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DEAD ENDS ON WREATH PRODUCTS AND LAMPLIGHTER

GROUPS

EDUARDO SILVA

Abstract. For any finite group A and any finitely generated group B, we prove that the
corresponding lamplighter group A ≀B admits a standard generating set with unbounded
depth, and that if B is abelian then the above is true for every standard generating set.
This generalizes the case where B = Z together with its cyclic generator [19]. When
B = H ∗ K is the free product of two finite groups H and K, we characterize which
standard generators of the associated lamplighter group have unbounded depth in terms
of a geometrical constant related to the Cayley graphs of H and K. In particular, we find
differences with the one-dimensional case: the lamplighter group over the free product
of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to
some standard generating set.

1. Introduction

Let G be a finitely generated group endowed with the word length ‖ · ‖S associated to
a finite symmetric generating set S. By definition, any element g ∈ G is the endpoint of a
geodesic path from eG to g, and one can ask whether such paths can be extended beyond
g, while remaining geodesic. Any element that fails to satisfy the above is called a dead
end of G with respect to S.

The existence of dead end elements in a group is actually not so rare. For example, Z
with the generating set {±2, ±3} has 1 and −1 as dead ends of word length 2. However,
these are the only ones in this example, and in fact any abelian group always has finitely
many dead ends [35,50]. For a virtually abelian group G a slightly weaker condition holds:
there exists a constant M ≥ 0, which depends on the choice of S, such that any element
g ∈ G is at distance at most M from a geodesic path of length ‖g‖S + 1 that starts at
eG [52]. In such a case we say that (G, S) has uniformly bounded depth. In addition to
virtually abelian groups, this property is satisfied for any choice of S by hyperbolic groups
[7] and by groups with two or more ends [35]. Intuitively, if (G, S) has uniformly bounded
depth, then geodesic paths starting at eG can be connected to longer ones at the cost of
backtracking a constant number of steps.

If (G, S) does not have uniformly bounded depth, we say that it has unbounded depth.
This means that one can find, for an arbitrary n ≥ 1, elements g ∈ G whose n-neighborhood
is contained in the ball of radius ‖g‖S centered at eG. The existence of infinite groups
with this property is not evident, and the first example was given by Cleary and Taback
[19], who showed that the lamplighter group Z/2Z ≀ Z = 〈a, t | a2, [a, tiat−i], i ∈ Z〉 has
unbounded depth with respect to the generating set {a, t±1}. This result is a consequence
of an explicit formula for the word length of elements in Z/2Z ≀ Z, as we explain now. In
general, the word length in a wreath product A ≀B with respect to standard generators can
be expressed in terms of the word length in A and the length of solutions to the Traveling
Salesperson Problem (TSP) on the corresponding Cayley graph of B (as shown by Parry
in [42], and explained in Subsection 2.4). In the case of Cleary and Taback one has B = Z

with generating set {t±1}, and hence the exceptionally simple solutions for the TSP on
a line provide an explicit formula for the word length in Z/2Z ≀ Z. Similar arguments
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hold when replacing Z with a free group of finite rank together with a free generating set
(see Section 3), but for other groups (or even free groups with other generating sets) this
problem is in general computationally harder and one cannot hope for explicit solutions.
Notably, the problem of finding the word length of a given element in A ≀ B is known to
be NP-hard whenever B is a finitely generated abelian group which contains Z

2 [31].

1.1. Main results. In this article, we study the depth properties of more general lamp-
lighter groups A ≀ B with respect to standard generating sets, where A is fixed to be a
non-trivial group with unbounded depth for some generating set SA (in particular, A can
be any non-trivial finite group). Our first result states that standard generators with
unbounded depth always exist.

Theorem A ( = Theorem 4.8). Let (A, SA) have unbounded depth and B be any finitely
generated group. Then there exists a finite generating set SB of B for which (A≀B, SA∪SB)
has unbounded depth.

Here it is essential that we consider standard generating sets for the wreath product
A ≀ B. Indeed, Warshall has proved that the group Z/2Z ≀ Z (and many other solvable
groups) admit non-standard generating sets with uniformly bounded depth [51].

We prove Theorem A in Section 4 via the study of spanning paths of minimal length of
finite subsets of the Cayley graph of B with respect to SB. We are interested in how this
length varies when modifying the endpoint of said paths. Because of this, an important
case for us is where balls of B centered at the identity are close to being Hamiltonian-
connected (i.e. there is a Hamiltonian path connecting any two vertices), up to repeating
a constant number of elements (Definition 4.4). The existence of such a Cayley graph for
an arbitrary group B is proven in Lemma 4.7, and it is a consequence of the fact that the
cube of any finite connected graph is Hamiltonian-connected (Lemma 2.3).

Another family of graphs that is close to being Hamiltonian-connected are “rectangular
grids” in Z

2 (see Subsection 4.4 and Lemma 4.10 for precise definitions). By showing
that there are bijective 1-Lipschitz embeddings of these graphs onto the Cayley graph of
any (infinite) abelian group, with the exception of Z with its cyclic generator, we obtain
the following result: whenever B is abelian, every choice of SB gives rise to a standard
generating set of A ≀ B with unbounded depth (Proposition 4.15).

Next, we prove that the claim of Theorem A cannot in general hold for every standard
generating set. That is, we find a finitely generated group B together with a finite gen-
erating set SB for which the associated lamplighter group has uniformly bounded depth
(Corollary 5.1). This example is explained in Subsection 5.1, and is obtained through
the study of lamplighters over free products of finite groups. In order to formulate our
results, we define for a finite group G with a generating set SG the Hamiltonian difference
H (G, SG), which measures how much shorter a minimal spanning cycle of Cay(G, SG) is
in comparison with minimal spanning paths from eG to a non-identity element (Definition
5.2). The main result of Section 5 is the following.

Theorem B ( = Theorem 5.3). Let (A, SA) have unbounded depth, and consider two
finite groups H and K with generating sets SH and SK , respectively. Then (A ≀ (H ∗
K), SA∪SH ∪SK) has uniformly bounded depth if and only if H (H, SH)+H (K, SK) ≥ 1.

In particular, whenever Cay(H, SH) and Cay(K, SK) are sufficiently long cycles, the
lamplighter group A ≀ (H ∗ K) has uniformly bounded depth (Corollary 5.7). This seems
to be the first examples of lamplighter groups with uniformly bounded depth with respect
to standard generators, in contrast with the already mentioned example by Warshall of a
non-standard generating set of Z/2Z ≀ Z with uniformly bounded depth [51].
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1.2. Background and ideas of the proofs. In the remainder of the introduction we
give more background about the study of dead ends in finitely generated groups, and
explain the main ideas of the proofs.

The first definition of dead ends in the literature is commonly attributed to Bogopolski
[7], and appears in his proof of the fact that two commensurable hyperbolic groups must be
bi-Lipschitz equivalent (soon after, this result was proven to hold for non-amenable groups
by Whyte [54] and Nekrashevych [40], without referencing dead ends in their proofs). Some
other contexts where dead ends occur in the study of the geometry of Cayley graphs are
mentioned in the following non-exhaustive list.

(1) If (G, S) has unbounded depth, then the language of geodesic words with respect
to S cannot be regular [52].

(2) Dead ends appear as points of non-negative conjugation curvature, a notion of
“medium scale” Ricci curvature for Cayley graphs introduced by Bar-Natan, Duchin
and Kropholler [5], and often lead to finding elements of strictly positive conjuga-
tion curvature [33].

(3) Dead ends of arbitrarily large retreat depth are an obstruction to the connectedness
of thickened spheres of Cayley graphs, as studied by Brieussel and Gournay [10].

(4) A zero asymptotic density of dead ends in the balls of the group is used as an
assumption by Saito in [45, Section 11.2, Assumption 2. S]. It was later remarked
by Calegari and Fujiwara that this is quite restrictive, since there are hyperbolic
groups with standard generating sets that have a positive density of dead ends (of
uniformly bounded depth) [11].

As we remarked above, the first known examples of groups with unbounded depth were
provided by Cleary and Taback [19] using wreath products, which we explain in more detail
now. Given two groups A and B, we define their wreath product A ≀ B as the semidirect
product

⊕

B A⋊B, where B acts by translations on the group
⊕

B A of finitely supported
functions f : B → A. We say that a generating set of A ≀ B is standard if it is of the form
Sstd = SA ∪ SB, where SA and SB are generating sets of A and B, respectively.

Even though the Cayley graph of a wreath product A ≀ B with respect to a standard
generating set is not completely understood (descriptions of Cayley graphs of lamplighter
groups Z/nZ ≀Z as Diestel-Leader graphs are known for non-standard generators [57]), the
word metric can be described in terms of the ones of A and B. As we explain in Subsection
2.4, the word length of an element in (A ≀B, Sstd) can be expressed in terms of the minimal
length of paths in Cay(B, SB) which start at eB , visit some finite subset of elements
F ⊆ B, and finish in some other one x ∈ B. These paths are solutions to the Traveling
Salesperson Problem (TSP) in Cay(B, SB), and we denote the length of a minimal such
path by TS (eB , x, F ). More precisely, Equation (1) says that for g = (f, x) ∈ A ≀ B,

‖g‖Sstd
=

∑

v∈supp(f)

‖f(v)‖A + TS (eB , x, supp(f)) .

A common way to interpret this formula is to think of Cay(B, SB) as a street that
has lamps at every vertex, where each lamp can be at a different state for each element
of A, so that a group element (f, b) ∈ A ≀ B is given by a lamps configuration f and a
position b ∈ B. Then the generators of SB account for moving through the street, while
the generators of SA change the state of the lamp at the current position. This is the origin
of the name “lamplighter group”, and we call A the lamps group and B the base group.
When Cay(B, SB) is a tree, it is possible to give a simple description of the solutions to
the TSP inside the graph, and hence obtain an explicit formula for the word length in A ≀B
(Lemma 3.2). This is in particular used by Cleary and Taback, who studied lamplighter
groups of the form A ≀ Z, where A has unbounded depth with respect to some generating
set SA, and SZ is the cyclic generating set of Z. They proved that the standard generating
set Sstd = SA ∪ SZ has unbounded depth, and thus provided the first examples of groups
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with this property [19]. Their arguments strongly rely on the fact that the Cayley graph
of the base group is a line, and generalizes to finitely generated free groups (Proposition
3.3). On the other hand, for other base groups, or even other generators of Z, the TSP
is known to be computationally hard and hence it is not possible to hope for an explicit
description of the word length of a wreath product.

Our results concern the existence of dead ends of arbitrarily large depth in wreath
products A ≀ B over more general base groups B. Note that if the group A has uniformly
bounded depth with respect to SA, then it is straightforward to see that A≀B also does with
respect to Sstd. Because of this, we concentrate on the case where (A, SA) has unbounded
depth and B is any group with a finite generating set SB. We use the name lamplighter
group to refer to any such wreath product.

Our focus on dead ends leads us to study the value of TS (eB , v, F ) in finite connected
subgraphs F of Cay(B, SB) that contain large balls centered at the identity eB . In many
cases, we observe that these solutions are actually Hamiltonian paths: they visit each
vertex of F exactly once, except possibly for one element when the path is a cycle (see
Example 4.1). Thanks to the Fuzz Lemma 2.7, frequently used by Warshall for studying
depth properties of groups [51–53], it is enough to estimate the word length up to an
additive constant. This together with the above remark on Hamiltonian paths motivates
the following definition. A Cayley graph Cay(B, SB), where B is a group with a finite
generating set SB, is said to be quasi-Hamiltonian if there exists a constant M ≥ 0 such
that for any n ∈ N, there exists a finite subset F ⊆ B which contains the ball BSB

(eB , n)
and for which |TS (eB , v, F ) − |F || ≤ M , for any v ∈ F . This is, a path of minimal length
which starts at eB , visits all elements of F and finishes at any v ∈ F , while visiting each
element of F at most once except for a bounded number of instances.

