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ON THE STRUCTURE OF FINITELY PRESENTED BESTVINA-BRADY
GROUPS

PRIYAVRAT DESPANDE ANDMALLIKA ROY

ABSTRACT. Right-angled Artin groups and their subgroups are of great interest be-
cause of their geometric, combinatorial and algorithmic properties. It is convenient to
define these groups using finite simplicial graphs. The isomorphism type of the group
is uniquely determined by the graph. Moreover, many structural properties of right
angled Artin groups can be expressed in terms of their defining graph.

In this article we address the question of understanding the structure of a class of
subgroups of right-angled Artin groups in terms of the graph. Bestvina and Brady,
in their seminal work, studied these subgroups (now called Bestvina-Brady groups or
Artin kernels) from a finiteness conditions viewpoint. Unlike the right-angled Artin
groups the isomorphism type of Bestvina-Brady groups is not uniquely determined by
the defining graph. We prove that certain finitely presented Bestvina-Brady groups
can be expressed as an iterated amalgamated product. Moreover, we show that this
amalgamated product can be read off from the graph defining the ambient right-angled
Artin group.

1. INTRODUCTION

A right-angled Artin group (a RAAG, for short) is a finitely presented group such
that the commuting relations are the only relations. It is perhaps easier to describe this
group using finite simplicial graphs. Let Γ be such a graph; then the associated RAAG,
denoted by AΓ, has generators corresponding to vertices of Γ and two generators com-
mute whenever the corresponding vertices are connected by an edge. We refer the
reader to [8] for an encyclopedic introduction to RAAGs. They have become central
in group theory, their study interweaves geometric group theory with other areas of
mathematics. This class interpolates between two of themost classical families of groups,
free and free abelian groups, and its study provides uniform approaches and proofs, as
well as rich generalisations of the results for free and free abelian groups. The study of
this class from different perspectives has contributed to the development of new, rich
theories such as the theory of CAT(0) cube complexes and has been an essential ingredi-
ent in Ian Agol’s solution to Thurston’s virtual fibering and virtual Haken conjectures.
RAAGs are important in geometric group theory for many reasons, including the fact
that they have interesting subgroups; for example, Bestvina-Brady groups.

A Bestvina-Brady group (a B-B group, for short) is the kernel of the group homo-
morphism AΓ → Z which takes all the generators of AΓ to 1. One of the reasons they
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are interesting is that they provide an example of a group that satisfies the finiteness
property FPn but not FPn+1. They also provide counterexamples either to the Eilen-
berg–Ganea Conjecture or the Whitehead Conjecture; see [2] for details.

Though RAAGs interpolate between free groups and free abelian groups their struc-
ture is not always straightforward. However, many of their structural properties can be
read off from the underlying graph. For example, a RAAG AΓ is a free product of two
of its sub-RAAGs if and only if Γ is disconnected; by a theorem of Clay [9] all nontrivial
splittings of AΓ over Z correspond to cut vertices of Γ, further it was proved by Groves
and Hull [12] that AΓ splits over an abelian group if and only if Γ is disconnected, or
complete or contains a separating clique.

It is easy to observe that two non-isomorphic graphs can give rise to the same B-B
group HΓ (see 3.7). Moreover, though the finiteness properties are completely deter-
mined by the (topology of the) clique complex of Γ, not much work has been done to
understand structural properties of HΓ in terms of graph theoretic input. We should
mention here the recent work of Chang [6] on abelian splittings of B-B groups and the
work of Barquinero-Ruffoni-Ye [1] decomposing Artin kernels (a class of subgroups
generalizing B-B groups) as graphs groups. In both the works the decomposition of
HΓ is expressed in terms of the underlying Γ; hence we consider them as a motivation
for our paper.

The aim of this article is to show that a certain class of finitely presented B-B groups
can be decomposed as an (iterated) amalgamated product of a RAAG and finitely many
copies of Z2. We express this amalgamated product completely in terms of the under-
lying graph. To be precise, we decompose Γ as a union of Γ′ and some triangles (i.e.,
3-cliques); this union is with the help of a suitable spanning tree. The subgraph Γ′ is
selected on the basis that the corresponding B-B group HΓ′ is isomorphic to a RAAG;
the triangles correspond to copies of Z2. The classes of graphs for which this decompo-
sition works include the 1-skeleta of certain (extra)-special triangulations of the 2-disk
and connected graphs with a separating clique Kn, n ≥ 3. Our main theorem implies
that such B-B groups can be decomposed as an iterated amalgamation of RAAGs. We
should note here that Papadima and Suciu [14, Proposition 9.4] showed that the B-B
group corresponding to an extra-special triangulation is not isomorphic to any RAAG.
The existence of a separating clique also implies that the corresponding B-B group
splits over an abelian subgroup, see Chang [6, Theorem 3.9]; we expand on this aspect
in Section 4.

2. PRELIMINARIES AND NOTATIONS

Below we present the necessary preliminaries on graph theory and B-B groups.

