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COMMUTING AND PRODUCT-ZERO PROBABILITY

IN FINITE RINGS

PAVEL SHUMYATSKY AND MATTEO VANNACCI

Abstract. Let cp(R) be the probability that two random elements of a finite
ring R commute and zp(R) the probability that the product of two random
elements in R is zero. We show that if cp(R) = ε, then there exists a Lie-ideal
D in the Lie-ring (R, [·, ·]) with ε-bounded index and with [D,D] of ε-bounded
order. If zp(R) = ε, then there exists an ideal D in R with ε-bounded index
and D2 of ε-bounded order. These results are analogous to the well-known
theorem of P. Neumann on the commuting probability in finite groups.

Introduction

In this article we are interested in the probability cp(R) that two random ele-
ments of a finite ring R commute and in the probability zp(R) that the product of
two random elements in R is zero. Explicitly: for a finite ring R we write

cp(R) =
|{(x, y) ∈ R×R | [x, y] = 0}|

|R|2
and zp(R) =

|{(x, y) ∈ R×R | xy = 0}|

|R|2
.

These probabilities are known as the commuting probability and the zero-probability
of the ring R, respectively, and they have been studied in several articles (see [7, 1]
for the commuting probability and [2, 4, 5] for the zero-probability).

Moreover, the same questions for finite groups have also been investigated. In
the case of finite groups, the most famous results are surely Gustavson’s 5/8th’s
Theorem [6, Introduction] and P. Neumann’s theorem [9, Theorem 1].

Theorem. [6] Let G be a finite group such that cp(G) ≥ 5/8. Then, G is abelian.

Theorem. [9, Theorem 1] Let ε > 0 be a real number and G be a finite group. If

cp(G) ≥ ε, then G has a normal subgroup T such that the index |G : T | and the

order of the commutator subgroup [T, T ] are both ε-bounded.

It is somewhat surprising that, even though Gustavson’s Theorem for rings was
proved several years ago [7], Neumann’s theorem for finite rings was not yet known.
In this article we complete this analogy.

1. Results

Whenever we talk about the index [R : A] of a subring A in a ring R, we mean
the index of (A,+) in (R,+) as additive groups.

Our first result deals with the commuting probability in Lie-rings L. Of course,
for such rings the concepts of cp(L) and zp(L) coincide.
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Theorem 1.1. Let L be a finite Lie-ring. Suppose that cp(L) = ε. Then there

exists an ideal D in L with ε-bounded index and with [D,D] of ε-bounded order;

i.e. there exists a function f such that |[D,D]| ≤ f(ε) and [L : D] ≤ f(ε).

Let R be a ring. We can define on R the structure of a Lie-ring via the opera-
tion [x, y] = xy − yx. Applying the previous theorem to the Lie-ring (R, [·, ·]) we
immediately obtain the following, which is P. Neumann’s theorem for finite rings.

Corollary 1.2. Let R be a finite ring. Suppose that cp(R) = ε. Then there

exists a Lie-ideal D in the Lie-ring (R, [·, ·]) with ε-bounded index and with [D,D]
of ε-bounded order; i.e. there exists a function f such that |[D,D]| ≤ f(ε) and

[R : D] ≤ f(ε).

Next, we prove a similar theorem for the probability that the product of two
elements in a ring is zero. We say that a ring is a zero ring if R2 = 0, i.e. the
product of any two elements of R is zero.

Theorem 1.3. Let R be a finite ring such that zp(R) = ε. Then there exists a

two-sided ideal D in R with ε-bounded index and D2 of ε-bounded order; i.e. there

exists a function f such that |D2| ≤ f(ε) and [R : D] ≤ f(ε).

Here D2 denotes the set of all products d1d2, where both factors are in D. It is
easy to see that the additive subgroup generated by D2 is a two-sided ideal of R
having ε-bounded order.

We note that the above theorems admit a converse: if the structure of R is as in
1.2 and 1.3 (or L is as in 1.1), then cp(R) and zp(R) are bounded away from 0.

Finally, we remark that the blueprints of the proofs of Theorem 1.1 and Theo-
rem 1.3 are the same, changing centralizers to annihilators. However, we chose to
include both proofs for more clarity. Additionally, we note that the functions ap-
pearing in the theorems could be made explicit. It would be interesting to calculate
best possible bounds for these functions.

