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A census of small Schurian association schemes

Jesse Lansdown

ABSTRACT. Using the classification of transitive groups of degree n, for 2 < n < 48, we
classify the Schurian association schemes of order n, and as a consequence, the transitive
groups of degree n that are 2-closed. In addition, we compute the character table of each
association scheme and provide a census of important properties. Finally, we compute the 2-
closure of each transitive group of degree n, for 2 < n < 48. The results of this classification
are made available as a supplementary database.

1. Introduction

Association schemes are some of the most important objects in algebraic combinatorics,
with applications to coding theory, finite geometry, group theory, and even statistics. They
generalise the concepts of strongly-regular and distance-regular graphs to describe structures
with high degrees of regularity. As a result they arise naturally in many settings. Moreover,
Delsarte showed that many combinatorial objects can be described by the eigenspaces of an
association scheme [7], providing a powerful tool for studying geometric objects, cliques of
graphs, designs, codes, and more.

The (not necessarily commutative) association schemes of order n have been classified for
1 < n < 34 and also for n = 38 by Nomiyama [29], Hirasaka [15], Hirasaka and Suga [16],
Hanaki and Miyamoto [11, 12, 13|, and Hanaki, Kharaghani, Mohammadian, and Tayfeh-
Rezaie [9]. With the exception of very small values of n, this classification necessitated
the use of a computer and further classification is extremely difficult due to combinatorial
explosion. Hanaki maintains a website with these association schemes at [10]. This database
has been used for forming and testing conjectures on association schemes.

The regularity properties of association schemes may be thought of as capturing com-
binatorial symmetry. Indeed, their connection to group actions was a crucial motivator in
their development [14]. Association schemes with the strongest connection to groups are
called Schurian; their relations correspond to the orbitals of a transitive group. Schurian
association schemes remain one of the strongest tools for studying group actions and com-
binatorial objects with high degrees of symmetry. For example, they have found recent use
in exploring the synchronisation hierarchy of permutation groups (e.g. [1]).

The transitive groups of degree n have been classified for 1 < n < 48 by Miller [28,
27], Royle [30], Hulpke [19], Cannon and Holt [6], Holt and Royle [17], and Holt, Royle,
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and Tracey [18], mostly by computer, with the exception of some small values of n. For
n = 48 alone, there are 195,826,352 conjugacy classes of transitive groups, making their
classification a particular milestone in the classification of transitive permutation groups of
low degree. This recent work on classifying transitive groups makes the main result of this
paper possible.

THEOREM 1.1. There are are 24678 Schurian association schemes of order 2 to 48 up to
1somorphism.

There is a bijection between the Schurian association schemes and the 2-closed transitive
groups, which yields the following:

COROLLARY 1.2. There are 24678 2-closed groups of degree 2 to 48 up to isomorphism.

We provide the association schemes corresponding to Theorem 1.1 as a supplement [22]
to this paper. It is hoped that this database will prove as useful for studying Schurian
association schemes and 2-closed groups as [10] has for general association schemes. We
also compute the character table of each association scheme since this is a computationally
intensive, and potentially prohibitive, task. A census of some of the important properties
is provided in Table 1, where the total number of association schemes of each order is
given, along with the number which are stratifiable, commutative, symmetric, primitive,
metric, cometric, and thin, respectively. The rows that are highlighted indicate previously
unclassified Schurian association schemes, which are not available in [10] or elsewhere.

We also identify and provide as an additional supplement [23] containing the 2-closures
for all transitive groups of degree 2 to 48. This supplementary data is likely to be of special
interest in the case n = 48 since transitive identification is not computable in Magma [4] or
GAP [8] for this degree.

The computations required by the classification are described in Section 3. In particular,
the fast practical computation of automorphisms and isomorphisms is made possible by rep-
resenting association schemes as suitable digraphs. Hence the 2-closures of the corresponding
groups may also be computed quickly, which is otherwise difficult and slow.

2. Association schemes

The term association scheme is used in different ways throughout the literature’. The
definition used in this paper is also known as a homogeneous coherent configuration. We use
this definition because it is the most general and is used for the corresponding objects in
the catalogue of association schemes at [10]. We refer to [3] for greater detail on association
schemes, but provide some of the relevant definitions and results (without proof) in this
section. The connection between association schemes and permutation groups is explored in
greater detail in [5].