2.1. Graph theory. We recall and set up some basic notations and terminologies in
graph theory. Throughout this article, we assume finite graphs which have no loops
and multi-edges, i.e., all the graphs are finite simplicial. Given a graph Γ, we denote
the set of its vertices and edges by V (Γ) and E(Γ), respectively. We denote e = (v, w)
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to be an edge connecting vertices v and w. The initial and terminal vertices of the edge
e are denoted by ι(e) and τ(e), respectively, such that e = (ι(e), τ(e)). Two vertices
are adjacent if they are connected by an edge. A spanning tree of Γ is a subgraph of Γ
which is a tree and contains every vertex of Γ. As we are dealing with finite graphs it is
straightforward to see that, for any spanning tree T of Γ, |E(T )| = |V (Γ)| − 1. Given
any subset V ′ of V (Γ), the induced subgraph (in some literature, it is also called as full
subgraph) on V ′ is a graph Γ′ whose vertex set is V ′, and two vertices are adjacent in Γ′

if and only if they are adjacent in Γ.

The star graph Sn of order n, sometimes simply known as an n-star, is a tree on n
vertices with one vertex having degree n−1 and the other n−1 vertices having degree 1.

Given two graphs Γ1 = (V (Γ1), E(Γ1)) and Γ2 = (V (Γ2), E(Γ2)), the union of Γ1 and
Γ2 is Γ1 ∪ Γ2 = (V (Γ1) ∪ V (Γ2), E(Γ1) ∪ E(Γ2)). We denote the disjoint union of two
graphs Γ1 and Γ2 as Γ1 ⊔Γ2, i.e., Γ1 and Γ2 share no vertices. The join of two graphs Γ1

and Γ2, denoted by Γ1∨Γ2, is defined to be the graph union Γ1∪Γ2 and with every pair
of vertices (v, w) ∈ V (Γ1)× V (Γ2) being adjacent. The join operation is commutative,
that is, Γ1 ∨ Γ2 = Γ2 ∨ Γ1. When a graph Γ decomposes as a join of a vertex v and
another graph Γ′, the vertex v is called a dominating vertex, and Γ is called a cone graph
or the cone on Γ′.

Two graphs Γ1 and Γ2 are said to be isomorphic, denoted by Γ1
∼= Γ2, if there is a

bijection ϕ : V (Γ1) → V (Γ2) such that two vertices v, w are adjacent in Γ1 if and only if
ϕ(v), ϕ(w) are adjacent in Γ2. The star graph Sn is isomorphic to the complete bipartite
graph K(1,n−1). Also let Γ1, Γ2 be cone graphs on Γ′

1 and Γ′
2 respectively, then Γ1

∼= Γ2

if and only if Γ′
1
∼= Γ′

2.

Given a graph Γ we construct a simplicial complex △Γ, called the flag complex, as
follows: the vertex set is the ground vertex set V (Γ) and a subset of cardinality k is a
(k − 1)-simplex if and only if the induced subgraph is a k-clique. In the literature, the
term clique complex is also used for the flag complex. Note that, we do not differentiate
between an abstract simplicial complex and its geometric realization; any topological
statement about the flag complex (equivalently, the clique complex) is about its geo-
metric realization. Our main focus is on those graphs whose flag complex is simply
connected. Such graphs form a fairly large class, for example, a connected chordal
graph has the contractible flag complex.

2.2. Bestvina–Brady groups.

Definition 2.1. Let Γ be a finite simplicial graph with the vertex set V (Γ) and the
edge set E(Γ). The right-angled Artin group AΓ associated to Γ has the following
finite presentation:

AΓ =
〈

V (Γ) | [v, w] = 1 for each edge (v, w) ∈ E(Γ)
〉

.

Let ϕ : AΓ → Z be the group homomorphism sending all generators of AΓ to 1. The
Bestvina–Brady group HΓ associated to Γ is the kernel, kerϕ.

3



We already mentioned in Section 1 that the B-B groups were first introduced in
the influential work of Bestvina and Brady [2] as an answer to a long standing open
question regarding the existence of non-finitely presented groups of type FP—a result
based on homological group theory.

Theorem 2.2 ([2], Main Theorem). Let Γ be a finite simplicial graph.

(1) HΓ is finitely generated if and only if Γ is connected.
(2) HΓ is finitely presented if and only if △Γ is simply-connected.
(3) HΓ is of type FPn+1 if and only if Γ is n-acyclic.

This result includes the Stallings’ group [15] —HΓ associated to the RAAG F2×F2×
F2 — an example of finitely presented but not of type FP3 and R. Bieri’s group [3] of
type FPn but not of type FPn+1, which isHΓ corresponding to the Γ, a join of (n+1)
pairs of points.

The presentation of B-B groups was described by Dicks–Leary in [10]:

Theorem 2.3 ([10], Theorem 1). Let Γ be connected. The group HΓ has a presentation with
generators the set of directed edges of Γ, and relators all words of the form en1e

n
2 · · · e

n
ℓ , where

ℓ, n ∈ Z, n ≥ 0, ℓ ≥ 2, and (e1, . . . , eℓ) is a directed cycle in Γ. In terms of the given generators
for AΓ, e = ιe(τe)−1.

u

v

wg

fe

FIGURE 1. A directed triangle.