In Lemma 4.5 we prove that if Cay(B, SB) is a quasi-Hamiltonian presentation, then the
corresponding lamplighter group (A ≀ B, Sstd) has unbounded depth. Then, using results
about Hamiltonian-connectedness of finite graphs, we prove that any infinite group admits
a quasi-Hamiltonian Cayley graph (Lemma 4.7), and hence that any lamplighter group
A ≀ B admits a standard generating set with unbounded depth (Theorem 4.8).

Having proved the existence of at least one quasi-Hamiltonian Cayley graph for any
group, one may wonder if in general an arbitrary generating set will have this property. A
clear restriction is that if Cay(B, SB) is a tree then it cannot be quasi-Hamiltonian, since
any path visiting all vertices in a ball is forced to repeat an unbounded amount of them
(Example 4.3). It turns out that this is the only constraint in the family of abelian groups:
we prove that any Cayley graph of a finitely generated abelian group is quasi-Hamiltonian,
with the exception of Cay(Z, {±1}) (Proposition 4.14). In order to show this result, we
use the fact that grid graphs (finite induced subgraphs of Z2 with canonical generators,
with vertex set [0, n]× [0, m]) have spanning paths between any pair of vertices that repeat
at most 2 elements. This follows from a characterization of the existence of Hamiltonian
paths in grid graphs due to Itai, Papadimitriou and Szwarcfiter [29]. Then, an inductive
argument shows that any Cayley graph of an abelian group, except for Cay(Z, {±1}),
contains grid graphs as spanning subgraphs of sets containing arbitrarily large finite balls.
By combining the above together with the original result of Cleary and Taback, we obtain
as a corollary that any lamplighter group A ≀ B over an abelian group B has unbounded
depth, with respect to every standard generating set (Proposition 4.15).

The study of Hamiltonian paths in Cayley graphs has a long history. Lovász Conjecture
(for Cayley graphs) asks if any Cayley graph of a finite group has a Hamiltonian cycle and,
although it has been verified for various families of groups, it remains far from being solved.
We refer to Subsection 2.3 for more details and to [34] for a recent survey on the topic.
On the other hand, for infinite groups there has been progress in the question of finding
Hamiltonian paths or Hamiltonian circles in their Cayley graphs, that is, homeomorphic
copies of the interval [0, 1] or the circle S1, respectively, in the Freudenthal compactification
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of the graph [38]. We emphasize that our definition of quasi-Hamiltonian presentations
concerns a slightly different question to the ones above since, despite our interest in infinite
groups, we concentrate on paths covering finite (arbitrarily large) subgraphs of an infinite
Cayley graph.

Even though Cayley graphs that are trees are not quasi-Hamiltonian, lamplighter groups
over them still have unbounded depth with respect to standard generators (Proposition
3.3). Hence it is natural to ask whether standard generating sets in lamplighter groups
always have unbounded depth. We show that this is not the case, by constructing lamp-
lighter groups which have uniformly bounded depth with respect to standard generators
(Corollary 5.1). The Cayley graphs of the base groups of the above examples have cut
vertices, that prevent them from being quasi-Hamiltonian, but at the same time contain
sufficiently long cycles that allow an element to increase its word length by moving the
position of the lamplighter. This construction seems to provide the first examples of lamp-
lighter groups with uniformly bounded depth with respect to some standard generating set,
in contrast with Warshall’s results about non-standard generators with the same property
[51].

The above result is a particular case of our study of lamplighters over a free product of
two finite groups (H, SH) and (K, SK). In this case, the depth properties of A ≀ (H ∗ K)
with respect to Sstd = SA ∪ SH ∪ SK are closely related to the solutions of the TSP in the
finite graphs Cay(H, SH) and Cay(K, SK). More precisely, for a group G with a generating
set SG we define and study the Hamiltonian difference

H (G, SG) := max
g∈G\{eG}

{

TS (eG, g, G)
}

− TS (eG, eG, G) ,

where we recall that for any g ∈ G, TS (eG, g, G) denotes the length of a path of minimal
length in Cay(G, SG) which starts at eG, finishes at g, and visits all elements of G. When
Cay(G, SG) is Hamiltonian-connected we have H (G, SG) = −1, while on the other hand,
H (G, SG) can take any positive value if Cay(G, SG) is chosen to be a sufficiently long
cycle. The Hamiltonian difference measures how much shorter minimal spanning cycles
are than minimal spanning paths from eG to a non-identity element inside Cay(G, SG).

We prove that the value of H (H, SH) + H (K, SK) completely characterizes the exis-
tence of dead ends of arbitrarily large depth in (A ≀ (H ∗ K), Sstd) (Theorem 5.3), and we
further detail the case of free products of finite abelian groups (Corollary 5.7). Notably,
a lamplighter over the free product of two sufficiently long cycles has uniformly bounded
depth. Lamplighters over free products of finite groups also provide an interesting contrast
to the strict structure of dead end elements of lamplighters over trees (Example 5.4).

The organization of the article is as follows. In Section 2 we introduce the notation
and basic tools we use. We also define wreath products and interpret the word length
of an element in standard generating sets through solutions to the TSP in Cay(B, SB)
(Equation 1). Then, in Section 3 we discuss lamplighter groups with B finite and with
B a free group, which correspond to cases where the solutions to the TSP have a simple
structure (with respect to our objectives of studying depth properties). We introduce
the quasi-Hamiltonian property in Section 4 and study its consequences on the depth
properties of lamplighters. Notably, we prove Lemma 4.7 about the existence of quasi-
Hamiltonian Cayley graphs, and use it to prove Theorem 4.8. The section finishes with
Propositions 4.14 and 4.15, regarding lamplighters over abelian groups. Finally, in Section
5 we study lamplighters over free products of finite groups, describe explicitly a lamplighter
group with uniformly bounded depth for a standard generating set in Subsection 5.1, and
then prove Theorem 5.3.
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2. Preliminaries

2.1. Graphs. We start by recalling essential concepts of graph theory and by fixing our
notation.

A graph Γ is a pair (V, E), where V = V (Γ) and E = E(Γ) are the sets of vertices and
edges of Γ, that is, E consists of unordered pairs of vertices. We will work with graphs
with finite as well as infinite sets of vertices and edges. For the purposes of this paper,
these sets will always be countable and graphs will be locally finite, meaning that each
vertex forms part of finitely many edges.

A path P in Γ is a sequence of (not necessarily distinct) vertices P = v1, v2, . . . , vn ∈ V
such that for all 1 ≤ i < n, there is an edge connecting vi to vi+1, and we say that the
length of P is n. If moreover v1 = vn, we say that P is a cycle.

If Γ is a finite graph, a spanning path (resp. spanning cycle) P is one that visits each
vertex of the Γ. If every vertex is visited a unique time (except for the final one in the
case of a cycle), we call P a Hamiltonian path (resp. Hamiltonian cycle).

Definition 2.1. A finite graph is said to be Hamiltonian if it possesses a Hamiltonian
cycle, and Hamiltonian-connected if for any pair of distinct vertices, there is a Hamiltonian
path connecting them.

Any Hamiltonian-connected graph is of course Hamiltonian, but the opposite is not
true: cycles of length n ≥ 4 are Hamiltonian but no Hamiltonian-connected. This will be
relevant for us in Section 5 when studying lamplighter groups over free products of cyclic
groups.

A general obstruction to Hamiltonian-connectedness is being bipartite, meaning that
the vertex set V (Γ) can be decomposed into two disjoint subsets A and B, such that every
edge in E(Γ) connects a vertex in A to a vertex in B. In that case a parity argument shows
that, if the graph has at least 3 vertices, there cannot be Hamiltonian paths between any
two vertices. A bipartite graph with a partition V (Γ) = A ∪ B is called Hamiltonian-
laceable if there is a Hamiltonian path between any two vertices u ∈ A and v ∈ B. This
is our way of saying that Γ has as many Hamiltonian paths as possible, given that it is
bipartite.

When proving that a graph is not Hamiltonian-connected, common techniques usually
rely on showing that a path visiting all vertices gets trapped at some vertex and must be
forced to repeat other ones in order to finish where it is supposed to. This suggests that,
if we allow the path to jump a finite bounded distance instead of only moving through
adjacent vertices, we may be able to find paths which visit all vertices exactly once, with
any starting and finishing point. In order to formalize that intuition, we make the following
definition.

Definition 2.2. Given a finite connected graph Γ and a positive integer k ≥ 1, we define
the k-th power graph Γk of Γ as the graph with V (Γk) = V (Γ) and

E(Γk) := {uv | u, v ∈ V (Γ) such that d(u, v) ≤ k}.

Commonly, Γ2 is called the square of Γ and Γ3 the cube of Γ.

The following result states that the cube of a finite connected graph is always Hamiltonian-
connected. It was proved independently by Sekanina [46] and Karaganis [30]. This result
can be proved by noting that it suffices to show it for a spanning tree of Γ, where an
inductive argument can be applied.

Lemma 2.3. Let Γ be any finite connected graph. Then Γ3 is Hamiltonian-connected.

Lemma 2.3 has been generalized to infinite graphs by Sekanina [46], who proved that
the third power of any locally finite, 1-ended graph has a spanning ray, and by Heinrich
[28], who extended this fact to a class of non-locally finite graphs. With respect to Cayley
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graphs, Georgakopoulos used this result in [27] to prove that any finitely generated group
G admits a finite generating set S for which Cay(G, S) has a Hamiltonian circle. We will
use similar ideas in order to prove Theorem 4.8.

The conclusion of Lemma 2.3 does not hold in general if we replace the cube of the graph
by its square [14, Figure 6.14]. However, Fleischner [25,26] proved that if one adds the extra
hypothesis that the graph is 2-connected, then its square must have a Hamiltonian cycle.
Moreover, Fleischner’s result actually implies Hamiltonian-connectedness of the square of
2-connected graphs, as proved by Chartrand, Hobbs, Jung, Kapoor and Nash-Williams
[13].

We finish this subsection by giving the formal definition of the direct product of two
graphs, which will be useful in Subsection 4.4 when discussing Hamiltonian-connected
properties of Cayley graphs of infinite abelian groups.

Definition 2.4. Let Γ1, Γ2 be two graphs. We define their product Γ = Γ1 × Γ2 as the
graph whose vertex set is V (Γ) = V (Γ1)×V (Γ2) and where two vertices (u1, u2), (v1, v2) ∈
V (Γ) are connected by an edge if and only if u1 = v1 and u2 is connected by an edge in
E(Γ2) to v2, or if u2 = v2 and u1 is connected by an edge in E(Γ1) to v1.

2.2. Groups. Whenever we talk about groups, we assume that they are finitely generated.
We denote by (G, S) a group together with a finite (symmetric) generating set S. We use
the notation eG for the identity element of the group G, or simply e if there is no risk of
confusion.

The (right, undirected, unlabeled) Cayley graph Cay(G, S) of G with respect to the
generating set S is the graph whose vertices are the elements of G, and where two elements
g, g′ are connected through an edge if and only if there exists s ∈ S ∪ S−1 with g = g′s.
In this context, a natural metric arises in G. Indeed, define for g, h ∈ G,

dS(g, h) := min
{

n ≥ 0 | g−1h = s1 · · · sn, for some s1, . . . , sn ∈ S ∪ S−1
}

.

The distance dS is called the word metric on G associated to the generating set S and it
corresponds to the length of a minimal path in Cay(G, S) connecting g to h. Similarly,
we define the word length associated to S as

‖g‖S = dS(eG, g), for g ∈ G.

Given g ∈ G and n ≥ 0, we define the ball of radius n centered at g as

B(g, n) := {h ∈ G | dS(h, g) ≤ n}.