Let Q be a finite set of cardinality n and let R = {Rq, Ry, ..., Ry} be subsets of {2 x €.
We shall call R; € R a relation and refer to R} = {(y,z) : (v,y) € R;} as its converse
relation. Then (2, R) is an association scheme with d classes and order n if the following
hold:

(1) R is a partition of 2 x €,
(2) Ro={(z,z): 2z €Qj,

IPeter Cameron discusses the differing “association scheme” terminology on his blog:
https://cameroncounts.wordpress.com/2014/06 /08 /terminology-association-scheme-or-coherent-configuration/
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(3) R} € Rforall R; € R,
(4) there exist constants pf; (called intersection numbers) for 0 < i, j,k < d such that
for any (x,y) € Ry,

pf] = |{Z I~ Q: (QU, Z) c Riu(zvy) € R]}|

Moreover an association scheme is symmetric if RiT = R; for all 0 < ¢ < d, commutative
if pfj = pfi for all 0 < 4,7,k < d, and stratifiable if an association scheme is formed by
replacing each relation and its converse by their union. A scheme is called thin if d =n —1,
in which case it is equivalent to a group. Two association schemes (2, R) and (A, S) are
isomorphic if they have the same number of classes, d, and there exist bijections f : 2 — A
and g : {0,...d} — {0,...d} such that (z,y) € R; if and only if (f(z), f(v)) € Sg)-

Let G be a transitive permutation group acting on §2. Then the orbits of G on €2 x
form the relations of an association scheme, KC(G). An association scheme (€2, R) is called
Schurian if (Q,R) = K(G) for some transitive permutation group G. An automorphism of
an association scheme (€2, R) is a permutation of {2 which fixes every R; € R. The set of
all automorphisms forms the automorphism group, Aut((£2,R)). Note that G < Aut(K(Q)).
Moreover, G is 2-closed in the case of equality”.

The adjacency matriz with respect to R; is the n X n matrix A; indexed by the elements

of 2, where
1, if (x,y) € R;;
0, otherwise.

If the digraph defined by the adjacency matrix A; is connected for all 1 < i < d, then we call
(Q, R) primitive. To store an association scheme compactly, we define the relation matriz,

d
1=0

Note that since the relations partition €2 x €2, we can recover each A; and hence the relations
R for (2, R) from the relation matrix M.

For an association scheme (2, R), the adjacency matrices span a semisimple C-algebra
called the adjacency algebra or the Bose-Mesner algebra, denoted CR. When (2, R) is
commutative, there exists a second basis {Ey, ..., Fy} for CR consisting of minimal idem-
potents (ie. E;E; = 0 for i # j, and E;E; = E;). A representation ¢ of an association
scheme (2, R) is an algebra homomorphism from the adjacency algebra CR to the full ma-
trix algebra over C and we define the character y afforded by ¢ by x(A;) = trace(¢(A;)).
The set of irreducible characters of CR is denoted by Irr(R). The standard representation
[z is the representation which sends each adjacency matrix to itself, that is, I'r(4;) = A;
for all 0 < @ < d. The standard character v is the character afforded by the standard
representation 'z and satisfies

1Q[1c, i=0;
0, otherwise,

772(142‘) = {

2The 2-closure of a group G is the largest subgroup of Sym(Q) preserving the orbits of G on 2 x Q and
G is called 2-closed if it equals its 2-closure.
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and has the irreducible decomposition

YR= Y myeX

X€lrr(R)

where m,, is called the multiplicity of x. Let T" be the |Irr(R)| x (d + 1) matrix with rows
indexed by Irr(R) and columns by R such that the T\ r, = x(A;). Then T is called the
character table of (2, R).

Finally, let (€2, R) be symmetric. If there is an ordering {A;}%, such that there exist
polynomials v; of degree i for ¢ € {0,...,d} with the property v;(A;) = A;, then we call
(Q,R) P-polynomial or metric. Similarly, if there is an ordering {E;}&, such that there
exist polynomials ¢; of degree i for i € {0, ..., d} with the property ¢;(E;) = E;, then we call
(Q,R) Q-polynomial or cometric. Metric and cometric association schemes have interesting
algebraic and combinatorial properties and are often studied in their own right.