Let us fix a linear order on the vertices, and orient the edges increasingly. A triplet
of edges (e, f, g) forms a directed triangle if e = (u, v), f = (v, w), g = (u, w), and
u < v < w; see Figure 1.

When Γ is connected and△Γ is simply connected, we can write down a presentation
forHΓ, called theDicks–Leary presentation [10, Theorem 1, Corollary 3]. In other words,
the aforementioned theorem could be simplified as:

Theorem 2.4. Suppose the flag complex △Γ is simply connected. Then HΓ has presentation

HΓ = 〈e ∈ E(Γ) | ef = fe, ef = g if △(e, f, g) is a directed triangle 〉.

Moreover, the inclusion ι : HΓ →֒ AΓ is given by ι(e) = uv−1 for every edge e = (u, v) of Γ.

TheDicks-Leary presentation is not necessarily aminimal presentation, i.e., there are
some redundant generators. Dicks-Leary considered all the edges of Γ as the generators.
The simpler presentation was given by Papadima-Suciu in [14]. The authors proved
that for the generators of HΓ it is enough to consider the edges of a spanning tree of Γ.
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Theorem 2.5 ([14, Corollary 2.3]). If △Γ is simply-connected, then HΓ has a presentation
HΓ = F/R, where F is the free group generated by the edges of a spanning tree of Γ, and R is
a finitely generated normal subgroup of the commutator group [F, F ].

Here are some examples of B-B groups.

Example 2.6. If Γ is a complete graph on n vertices, then any spanning tree has n− 1
edges. In fact, we can choose the spanning tree as a star graph. Moreover, any two
edges in the spanning tree form the two sides of a triangle in Γ. The corresponding
Bestvina–Brady group has n− 1 generators and any two of them commute, hence it is
Z
n−1.

Example 2.7. Now let Γ be a tree on n vertices. The spanning tree is the graph Γ
itself and there are no triangles. The corresponding Bestvina–Brady group has n −
1 generators and none of them commute, hence it is Fn−1 the free group on n − 1
generators.

Example 2.8. Let Γ be the graph in Figure 2. Choosing the spanning tree T =
{e1, . . . , e5} as indicated, the presentation of the B-B group reads as follows:

HΓ = 〈e1, . . . , e5 | [e1, e2], [e2, e3], [e3, e4], e5e2
−1e3 = e2

−1e3e5〉.

Unlike the previous two examples, this particular HΓ is not isomorphic to any RAAG
(see [14, Proposition 9.4] for details).

v6

v4v5

v3
v2

v1 e1

e2 e3

e4

e5

FIGURE 2. A graph whose corresponding B-B group is not a RAAG.

Here we also recall the definition of an amalgamated product.

Definition 2.9. Let G1 and G2 be groups with distinguished isomorphic subgroups
H 6 G1 and K 6 G2. Fix an isomorphism ϕ : H → K. The free product of G1 and G2

with amalgamation ofH andK by the isomorphism ϕ is the quotient of G1 ∗G2 by the
normal closure of the set {ϕ(h)h−1 | h ∈ H}. We will refer to this factor group briefly
as the amalgamated product and have the following notations:

〈G1 ∗G2 | h = ϕ(h), h ∈ H〉, G1 ∗H=K G2, G1 ∗H G2.
5



3. ON THE STRUCTURE OF B-B GROUPS

As stated earlier the aim of this article is to describe the structure of Bestvina-Brady
groups and we do this, up to some extent, in this section. However, we start by focusing
at a class of B-B groups that are in fact isomorphic to some RAAG. These type of B-
B groups can be recognized from the graph defining the ambient RAAG. Then we
move to the iterated amalgamated product structure having the very first factor group
isomorphic to an arbitrary RAAG and other factors isomorphic to Z

2 (which are also
RAAGs). Most importantly, the iterated amalgamated product structure of the B-B
group can also be derived from the graph defining its ambient RAAG.

3.1. Isomorphism between RAAGs and B-B groups. Since the only relations in
B-B groups are the commuting relations, for a given Γ it is natural to ask whether HΓ

isomorphic to AΓ′ for some finite simplicial graph Γ′. This question was first considered
by Papadima and Suciu in [14]. They also constructed a family of B-B groups not
isomorphic to any RAAGs.

We briefly review their result; first we recall the definition of special and extra-special
triangulation (Figure 3).

Definition 3.1. A triangulation of the 2-diskD2 is said to be special if it can be obtained
from a triangle by adding one triangle at a time, along a unique boundary edge. A
triangulation ofD2 is called extra-special if it is obtained from a special triangulation, by
adding one triangle along each boundary edge (see Figure 3).

FIGURE 3. Building an extra-special triangulation of the disk.