When there is risk of confusion, we use the notation BS(g, n) or B(G,S)(g, n) to emphasize
the generating set or the group used to define the ball.

In Section 4 we will be interested in finding, for each n ≥ 1, spanning paths of finite
subgraphs of Cay(G, S) containing B(eG, n), whose length is close to the length of a
hypothetical Hamiltonian path, up to a uniform additive error.

2.3. Hamiltonian paths on finite Cayley graphs. The problem of finding Hamilton-
ian cycles on Cayley graphs of finite groups was first proposed by Elvira Rapaport Strasser
[43], and then by Lovász in 1969 [9, Appendix IV. Problem 20]. Lovász conjectured that
every finite connected vertex-transitive graph has a Hamiltonian cycle, except for five
known counterexamples: the complete graph on 2 vertices, the Petersen graph, the Cox-
eter graph, and the graphs obtained by replacing in one of the last two graphs each vertex
by a triangle. None of these counterexamples are Cayley graphs of groups, and hence the
version Lovász conjecture for Cayley graphs of finite groups asks if any such graph with
at least 3 elements has a Hamiltonian cycle. Up until now this conjecture remains open,
although it has been verified for various families of groups. Surveys on this topic can be
found in [21,34,55]. Notably, it is a well established fact that any Cayley graph of a finite
abelian group with at least 3 elements has a Hamiltonian cycle [37].

7
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With respect to properties such as Hamiltonian-connectedness or Hamiltonian-laceability,
it is quick to find Cayley graphs which have none of these two properties. For example,
any cycle of even length ℓ, with ℓ > 5, is neither Hamiltonian-connected nor Hamiltonian-
laceable, and hence such examples are found even within the family of finite cyclic groups.
However, in 1981 Chen and Quimpo proved that among finite abelian groups these are
the only counterexamples one can find.

Proposition 2.5 ([15]). Let Γ be a Cayley graph of a finite abelian group. Then if Γ is
not a cycle, either

(1) Γ is non-bipartite and Hamiltonian-connected, or
(2) Γ is bipartite and Hamiltonian-laceable.

It is natural to ask if the conclusion of Proposition 2.5 holds in general, that is, if any
Cayley graph of a finite group G of degree at least 3 is either Hamiltonian-connected, or it
is bipartite and Hamiltonian-laceable [24, Questions 4.1-4.3]. As we saw above, this holds
if G is abelian, and it has also been proved using computational methods for groups of
order |G| < 48 [56]. Some other particular families of groups have been shown to satisfy
this property [1–4], but the general case is far from being solved.

2.4. Wreath products and lamplighter groups. For A, B groups, we define their
wreath product A ≀ B as the semidirect product

⊕

B A ⋊ B, where
⊕

B A is the group of
finitely supported functions f : B → A endowed with the operation ⊕ of componentwise
multiplication. We denote by supp(f) the finite subset of B to which f assigns non-trivial
values. Here, the group B acts on the direct sum

⊕

B A from the left by translations.
That is, for f : B → A, and any b ∈ B we have

(b · f)(x) = f(b−1x), x ∈ B.

Elements of A ≀ B can be expressed as tuples (f, b), where f : B → A is a finitely
supported function and b ∈ B, and the product between two such elements elements
(f, b), (f ′, b′) ∈ A ≀ B is given by

(f, b) · (f ′, b′) = (f ⊕ (b · f ′), bb′).

There is a natural embedding of B into A ≀ B via the mapping

B → A ≀ B

b 7→ (1, b),

where 1(x) = eA for any x ∈ B. Similarly, we can embed A into A ≀ B via the mapping

B → A ≀ B

a 7→ (δa
eB

, eB),

where δa
eB

(eB) = a and δa
eB

(x) = eA for any x 6= eB .
In particular, if we consider finite symmetric generating sets SA and SB of A and B,

respectively, their copies inside A ≀ B through the above embeddings generate the entire
group A ≀ B. We call Sstd := SA ∪ SB the standard generating set for A ≀ B associated to
the generators SA and SB .

In order to understand how the word length of an element with respect to Sstd looks
like, consider g = (f, x) ∈ A ≀ B and write it as a product of generators of Sstd,

g = a0b1a1b2a2 · · · bmam,

with m ≥ 0, a0, am ∈ SA ∪ {eA}, a1, . . . , am−1 ∈ SA, and b1, . . . , bm ∈ SB . In particular,
it holds that

f = a0(b1 · a1)(b1b2 · a2) · · · (b1b2 · · · bm · am),
so that supp(f) ⊆ {eB , b1, b1b2, . . . , b1b2 · · · bm}, and x = b1b2 · · · bm. This factorization
of g into generators of Sstd can be interpreted as a path in the Cayley graph Cay(B, SB)
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which begins at eB , visits all vertices in supp(f) while generating the appropriate group
element for f in each one, and ends at b1b2 · · · bm. This is the reason behind the name
“lamplighter group”: one can think of the Cayley graph Cay(B, SB) as a street with lamps
at every vertex, each of which can be in a different state given by an element of A. Then
a word in Sstd evaluating to an element g = (f, x) ∈ A ≀ B corresponds to a path from the
origin eB to x, which passes through all vertices of supp(f) and at each one of them uses
the generators of SA in order to reach the value of f there. We refer to x as the position
of the lamplighter, and to f as the lamps configuration.

The above discussion shows that the word length of an element g = (f, x) ∈ A ≀ B with
respect to Sstd can be expressed as

‖g‖Sstd
=

∑

y∈supp(f)

‖f(y)‖SA
+ TS (eB , x, f) , (1)

where TS (b, b′, f) corresponds to the length of a path of minimal length in Cay(B, SB)
which starts at b, finishes at b′ and visits all vertices of supp(f). The notation TS stands for
the interpretation of said walk as a solution to the Traveling Salesperson Problem (TSP).
We also write TS (b, b′, F ) to denote a walk of minimal length in Cay(B, SB) starting at
b, finishing at b′ and visiting all vertices from a finite subset F ⊆ B.

Equation (1) has been widely used to study wreath products. We already mentioned in
the introduction that Cleary and Taback used it to study depth properties of lamplighter
groups A ≀ Z [19], but it has also been used to study other metric properties of wreath
products, as for example by Parry in order to study rationality and algebraicity of growth
series [42], by Davis and Olshanskii to study distortion of subgroups of some wreath
products [22], among many others.

2.5. Dead ends on groups. Fix (G, S) a group together with a finite generating set.
We say that an element g ∈ G is a dead end if for any s ∈ S ∪ S−1, ‖gs‖S ≤ ‖g‖S , and we
define its depth with respect to S as the maximal number n ≥ 1 such that for any choice of
generators s1, . . . , sk ∈ S ∪ S−1, k ≤ n, we have ‖gs1 · · · sk‖S ≤ ‖g‖S . That is, the depth
of a dead end is the maximal number n such that multiplying by at most n generators
does not increase the word length of g. Another way of saying this is that g maximizes
the function ‖ · ‖S on its n-neighborhood.

Although their origin might be older, the first definition of dead ends is commonly
attributed to Bogopolski in 1997 [7], who used it while proving that two commensurable
hyperbolic groups must be bi-Lipschitz equivalent. Soon after, this property was shown
to hold for any non-amenable groups by Whyte [54] and Nekrashevych [40] without using
the notion of dead ends.

Ideas related to dead ends had already appeared before 1997 in the literature, as for
example by Champetier in [12, Lemme 4.19] where it is proven that group presentations
G = 〈S | R〉 satisfying the C ′(1/6) small cancellation condition (see [36, Chapter V.2] for
a definition) satisfy the following property: for any g ∈ G, the set {s ∈ S ∪ S−1 | ‖gs‖S ≤
‖g‖} has at most two elements. This is also discussed by de la Harpe in [23, Chapter IV.A.
13,14]. In the latter, dead ends are introduced as an obstruction for the extension property
for geodesic segments of a graph. With respect to more recent literature, dead ends are
discussed in the chapters of some books on Geometric Group Theory, as in [8, Subsections
1.8.5, 2.6.4 & 4.7.2] and in [16, Chapters 12, 15 & 16].

The depth of a dead end g ∈ G with respect to a finite generating set S can be
interpreted as the distance in Cay(G, S) between g and the complement of the ball
BS(eG, ‖g‖S), minus 1. Note that if G is an infinite group, then the depth of any ele-
ment g has as an upper bound 2‖g‖S (since any infinite finitely generated group contains
an infinite geodesic ray). On the other hand, finite groups always have elements of infinite
depth: those that maximize the word metric ‖ · ‖S . However, although the depth of each
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element must be finite, it can be possible that G contains dead ends of arbitrarily large
depth.

Definition 2.6. Let G be a finitely generated group and S a finite generating set. We
say that G has unbounded depth if for any n ∈ N there exists a dead end g ∈ G of depth
at least n. Otherwise, we say that G has uniformly bounded depth with respect to S.

We again emphasize the dependence of these definitions on the choice of the generating
set S. It may happen that a group G has unbounded depth with respect to a generating set
S, and uniformly bounded depth with respect to another generating set S′. In fact, Šunić
proved in [50] that any group admits a generating set with dead ends. In the same paper,
he proved that Z always has finitely many dead ends, a fact that would later be proved
to hold for any finitely generated abelian group by Lehnert [35]. In particular, there are
no generating sets with unbounded depth among such groups. Other families of groups
which have uniformly bounded depth with respect to any generating set are hyperbolic
groups [7], and more generally any group which has a regular language of geodesics for
any generating set [52], and groups with more than one end [35]. On the other hand,
examples of group with unbounded depth are notably the lamplighter group over the line
Z/2Z ≀ Z [17,19,20], and Houghton’s group H2 [35]. In general, having unbounded depth
is not a group invariant, since there exist groups (even finitely presented ones) which have
unbounded depth for one generating set and uniformly bounded depth for another one
[18, 44]. A remarkable exception is the discrete Heisenberg group, which has unbounded
depth with respect to any finite generating set, as shown by Warshall [52,53].

In order to prove the existence of dead ends in a Cayley graph, it is not necessary to
find them explicitly: it suffices to show the existence of elements which increase their
word length by a bounded amount when multiplying by a large number of generators.
The following lemma formalizes this, and it has been widely used to show the existence of
dead ends of arbitrary depth by Warshall [51–53].

Lemma 2.7 (Fuzz Lemma). Let X be a metric space, and f : X → Z a function. Suppose
there exists M > 0 such that for some x ∈ X and r ∈ N

+ we have

f(x′) ≤ f(x) + M, for all x′ ∈ B(x, r).

Then there exists some x0 ∈ X such that f attains a maximum on B(x0, r/M) at x0.

To finish this section we introduce a slightly different notion of depth for dead ends,
concerned with how much actual backtracking is needed in order to reach elements of
bigger word length.

Definition 2.8. Given a dead end g ∈ G with respect to a generating set S, we say
that g has retreat depth (or strong depth) k if k is the minimal number such that there
exists a geodesic from g to an element of BS(eG, ‖g‖S + 1) which does not pass through
BS(eG, ‖g‖S − k − 1).

That is, the retreat depth of g measures how many steps back in Cay(G, S) from g
one needs to take in order to eventually reach a bigger sphere. The retreat depth of an
element is bounded above by its depth, but it may be the case that elements of arbitrarily
large depth have uniformly bounded retreat depth. Indeed, this is the case for the discrete
Heisenberg group: Warshall proved that it has unbounded depth and at the same time
uniformly bounded retreat depth, for any generating set [53]. On the other hand, the
lamplighter group Z/2Z ≀ Z and Houghton’s group H2 have unbounded retreat depth for
standard generating sets [35].