2. Commuting probability

The well-known theorem due to B. H. Neumann says that if G is a group such
that the index of CG(x) is at most n for all x in G, then the commutator subgroup
G′ has finite n-bounded order (see [8, 10]). We will now establish an analogous fact
for Lie-rings.

Proposition 2.1. Let L be a Lie-ring such that the index of CL(x) in L is at most

n for all x ∈ L. Then [L,L] has finite n-bounded order.

Proof. Let a ∈ L be an element such that the index of CL(a) in L is maximal.
We assume that the index equals n. Let b1, . . . , bn ∈ L be elements such that
[L, a] = {[b1, a], . . . , [bn, a]}. Let C = CL(b1, . . . , bn). We will show that, [L,C] ≤
[L, a]. In fact, if x ∈ C, then [L, a+ x] contains {[b1, a], . . . , [bn, a]}. On the other
hand, by maximality of a, [L, a + x] cannot have more than n elements. Hence,
[L, a+ x] = [L, a]. Thus,

[L, x] ⊆ [L, a] + [L, a+ x] ⊆ [L, a],

as claimed. Let a1, . . . , as be a transversal of C in the additive group of L, and let
a0 = a. Note that, since the index of CL(bi) is at most n, the index s = |L : C| is
at most nn. It follows that

[L,L] = [L, (C + a) + (C + a1) + . . .+ (C + a1)] = [L,C] +
s∑

i=0

[L, ai] ≤
s∑

i=0

[L, ai].

By hypothesis, it follows that [L,L] has n-bounded order. �
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In what follows we require the following lemma by Eberhard taken from [3].

Lemma 2.2. [3, Lemma 2.1] Let G be a finite group and X a symmetric subset of

G containing the identity. Then, 〈X〉 = X3r provided (r + 1)|X | > |G|.

Proof of Theorem 1.1. In what follows we write 〈Y 〉 to denote the subgroup of the
additive group of a Lie-ring L generated by a subset Y ⊆ L. Suppose L is a finite
Lie-ring such that cp(L) = ε. Define

X = {x ∈ L | |[L, x]| ≤ 2/ε}.

Note that LrX = {x ∈ L | |CL(x)| ≤ (ε/2)|L|}, whence

ε|L|2 = |{(x, y) ∈ L× L | [x, y] = 0}| =
∑

x∈L

|CL(x)| ≤
∑

x∈X

|L|+
∑

x/∈X

ε

2
|L|

≤ |X ||L|+ (|L| − |X |)
ε

2
|L|.

Therefore ε|L| ≤ |X |+ (ε/2)(|L| − |X |), whence (ε/2)|L| < |X |.
Let B be the additive group generated by X . Clearly, |B| ≥ |X | > (ε/2)|L| and

so the index of B in L is at most 2/ε. As X is symmetric and (2/ε)|X | > |L|, it
follows from Lemma 2.2 that every element of B is a sum of at most 6/ε elements of
X . Therefore |[L, b]| ≤ (2/ε)6/ε for every b ∈ B. Let D be the ideal of L generated
by B. Since the index of B in L is ε-bounded, there are boundedly many elements
b1, . . . , bs ∈ B such that D = B +

∑
[L, bi]. Since CL(b1, . . . , bs) normalizes each

[L, bi] and since [L, bi] has ε-bounded order, we conclude that CL(
∑

[L, bi]) has
ε-bounded index in L. It follows that |[L, d]| is ε-bounded for every d ∈ D. Thus,
by Proposition 2.1, the theorem follows. �

3. Product-zero probability

Throughout, by the annihilator of a subset S of a ring R we mean the right-

annihilator, i.e. Ann(S) = {y ∈ R | sy = 0, for all s ∈ S}.

Proposition 3.1. Let R be a ring such that the index of Ann(x) in R is at most

n for all x ∈ R. Then R2 has n-bounded order.