Proposition 3.2 ([14, Proposition 9.4]). Let Γ be the 1-skeleton of an extra-special tri-
angulation of D2. Then the corresponding Bestvina–Brady group HΓ is not isomorphic to any
Artin group.

Papadima and Suciu [14] also describe an explicit presentation of HΓ, where Γ is the
1-skeleton of a special triangulation of D2.

Lemma 3.3. Let Γ = (V,E) be the 1-skeleton of a special triangulation of D2, then:

(i) 2|V | − |E| = 3,
6



(ii) HΓ admits a presentation with |V | − 1 generators and |V | − 2 commutator relators.

Now we identify a class of graphs such that the corresponding B-B group is isomor-
phic to some RAAG. The complete classification of graphs such that the corresponding
(finitely presented) B-B group is a RAAG can be found in the recent paper of Chang
and Ruffoni. In particular, they prove that such graphs admit a tree 2-spanner [7, Theo-
rem A]. Since we do not need the full extent of their result we provide a proof, for the
benefit of the reader, of the sufficiency condition without introducing any more tech-
nical definitions. The authors sincerely thank Chang and Ruffoni for bringing their
work to our notice.

Theorem 3.4. Let Γ be a finite simplicial graph such that △Γ is simply-connected and Γ has
a spanning tree T such that each triangle of Γ has 2 edges in E(T ). Then HΓ

∼= AΓ′ for some
finite simplicial graph Γ′.

Proof. Let T be a spanning tree of Γ such that each triangle of Γ has exactly 2 edges
in E(T ). Let E(T ) = {e1, e2, . . . , en}. From Theorem 2.5, E(T ) corresponds to a
generating set of HΓ. Since HΓ is finitely presented and that each triangle has 2 edges
in E(T ), each relator is of the form [ei, ej ].

We construct the graph Γ′ as follows: the vertex set V (Γ′) is E(T ); and two vertices
in V (Γ′) are adjacent whenever the corresponding edges form a triangle in Γ, i.e., they
commute in HΓ. Let us denote V (Γ′) = {v′1, v

′
2, . . . , v

′
n}, and let ϕ : E(T ) → V (Γ′)

be a map sending each ei to vi for i = 1, 2, . . . , n. Clearly, ϕ is a bijection. By the
construction of Γ′, we have ϕ([ei, ej ]) = [v′i, v

′
j ] and ϕ−1([v′i, v

′
j]) = [ei, ej]. Thus, ϕ is

our desired isomorphism between HΓ and AΓ′ . �

Example 3.5. Let Γ = v ∨ Γ′ be a cone graph with v as its dominating vertex. A
spanning tree can be chosen to be the star graph consisting of consists in v, V (Γ′) and
all the edges joining v to each vertex of Γ′. Every edge in Γ′ and the two edges that
connect each of its boundary vertices to v form a triangle. Hence, HΓ

∼= AΓ′ . This
example has also appeared in [14, Example 2.5].

Example 3.6. Let Γ be the graph as shown in Figure 4. Let T be the spanning tree
with edges e1, e2, e3, e4 and e5. By Theorem 3.4, HΓ is isomorphic to AΓ′ , where Γ′

is a line graph with vertices w1, w2, w3, w4 and w5 as shown on the right hand side of
Figure 4. Note that, Γ is not a cone graph, however, HΓ is still isomorphic to AΓ′ .

v1 v2 v3

v4 v5 v6

e1 e2
e3

e4
e5

w1 w2 w3 w4 w5

FIGURE 4. A graph whose corresponding B-B group is a RAAG.
7



Note 3.7. Recall that two RAAGs AΓ1
and AΓ2

are isomorphic if and only if their
underlying finite simplicial graphs Γ1 and Γ2 are isomorphic. However, this is not the
case for B-B groups. For example, consider any two non-isomorphic trees on n vertices
for n ≥ 3. In both the cases the corresponding B-B group is Fn−1. Let Γ1, Γ2 be cone
graphs on Γ′

1 and Γ′
2 respectively, then Γ1

∼= Γ2 if and only if Γ′
1
∼= Γ′

2. So if we restrict
ourselves to cone graphs, then Γ1

∼= Γ2 if and only if HΓ1

∼= HΓ2
. See [7, Corollary 1]

for the general result.

3.2. B-B groups as an iterated amalgamated product. In this subsection we will
mainly focus on the triangles of Γ. More precisely, we will concentrate on how a par-
ticular triangle △ of Γ intersects its edge-set complement (see Def. 3.8). We introduce
the notions of favourable and unfavourable triangles with respect to the chosen spanning
tree T . Accordingly we also introduce the notions of favourable and unfavourable graphs.

Definition 3.8. Let Γ be a connected graph and △ be a triangle of Γ. Let Γ′ be the
graph with V (Γ′) = V (Γ) and E(Γ′) = E(Γ) \ E(△). Let S be the isolated vertices
of Γ′ and V c = V (Γ) \ S. The edge-set complement of △ is the induced subgraph of Γ
generated by the set of vertices V c. We will denote the edge-set complement of△ in Γ
by △c

Γ.