Throughout this article, we work with wreath products A ≀B under the assumption that
A has an associated finite generating set SA with unbounded depth, and call it the lamps
group of the wreath product A ≀ B. This generalizes the case of finite lamps groups, since

10
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finite groups always have elements of infinite depth. We also say that B is the base group
of A ≀ B or that A ≀ B is a lamplighter group over B with lamp groups A.

3. Lamplighter groups over finite groups and over free groups

This section concerns two particular cases of base groups for which there is a detailed
description of the solutions of the TSP, with respect to our purposes of studying depth
on lamplighter groups. We show that when the base group is finite, the depth properties
are dominated by the lamps group, while on the other hand when the base group is a free
group with free generating set (so that the corresponding Cayley graph is a tree) we are
able to give a precise characterization of dead end elements using the same arguments of
[19].

In particular, it follows from Proposition 3.3 that dead end elements of lamplighters
over trees must necessarily have the position of the lamplighter at the identity element.
This restriction does not hold in general for other base groups, and through our study of
lamplighters over free products of finite groups in Section 5, we find a lamplighter group
with a standard generating set whose dead end elements can have the position of the
lamplighter at an arbitrarily large distance from the identity element (Example 5.4).

3.1. Lamplighters over finite groups. We start by proving that when B is finite, the
lamplighter group (A ≀ B, Sstd) has the same depth properties as (A, SA).

Proposition 3.1. Consider (A, SA) any finitely generated group and (B, SB) a finite
group. Then (A ≀ B, Sstd) has unbounded depth if and only if (A, SA) does.

Proof. Suppose first that (A, SA) has uniformly bounded depth, so that for some k ≥ 1
and any a ∈ A, there exist α1, . . . , αk ∈ SA ∪ S−1

A so that ‖aα1 · · · αk‖SA
≥ ‖a‖SA

+ 1.
For any element g = (f, x) ∈ A ≀ B, Equation (1) tells us that the word length of g is

‖g‖Sstd
= ‖f‖SA

+ TS (eB , x, f) .

For a = f(x), find α1, . . . , αk ∈ SA ∪ S−1
A so that‖aα1 · · · αk‖SA

≥ ‖a‖SA
+ 1. Then

gα1 · · · αk = (f · xα1 · · · αkx−1, x),

and hence

‖gα1 · · · αk‖Sstd
= ‖f · xα1 · · · αkx−1‖SA

+ TS
(

eB , x, f · xα1 · · · αkx−1
)

≥ ‖f · xα1 · · · αkx−1‖SA
+ TS (eB , x, f)

≥ ‖f‖SA
+ 1 + TS (eB , x, f)

= ‖g‖Sstd
+ 1,

where the second inequality comes from the fact that the support of f is contained in that
of f with the state of the lamp at position x modified. This shows that g has depth at
most k.

Now suppose that (A, SA) has unbounded depth, and choose a ∈ (A, SA) of depth at
least n. Choose x ∈ B that maximizes the value of TS (eB , x, B), which exists since we
assume B to be finite. Then it is straightforward to prove that the element (f, x), where
f(y) = a for all y ∈ B, is a dead end of depth at least n, by using Equation (1). Indeed,
thanks to our choice of x, the word length of (f, x) can only be increased through the term
associated to the lamps configuration, for which at least n generators of SA are needed.

Note that here it is essential that B is finite, so that f defined as above does indeed
give a finitely supported function over B. �

For the rest of the article, we concentrate on lamplighter groups over infinite base groups
B.
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3.2. Lamplighters over free groups. Computing the word length of an arbitrary ele-
ment using Equation (1) is not easy in general since it involves solving the TSP, known
to be a computationally hard problem. However, an exceptionally simple formula can be
given for F (S) a free group with a free finite generating set S. In order to do so, we need
to introduce some notation. Given u, v ∈ F (S), denote by [u, v] the set of edges of the
unique shortest path in Cay(F (S), S) joining u to v, so that dS(u, v) = |[u, v]|. Similarly,
for H ⊆ F (S) finite, denote [u, H] =

⋃

h∈H [u, h].

Lemma 3.2 ([6, Theorem 3.1],[19]). Let S be a finite set and F (S) the free group over S.
Then for any u, v ∈ F (S) and any finite subset H ⊆ F (S) we have

TS (u, v, H) = 2|[u, H]\[u, v]| + |[u, v]|.

In particular, for any element g = (f, x) ∈ A ≀ F (S), Equation (1) takes the form

‖g‖Sstd
=

∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eB , supp(f)]\[eB , x]| + ‖x‖S . (2)

By using Equation (2) we can generalize the results about dead ends of lamplighter
groups over the line from [19] and actually give a characterization of such elements.

Proposition 3.3. Consider the free group F (S) over a finite set S, and a finitely generated
group (A, SA). Then g = (f, x) ∈ (A ≀ F (S), Sstd) is a dead end if and only if

(1) f(x) ∈ (A, SA) is a dead end,
(2) [eF (S), supp(f)] contains all edges [x, xs], for s ∈ S±1, and
(3) x = eF (S).

Moreover, if (A, SA) has unbounded (retreat) depth, then (A ≀ F (S), Sstd) also does.

Proof. Suppose first that the three conditions hold. As x = eF (S), Equation (2) says that

‖g‖Sstd
=

∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eF (S), supp(f)]|.

As f(x) is a dead end of (A, SA), multiplying by a generator in SA does not increase word
length. On the other hand, multiplying by a generator s ∈ S gives

‖gs‖Sstd
=

∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eF (S), supp(f)]\[eB , s]| + |[eB , s]|

=
∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eF (S), supp(f)]\[eB , s]| + 1

=
∑

y∈supp(f)

‖f(y)‖SA
+ 2

(

|[eF (S), supp(f)]| − 1
)

+ 1

= ‖g‖Sstd
− 1,

where we used Condition (2) in the penultimate equality. This proves that g is a dead
end.

Now let us suppose that g = (f, x) ∈ (A≀F (S), Sstd) is a dead end. Clearly Condition (1)
must hold, since otherwise multiplying by a generator in SA would increase word length.
Now consider Condition (2). If there exists s ∈ S±1 such that the edge [x, xs] is not
contained in [eF (S), supp(f)], then

‖gs‖Sstd
=

∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eF (S), supp(f)]\[eB , xs]| + |[eB , xs]|

=
∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eF (S), supp(f)]\[eB , x]| + |[eB , x]| + 1

= ‖g‖Sstd
+ 1,

12
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which contradicts the fact that g is a dead end. Hence Condition (2) holds.
Similarly, suppose that x 6= eF (S) and choose s ∈ S±1 such that ‖xs‖S = ‖x‖S − 1.

Then

‖g‖Sstd
=

∑

y∈supp(f)

‖f(y)‖SA
+ 2|[eF (S), supp(f)]\[eB , x]| + |[eB , x]|

=
∑

y∈supp(f)

‖f(y)‖SA
+ 2

(

|[eF (S), supp(f)]\[eB , xs]| − 1
)

+ |[eB , xs]| + 1

= ‖gs‖Sstd
− 1.

In other words, ‖gs‖Sstd
= ‖g‖Sstd

+ 1 and we again contradict that g is a dead end.
Now let us prove the second part of the proposition. If (A, SA) has unbounded (retreat)

depth, fix for n ≥ 1 an element a ∈ (A, SA) of (retreat) depth n. Define the element
g = (f, eF (S)) ∈ A ≀ F (S), where f(x) = a if ‖x‖S ≤ n and f(x) = eA otherwise. Then
very similar arguments to the ones given above show that for any s1, . . . , sn−1 ∈ S±1,

‖gs1 . . . sn−1‖Sstd
= ‖g‖Sstd

− (n − 1).

This implies that g will be a dead end of (retreat) depth at least n − 1 with respect to
Sstd. �

4. The quasi-Hamiltonian property

Equation (1) tells us that in order to study word length of (A ≀ B, Sstd), we need to
understand (at least partially) the solutions to the TSP in Cay(B, SB). This problem is in
general NP-hard, and hence we cannot hope to have a precise description of all solutions
unless we are in very particular families of graphs (such as trees, which were studied in
the previous section).

However, our focus on depth of lamplighter groups brings our attention onto very par-
ticular instances of the TSP. By looking at the structure of dead ends of lamplighters over
trees given by Proposition 3.3, a naive approach to finding dead end elements in A ≀B is to
consider configurations of the form g = (f, eB) ∈ A ≀ B, where f is a lamps configuration
with support on a ball of radius n centered at eB . Hence, it is relevant for us to study
the solutions to the TSP starting at eB and visiting all vertices in a big ball around the
identity.

In Subsection 4.1 we show some examples of solutions to the TSP in some Cayley
graphs, which serve as motivation for the rest of this section. Then in Subsection 4.2
we define the quasi-Hamiltonian property for a graph and show that any group admits a
quasi-Hamiltonian Cayley graph. As a consequence, any lamplighter group has a standard
generating set with unbounded depth. Finally, in Subsection 4.4 we prove that any Cayley
graph of an abelian group, except for Cay(Z, {±1}) is quasi-Hamiltonian. As a corollary,
all standard generating sets of lamplighters over abelian groups have unbounded depth.

4.1. Examples: solutions to the TSP inside some Cayley graphs.

Example 4.1. Consider the group Z
2 together with its canonical basis {e1, e2} of Z

2,
and define the king’s moves generating set Sking = {±e1, ±e2, e1 ± e2, −e1 ± e2}. Then
balls of Cay(Z2, Sking) have the shape of squares, and it can be proved that the induced
subgraphs Bn := BSking

(0, n) are Hamiltonian-connected for any n ≥ 1. Hence for any
x ∈ Bn we have

TS (0, x, Bn) = |Bn| + δx,0,

where δ0,0 = 1 and δx,0 = 0 otherwise. Indeed, the shortest path from 0 to x that covers
Bn visits each vertex exactly once, except possibly 0 which is visited twice if x = 0. Two
such solutions are illustrated in Figure 1.
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n−n

n

−n

(a) Ending at p = (0, 0).

n−n

n

−n

(b) Ending at p = (4, 4).

Figure 1. Paths visiting all vertices in the square [−n, n]2, starting at
(0, 0) and finishing inside the square.

Example 4.2. Now we consider Z with the generating set S = {±1, ±2}. The Cayley
graph Cay(Z, S) is illustrated in Figure 2.

. . . . . .

0 2 4 6 8 10 12-2-4-6-8-10-12

1 3 5 7 9 11 13-1-3-5-7-9-11

Figure 2. The Cayley graph Cay(Z, {±1, ±2}).

The ball Bn of radius n centered at 0 is not Hamiltonian-connected, since a path going
from 0 to 1 and visiting all vertices of Bn must visit one vertex twice. However, it does
hold that

|Bn| ≤ TS (0, x, Bn) ≤ |Bn| + 1,

for any x ∈ Bn. Hence, even though the graph is not Hamiltonian-connected, solutions to
the TSP starting at 0 and visiting all of Bn differ from a hypothetical Hamiltonian path
only by a uniform additive constant.

Example 4.3. Now consider a finite non-empty set S and the free group F (S). In this
case the Cayley graph Cay(F (S), S) is a tree and for any x ∈ Bn := BS(eF (S), n),

TS
(

eF (S), x, Bn

)

≥ n + |Bn|.

Indeed, a path visiting all vertices in the ball Bn must pass through eF (S) at least twice,
and as Cay(F (S), S) is a tree this implies that it traverses a geodesic from eF (S) to an
element of word length n twice.

In the first two examples, minimal spanning paths of Bn repeat a constant number of
vertices, while on the third one it is necessary to repeat an unbounded number of them. On
what follows we study these different behaviors and their consequences of depth properties
of lamplighter groups.

