vi,vy € V(T')

and wy,wy € A(T") such that z = v}’* and y = vy?. By Lemma [83]

di(wi,wa) = Ry(r+1),
§re.a) (v, 09%31) C §A(r),a.) (w1, w2 T + 1).
Since §re gy(vy",v5%;7) # {1}, we have § () q,) (wl,wg,r +1) # {1}. Hence (w;,ws) satisfies all
the conditions on (z,y) in Theorem K] Therefore, by Theorem BI](i),
Ere.a)(@,y57) C Eamyany(wi, wasr + 1) = {1,951, g%, ..., g™}

for some loxodromic element g € A(I') and 1 < k < (V — 2)r — 1, hence (i) is proved.
Since the Hausdorff distance between the (g)-orbits of w; and ws is at most 2(r +1) +3 =2r +5
(by Theorem BI(ii)), wa = cw; g™ for some n € Z and ¢ € A(T") with ||c||« < 2r + 5. Hence we get (by

Lemma [4.3))
-1
d(z?"y) = Ao vy?) = d(vy, vy ) = d(vy, 05)
< d(v1,v2) + d(v2,05) < D+ D(|cll. + 1)
= D(|c||« +2) < D(2r + 7).

Therefore the Hausdorff distance between z{9) and 39 is at most D(2r + 7), hence (ii) is proved. [
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