3. Computation

By definition, an association scheme (2, R) is Schurian precisely when there exists a
group G acting transitively on € such that (2, R) = K(G). Let G be a set of transitive
permutation groups of degree n such that every conjugacy class of transitive subgroups of
Sy has precisely one representative in G. Then G is conjugate in .S,, to some group in G, and
without loss of generality we may assume that G € G.

Note that for two non-isomorphic groups G; and G5 in G it is possible that K(G;) &
K(G3). However, we may use the fact that G < Aut(K(G)) to determine non-isomorphic
representatives of all Schurian association schemes of order n by only keeping IC(G) when G
is the full automorphism group. Hence we derive the classification of Schurian association
schemes of order n from the classification of transitive permutation groups of degree n by
the following procedure:

L+ {}
for G € G do
if G = Aut(K(G)) then
L+ LU{K(G)}
end if
end for

The transitive permutation groups of degree at most 48 are available in both MAGMA
[4] and GAP [8] (via the TransGrp package [20]). In both cases, the groups of degree 32
and 48 must be downloaded® separately due to their size. The computations for this paper
were done in GAP, making use of the author’s GAP package, AssociationSchemes [2], which
among other things can construct K(G), find the automorphism group of an association
scheme, and compute isomorphisms between association schemes.

The 2-closure of a group G is precisely Aut(K(G)), and so classifying the Schurian associ-
ation schemes is equivalent to classifying the 2-closed transitive permutation groups. In GAP
the 2-closure of a group can be computed using the GAP package GRAPE [31], however

3Transitive groups of degree 32 and 48 in Magma: http://magma.maths.usyd.edu.au/magma/download/db/,
Transitive groups of degree 32in GAP: https://www.math.colostate.edu/~hulpke/transgrp/trans32.tgz,
Transitive groups of degree 48 in GAP: https://zenodo.org/record/5935751


http://magma.maths.usyd.edu.au/magma/download/db/
https://www.math.colostate.edu/~hulpke/transgrp/trans32.tgz
https://zenodo.org/record/5935751
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this is significantly slower than computing the automorphism group of K(G) using Associa-
tionSchemes directly, although it does provide a means of verification. In practice, it may
be faster to check that Aut(K(G)) < G by testing containment of generators of Aut(K(G))
in G. To accelerate the computation, the groups in G were divided and multiple jobs were
run in parallel. The character table and other properties of the Schurian association schemes
were also computed using the AssociationSchemes package. In fact, some improvements
have been made to the package in the process. However, manual intervention was required
in many difficult cases.

The number of association schemes of each type with a given order are provided in
Table 1. The number of Schurian association schemes which are stratifiable, commutative,
symmetric, primitive, metric, cometric, and non-Schurian are abbreviated as strat., com.,
sym., prim., met., comet., and NS respectively. Up to order 30, the values in the total,
stratifiable, symmetric, and primitive columns agree with the values given in Table 2 of [5]
where they correspond to the number of 2-closed permutation groups which are transitive,
stratifiable, generously transitive, and primitive, respectively. The highlighted rows indicate
that the enumeration of the corresponding Schurian association schemes is new, and is not
available at [10]. The number of non-Schurian association schemes is given, as found at [10],
in column NS for completeness. They indicate that the total number of association schemes
may be significantly larger than the number which are Schurian, particularly as the order
grows. As a result, further enumeration of association schemes is likely to be increasingly
difficult. For example, there are 32730 strongly regular graphs (which are equivalent to 2-
class association schemes) with 36 vertices [26], already far exceeding the total number of
Schurian association schemes of this order.

Having computed the 2-closed groups we were able to further compute the 2-closure (up
to conjugacy in S,,) of every transitive group of degree n, for 2 < n < 48. This was achieved
by utilising the following observation: if G and G’ are groups such that G’ is 2-closed, then
G’ is conjugate in S, to the 2-closure of G if and only if K(G) = K(G’). Identifying the
2-closure of a group G is then a matter of testing isomorphism of K(G) against the elements
of L. These isomorphism checks were also performed using AssociationSchemes. Recall that
an isomorphism between two association schemes (€2, R) and (A,S) with d classes is given
by bijections f : Q2 — A and g : {0,...d} — {0,...d} such that (z,y) € R; if and only
if (f(x), f(y)) € Sgw)- In AssociationSchemes an isomorphism is given by [0, 0,4] where o
and o, are permutations corresponding to f and g¢. Indeed, if [0, 0, is the isomorphism
from K(G') to K(G) then the automorphism group of K (G’), and hence the 2-closure of G,
is given by Gf.