14



DEAD ENDS ON WREATH PRODUCTS AND LAMPLIGHTER GROUPS

4.2. The quasi-Hamiltonian property and unbounded depth of lamplighters.

We start by defining the property of Cay(B, SB) that will be a sufficient condition for the
existence of dead ends of unbounded depth in A ≀B, and which we believe to be of interest
on its own.

Definition 4.4 (Quasi-Hamiltonian property). Let Γ be an infinite, connected and locally
finite graph, and fix a vertex o ∈ V . Denote by Bn the ball of Γ centered at o of radius
n. We say that (Γ, o) has the quasi-Hamiltonian property or that it is quasi-Hamiltonian
if there exists a family F of connected (induced) finite subgraphs of Γ such that

(1) o ∈ F for every F ∈ F ,
(2) for any n ≥ 1, there exists F ∈ F such that Bn ⊆ F , and
(3) there exists a constant M ≥ 0 such that for any F ∈ F and x ∈ F ,

TS (o, x, F ) ≤ |F | + M.

We concentrate on the case where Γ = Cay(B, SB), and o = eB .
Note that Definition 4.4 implies that for any F ∈ F and x ∈ F ,

|F | ≤ TS (eB , x, F ) ≤ |F | + M,

so that the lengths of optimal paths are at bounded distance from those of hypothetical
Hamiltonian paths.

Lemma 4.5. If Cay(B, SB) is quasi-Hamiltonian, then for every group (A, SA) of un-
bounded depth the corresponding lamplighter group (A ≀ B, Sstd) has unbounded depth.

Proof. Since Cay(B, SB) has the quasi-Hamiltonian property, there exists M ≥ 0 such
that for any n ≥ 1 we can find F ⊆ B a connected subgraph with BSB

(eB , n) ⊆ F and
with

|F | ≤ TS (eB , p, F ) ≤ |F | + M,

for any p ∈ F .
Fix a dead end a ∈ A of depth at least n with respect to SA, and consider the config-

uration g = (f, eB) ∈ A ≀ B, where f(x) = a if x ∈ F and f(x) = eA otherwise. We see
that

‖g‖Sstd
≥

∑

a∈F

‖a‖SA
+ |F |,

since in order to light all lamps at vertices of F it is mandatory to visit each of these
elements at least once.

Now consider any element h ∈ BSstd
(e, n), and note that the element gh corresponds

to a new lamplighter configuration where some of the lamps at positions of F may have
changed (by at most n generators), and the new position of the lamplighter is some element
p ∈ BSB

(eB , n) ⊆ F . Such an element can be constructed using the generators of Sstd

by following a spanning path of F starting at eB and finishing at p, while generating the
states of the lamps at configurations of F . We see hence that

‖gh‖Sstd
≤

∑

a∈F

‖a‖SA
+ |F | + M ≤ ‖g‖Sstd

+ M.

This inequality together with the Fuzz Lemma 2.7 prove the existence of a dead end of
depth at least n/M . As M does not depend on n, we conclude that (A ≀ B, Sstd) has dead
ends of unbounded depth. �

Remark 4.6. Suppose we have two generating sets S, S′ of B, with S ⊆ S′. By noting
that Cay(B, S′) can be obtained from Cay(B, S) by adding a finite number of extra edges
at each vertex, we see that if (B, S) has the quasi-Hamiltonian property then so does
(B, S′).

More generally, if Γ is any subgraph obtained from Cay(B, S) by removing edges (but
not vertices) and Γ has the quasi-Hamiltonian property, then so does Cay(B, S).
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4.3. Existence of standard generating sets with unbounded depth. Now we prove
that any infinite group admits a quasi-Hamiltonian Cayley graph. In order to do so, we
use Lemma 2.3, which tells us that the cube of any connected finite graph is Hamiltonian-
connected. This result has been used in a similar manner by Georgakopoulos in order to
prove the existence of generating sets with Hamiltonian circles in Cayley graphs on infinite
groups [27], and by Khukhro [32] and Ostrovskii and Rosenthal [41] in order to show that
non virtually free groups admit Cayley graphs which have any finite graph as a minor.

Lemma 4.7 (Existence of a quasi-Hamiltonian Cayley graphs). Any finitely generated
group B admits a quasi-Hamiltonian Cayley graph.

Proof. Start with any symmetric finite generating set S for B, and for an arbitrary n ≥ 1
consider F = BS(eB , 3n). Thanks to Lemma 2.3, the cube of the induced graph by F in
Cay(B, S) is Hamiltonian-connected, and hence F is a Hamiltonian-connected subset of
Cay(B, S ∪ S2 ∪ S3).

Denote this new generating set SB := S ∪ S2 ∪ S3. By definition, F = BSB
(eB , n) is a

Hamiltonian-connected subgraph.
As n was arbitrary, this proves that Cay(B, SB) has the quasi-Hamiltonian property. �

Theorem 4.8. Let A be a finitely generated group with unbounded depth for some fi-
nite generating set, and B be any finitely generated group. Then there exists a standard
generating set of A ≀ B with unbounded depth.

Proof. Thanks to Lemma 4.5, the result follows from the existence of a quasi-Hamiltonian
presentation given by Lemma 4.7. �

Example 4.9. Let S be a finite set with at least two elements, and consider the free group
F (S). It follows from Example 4.3 that Cay(F (S), S) does not have the quasi-Hamiltonian
property, and from Lemma 4.7 that Cay(F (S), S ∪S2 ∪S3) does. It is natural to ask about
what happens for Cay(F (S), S ∪ S2), and the answer is that it does not have the quasi-
Hamiltonian property.

Indeed, let H be a subset of F (S) that contains a ball of radius n, and let γ be a spanning

cycle of H of length TS
(

eF (S), eF (S), H
)

. Doing a case by case analysis, it is possible to

see that for any element v ∈ F (S) with ‖v‖S ≤ n, the path γ must repeat at least one

vertex in its 1-neighborhood. This means that TS
(

eF (S), eF (S), H
)

− |H| −−−−−→
n→+∞

+∞,

and so (F (S), S ∪ S2) is not a quasi-Hamiltonian presentation.
For this example to work, it is essential that |S| ≥ 2. As we showed in Example 4.2,

Cay(Z, {1, 2}) does have the quasi-Hamiltonian property.

4.4. Abelian groups. In this subsection, we prove that any Cayley graph of a finitely
generated abelian group different from Cay(Z, {±1}) is quasi-Hamiltonian. Since the
lamplighter group over Cay(Z, {±1}) is covered by Cleary and Taback’s original example
in [19], we conclude that any lamplighter group A ≀ B over an abelian base group B has
unbounded depth, with respect to every standard generating set Sstd = SA ∪ SB, as long
as the lamps group (A, SA) has unbounded depth.

We begin by sketching the proof of the fact that every Cayley graph of an abelian group
other than Cay(Z, ±1) has the quasi-Hamiltonian property. Our starting point are “grid
graphs”, that is, graphs whose vertex set is

{1, . . . , n} × {1, . . . , m}, for n, m ≥ 2,

and where edges connect vertices of the form (i, j) with (k, l) if and only if |i−k|+|j−l| = 1,
for 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m. Hamiltonian paths in such graph have been studied
by Itai, Papadimitiou and Szwarcfiter [29], and their results imply that between any two
vertices there is a spanning path that repeats at most 2 elements. This shows that the
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Cayley graph of Z2 with standard generators, as well as the graph Z × {1, . . . , n}, n ≥ 2,
have the quasi-Hamiltonian property. The rest of the proof consists of showing that any
Cayley graph of an abelian group G, other than Cay(Z, {±1}), contains one of the above
graphs as a spanning subgraph. In other words, that for any Cayley graph Cay(G, S) as
above, there exists a bijective 1-Lipschitz embedding whose domain is one of the graphs Z2

or Z × {1, . . . , n}, for some n ≥ 2. This will follow from an inductive argument, based on
the proofs of Vászonyi [49] and Nash-Williams [39] of the existence of Hamiltonian double
rays in the Cayley graph of any abelian group.

In order to formulate our results, we introduce some notation. Given m ≥ 1, we denote
by Im the interval graph on m vertices. That is, the graph whose vertex set is {1, . . . , m}
and where edges connect i with i + 1, for 0 ≤ i < m. More generally, for any integers
m1, . . . , ms ≥ 1, we use the notation

Cube(m1, . . . , ms) := Im1
× · · · × Ims

for the product graph of all the Imi
’s (see Definition 2.4). When s = 2, we call

Cube(m1, m2) a grid graph.
The existence of Hamiltonian paths between two vertices of a grid graph Cube(m1, m2)

is studied in [29]. In particular, it is shown that obstructions to Hamiltonian-connectedness
arise either from a parity issue, or by some particular configurations when either m1 or m2

are at most 3. Examples of such non-Hamiltonian-connected grid graphs are illustrated
in Figure 3.

u

v

(a)

u v

(b)

Figure 3. There are no Hamiltonian paths from u to v in these grid
graphs.

Lemma 4.10 (Hamiltonian-connectivity of grid graphs). Consider m1, m2 ≥ 2. Then be-
tween any two vertices s, t ∈ Cube(m1, m2), there exists a spanning path of Cube(m1, m2)
of length at most |Cube(m1, m2)| + 2.

Proof. A necessary and sufficient condition for the existence of a Hamiltonian path of
Cube(m1, m2) between two vertices is provided in [29, Theorem 3.2], which depends only
on whether the grid graph is bipartite, and on some particular cases where m1 ≤ 3 or
m2 ≤ 3. This result implies that for any two pair of vertices s, t ∈ Cube(m1, m2), there
is either a Hamiltonian path from s to t, or a Hamiltonian path from s to a vertex at
distance at most 2 from t. �

Now we prove the higher-dimensional version of Lemma 4.10.

Lemma 4.11. For any r, m1, . . . , ms ≥ 1, consider the graph

Γ = Z
r × Cube(m1, . . . , ms),

where Z
r is identified with its Cayley graph with respect to canonical generators.

Suppose that Γ is not a line, that is, either r ≥ 2, or r = 1 and s ≥ 1. Then there exists
a constant M ≥ 0 such that for any n1, . . . , nr ≥ 1, the induced subgraph

R = Cube(n1, . . . , nr) × Cube(m1, . . . , ms) ⊆ Z
r × Cube(m1, . . . , ms)

has a spanning path of length at most |R| + M between any two vertices s, t ∈ R.

17



DEAD ENDS ON WREATH PRODUCTS AND LAMPLIGHTER GROUPS

Proof. We start by noting that if r = s = 1 then Γ ∼= Z× Im1
, and that if r = 2 and s = 0

then Γ ∼= Z
2. In both cases R is isomorphic to a grid graph of appropriate dimensions,

and hence the result follows from Lemma 4.10 with M = 2. These are the base cases for
an inductive argument, which we explain now.

Let us first consider the case r = 1 and suppose that s ≥ 2, so that we have

Γ ∼= Z × Cube(m1, . . . , ms),

For Cube(ms−1, ms) consider the Hamiltonian path P that starts at (1, 1), traverses
the edges of Ims−1

× {1} until it reaches (ms−1, 1), then crosses to (ms−1, 2) and continues
in a similar way traversing one copy of Ims−1

at the time, until it finally reaches either
(ms−1, ms) or (ms−1, 1), after having visited all vertices of the graph Ims−1

× Ims .
Define the function

h : Cube(ms−1, ms) → {1, . . . , ms−1 · ms}

which assigns to each pair (j, k) ∈ Cube(ms−1, ms) its unique position

h(j, k) ∈ {1, . . . , ms−1 · ms}

in the path P . That is, if we write P = P0, P1, . . . , Pℓ as a sequence of vertices, then

(j, k) = Ph(j,k), for (j, k) ∈ Cube(ms−1, ms).

