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EXPLICIT BRACKET IN THE EXCEPTIONAL SIMPLE

LIE SUPERALGEBRA cvect(0|3)∗

IRINA SHCHEPOCHKINA AND GERHARD POST

Abstract. This note is devoted to a more detailed description of one of
the five simple exceptional Lie superalgebras of vector fields, cvect(0|3)∗,
a subalgebra of vect(4|3). We derive differential equations for its ele-
ments, and solve these equations. Hence we get an exact form for the
elements of cvect(0|3)∗. Moreover we realize cvect(0|3)∗ by ”glued” pairs
of generating functions on a (3|3)-dimensional periplectic (odd symplec-
tic) supermanifold and describe the bracket explicitly.
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Introduction

V. Kac [3] classified simple finite-dimensional Lie superalgebras over C.
Kac further conjectured [3] that passing to infinite-dimensional simple Lie
superalgebras of vector fields with polynomial coefficients we only acquire
the straightforward analogues of the four well-known Cartan series: vect(n),
svect(n), h(2n) and k(2n+1) (of all, divergence-free, Hamiltonian and contact
vector fields, respectively, realized on the space of dimension indicated).

It soon became clear [4], [1], [5], [6] that the actual list of simple vectoral
Lie superalgebras is much larger. Several new series were found.

Next, exceptional vectoral algebras were discovered [8], [9]; for their de-
tailed description see [10], [2]. All of them are obtained with the help of a
Cartan prolongation or a generalized prolongation, cf. [8]. This description
is, however, not always satisfactory; a more succinct presentation (similar
to the one via generating functions for the elements of h and k) and a more
explicit formula for their brackets is desirable.

The purpose of this note is to give a more lucid description of one of
these exceptions, cvect(0|3)∗. In particular we offer a multiplication table
for cvect(0|3)∗ that is simpler than previous descriptions, by use of ”glued”
pairs of generating functions for the elements of cvect(0|3)∗.

This note can be seen as a supplement to [10]. To be self-contained and
to fix notations we introduce some basic notions in section 0.

Throughout, the ground field is C.

I.Shch. expresses her thanks: to D. Leites for rising the problem and help; to RFBR
grant 95-01-01187 and NFR (Sweden) for part of financial support; University of Twente
and Stockholm University for hospitality; to P. Grozman whose computer experiments
encouraged her to carry on with unbearable calculations.
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§0. Background

0.1. We recall that a superspace V is a Z/2-graded space; V = V0̄ ⊕ V1̄.
The elements of V0̄ are called even, those of V1̄ odd. When considering an
element x ∈ V , we will always assume that x is homogeneous, i.e. x ∈ V0̄
or x ∈ V1̄. We write p(x) = ī if x ∈ Vī. The superdimension of V is (n|m),
where n = dim(V0̄) and m = dim(V1̄).

For a superspace V , we denote by Π(V ) the same superspace with the
shifted parity, i.e., Π(Vī) = Vī+1̄.

0.2. Let x = (u1, . . . , un, ξ1, . . . , ξm), where u1, . . . , un are even indetermi-
nates and ξ1, . . . , ξm odd indeterminates. In the associative algebra C[x] we

have that x · y = (−1)p(x)p(y)y · x (by definition) and hence ξ2i = 0 for all i.
The derivations der(C[x]) of C[x] form a Lie superalgebra; its elements are
vector fields. These polynomial vector fields are denoted by vect(n|m). Its
elements are represented as

D =
∑

i

fi
∂

∂ui
+

∑

j

gj
∂

∂ξj

where fi ∈ C[x] and gj ∈ C[x] for all i, j = 1..n. We have p(D) = p(fi) =
p(gj) + 1̄ and the Lie product is given by the commutator

[D1,D2] = D1D2 − (−1)p(D1)p(D2)D2D1.

On the vector fields we have a map, div : vect(n|m) → C[x], defined by

divD = div(
n
∑

i=1

fi
∂

∂ui
+

n
∑

j=1

g
∂

∂ξj
) =

n
∑

i=1

∂fi
∂ui

− (−1)p(D)
n
∑

j=1

∂gj
∂ξj

.

A vector field D that satisfies divD = 0 is called special. The linear space
of special vector fields in vect(n|m) forms a Lie superalgebra, denoted by
svect(n|m).