Proof. Let a ∈ R be an element such that the index of Ann(a) in R is maximal.
We assume that the index equals n. Let b1, . . . , bn ∈ R be elements such that
aR = {ab1, . . . , abn}. Let C = Ann(b1, . . . , bn). We will show now that, CR ≤ aR.
In fact, if x ∈ C, then (a + x)R contains {ab1, . . . , abn}. On the other hand, by
maximality of a, (a+x)R cannot have more than n elements. Hence, (a+x)R = aR.
Thus,

xR ⊆ aR+ (a+ x)R ⊆ aR,

as claimed. Let a1, . . . , as be a transversal of C in the additive group of R, and let
a0 = a. Note that, since Ann(bi) has index at most n, the index s = [R : C] is at
most nn. We see that

R2 = (C + (C + a1) + . . .+ (C + as))R = CR +

s∑

i=1

aiR ≤

s∑

i=0

aiR.

By hypothesis, it follows that R2 has n-bounded order. �

Lemma 3.2. Let B be a one-sided ideal of a finite ring R such that [R : B] and
|B2| are both at most n. Then, there is a two-sided ideal A such that [R : A] and
|A2| are both n-bounded.
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Proof. Without loss of generality, we can suppose that B is a right-ideal. We
use induction on the index [R : B], which is at most n by hypothesis. The case
[R : B] = 1 is obvious so we assume that [R : B] ≥ 2. By hypothesis Bx ⊆ B for
any x ∈ R. Note that whenever y ∈ R, we have yBx ⊆ yB for any x ∈ R and
so yB is a right-ideal, too. If B is a two-sided ideal, we have nothing to prove so
assume that there is y ∈ B such that yB 6⊆ B. Set D = B + yB and note that D
is a right-ideal whose index is strictly less than that of B. We need to show that
|D2| is n-bounded.

Let d = yb1 + b2 be an arbitrary element of D, where b1, b2 ∈ B. Note that
Ann(b1, b2) ⊆ Ann(d) so we deduce that the index of Ann(d) is n-bounded (at most
n4). Thus, by Proposition 3.1, |D2| is n-bounded. Since D is a right-ideal whose
index is strictly less than that of B, the result follows by induction. �

We proved the previous lemma for right-ideals to keep the proof consistent with
our notation, because we only work with right-annihilators. However, the proof
is exactly the same for left-ideals, using left-annihilators (note that the proof of
Proposition 3.1 is also symmetric in this sense). Actually, Proposition 3.1 shows
that right-annihilators have n-bounded index in a ring if and only if left-annihilators
have n-bounded index, which might be of independent interest.

Proof of Theorem 1.3. Suppose R is a finite ring such that zp(R) = ε. Define

X = {x ∈ R | |xR| ≤ 2/ε}.

Note that R rX = {x ∈ R | |Ann(x)| ≤ (ε/2)|R|}, whence

ε|R|2 = |{(x, y) ∈ R×R | xy = 0}| =
∑

x∈R

|Ann(x)| ≤
∑

x∈X

|R|+
∑

x/∈X

ε

2
|R|

≤ |X ||R|+ (|R| − |X |)
ε

2
|R|.

Therefore ε|R| ≤ |X |+ (ε/2)(|R| − |X |), whence (ε/2)|R| < |X |.
Let B be the additive group generated by X . Clearly, |B| ≥ |X | > (ε/2)|R| and

so the index of B in R is at most 2/ε. As X is symmetric and (2/ε)|X | > |R|, it
follows from Lemma 2.2 that every element of B is a sum of at most 6/ε elements
of X . Therefore |bR| ≤ (2/ε)6/ε for every b ∈ B.

Let D be the left-ideal generated by B. Clearly, [R : D] is ε-bounded. Hence,
there are ε-boundedly many elements b1, . . . , bs ∈ B such that D = B +

∑s
i=1

Rbi.
Note that C = Ann(b1, . . . , bs) annihilates all Bbi. Now, for any y ∈ D, if we write
y = b+ a1b1 + . . . asbs for b ∈ B and ai ∈ R, we have that

yC = bC + a1b1C + ...+ asbsC = bC.

Therefore Ann(y) contains Ann(b) ∩C, which has ε-bounded index. Thus, Ann(y)
has ε-bounded index for all y ∈ D. Applying Proposition 3.1 and Lemma 3.2, the
theorem follows.

�
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