Note that as P is a Hamiltonian path, the function h is well defined and bijective.
With the above, we can see that any subgraph

R = In × Cube(m1, . . . , ms)

has a spanning subgraph isomorphic to another one of same shape in the graph

Z × Cube(m1, . . . , ms−2, ms−1ms).

Indeed, it suffices to use the function h to map any element (i, j1, j2, . . . , js) ∈ R into
(

i, j1, . . . , js−2, h(js−1, js)
)

∈ Z × Cube(m1, . . . , ms−2, ms−1ms).

This construction is illustrated in Figure 4 for s = 2.

m1

m2

Z

Figure 4. Inductive step of the proof of Lemma 4.11.

Then, thanks to the induction hypothesis, this new subgraph has spanning paths of
length at most |R| + M between any pair of vertices, and so the same holds for R. This
concludes the induction for the case r = 1.

For the remaining cases r ≥ 2, a very similar induction proves the result. Indeed,
now we repeat the argument using a Hamiltonian path between opposite corners of a grid
subgraph, in order to find a spanning subgraph which is (isomorphic to) a similar subgraph
on a graph with a lower number of finite factors s, or lower free rank r. Together with the
already proved base case of r = 2 and s = 0, this finishes the inductive argument. �
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The above implies that for any r ≥ 1 and m1, . . . , ms ≥ 1 as in the hypotheses of Lemma
4.11, the Cayley graph of

Z
r × Z/m1Z × · · ·Z/msZ

with standard generators has the quasi-Hamiltonian property. In order to generalize this
to hold for every Cayley graph, we will use the following result about the structure of
generating sets of abelian groups.

Lemma 4.12 (Nash-Williams, [39, Lemma 3]). Let B be an infinite abelian group with
free abelian rank rank(B) = r ≥ 1, and S any finite generating set. Then there is an
enumeration a1, . . . , ar, b1, . . . , bs of the elements of S and there exist positive integers
m1, . . . , ms, such that each element g ∈ B is uniquely expressible as

g =
r

∑

i=1

piai +
s

∑

j=1

qjbj ,

where the pi, qj ∈ Z and for each j = 1, . . . , s, we have 0 ≤ qj < mj .

Lemma 4.13. Under the assumptions of Lemma 4.12, the function

ϕ : Zr × Cube(m1, . . . , ms) → B

(p1, p2, . . . , pr, q1, q2, . . . , qs) 7→
r

∑

i=1

piai +
s

∑

j=1

qjbj

is a bijective 1-Lipschitz embedding of Z
r × Cube(m1, . . . , ms) onto the Cayley graph

Cay(B, S). Moreover, r can be chosen to be any integer between min{2, rank(B)} and
rank(B).

Proof. The first sentence follows from Lemma 4.12, while the second one follows from an
analogous inductive argument to the one used in the proof of Lemma 4.11. �

Proposition 4.14. With the exception of Cay(Z, {±1}), any Cayley graph of an infinite
finitely generated abelian group is quasi-Hamiltonian.

Proof. Let (B, S) be an infinite finitely generated abelian group, different from (Z, {±1}).
Then Lemma 4.13 tells us that for some r, m1, . . . , ms ≥ 1, there is a bijective 1-Lipschitz
embedding of Zr × Cube(m1, . . . , ms) onto Cay(B, S). In other words, tha former graph
is a spanning subgraph of the latter one.

Now using Lemma 4.11, there exists a constant M ≥ 0 such that any rectangle

Rn = [−n, n]r × Cube(m1, . . . , ms),

for n ≥ 1, has spanning paths of length at most |Rn| + M between any pair of vertices.
Any ball of Cay(B, S) centered at the origin is contained in Rn for n sufficiently large,
and the above implies that we can find paths from the origin to any other vertex with
paths of length at most |Rn| + M . This shows that Cay(B, S) has the quasi-Hamiltonian
property. �

Proposition 4.15. For (A, SA) a group of unbounded depth, and (B, SB) any finitely
generated abelian group, the lamplighter group A ≀ B has unbounded depth with respect to
Sstd.

Proof. The case where (B, SB) = (Z, ±1) follows from the original example of Cleary and
Taback [19], or alternatively it can be seen as a particular case of Proposition 3.3 for
lamplighters over trees.

In any other case, Corollary 4.14 shows that (B, SB) has the quasi-Hamiltonian property
and hence Lemma 4.5 implies that the group (A ≀ B, Sstd) has unbounded depth. �
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A natural question is whether the claim of Lemma 4.13 holds for some non-abelian
groups. That is, whether there is a bijective 1-Lipschitz embedding of a graph of the form
Z

r × Cube(m1, . . . , ms) onto all of its Cayley graphs. As shown by Nash-Williams, any
such graph must admit Hamiltonian double ray. With respect to this property, Thomassen
has shown that it holds for any Cayley graph of the form Cay(G, S ∪ S2), where G is a
1-ended group and S is a finite generating set [48]. In [47], Seward studies translation-like
actions of free groups. In particular, they characterize groups with finitely many ends as
those which admit a transitive translation-like action of Z, and show that this is equivalent
to having a Cayley graph that admits a Hamiltonian double ray. In the same paper, it is
mentioned in Problem 4.8 that the existence of a Hamiltonian double ray in every Cayley
graph of an infinite finitely generated group with finitely many ends is an open question.
With respect to our question of extending Lemma 4.13, a first approach could be to study
transitive translation-like actions of Zr, r ≥ 2.

4.5. Remarks. Unlike the original example of Cleary and Taback, the dead ends of A ≀ B
we found using quasi-Hamiltonian Cayley graphs of the base group B are of bounded
retreat depth (Definition 2.8). Hence the following question remains open.

Question 4.16. Suppose (A, SA) has unbounded retreat depth. Does every lamplighter
group A ≀ B admit a standard generating set with unbounded retreat depth?

So far we have seen that this holds for B a free group with a free generating set (Propo-
sition 3.3), but to our knowledge there are no other known examples. An answer to this
question would be of interest even in the case of particular base groups, as for example
B = Z × Z/2Z or B = Z

2.
Another observation is that in the groups we have studied so far, the constant M from

the definition of the quasi-Hamiltonian property is at most 2. We have not been able
to find examples of a Cayley graph for which this constant is necessarily bigger. More
generally, we ask the following.

Question 4.17. Given an arbitrary n ≥ 1, does there exist a group B together with a
generating set SB such that Cay(B, SB) satisfies Definition 4.4 with M = n but not with
M = n − 1?

5. Lamplighters over free products of finite groups

Our results in the previous sections concern lamplighter groups with unbounded depth
with respect to standard generating sets. We begin this section by showing that this is not
always the case, with an example of a lamplighter group over the free product Z/8Z∗Z/2Z
that has uniformly bounded depth with respect to standard generators.

Next, we characterize which standard generators of lamplighter groups over free prod-
ucts of finite groups have this property. For this, we define for a finite group G with
a generating set SG its Hamiltonian difference H (G, SG) (Definition 5.2), which mea-
sures how much shorter minimal spanning cycles are than minimal spanning paths inside
Cay(G, SG). The main result of this section says that a lamplighter group over the free
product H ∗ K, where (H, SH) and (K, SK) are finite groups with their respective gen-
erating sets, has uniformly bounded depth if and only if H (H, SH) + H (K, SK) ≥ 1
(Theorem 5.3).

In what follows we use the following observation. For H, K finite groups, consider their
free product H ∗ K with a generating set of the form SH ∪ SK , where SH and SK are
generating sets of H and K, respectively. We can partition Cay(H ∗K, SH ∪SK) as follows.
Any element x ∈ H ∗ K belongs to a copy of Cay(H, SH) which, when removed, divides
the Cayley graph Cay(H ∗ K, SH ∪ SK) into |H| connected components that we number
P0, . . . , P|H|−1. To each of these sets Pi we add the unique vertex of the original copy of
Cay(H, SK) to which it is connected in Cay(H ∗ K, SH ∪ SK), and we call them the petals
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associated to this copy. A similar decomposition holds when considering x as forming part
of a copy of Cay(K, SK), now obtaining |K| petals associated to each copy of this finite
subgraph. This decomposition by petals will allow us to compare the solutions to different
instances of the TSP in Cay(H ∗K, SH ∪SK), and hence the word metric of the associated
lamplighter group.

5.1. A lamplighter group with uniformly bounded depth for standard generat-

ing sets. Fix the lamps group Z/2Z = 〈a | a2〉, and consider the groups H = Z/8Z =
〈b | b8〉 and K = Z/2Z = 〈c | c2〉. We will study the wreath product Z/2Z ≀ (H ∗ K) with
standard generating set Sstd = {a, b, c}±1. In what follows we prove that the dead end
depth of Z/2Z ≀ (H ∗ K) is uniformly bounded with respect to Sstd.

The Cayley graph of Z/8Z ∗ Z/2Z with respect to the generating set {b, c} is formed
by octagons (the Cayley graph of Cay(Z/8Z, b)) joined together by the generator c. This
graph contains no odd cycles and hence it is bipartite, so that for any edge, one of its
extremes is strictly closer to the identity than the other one. In particular, if we order
cyclically the vertices of an octagon as v0, . . . , v7 with v0 being the closest to the identity
element, then v4 is the furthermost one.

As explained at the beginning of this section, once we have a free product we can consider
the petal partition induced by each vertex. In this case, each octagon in Cay(Z/8Z ∗
Z/2Z, {b, c}) defines a partition of the Cayley graph into 8 subsets, which we call petals and
denote by P0, P1, . . . , P7, chosen in a cyclic order so that P0 is the component containing
the identity and P4 is the furthermost one. This partition is illustrated in Figure 5.

P3

P4
P5

P6

P7

P0
P1

P2

Figure 5. Each octagon defines a “partition by petals” of Cay(Z/8Z ∗
Z/2Z, {b, c}).

Now we are ready to prove that the depth of any element of Z/2Z ≀ (H ∗K) is uniformly
bounded. Indeed, consider an arbitrary element g ∈ Z/2Z ≀ (H ∗ K), and write g = (f, p)
where

f ∈
⊕

Z/8Z∗Z/2Z

Z/2Z and p ∈ Z/8Z ∗ Z/2Z.
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As we are trying to find a bound on the depth of g, we lose no generality if we suppose
that ‖g‖Sstd

> 10; as Z/2Z ≀ (Z/8Z ∗ Z/2Z) is an infinite group, the depth of any element
is finite and hence the depth of elements on BSstd

(e, 10) is uniformly bounded.
According to our notation, p corresponds to the position of the lamplighter in Cay(B, SB)

for the element g, where B = Z/8Z ∗ Z/2Z and SB = {b, c}. We divide the rest of the
proof on two cases.

Case 1: Suppose there exists p′ ∈ BSB
(p, 10) with f(p′) = eZ/2Z . In other words, there

is an unlit lamp at distance at most 10 from p. In such a case we multiply by
a word of length at most 21 which moves the lamplighter position from p to p′,
lights the corresponding lamp at p′, and returns to p. This will forcefully result in
an element of word length at least 1 more than ‖g‖Sstd

. Hence, the depth of g is
bounded above by 21.

Case 2: f(p′) = a for all p′ ∈ BSB
(p, 10). Now we suppose that all lamps within a 10-

neighborhood of p are lit. We look at the octagon to which p belongs, and number
its vertices v0, v1, . . . , v7 according to order induced by the cyclic generator b.
Similarly, we consider the partition by petals P0, P1, . . . , P7 determined by this
octagon. In the case we are considering, there are lamps lit at each petal and so

‖g‖Sstd
= |supp(f)| + ℓ0 + ℓ1 + · · · + ℓ7 + 7 + min {dB(p, v1), dB(p, v7)} ,

where

ℓ0 = TS (eB , v0, f |P0
) , ℓi = TS (vi, vi, f |Pi

) for i = 1, . . . , 7,

are the lengths of minimal paths traversing the support of f at each petal and
finishing in the respective vertices vi. This is is illustrated in Figure 6. Note that
we have min {dB(p, v1), dB(p, v7)} ≤ 3 so that

‖g‖Sstd
≤ |supp(f)| + ℓ0 + ℓ1 + · · · + ℓ7 + 10.

v4

P1P0

P2

P3

P4P5

P6

P7

p

v0

.
.
.