0.3. Next we discuss the Lie superalgebra of Leitesian vector fields le(n).
It consists of the elements D ∈ vect(n|n) that annihilate the 2-form ω =
∑

i duidξi. Hence le(n) is an odd superanalogon of the Hamiltonian vector
fields (in which case ω =

∑

i dpidqi). Similar to the Hamiltonian case, there
is a map Le : C[x] → le(n), with x = (u1, . . . , un, ξ1, . . . , ξn):

Lef =
n
∑

i=1

(
∂f

∂ui

∂

∂ξi
+ (−1)p(f)

∂f

∂ξi

∂

∂ui
)

Note that Le maps odd elements of C[x] to even elements of le(n) and vice
versa. Moreover Ker(Le) = C. We turn C[x] (with shifted parity) into a Lie
superalgebra with (Buttin) bracket {f, g} defined by

Le{f,g} = [Lef ,Leg]

A straightforward calculation shows that

{f, g} =

n
∑

i=1

(
∂f

∂ui

∂g

∂ξi
+ (−1)p(f)

∂f

∂ξi

∂g

∂ui
).

This way ΠC[x]/C · 1 is a Lie superalgebra isomorphic to le(n). We call f
the generating function of Lef . Here and throughout p(f) will denote the



EXPLICIT BRACKET IN AN EXCEPTIONAL LIE SUPERALGEBRA 3

parity in C[x], not in ΠC[x]. So p(f) is the parity of the number of ξ in a
term of f .

0.4. The algebra le(n) contains certain important subalgebras. First of all
there is sle(n), the space of special Leitesian vector fields:

sle(n) = le(n) ∩ svect(n|n).

We have seen that if D ∈ le(n) then D = Lef for some f ∈ C[x]. Now
D ∈ sle(n) iff f is harmonic in the following sense

∆(f) :=
n
∑

i=1

∂2f

∂ui∂ξi
= 0

Usually we simply say f ∈ sle(n), identifying f and Lef . This ∆ satisfies
the condition ∆2 = 0 and hence ∆ : le(n) → sle(n). The image ∆(le(n)) =:
sle◦(n) is an ideal of codimension 1 on sle(n). This ideal, sle◦(n), can also
be defined by the exact sequence

0 −→ sle◦(n) −→ sle(n) −→ C · Leξ1...ξn −→ 0.

Note that if Φ =
∑

uiξi and f ∈ sle(n), then

∆(Φf) = (n+ degu f − degξ f) · f

Let ν(f) = n+degu f −degξ f . Then ν(f) 6= 0 iff f ∈ sle◦(n). So on sle◦(n)

we can define the right inverse ∆−1 to ∆ by the formula

∆−1f =
1

ν(f)
(Φf).

0.5. Cartan prolongs. We will repeatedly use Cartan prolongation. So
let us recall the definition. Let g be a Lie superalgebra and V a g-module.
Set g−1 = V , g0 = g and for i > 0 define the i-th Cartan prolong gi as the
space of all X ∈ Hom(g−1, gi−1) such that

X(w0)(w1, w2, . . . , wi) = (−1)p(w0)p(w1)X(w1)(w0, w2, . . . , wi)

for all w0, . . . , wi ∈ g−1.
The Cartan prolong (the result of Cartan’s prolongation) of the pair (V, g)

is (g−1, g0)∗ = ⊕i≥−1gi.
Suppose that the g0-module g−1 is faithful. Then

(g−1, g0)∗ ⊂ vect(n|m) = der(C[x]), where n = dim(V0̄) and m = dim(V1̄)

and x = (u1, . . . , un, ξ1, . . . , ξm). We have for i ≥ 1

gi = {D ∈ vect(n|m) : degD = i, [D,X] ∈ gi−1 for any X ∈ g−1}.

The Lie superalgebra structure on vect(n|m) induces one on (g−1, g0)∗. This
way the commutator of vector fields [g, v], corresponds to the action g · v,
g ∈ g and v ∈ V .