The results of this paper exploit the speed at which AssociationSchemes is able to com-
pute the automorphism group of an association scheme. Finding the 2-closure of a related
group is typically much slower and more difficult. We achieve this by representing an asso-
ciation scheme as an edge-coloured digraph where (a,b) is a directed edge with colour i if
and only if (a,b) € R;. Such a digraph is complete and satisfies the following property: the
number of coloured triangles on a given directed edge depends only on the choice of colours.
The automorphism group of the association scheme is simply the automorphism group of
the corresponding directed graph. Following [25, §14], an edge-coloured digraph may be
represented as a vertex-coloured graph with log(d + 1) layers. The automorphism group of
the original digraph is then the found by taking the action of the automorphism group of this
layered digraph on its first layer. This method is used by AssociationSchemes to compute
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Order | Total Strat. Com. Sym. Prim. Met. Comet. Thin | NS
2 1 1 1 1 1 1 1 1 0
3 2 2 2 1 2 1 1 1 0
4 4 4 4 3 1 2 2 2 0
5 3 3 3 2 3 2 2 1 0
6 8 7 7 4 1 4 4 2 0
7 4 4 4 2 4 2 2 1 0
8 21 20 19 10 1 5 5 5 0
9 12 12 12 6 2 4 4 2 0

10 13 11 11 8 2 6 6 2 0
11 4 4 4 2 4 2 2 1 0
12 59 47 47 21 1 8 8 5 0
13 6 6 6 4 6 3 3 1 0
14 16 14 14 8 1 6 6 2 0
15 24 23 23 10 2 6 ) 1 1
16 206 171 158 56 4 9 9 14 16
17 5 5 5 4 5 3 3 1 0
18 93 71 71 32 1 8 7 5 2
19 6 6 6 3 6 2 2 1 1
20 95 73 73 41 1 10 8 5 0
21 32 29 29 11 3 6 5) 2 0
22 16 14 14 8 1 6 6 2 0
23 4 4 4 2 4 2 2 1 18
24 669 454 438 136 1 9 10 15 81
25 32 32 32 20 9 5 5 2 13
26 24 20 20 14 1 6 6 2 10
27 122 112 112 38 5 7 6 5 380
28 124 103 103 47 4 10 9 4 61
29 6 6 6 4 6 3 3 1 20
30 228 166 166 73 1 11 10 4 15
31 8 8 8 4 8 2 2 1198299
32| 4261 2579 2264 413 1 13 11 51 | 13949
33 27 27 27 9 1 4 4 1 0
34 20 16 16 13 1 5 5 2 0
35 43 43 43 17 3 6 6 1
36 | 1274 806 804 276 9 17 15 14
37 9 9 9 6 9 3 3 1
38 22 19 19 10 1 5 5 2 11
39 44 41 41 15 1 4 4 2
40 | 1095 712 687 262 3 11 11 14
41 8 8 8 6 8 3 3 1
42 298 210 210 81 1 11 10 6
43 8 8 8 4 8 2 2 1
44 112 93 93 40 1 7 7 4
45 286 270 270 93 5 10 8 2
46 15 13 13 7 1 5 5 2
47 4 4 4 2 4 2 2 1
48 1 15305 7890 7330 1394 1 12 13 52

TABLE 1. Schurian association schemes and their properties.
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the automorphism group of an association scheme. Since it calls bliss [21] or nauty [24] to
find the automorphism group, it is able to do this very quickly in practice. This method
avoids computing intersections of groups or stabilisers of sets and so avoids many significant
computational bottlenecks.