.
.
.

.

.
.

.
. . . .

.

.
.
.

.

.
.

.
..
.
..

Figure 6. An optimal path for g must visit all petals and return to p.

Now we will explain how to increase the word length of g by multiplying by a
bounded number of generators. Look in more detail at the octagon p is together
with its petal P4. This is defined by a new octagon whose vertices we name
v′

0, v′
1, . . . , v′

7 and petals P ′
0, P ′

1, . . . , P ′
7 similarly as we did before. By using at

most 9 generators of B, we can move the position of the lamplighter from p to the
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vertex v4 of the octagon defining P4. Indeed, we need to traverse at most 4 edges
of the octagon of p, then the generator c to pass to the next octagon, and then 4
more edges. We call this new element g′. This is depicted in Figure 7.

v4

p′

.
.
.

P ′

1

P ′

2

.
..

P ′

3

.
..

P ′

4

.

.
.

P ′

5

.
.
.

P ′

6

. .
.

P ′

7

.
. .

.
.
.

p

v0

v′

0

.
.
.

.
.
.

.

.
.

.
. .

.

.
.

.
..

.

.
.

Figure 7. The new position p′ of the lamplighter for the element g′, with
dSstd

(g, g′) ≤ 9.

Note that defining analogously the lengths of minimal paths passing through
the petals P ′

i of the new octagon,

ℓ′
i = TS

(

v′
i, v′

i, f |P ′

i

)

, i = 1, 2, . . . , 7,

we have ℓ4 = ℓ′
1 + ℓ′

2 + · · · + ℓ′
7 + 10. Indeed, the path of length ℓ4 covering the

elements of P4 must cross to v′
0, pass through each petal P ′

i , i = 1, . . . , 7, while
traversing the octagon to finally return to v′

0 and afterwards to v4. On the other
hand, we see that

‖g′‖Sstd
= |supp(f)| + ℓ0 + ℓ1 + ℓ2 + ℓ3 + ℓ5 + ℓ6 + ℓ7 + 10 + 1+

+ ℓ′
1 + ℓ′

2 + ℓ′
3 + ℓ′

4 + ℓ′
5 + ℓ′

6 + ℓ′
7 + 10

= |supp(f)| + ℓ0 + ℓ1 + · · · + ℓ7 + 11

≥‖g‖Sstd
+ 1.

This proves that g has depth at most 9, and hence finishes the proof.

The existence of generating sets for lamplighter groups with uniformly bounded depth
has been proven by Warshall [51]. However such generating sets are not standard ones,
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and hence the example explained in this Subsection (and more generally Corollary 5.7
below) seem to provide the first example of lamplighter groups with uniformly bounded
depth with respect to standard generators.

Corollary 5.1. Let (A, SA) be a lamps group of unbounded depth. Then there exist finite
groups (H, SH), (K, SK) for which (A ≀ (H ∗ K), Sstd) has uniformly bounded depth.

5.2. A general characterization. Recall that given any two vertices v, w of a finite
connected graph Γ, we denote by TS (v, w, Γ) the minimal length of a path in Γ which
starts at v, ends at w and visits all vertices of Γ.

Definition 5.2. Let G be a finite group and SG a finite set. We define

H (G, SG) = max
g∈G\{eG}

{

TS (eG, g, G)
}

− TS (eG, eG, G) ,

where as usual the TSP is considered in the Cayley graph Cay(G, SG).

Note that for any generator g ∈ SG, we have

TS (eG, eG, G) ≤ TS (eG, g, G) + 1,

so that it always holds that
H (G, SG) ≥ −1.

Moreover, this lower bound is attained when Cay(G, SG) is Hamiltonian-connected. We
now state the main result of this section, which characterizes standard generating sets of
unbounded depth for lamplighter over a free product of finite groups, in terms of their
Hamiltonian differences.

Theorem 5.3. Let (H, SH), (K, SK) be finite groups together with finite symmetric gen-
erating sets. Consider the free product H ∗ K with generating set SH ∪ SK , and the
lamplighter group A ≀ (H ∗K) with standard generating set Sstd, where (A, SA) is the lamps
group of unbounded depth. Then A ≀ (H ∗ K) has uniformly bounded depth with respect to
Sstd if and only if

H (H, SH) + H (K, SK) ≥ 1. (3)

Proof. Let us suppose first that Equation (3) holds, and let us prove that A ≀ (H ∗ K) has
uniformly bounded depth. Begin by choosing elements v ∈ H\{eH }, w ∈ K\{eK} with

TS (eH , v, H) = LH := max
v′∈H\{eH }

{

TS
(

eH , v′, H
)}

,

and
TS (eK , w, K) = LK := max

w′∈K\{eK}

{

TS
(

eK , w′, K
)}

.

Our hypothesis is that

LH + LK ≥ TS (eH , eH , H) + TS (eK , eK , K) + 1. (4)

Note that Equation (4) implies that either

LH ≥ TS (eH , eH , H) + 1,

or
LK ≥ TS (eK , eK , K) + 1.

Without loss of generality, we suppose this is the case for LH .
To simplify notation, denote G := H ∗ K and SG = SH ∪ SK . Let g = (f, p) ∈ A ≀ G

be any element. If there exists p′ ∈ BSG
(p, 2|K| + 2|H|) with f(p′) = eA, then we can

increase the word length of g by moving the lamplighter to p′, changing the state of this
lamp to a non-trivial element, and then return to p. This uses at most 4(|K| + |H|) + 1
generators and since H and K are finite this is a constant.
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Now assume that for all p′ ∈ BSG
(p, 2|K| + 2|H|) we have f(p′) 6= eA, so that any path

in Cay(G, SG) evaluating to g must visit all the elements in said ball at least once.
Consider the copy of Cay(H, SH) to which p belongs, and the associated petals P0, . . . , P|H|−1,

where P0 is the petal containing the identity eG. In the same way, we number the vertices
of this copy of H as v0, . . . , v|H|−1 according to their associated petal. Then the word
length of g can be expressed as

‖g‖Sstd
=

∑

z∈supp(f)

‖f(z)‖SA
+ ℓ0 + ℓ1 + · · · + ℓ|H|−1 + TS (eH , v(p), H) ,

where ℓ0 = TS (eK , v0, f |P0
), ℓi = TS (vi, vi, f |Pi

), i = 1, . . . , |K|−1, and v(p) is the vertex
of Cay(H, SH) that coincides with the position of p inside this copy of H. In particular,
we have

‖g‖Sstd
≤

∑

z∈supp(f)

‖f(z)‖SA
+ ℓ0 + ℓ1 + · · · + ℓ|H|−1 + LH .

Now consider the element g′ = gv(p)−1vwv. That is, we are moving the position of the
lamplighter from p to the vertex v (which maximizes the value of TS (eH , v, H)), then to
the vertex w (which maximizes the value of TS (eK , w, K)) of the corresponding copy of
Cay(K, SK), and finally again to the vertex v of the new copy of Cay(H, SH).

As before, the vertices of Cay(K, SK) define a partition by petals P ′
0, P ′

1, . . . , P ′
|K|−1 of

Cay(K, SK), where the identity element eK belongs to P ′
0. Again, we number the vertices

of this copy of Cay(K, SK) by w′
0, . . . , w′

|K|−1 according to the petal they define. Defining

ℓ′
j = TS

(

w′
j, w′

j , f |P ′

j

)

, j = 1, . . . , |K| − 1,

it follows that if v = vi, for some i ∈ {1, . . . , |H| − 1}, then

ℓi = TS (eK , eK , K) + ℓ′
1 + · · · + ℓ′

|K|−1.

Similarly, the new copy of Cay(H, SH) gives a new partition of Cay(K, SK) into petals
P ′′

0 , P ′′
1 , . . . , P ′′

|H|−1 with eK ∈ P ′′
0 and the vertices of H numbered as v′′

m according to the
petal they belong to. Say that w = w′

r for some r ∈ {1, . . . , |K| − 1}. Then

ℓ′
r = TS (eH , eH , H) + ℓ′′

1 + · · · + ℓ′′
|H|−1,

where we defined ℓ′′
h = TS

(

v′′
h, v′′

h, f |P ′′

h

)

, h = 1, . . . , |H| − 1.

We can express the word length of g′ in terms of all these values. Indeed, we have

‖g′‖Sstd
=

∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + TS (eH , v, H) +

+ TS (eK , w, K) +
∑

h 6=r

ℓ′
h + TS (eH , v, H) + ℓ′′

1 + · · · + ℓ′′
|H|−1.

Combining the last three equations together with Equation (4), we obtain

‖g′‖Sstd
=

∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + TS (eH , v, H) +

+ TS (eK , w, K) +
∑

h 6=r

ℓ′
h + TS (eH , v, H) + ℓ′′

1 + · · · + ℓ′′
|H|−1

=
∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + LH + LK +
∑

h 6=r

ℓ′
h + LH + ℓ′′

1 + · · · + ℓ′′
|H|−1

≥
∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + TS (eH , eH , H) + TS (eK , eK , K) + 1+
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+
∑

h 6=r

ℓ′
h + LH + ℓ′′

1 + · · · + ℓ′′
|H|−1

=
∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + TS (eK , eK , K) + 1 +
∑

h 6=r

ℓ′
h + LH + ℓ′

r

=
∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + TS (eK , eK , K) + 1 +
∑

h

ℓ′
h + LH

=
∑

z∈supp(f)

‖f(z)‖SA
+

∑

j 6=i

ℓj + ℓi + 1 + LH

=
∑

z∈supp(f)

‖f(z)‖SA
+

∑

j

ℓj + LH + 1

≥‖g‖Sstd
+ 1.

In the process of obtaining g′ we multiplied by at most 2|H| + |K| generators, and so
we conclude that the depth of any element is bounded by a uniform constant. This proves
the first direction of the proposition.

Now let us prove that if Equation (3) does not hold then the associated lamplighter
group has unbounded depth. From the hypothesis we deduce the inequalities

TS (eH , eH , H) − 1 ≤ max
v∈H\{eH }

{TS (eH , v, H)} ≤ TS (eH , eH , H) + 1,

and
TS (eK , eK , K) − 1 ≤ max

w∈K\{eK}
{TS (eK , w, K)} ≤ TS (eK , eK , K) + 1.

With this, the possible values for these two maximums are illustrated in Table 1. Here
we denote LH = maxv∈H\{eH } {TS (eH , v, H)} and

LK = maxw∈K\{eK} {TS (eK , w, K)}. Each possible combination of values of LH and

LK

LH TS (eH , eH , H) − 1 TS (eH , eH , H) TS (eH , eH , H) + 1

TS (eK , eK , K) − 1 Case 2 Case 2 Case 1
TS (eK , eK , K) Case 2 Case 2 Impossible
TS (eK , eK , K) + 1 Case 1 Impossible Impossible

Table 1. Possible values for the solutions of the TSP inside each finite
graph.

LK will be covered in two separate cases, as shown in the table. Recall that for convenience,
we defined G = H ∗ K and SG = SH ∪ SK .

Case 1. Suppose that LH = TS (eH , eH , H) + 1, so that we must have

LK = TS (eK , eK , K) − 1.

Choose v ∈ H such that TS (eH , v, H) = LH .
Consider a ∈ (A, SA) of depth at least n, and as usual define the element

g = (f, v), where f(x) = a if ‖x‖K ≤ n and f(x) = 1A otherwise. We will prove
that g has depth at least n − 1. Similar to how we approached the case of free
groups, changing the lamp states cannot increase word length so the proof will
follow from the following claim.