Definition 3.9. A triangle△ of Γ is said to be an internal triangle if its intersection with
the edge-set complement △c

Γ is neither one vertex nor one edge. A triangle △ of Γ is
said to be a strictly internal triangle if it is contained in an induced Kn, n ≥ 4.

In Figure 5 the triangles △(v2, v4, v5) and △(v2, v3, v4) are the internal triangles.

v6

v4
v7v5

v3
v2

v1 e1

e4

e2

e3
e5

e6

FIGURE 5. A graph with internal triangles.

It is straightforward to note that all strictly internal triangles are internal.

Definition 3.10. Let T be a spanning tree of Γ. A triangle △ of Γ is a favourable
triangle with respect to T if, either it has exactly 2 edges in E(T ) or it is strictly internal.
Otherwise, we say that △ is unfavourable.

Note 3.11. A graph Γ can have several spanning trees. So, it may very well happen
that a triangle△ is favourable in one spanning tree T1 of Γ but not favourable in another
spanning tree T2 of Γ. Hence to talk about favourable triangles we have to fix a spanning
tree T of Γ. We will choose a spanning tree with the maximal number of favourable
triangles or equivalently, the number of unfavourable triangles is minimal.

8



Since by definition every strictly internal triangle of Γ is favourable, strictly internal
triangles of Γ are always favourable with respect to any choice of spanning tree of Γ.
Hence, we define favourable graphs as follows.

Definition 3.12. Let Γ be a finite simplicial graph such that the flag complex on Γ is
simply-connected. Γ is said to be a favourable graph if there is a spanning tree T such
that each triangle of Γ is favourable with respect to T . On the other hand, if for every
spanning tree T of Γ, there exists at least one unfavourable triangle then Γ is called an
unfavourable graph.

The graph in Figure 4 is favourable and the graph in Figure 2 is unfavourable. In
light of Theorem 3.4, if Γ is a favourable graph, then the corresponding B-B group is
isomorphic to a RAAG. However, it is important to note that an unfavourable graph
doesn’t mean that the corresponding B-B group is not isomorphic to any RAAG.

Observation 3.13. Any non-internal triangle can have 1 edge or 2 edges in any span-
ning tree. On the other hand, we know that if the triangle has 2 edges in the spanning
tree, then it is favourable with respect to that particular spanning tree.

Let T be a chosen spanning tree of Γ and△ be a non-internal triangle. If the triangle
△ is unfavourable with respect to T , then it has exactly one edge in T .

Now some preparatory results.

Lemma 3.14. If a triangle △ of Γ intersects the corresponding edge-set complement △c
Γ in

one vertex, then it is a favourable triangle irrespective of the choice of a spanning tree.

Proof. Let the triangle△ intersect△c
Γ in one vertex, say v. Then v is a cut vertex. Hence,

for any spanning tree T , △ has exactly two edges in E(T ). �

The following result is a direct consequence of Dicks-Leary[10] presentation. We
provide a proof for the benefit of the reader.

Lemma 3.15. Let Γ be a finite simplicial graph with simply-connected flag complex. Then
there is a group element in HΓ for each e ∈ E(Γ).

Proof. By abusing the notation we let e denote the edge as well as the corresponding
group element. Let us first fix a spanning tree T of Γ, and ι(e) = u and τ(e) = v. If
e ∈ E(T ), then there is nothing to prove. Let us suppose that e is an edge not in T .
Also, let AΓ be the RAAG defined on Γ. Picking a path eǫ11 , . . . , e

ǫr
r in T connecting u to

v, we see that ι(e) = ι(e1
ǫ1 . . . er

ǫr) ∈ AΓ, ǫi = ±1. Clearly, e = e1
ǫ1 . . . er

ǫr ∈ HΓ. �

Proposition 3.16. Let T be a spanning tree of Γ and let △ be an unfavourable triangle of Γ
with respect to T such that it intersects the edge-set complement △c

Γ exactly in one edge. Then
HΓ

∼= H△ ∗Z H△c

Γ
.

Proof. The Bestvina–Brady group HΓ is finitely presented and its generators are the
edges of the spanning tree T . Let E(△) = {e1, e2, e3}. Since △ intersects △c

Γ exactly
in one edge, △ is non-internal by definition. On the other hand, △ is unfavourable.

9



Hence, by Observation 3.13 we may assume that e1 ∈ E(T ) and e2, e3 /∈ E(T ). We
know that H△, the Bestvina–Brady group associated to △ is a copy of Z2 with the
following presentation:

H△ =
〈

e1, e2 | e1e2 = e2e1
〉

.

Let e2 be the edge common to both △ and △c
Γ. To avoid any confusion, we will

denote e2 by e2 when seen as an edge of △c
Γ. Note that the restriction of T to △c

Γ

denoted by T ′ is a spanning tree of △c
Γ. As, e2 /∈ E(T ′), it is not a generator of H△c

Γ
.