We give some examples of Cartan prolongations. Let g−1 = V be an
(n|m)-dimensional superspace and g0 = gl(n|m) the space of all endomor-
phisms of V . Then (g−1, g0)∗ = vect(n|m). If one takes for g0 only the
supertraceless elements sl(n|m), then (g−1, g0)∗ = svect(n|m), the algebra
of vector fields with divergence 0.
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§1. The structure of vect(0|3)∗

1.1. In this note our primary interest is in a certain Cartan prolongation
(denoted by vect(0|3)∗) and the extension cvect(0|3)∗ thereof. Here we will
discuss vect(0|3)∗. Now vect(0|3)∗ is a short-hand notation for the Cartan
prolongation with

V = g−1 = ΠΛ(η1, η2, η3)/C and g0 = derV

So V is a superspace of dimension (4|3), with

V0̄ = 〈η1η2η3, η1, η2, η3〉; V1̄ = 〈η2η3, η3η1, η1η2〉

and dim g0 = (12|12).
The elements of g−1 and g0 can be expressed as vector fields in vect(4|3).

Choosing

η1η2η3 ≃ −∂y; ηi ≃ −∂ui
;

∂η1η2η3
∂ηi

≃ −∂ξi .

it is subject to straightforward verification that the elements of g0, expressed
as elements of vect(4|3) are of the form:

∂η1 ≃ −y∂ξ1 − ξ2∂u3
+ ξ3∂u2

∂η2 ≃ −y∂ξ2 − ξ3∂u1
+ ξ1∂u3

∂η3 ≃ −y∂ξ3 − ξ1∂u2
+ ξ2∂u1

−η1∂η1 ≃ u1∂u1
+ ξ2∂ξ2 + ξ3∂ξ3 + y∂y

−η2∂η2 ≃ u2∂u2
+ ξ1∂ξ1 + ξ3∂ξ3 + y∂y

−η3∂η3 ≃ u3∂u3
+ ξ1∂ξ1 + ξ2∂ξ2 + y∂y

η1∂η2 ≃ −u2∂u1
+ ξ1∂ξ2

η2∂η3 ≃ −u3∂u2
+ ξ2∂ξ3

η3∂η1 ≃ −u1∂u3
+ ξ3∂ξ1

η2∂η1 ≃ −u1∂u2
+ ξ2∂ξ1

η3∂η2 ≃ −u2∂u3
+ ξ3∂ξ2

η1∂η3 ≃ −u3∂u1
+ ξ1∂ξ3

η1η2η3∂η1 ≃ −u1∂y
η1η2η3∂η2 ≃ −u2∂y
η1η2η3∂η3 ≃ −u3∂y

η1η2∂η3 ≃ −u3∂ξ3
η2η3∂η1 ≃ −u1∂ξ1
η3η1∂η2 ≃ −u2∂ξ2

η1η2∂η1 ≃ −u1∂ξ3 − ξ2∂y
η2η3∂η2 ≃ −u2∂ξ1 − ξ3∂y
η3η1∂η3 ≃ −u3∂ξ2 − ξ1∂y

η1η2∂η2 ≃ −u2∂ξ3 + ξ1∂y
η2η3∂η3 ≃ −u3∂ξ1 + ξ2∂y
η3η1∂η1 ≃ −u1∂ξ2 + ξ3∂y

1.2. Now we will give a more explicit description of vect(0|3)∗. It will turn
out that vect(0|3)∗ is isomorphic to le(3) as Lie superalgebra; however con-
sidered as Z-graded algebras we have to define a different grading. The
Z-graded Lie superalgebra le(3; 3) is le(3) as Lie superalgebra with Z-degree
of D

D =
∑

i

fi
∂

∂ui
+

∑

j

gj
∂

∂ξj

the u-degree of fi minus 1 (or the u-degree of gj), i.e. deg ξi = 0.
Consider the map i1 : le(3; 3) → vect(4|3) given by

a.) If f = f(u) then

i1(Lef ) = Le∑ ∂f

∂ui
ξjξk−yf

where y is treated as a parameter and (i, j, k) ∈ A3 (even permutations
of {1, 2, 3}).

b.) If f =
∑

fi(u)ξi then

i1(Lef ) = Lef − ϕ(u)
∑

ξi∂ξi + (−ϕ(u)y +∆(ϕ(u)ξ1ξ2ξ3)) ∂y

where ϕ(u) = ∆(f) and ∆ as given in section 0.4.
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c.) If f = ψ1(u)ξ2ξ3 + ψ2(u)ξ3ξ1 + ψ3(u)ξ1ξ2 then

i1(Lef ) = −∆(f)∂y −
3

∑

i=1

ψi(u)
∂

∂ξi
.

d.) If f = ψ(u)ξ1ξ2ξ3 then

i1(Lef ) = −ψ(u)∂y.