AssociationSchemes is also able to compute canonical forms and isomorphisms of asso-
ciation schemes by considering isomorphisms of the corresponding graphs. A key difficulty
in this process is accounting for the edge colourings (the order of the relations), since these
may be relabelled to give isomorphic association schemes without the corresponding edge-
coloured graphs being isomorphic. Prior to Version 3.0.0 of AssociationSchemes, we overcame
this by first computing all the algebraic automorphisms (reordering of relations preserving
the intersection numbers) and applying the ismorphism/canonisation process to each of the
edge-coloured digraphs that resulted. From Version 3.0.0, we instead allow colours to be
exchanged within the digraph, combining the ideas in [25, §14] for edge-colouring and in-
terchangable vertex-colouring. This requires a digraph with d layers to be constructed, with
an additional vertex added for each colour present. Calling bliss [21] on this digraph estab-
lishes an ordering on the relations. Accounting for this ordering on relations, a second call
to bliss then determines an ordering on the vertices. The result is a fast, practical method
for computing canonical forms of association schemes and isomorphism between association
schemes.

4. Database

The complete list of Schurian association schemes of order 2 < n < 48 is made available
as a supplementary database at [22]. The database consists of files with the name Schuri-
anSchemesN where N is the order of the association schemes. Each line of each file has the
form

[M7 S7 x’ T7 L]’

where:

e M is the relation matrix of the association scheme.

e S is a list of generators (as permutations) for the automorphism group of the asso-
ciation scheme; note that if G = (S) then K(G) is the association scheme defined
by M.

e The integer x is the transitive identification of the automorphism group G in the
Magma and GAP libraries®.

e T is the character table of the association scheme. Note that some cyclotomic
numbers are described as sums of roots of unity with rational coefficients, where the
primitive n-th root of unity e?™/™ is written in the GAP notation E(n).

e The i-th entry of L is the multiplicity of the character corresponding to the ¢-th row
of T.

4The transitive groups use the same ordering in both Magma and GAP, so the transitive identification
numbers match.
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Consider, for example, the 3-class association scheme with order 8 defined by the relation
matrix

0 1 2 2 3 2 1 17
20211312
1101223 2
12202113

M= 3211012 2
13122021
22321101

2 11312 2 0

It is the Schurian scheme K(G), where
G =1{((1,3,5,7)(2,4,6,8),(1,3,8)(4,5,7)),

with transitive identification 12. Its character table is

3 3 1

V3i —V3i -1
—V3i V3 -1’

-1 -1 1
with multiplicities [1,2,2,3]. Observe, v/3i = €2*/® — e%/3 which is E(3) - E(3)"2 in GAP
notation. The corresponding entry in the database can be found on line 12 of the file “Schuri-
anSchemes8” where it appears as:

T =

—_ = = =

tctfo,1,2,2,3,2,1,1]1,[02,0,2,1,1,3,1,21]1,[1,1,0,1, 2, 2,
3,21,01,2,2,0,2,1,1,31,0[03,2,1,1,0,1,2,21,1[1,3,1,2,
2,0,2,11,[02,2,3,2,1,1,0,11,[2,1,1,3,1,2,2,011,

[ (1,3,5,7)(2,4,6,8), (1,3,8)(4,5,7) 1, 12, [ [ 1, 3,3, 11, [ 1, E(3)-E(3)"2,
-E(3)+ E(3)"2, -1 ], [ 1, -E(3)+E(3)"2, E(3)-E(3)"2, -1 1, [ 1, -1, -1, 111,

(1, 2,2,31]11].

The properties given in Table 1 are not given in the database because they are easily
computable from the data provided. The character tables are included in the database,
however, since they are incredibly useful in applications but can be very slow to compute.
Note that it is significantly easier to verify a character table than to compute it.

The 2-closures of the transitive permutation groups of degree 2 < n < 48 are made
available as a supplementary database at [23]. The database consists of files with the name
TwoClosuresN where N is the degree of the permutation groups. Each line of each file has
the form

[, 9],
where:

e The integer x is the transitive identification of the group.
e The integer y is the transitive identification of the group isomorphic to the 2-closure
of the group with transitive identification x.

For example, line 5491 of the file “TwoClosures48” appears as:

[5491,271829]
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This says that the 2-closure of the group accessed by TransitiveGroup (48, 5491) is con-
jugate in Syg to the group accessed by TransitiveGroup(48, 271829). Note that a group

is 2

-closed if x = y. This data is likely to be particularly useful in the case where n = 48,

since there is no means of determining the transitive identification of a group in the GAP
or Magma libraries for this degree.

1]
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