However by Lemma 3.15, 〈e2〉 is a subgroup ofH△c

Γ
. On the other hand e2 is a generator

of H△ and of course, 〈e2〉 is a subgroup of H△.

Note that all generators and relators of HΓ are present in H△c

Γ
, except the generator

e1 and the relations involving e1. So our first step is to include e1 in some extension of
H△c

Γ
; which can be done by taking the free product of H△c

Γ
and H△. Thus H△ ∗H△c

Γ

is generated by all the generators of HΓ and e2. So our next step is to get rid of e2. Let
us consider the following amalgamated product:

H△ ∗〈e2〉=〈e2〉 H△c

Γ
= H△ ∗〈e2〉 H△c

Γ
.

Thuswe include e1 in the generating set and at the same timewe discard the generator
e2. In the amalgamated free product one of the relations is e2 = e2 and e2 can be
expressed as a word in terms of the other generators ofH△c

Γ
; leaving e2 redundant. Now

comparing the presentations of HΓ and H△ ∗〈e2〉 H△c

Γ
, it is clear that, HΓ

∼= H△ ∗〈e2〉
H△c

Γ

∼= H△ ∗Z H△c

Γ
. This completes the proof. �

We note that, if Γ = Γ1 ∪ Γ2, where Γ1,Γ2 are finite simplicial graphs and their flag
complexes are simply-connected; moreover, if Γ3 = Γ1 ∩ Γ2 is a connected induced
subgraph of Γ, then HΓ = HΓ1

∗HΓ3
HΓ2

. This is proved in [4, Proposition 3.5] and
discussed in [5].

For the iterated amalgamated product structure, we are mainly interested in unfavourable
graphs. Wewant to have an iterated amalgamation structure such that the factor groups
are RAAGs. Such a decomposition is helpful in understanding various properties that
are known for RAAGs and can pass through the iteration of amalgamations. The class
of graphs for which such an iterated amalagamation exists is the following:

Definition 3.17. Let G be a family of finite, simplicial, unfavourable graphs Γ with
simply connected flag complex which, in addition, have a spanning tree T such that all
the internal triangles are favourable with respect to T .

Now we describe the structure of B-B groups associated to graphs in G.

Theorem 3.18. Let Γ ∈ G . Then HΓ splits as an iterated amalgamated product of a right-
angled Artin group and finitely many copies of Z2 and in each iteration the amalgamation is
over an infinite cyclic group.

10



Proof. Since Γ is in G, Γ has spanning trees with respect to which none of the inter-
nal triangles is unfavourable. Among those we can choose a spanning tree T with re-
spect to which Γ has minimal number of unfavourable triangles. By Observation 3.13,
each of the unfavourable triangles has exactly one edge in the spanning tree. Let
{△1,△2, . . . ,△n} be the set of unfavorable triangles and denote by ei that particular
edge of △i which is in E(T ). We denote the other two edges of △i by fi and f ′

i ; note
that, these edges are not in E(T ). It follows from Lemma 3.14 that △i intersects the
edge-set complement (△i)

c

Γ in exactly one edge, say fi for each i = 1, 2, . . . , n.

We already know that the B-B group H△i
associated to△i is finitely presented with

the following presentation:

H△i
=
〈

ei, fi|eifi = f ′
i = fiei

〉

∼= Z
2; i = 1, 2, . . . , n. (3.1)

Consider the subgraphs defined as follows:

Γ1 := (△1)
c

Γ and Γi := (△i)
c

Γi−1
, i = 2, 3, . . . , n. (3.2)

Also note that, Γ1 is an induced subgraph of Γ and Γi is an induced subgraph of Γi−1.

By Proposition 3.16 we have,

HΓ = HΓ1
∗〈f1〉 H△1

(3.3)

and
HΓi−1

= HΓi
∗〈fi〉 H△i

for i = 2, 3, . . . , n. (3.4)

Note that we choose the restriction of T to Γi as the spanning tree for Γi and denote it
by Ti, for i = 1, 2, 3, . . . , n. From the construction and Equation (3.2) it is clear that the
graph Γn := (△n)

c

Γn−1
is a favourable graph. So, HΓn

is isomorphic to AΓ for some finite
simplicial graph Γ, see Theorem 3.4. Recall that, the edges of Tn are the vertices of Γ
and two such vertices are adjacent whenever the corresponding edges form a triangle
in Γn.

We can now express the B-B groupHΓ as the following (iterated) amalgamated prod-
uct.

HΓ =

(

(

(AΓ ∗〈fn〉H△n
) ∗〈fn−1〉H△n−1

)

∗〈fn−2〉 H△n−2

)

· · · ∗〈fn−i〉H△n−i
· · ·

)

∗〈f1〉H△1
.

This completes the proof. �

To characterize the class of graphs which belong to the family G we use the notion
of separating clique from the literature (see [12] for more details).