Note that i1 preserves the Z-degree. We have the following lemma.

1.3. Lemma. The map i1 is an isomorphism of Z-graded Lie superalgebras

between le(3; 3) and vect(0|3)∗ ⊂ vect(4|3).

Proof. That i1 is an embedding can be verified by direct computation. To
prove that the image of i1 is in vect(0|3)∗ it is enough to show that this is
the case on the components le(3; 3)−1 ⊕ le(3; 3)0, i.e. on functions f(u, ξ) of
degree ≤ 1 with respect to u, as the Cartan prolongation is the biggest sub-
algebra g of vect(4|3), with given g−1 and g0. The proof that i1 is surjective
onto vect(0|3)∗ is given in corollary 4.6.

A generalized version of Lemma 1.3 can be found in [10] and [7]. It states
that le(n;n) and vect(0|n)∗ are isomorphic for all n ≥ 1.

§2. The construction of cvect(0|3)∗

2.1. Let us describe a general construction, which leads to several new sim-
ple Lie superalgebras. Let u = vect(m|n), let g = (u−1, g0)∗ be a simple Lie
subsuperalgebra of u. Moreover suppose there exists an element d ∈ u0 that
determines an exterior derivation of g and has no kernel on u+. Let us study
the prolong g̃ = (g−1, g0 ⊕ Cd)∗.

Lemma. Either g̃ is simple or g̃ = g⊕ Cd.

Proof. Let I be a nonzero graded ideal of g̃. The subsuperspace (ad u−1)
k+1a

of u−1 is nonzero for any nonzero homogeneous element a ∈ uk and k ≥
0. Since g−1 = u−1, the ideal I contains nonzero elements from g−1; by
simplicity of g the ideal I contains the whole g. If, moreover, [g−1, g̃1] = g0,
then by definition of the Cartan prolongation g̃ = g⊕ Cd.

If, instead, [g−1, g̃1] = g0 ⊕ Cd, then d ∈ I and since [d, u+] = u+, we
derive that I = g̃. In other words, g̃ is simple.

As an example, take g = svect(m|n); g0 = sl(m|n), d = 1m|n. Then
(g−1, g0 ⊕ Cd)∗ = vect(m|n).

2.2. Definition. The Lie superalgebra cvect(0|3)∗ ⊂ vect(4|3) is the Cartan

prolongation with cvect(0|3)−1 = vect(0|3)−1 and cvect(0|3)0 = vect(0|3)0 ⊕
Cd, with

d =
∑

ui∂ui
+

∑

ξi∂ξi + y∂y.

If now

f =

3
∑

i=1

ξi∂ξi + 2y∂y,

then it is clear that f ∈ vect(0|3) ⊕ Cd, but f 6∈ vect(0|3).
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2.3. Theorem. The Lie superalgebra cvect(0|3)∗ is simple.

Proof. We know that vect(0|3)∗ ∼= le(3; 3) is simple. According to Lemma 2.1
it is sufficient to find an element F ∈ cvect(0|3)1, which is not in vect(0|3)1.
For F one can take

F = yξ1∂ξ1 + yξ2∂ξ2 + yξ3∂ξ3 + y2∂y − ξ1ξ2∂u3
− ξ3ξ1∂u2

− ξ2ξ3∂u1

Indeed, one easily checks that ∂yF = f , while

[∂ξi , F ] = −∂ηi (i = 1, 2, 3),

and moreover [∂ui
, F ] = 0. This proves the claim.

Similar constructions are possible for general n. For n = 2 we obtain
cvect(0|2)∗ ∼= vect(2|1), while for n > 3 one can prove that cvect(0|n)∗ is
not simple. For details, we refer to [10].

2.4. Lemma. A vector field

D =

3
∑

i=1

(Pi∂ξi +Qi∂ui
) +R∂y

in vect(4|3) belongs to cvect(0|3)∗ if and only if it satisfies the following

system of equations:

∂Qi

∂uj
+ (−1)p(D) ∂Pj

∂ξi
= 0 for any i 6= j; (2.1)

∂Qi

∂ui
+ (−1)p(D) ∂Pi

∂ξi
=

1

2





∑

1≤j≤3

∂Qj

∂uj
+
∂R

∂y



 for i = 1, 2, 3; (2.2)

∂Qi

∂ξj
+
∂Qj

∂ξi
= 0 for any i, j; in particular

∂Qi

∂ξi
= 0; (2.3)

∂Pi

∂uj
−
∂Pj

∂ui
= −(−1)p(D) ∂R

∂ξk
(2.4)

for any k and any even permutation

(

1 2 3
i j k

)

.