We claim that for any x ∈ G with 1 ≤ ‖x‖SG
≤ n − 1, we have ‖gx‖Sstd

≤
‖g‖Sstd

− 1 if x finishes with an element of K\{eK} and ‖gx‖Sstd
≤ ‖g‖Sstd

if x
finishes with an element of H\{eH }.

Indeed, let us do an inductive proof. If x ∈ H, then

‖gx‖Sstd
= ‖g‖Sstd

+ TS (eH , x, H) − TS (eH , v, H) ≤ ‖g‖Sstd
.
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Similarly, if x ∈ K then

‖gx‖Sstd
= ‖g‖Sstd

+ TS (eK , x, K) − TS (eK , eK , K)

≤ ‖g‖Sstd
+ TS (eH , eH , H) − LH

= ‖g‖Sstd
− 1

≤ ‖g‖Sstd
.

Now suppose that x is of the form x′hk, for h ∈ H\{eH}, k ∈ \{eK}. Then
looking at the petal decomposition of Cay(H, SH) and using the inductive hypoth-
esis,

‖gx‖Sstd
= ‖gx′hk‖Sstd

= ‖gx′h‖Sstd
+ TS (eK , k, K) − TS (eK , eK , K)

≤ ‖g‖Sstd
− 1.

On the other hand, if x is of the form x′kh for h ∈ H\{eH }, k ∈ \{eK}. Similarly
to the above we have,

‖gx‖Sstd
= ‖gx′kh‖Sstd

= ‖gx′k‖Sstd
+ TS (eH , h, H) − TS (eH , eH , H)

≤ ‖gx′k‖Sstd
+ 1

≤ ‖g‖Sstd
.

This finishes the proof of the first case. By symmetry of H and K, the proof for
the case where LK = TS (eK , eK , K) + 1 is completely analogous.

Case 2. Now suppose that LH ≤ TS (eH , eH , H) and LK ≤ TS (eK , eK , K). A similar
inductive argument to the one given in the first case proves that if we define g as
in Case 1, now for any x ∈ K with 1 ≤ ‖x‖SK

≤ n we have ‖gx‖Sstd
≤ ‖g‖Sstd

.

With this, we see that the element g constructed has depth at least n − 1. As n was
arbitrary, we conclude that A ≀ (H ∗ K) has unbounded depth with respect to Sstd. �

If Cay(G, SG) is a cycle, then the value of TS (eG, eG, G) is always equal to |G|, which
is attained with a path starting at eG and traversing the cycle. On the other hand, the

value of maxg∈G\{eG}

{

TS (eG, g, G)
}

is

|G| − 1 +
⌊

|G|

2

⌋

− 1 = |G| +
⌊

|G|

2

⌋

− 2.

This is the length of a path starting at eG, doing the cycle up to the last vertex before
returning to eG, and then going back to an element g ∈ G at distance

⌊

|G|
2

⌋

from the
identity.

The above implies that H (G, SG) =
⌊

|G|

2

⌋

− 2, and so in particular we have that

H (Z/8Z, {b}) + H (Z/2Z, {b}) = 1, so that the example of Subsection 5.1 is consistent
with Theorem 5.3.

More generally, for any pair of cyclic groups (H, SH) and (K, SK), with cyclic generating
sets, Condition (3) holds if and only if

⌊

|H|

2

⌋

+
⌊

|K|

2

⌋

≥ 5.

Denoting the orders of H and K by oH and oK , respectively, we have that Theorem 5.3
implies the lamplighter over H ∗ K has unbounded depth with respect to the standard
generating set if and only if

(1) (oH , oK) ∈ {(6, 4), (6, 5), (6, 6), (7, 4), (7, 5), (7, 6), (7, 7)}, or
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(2) oH ≥ 8 and oK ≥ 2.

Example 5.4. Consider H = Z/4Z = 〈b〉 and K = Z/4Z = 〈c〉, so that according to
Corollary 5.7 the lamplighter group A ≀ (H ∗ K) has unbounded depth. By following the
proof of Theorem 5.3, it is possible to see that for any element x ∈ 〈b2, c2〉 6 H ∗ K, there
is a dead end g ∈ A ≀ (H ∗ K) of arbitrarily large depth of the form g = (f, x). That is,
the position x of the lamplighter in a dead end can be at an arbitrary distance from the
identity of H ∗ K. This is a difference with the behavior of dead ends of lamplighters over
free groups, where the position of the lamplighter for a dead end is necessarily the identity
element (Proposition 3.3).

e

···

···

Figure 8. The lamplighter position of a dead end of arbitrary depth of
(A ≀ (Z/4Z ∗ Z/4Z), Sstd) can be any element inside the subgroup 〈b2, c2〉.

Recall that a finite graph is said to be Hamiltonian-connected if any pair of distinct
vertices can be joined by a Hamiltonian path. This is not possible in a bipartite graph,
so in that case the strongest possible condition is being Hamiltonian-laceable: having
Hamiltonian paths between any two vertices of distinct partite sets of the graph.

Lemma 5.5. Let (G, SG) be a finite group together with a finite generating set. If
Cay(G, SG) is either Hamiltonian-connected or Hamiltonian-laceable, then

H (G, SG) ≤ 0.

Proof. If Cay(G, SG) is Hamiltonian-connected, then TS (eG, eG, G) = |G| + 1, while for
any g ∈ G\{eG} we have TS (1G, g, G) = |G|. This implies that H (G, SG) = −1.

Now suppose Cay(G, SG) is Hamiltonian-laceable, so that in particular it is bipartite.
Write G = A ∪ B where A and B form a partition with eG ∈ G. By considering a
Hamiltonian path from eG ∈ A to a generator in SG ⊆ B, we see that TS (eG, eG, G) =
|G| + 1.

Now for any g ∈ G\{eG}, we consider two cases. If g ∈ B, then there is a Hamiltonian
path from eG to g so that TS (eG, g, G) = |G|. On the contrary, if g ∈ A then there is
a Hamiltonian path from eG to a neighbor of g and hence TS (eG, g, G) = |G| + 1. We
conclude that H (G, SG) = 0. �

Corollary 5.6. Suppose that (H, SH) and (K, SK) are two finite groups with finite gen-
erating sets, which are both either Hamiltonian-connected or Hamiltonian-laceable. Then
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for any group (A, SA) with unbounded depth, the lamplighter group A ≀ (H ∗ K) with the
corresponding standard generating set Sstd has unbounded depth.

Proof. Lemma 5.5 implies that

H (K, SK) + H (H, SH) ≤ 0,

which is precisely the negation of Condition (3) in Theorem 5.3. �

The following corollary characterizes the case of free products of finite abelian groups,
generalizing our previous comments about cyclic groups, and covering all possible Cayley
graphs. One can think of this corollary as saying that among lamplighters over the free
products of two finite abelian groups, the only way to get uniformly bounded depth is for
the finite groups forming the base to be sufficiently long cycles.

Corollary 5.7. Suppose that (H, SH) and (K, SK) are two finite abelian groups. For any
group (A, SA) with unbounded depth, consider the lamplighter group A ≀ (H ∗ K) with the
corresponding standard generating set Sstd. We now list all possible cases for H and K.

(1) If |H| = 1 or |K| = 1, then (A ≀ (H ∗ K), Sstd) has unbounded depth.
(2) If |H| ∈ {2, 3} (resp. |K| ∈ {2, 3}), then

(a) if Cay(K, SK) (resp. Cay(H, SH)) is a cycle of length at least 8, then (A ≀
(H ∗ K), Sstd) has uniformly bounded depth, and

(b) otherwise (A ≀ (H ∗ K), Sstd) has unbounded depth.

Now suppose that |H|, |K| ≥ 4.

(3) If neither Cay(H, SH) nor Cay(K, SK) are cycles, then (A ≀ (H ∗ K), Sstd) has
unbounded depth.

(4) Suppose that Cay(H, SH) is a cycle.
(a) If |H| ∈ {4, 5}, then (A ≀ (H ∗ K), Sstd) has uniformly bounded depth if and

only if Cay(K, SK) is a cycle of length at least 6.
(b) If |H| ∈ {6, 7}, then (A ≀ (H ∗ K), Sstd) has uniformly bounded depth if and

only if Cay(K, SK) is a cycle or bipartite.
(c) If |H| ≥ 8, then (A ≀ (H ∗ K), Sstd) has uniformly bounded depth.

(5) An analogous statement to (4) holds when Cay(K, SK) is a cycle.

Proof. (1) If |H| = 1 or |K| = 1, then H ∗ K is a finite group, and the result follows
from Proposition 3.1.

(2) Suppose that |H| ∈ {2, 3}. Then H ∼= Z/2Z or H ∼= Z/3Z, and in both cases it
holds that H (H, SH) = −1.
(a) If Cay(K, SK) is a cycle of length ℓ ≥ 8, number its vertices cyclically

w0, . . . , wℓ−1 where w0 is the identity element. Then the vertex indexed by
⌊ ℓ

2⌋ satisfies

TS
(

eK , w⌊ ℓ
2

⌋, K
)

≥ TS (eK , eK , K) + 2,

and so H (K, SK) ≥ 2. This implies that

H (H, SH) + H (K, SK) ≥ −1 + 2 = 1,

and hence Condition (3) holds.
(b) In any other case, Proposition 2.5 implies that Cay(K, SK) is either Hamiltonian-

connected or Hamiltonian-laceable. In both cases, Corollary 5.6 proves that
the corresponding lamplighter group has unbounded depth.

(3) If neither Cay(H, SH) nor Cay(K, SK), then both of these graphs are either Hamiltonian-
connected or Hamiltonian laceable thanks to Proposition 2.5. Then Corollary 5.6
implies that (A ≀ (H ∗ K), Sstd) has unbounded depth.

(4) Now we suppose that Cay(H, SH) is a cycle of length at least 4.
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(a) If |H| ∈ {4, 5}, then maxv∈H\{eH }

{

TS (eH , v, H)
}

= TS (eH , eH , H) and

hence H (H, SH) = 0. Then if Cay(K, SK) is a cycle of length at least 6 we

have maxw∈K\{eK}

{

TS (eK , w, K)
}

= TS (eK , eK , K) + 1, and in any other

case Proposition 2.5 together with Lemma 5.5 show that

max
w∈K\{eK}

{

TS (eK , w, K)
}

≤ TS (eK , eK , K) .

In the first case Condition (3) in Theorem 5.3 is satisfied, while on the second
its negation holds.

(b) If |H| ∈ {6, 7}, then maxv∈H\{eH }

{

TS (eH , v, H)
}

= TS (eH , eH , H) + 1. If

Cay(K, SK) is a cycle, it must have length at least 4 and so

max
w∈K\{eK}

{

TS (eK , w, K)
}

≥ TS (eK , eK , K) .

On the other hand, if Cay(K, SK) is not a cycle then

max
w∈K\{eK}

{

TS (eK , w, K)
}

= TS (eK , eK , K) ,

if Cay(K, SK) is bipartite, and

max
w∈K\{eK}

{

TS (eK , w, K)
}

= TS (eK , eK , K) − 1,

otherwise. The first two cases satisfy Condition (3) in Theorem 5.3 while the
third one does not.

(c) If |H| ≥ 8, then maxv∈H\{eH }

{

TS (eH , v, H)
}

≥ TS (eH , eH , H) + 2. In

general, we have that

max
w∈K\{eK}

{

TS (eK , w, K)
}

≥ TS (eK , eK , K) − 1,

so that Condition (3) in Theorem 5.3 is always satisfied.
(5) An analogous proof replacing H by K and vice-versa proves the analogous state-

ment to the above.
�
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