Definition 3.19. Let Γ0 be an induced subgraph of Γ. Γ0 is said to be separating if the
induced subgraph spanned by the vertices V (Γ) \ V (Γ0) has more connected compo-
nents than Γ. If Γ0 is a complete graph on n vertices, then Γ0 is called a separating clique
of Γ and is denoted by Kn.

11



Here is a partial characterization of graphs in G.

Theorem 3.20. Let Γ be a finite simplicial connected unfavourable graph such that △Γ, the
associated flag complex, is simply connected. If Γ has a separating cliqueKn, n ≥ 3, then Γ ∈ G .

Proof. Let us suppose that Γ has ℓ ≥ 1 many internal triangles, say△1,△2, . . . ,△ℓ. Our
claim is that each△i is a favourable triangle, for i = 1, 2, . . . , ℓ. We will prove our claim
by induction on ℓ.

First consider the case ℓ = 1, i.e., only one internal triangle, say △. We can choose a
tree T ′ by taking any two edges of △ and then we expand T ′ to a spanning tree of Γ.
This makes △ a favourable triangle with respect to T .

Assume that the claim holds for all graphs which have fewer than ℓ internal triangles.
As Γ has a separating clique Kn, then Γ \Kn = Γ1 ⊔ Γ2 where Γ1 and Γ2 are each non-
empty and share no vertices. Let V (Kn) = {u1, u2, . . . , un}. There exists an ui which
is adjacent to a vertex of Γ1 and the same thing holds for Γ2. Without loss of generality
we can assume that u1 is adjacent to Γ1 and u2 is adjacent to a vertex of Γ2. Now let
Γ′
1 be the induced subgraph spanned by V (Γ1) ∪ {u1} and Γ′

2 be the induced subgraph
spanned by V (Γ2)∪{u2}. Then both Γ′

1 and Γ
′
2 have less than ℓ internal triangles. By the

induction hypothesis, Γ′
1 and Γ′

2 have spanning trees T ′
1 and T ′

2 respectively for which
all the internal triangles are favourable. Since Kn is a complete graph, we can choose
the spanning tree ofKn as a star graph. Let TKn

be the spanning tree ofKn. Hence for
TKn

every triangle of Kn is favourable. Let us consider T = T ′
1 ∪ TKn

∪ T ′
2. Then T is

the desired spanning tree of Γ for which all the internal triangles are favourable. �

Observation 3.21. If Γ is a 1-skeleton of an extra-special triangulation of the 2-disk
such that the underlying special triangulation is favourable, then Γ ∈ G. The fact holds
because of the following reason: the internal triangles of an extra-special triangulation
of D2 are the triangles of the special triangulation on which the extra-special triangu-
lation is built by attaching one triangle along each boundary edge. According to our
hypothesis, this special triangulation is favourable, hence it possesses a spanning tree T ′

containing 2 edges from each triangle of the special triangulation. Now if we construct
the spanning tree T of Γ by expanding the tree T ′, then our observation follows.

We now look at two examples. First we consider the graph in Fig. 2 which is an
extra-special triangulation. Recall that, from [14, Proposition 9.4] it follows that the
corresponding B-B group is not isomorphic to a RAAG.

Example 3.22. Our choice of spanning tree is T = {e1, . . . , e5} for the graph in Fig. 2.
Hence the presentation for the B-B groups is

HΓ = 〈e1, . . . , e5 | [e1, e2], [e2, e3], [e3, e4], e5e2
−1e3 = e2

−1e3e5〉.

Note that the triangle△1 spanned by {v4, v5, v6} is unfavourable with respect to T and
let E(△1) = {e5, f1, f

′
1} where f1, f

′
1 denote the respective edges (v5, v4) and (v5, v6).

Let Γ1 be the edge-set complement of △1. It is not hard to see that Γ1 is a favourable
12



graph; in fact, {e1, e2, e3, e4} is a spanning tree with respect to which all the three tri-
angles are favourable. Consequently,

HΓ = HΓ1
∗〈f1〉 H△1

∼= AΓ ∗Z Z
2.

Now we consider an example where the underlying graph is not an extra-special
triangulation and the minimal separating clique is K2.

Example 3.23. Let us consider Γ in Figure 6. We choose the following span-
ning tree T = {e1, e2, . . . , e11}. Note that there are two non-favourable triangles
△(v1, v2, v5) = △1 and △(v10, v11, v9) = △2. In fact, the reader can verify that for
any choice of spanning tree, there will be at least two unfavourable triangles.

We have, E(△1) = {e1, f1, f
′
1} where e1 ∈ E(T ) and f1, f

′
1 /∈ E(T ) and E(△2) =

{e10, f2, f
′
2} where e10 ∈ E(T ) and f2, f

′
2 /∈ E(T ). Let us denote Γ1 := △1

c
Γ (see

Figure 7) and Γ2 := △2
c
Γ1

(see Figure 8). Hence, Γ1 is the induced subgraph of Γ and
Γ2 is the induced subgraph of Γ1. We have:

H△1
=
〈

e1, f1|e1f1 = f ′
1 = f1e1

〉

∼= Z
2.