∂Qi

∂y
= 0 for i = 1, 2, 3; (2.5)

∂Pk

∂y
= (−1)p(D) 1

2

(∂Qi

∂ξj
−
∂Qj

∂ξi

)

(2.6)

for any k and for any even permutation

(

1 2 3
i j k

)

.

Proof. Denote by g = ⊕i≥−1gi the superspace of solutions of the system
(2.1)–(2.6). Clearly, g−1

∼= vect(4|3)−1. We directly verify that the images of
the elements from vect(0|3)⊕Cd satisfy (2.1)–(2.6). Actually, we composed
the system of equations (2.1)–(2.6) by looking at these images.

The isomorphism g0 = vect(0|3) ⊕ Cd follows from dimension considera-
tions.
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Set

Duj
(D) =

∑

i≤3

(
∂Pi

∂uj

∂

∂ξi
+
∂Qi

∂uj

∂

∂ui
) +

∂R

∂uj

∂

∂y
;

Dy(D) =
∑

i≤3

(
∂Pi

∂y

∂

∂ξi
+
∂Qi

∂y

∂

∂ui
) +

∂R

∂y

∂

∂y
;

D̃ξj (D) = (−1)p(D)
∑

i≤3

(
∂Pi

∂ξj

∂

∂ξi
+
∂Qi

∂ξj

∂

∂ui
) + (−1)p(D) ∂R

∂ξj

∂

∂y
.

The operators Duj
, Dy and D̃ξj , clearly, commute with the g−1-action. Ob-

serve: the operators commute, not supercommute.
Since the operators in the equations (2.1)–(2.6) are linear combinations of

only these operators Duj
,Dy and D̃ξj , the definition of Cartan prolongation

itself ensures isomorphism of g with cvect(0|3)∗.

2.5. Remark. The left hand sides of eqs. (2.1)–(2.6) determine coefficients
of the 2-form LDω, where LD is the Lie derivative and ω =

∑

1≤i≤3 duidξi.
It would be interesting to interpret the right-hand side of these equations in
geometrical terms as well.

2.6. Remark. Lemma 2.4 illustrates how cvect(0|3)∗ can be characterized
by a set of first order, constant coefficient, differential operators. This is a
general fact of Cartan prolongations; one just replaces the linear constraints
on g0 by such operators. For example, for vect(0|3)∗ we have the equations
(2.1)–(2.6) and

∂R

∂y
−

3
∑

i=1

∂Qi

∂ui
= 0 (2.7)

Indeed, this equation is satisfied by all elements of vect(0|3)0, see section
1.1, but not by d.

§3. Solution of differential equations (2.1) − (2.6)

Set D3
ξ = ∂3

∂ξ1∂ξ2∂ξ3
.

3.1. Theorem. Every solution of the system (2.1) − (2.6) is of the form:

D = Lef + yAf − (−1)p(f)
(

y∆(f) + y2D3
ξf

)

∂y+

Ag − (−1)p(g)
(

∆(g) + 2yD3
ξg
)

∂y,
(3.1)

where f, g ∈ C[u, ξ] are arbitrary and the operator Af is given by the formula:

Af =
∂2f

∂ξ2∂ξ3

∂

∂ξ1
+

∂2f

∂ξ3∂ξ1

∂

∂ξ2
+

∂2f

∂ξ1∂ξ2

∂

∂ξ3
. (3.2)

Proof. First, let us find all solutions of system (2.1)–(2.6) for which Q1 =
Q2 = Q3 = 0. In this case the system takes the form

∂Pj

∂ξi
= 0 for i 6= j (2.1′)

(−1)p(D) ∂Pi

∂ξi
=

1

2

∂R

∂y
for i = 1, 2, 3 (2.2′)



8 IRINA SHCHEPOCHKINA AND GERHARD POST

∂Pi

∂uj
−
∂Pj

∂ui
= −(−1)p(D) ∂R

∂ξk
for (i, j, k) ∈ A3 (2.4′)

∂Pk

∂y
= 0 for k = 1, 2, 3 (2.6′)

From (2.1′), (2.2′) and (2.6′) it follows that

Pi = Ψi(u1, u2, u3) + ξiϕ(u1, u2, u3),

where ϕ = 1
2(−1)p(D) ∂R

∂y
. For brevity we will write Ψi(u) and ϕ(u). Then

R = (−1)p(D) · 2ϕ(u)y +R0(u, ξ).
Let us expand the 3 equations of type (2.4′); their explicit form is:

∂R0

∂ξ1
= −(−1)p(D)(

∂Ψ2

∂u3
−
∂Ψ3

∂u2
) + (−1)p(D)(

∂ϕ

∂u2
ξ3 −

∂ϕ

∂u3
ξ2),

∂R0

∂ξ2
= −(−1)p(D)(

∂Ψ3

∂u1
−
∂Ψ1

∂u3
) + (−1)p(D)(

∂ϕ

∂u3
ξ1 −

∂ϕ

∂u1
ξ3),

∂R0

∂ξ3
= −(−1)p(D)(

∂Ψ1

∂u2
−
∂Ψ2

∂u1
) + (−1)p(D)(

∂ϕ

∂u1
ξ2 −

∂ϕ

∂u2
ξ1).

The integration of these equations yields

R0 = (−1)p(D)(Ψ0(u)− (
∂Ψ2

∂u3
−
∂Ψ3

∂u2
)ξ1 −

(
∂Ψ3

∂u1
−
∂Ψ1

∂u3
)ξ2 − (

∂Ψ1

∂u2
−
∂Ψ2

∂u3
)ξ3 − (

∂ϕ

∂u2
ξ3ξ1 +

∂ϕ

∂u1
ξ2ξ3 +

∂ϕ

∂u3
ξ1ξ2))

= (−1)p(D)(Ψ0(u) + ∆(−Ψ1ξ2ξ3 −Ψ2ξ3ξ1 −Ψ3ξ1ξ2 − ϕξ1ξ2ξ3)).

Therefore, any vector field D with Q1 = Q2 = Q3 = 0 satisfying (2.1) –
(2.6) is of the form

D =

3
∑

i=1

Ψi(u)∂ξi + ϕ(u)

3
∑

i=1

ξi∂ξi + (−1)p(D)

· (Ψ0(u) + ∆(−Ψ1ξ2ξ3 −Ψ2ξ3ξ1 −Ψ3ξ1ξ2 − ϕξ1ξ2ξ3) + 2ϕ(u)y)∂y .

where, as before,

∆ =

3
∑

i=1

∂

∂ui

∂

∂ξi
.

Set

g(u, ξ) = g0(u, ξ) −Ψ1ξ2ξ3 −Ψ2ξ3ξ1 −Ψ3ξ1ξ2 − ϕξ1ξ2ξ3,

with ∆g0 = Ψ0 and degξ(g0) ≤ 1. Then

Ag =
3

∑

i=1

Ψi∂ξi + ϕ
3

∑

i=1

ξi∂ξi ; D3
ξg = ϕ and (−1)p(D) = (−1)p(g)+1

for functions g homogeneous with respect to parity. In the end we get:

D = Ag + (−1)p(D)(∆(g) + 2yD3
ξg)∂y

= Ag − (−1)p(g)(∆(g) + 2yD3
ξg)∂y.

(3.3)
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Let us return now to the system (2.1) – (2.6). Equations (2.3), (2.5), (2.6)
imply that there exists a function f(u, ξ) (independent of y!) such that

Qi = −(−1)p(D) ∂f

∂ξi
for i = 1, 2, 3.

Then (2.1) implies that

Pi =
∂f

∂ui
+ fi(u, ξi, y).

From (2.6) it follows that

∂fi
∂y

= ∂ξj∂ξkf for even permutations (i, j, k)

or

fi = y(∂ξj∂ξkf) + P̃i(u, ξi).