H△2
=
〈

e10, f2|e10f2 = f ′
2 = f2e10

〉

∼= Z
2.

Thus

HΓ = HΓ1
∗〈f1〉 H△1

, (3.5)

and,

HΓ1
= HΓ2

∗〈f2〉 H△2
. (3.6)

Note that Γ2 is a favourable graph. So, HΓ2

∼= AΓ where

AΓ = 〈w2, . . . , w9, w11 | [w2, w3], [w2, w4], [w4, w5], [w7, w8], [w8, w9], [w9, w11]〉.

Thus finally we have the desired iterated amalgamation structure of HΓ :

HΓ = (AΓ ∗〈f2〉 H△2
) ∗〈f1〉 H△1

∼= (AΓ ∗Z Z
2) ∗Z Z

2.

v6

v4v5

v3
v2

v1 e1

f1 e2

e3

e5

f ′
1

e4

v7

v8v9

v12
v11

v10 e10

f2 e9

e11

e7

f ′
2

e8

e6

FIGURE 6. The graph Γ.
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v6

v4v5

v3
v2

f1 e2

e3

e5
e4

v7

v8v9

v12
v11

v10 e10

f2 e9

e11

e7

f ′
2

e8

e6

FIGURE 7. The graph Γ1.

v6

v4v5

v3
v2

f1 e2

e3

e5
e4

v7

v8v9

v12
v11

f2 e9

e11

e7
e8

e6

FIGURE 8. The graph Γ2.

4. CONCLUDING REMARKS

We end the article with a non-example and some open questions.

Example 4.1. Consider the graph in Fig. 9, which is the 3-fold join of two isolated
vertices. The RAAG corresponding to this graph is the direct product of three copies of
F2 and the B-B group is the same group that appeared in the seminal paper of Stallings.
It is a finitely presented group which is not of type FP3. The reader can easily verify
that no matter which spanning tree is chosen there are at least two internal triangles
that are unfavourable. In fact, any k-fold join of two isolated vertices has this property;
so these graphs do not belong to the class G.

FIGURE 9. A graph not in the class G.

Question 4.2. What is the complete characterization of the family G? Moreover, if a
Bestvina-Brady group HΓ decomposes as an iterated amalgamation (say, like the one
specified in Theorem 3.18) what can one say about the structure of Γ?
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A group G is called coherent if each finitely generated subgroup of G is finitely pre-
sented. Droms [11, Theorem 1] characterised coherent RAAGs in terms of the defining
graph. A right-angled Artin group AΓ is coherent if and only if Γ does not have any cy-
cle of length n ≥ 4 as an induced subgraph (i.e., Γ is chordal). Equivalently, Γ has a
separating clique and each component is either a clique or has a separating clique and
so on.

RAAGs corresponding to trees are obvious examples of coherent RAAGs. For exam-
ple, AP4

∼= Z
2 ∗Z Z

2 ∗Z Z
2, the RAAG corresponding to the path on 4 vertices is an

important group. Kim and Koberda [13, Theorem 7] proved that any 2-dimensional
coherent RAAG embeds in AP4

.

Suppose AΓ is a coherent right-angled Artin group with connected defining graph
Γ. Then the corresponding Bestvina-Brady group HΓ is also expressible as either an
amalgamated product or a free product of free abelian (and infinite cyclic) groups. This
follows directly from the definition of coherent RAAGs and [4, Proposition 3.5]. We
recall (see Example 2.7) that when Γ is a finite tree, thenHΓ is a free group of finite rank,
i.e., a free product of finitely many copies of the infinite cyclic group. Most importantly,
this decomposition also relies completely on the underlying graph structure. Note that
the underlying graph of a coherent RAAG need not belong to the family G.

We describe an example of a Bestvina-Brady group HΓ which decomposes as an
amalgamated product over free-abelian groups but not covered by Theorem 3.18.

v1 v2

v3v4

v5

v6

FIGURE 10. Defining graph of a coherent RAAG.

Example 4.3. AΓ defined on the graph depicted in Figure 10 is coherenrt. It is clear that
the induced subgraph Γ0 on the set of vertices {v1, v2, v3} is a separating clique. Thus,
AΓ = AΓ1

∗AΓ0
AΓ2

, where Γ1 is the induced subgraph on the vertices {v1, v2, v3, v4, v5}
and Γ2 is the induced subgraph on the vertices {v1, v2, v3, v6}. Similarly, we can apply
the same method of decomposition on AΓ1

. As Γ1 has the separating clique generated
by the vertices {v1, v3, v4} and Γ2 is itself a clique. Finally (see [6, Corollary 3.12]), we
have HΓ

∼= (Z3 ∗Z2 Z
3) ∗Z2 Z

3.
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This stimulates the ensuing question:

Question 4.4. For which graphs can the corresponding B-B group be expressed as an
iterated amalgamation of RAAGs? In other words, what will be the possible character-
ization of the family of graphs F so that HΓ can be written as an iterated amalgamated
product of RAAGs if and only if Γ ∈ F?
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