Observe that P̃i satisfy (2.1′) and (2.6′); hence, in view of (2.2), ∂P̃i

∂ξi
does

not depend on i. Therefore, we can choose R̃ so that (P̃i, R̃) satisfy eqs.
(2.1′), (2.2′), (2.4′), (2.6′). Thanks to the linearity of system (2.1) – (2.6)
the vector field D is then of the form

D = Df + D̃, (3.4)

where Df and D̃ are solutions of (2.1) – (2.6) such that D̃ =
∑

P̃i∂ξi + R̃∂y
(i.e., D̃ is of the form (3.3)) and

Df =
∑

(−(−1)p(D) ∂f

∂ξi
∂ui

+
∂f

∂ui
∂ξi) +

∑

y(∂ξj∂ξkf)∂ξi) +Rf · ∂y

= Lef + yAf +Rf∂y.

It remains to find Rf . Equation (2.2) takes the form

(−1)p(D)yD3
ξf =

1

2
(−(−1)p(D)(∆f) +

∂Rf

∂y
).

Hence,

Rf = (−1)p(D)(y2D3
ξf + y · (∆f) +R0(u, ξ)).

Then, we can rewrite (2.4) as

−y
∂∆f

∂ξk
+
∂R0

∂ξk
= y∂uj

∂ξj∂ξkf − y∂ui
∂ξk∂ξif.

Observe that the right hand side of the last equation is equal to −y ∂∆f
∂ξk

.

This means that ∂R0

∂ξk
= 0 or R0 = R0(u). Therefore, replacing R̃ with

R̃+R0 we may assume that R0 = 0. Then

Df = Lef + yAf + (−1)p(D)(y(∆f) + y2D3
ξf)∂y. (3.5)

By uniting (3.3) – (3.5) we get (3.1).
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§4 How to generate cvect(0|3)∗ by pairs of functions

We constructed cvect(0|3)∗ as an extension of vect(0|3)∗ ∼= le(3; 3), see
lemma 1.3. Using the results of section 3, we obtain another embedding
i2 : le(3) → vect(0|3)∗.

4.1. Lemma. The map

i2 : Lef → Lef + yAf − (−1)p(f)
(

y∆(f) + y2D3
ξf

)

∂y (4.1)

determines an embedding of le(3) into cvect(0|3)∗. This embedding preserves

the standard grading of le(3).

Proof. We have to verify the equality

i2(Le{f,g}) = [i2(Lef ), i2(Leg)].

Comparison of coefficients of different powers of y shows that the above
equation is equivalent to the following system:

Le{f,g} = [Lef ,Leg]. (4.2)

A{f,g} = [Lef , Ag] + [Af ,Leg]− (−1)p(f)(∆(f) ·Ag + (−1)p(f)p(g)∆(g)Af ).
(4.3)

[Af , Ag] = (−1)p(f)
(

D3
ξf · Ag + (−1)p(f)p(g)D3

ξgAf

)

. (4.4)

∆({f, g}) = {∆f, g} − (−1)p(f){f,∆g}. (4.5)

D3
ξ{f, g} = {D3

ξf, g} − (−1)p(f){f,D3
ξg} − (−1)p(f)(Af (∆g)

+(−1)p(f)p(g)Ag(∆f)) + ∆fD3
ξg −D3

ξf∆g.
(4.6)

Equation (4.2) is known, see section 0.3. The equalities (4.3)–(4.6) are
subject to direct verification.

We found two embeddings i1 : le(3; 3) → vect(0|3)∗ and i2 : le(3) →
cvect(0|3)∗. Let us denote

αg = Ag − (−1)p(g)(∆g + 2yD3
ξg)∂y.

We want to prove that the sum of the images of i1 and i2 cover the whole
cvect(0|3)∗. According to Theorem 3.1, it is sufficient to represent αg in the
form αg = i1g1 + i2g2. For convenience we simply write f instead of Lef .

4.2. Lemma. For αg we have:

αg =















0 if degξ g = 0
i1(−(∆g)ξ1ξ2ξ3) if degξ g = 1

i1(g) if degξ g = 2
i1(−∆−1(D3

ξg)) + i2(∆
−1(D3

ξg)) if degξ g = 3.

The right inverse ∆−1 of ∆ is given in section 0.4.
The proof of Lemma 4.2 is a direct calculation.
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4.3. A wonderful property of sle◦(3). In the standard grading of g =
sle◦(3) we have: dim g−1 = (3|3), g0 ∼= spe(3). For the regraded superalgebra
Rg = sle◦(3; 3) ⊂ le(3; 3) we have: dimRg−1 = (3|3), Rg0 = svect(0|3) ∼=
spe(3). For the definition of spe(3) we refer to [3] or [10]. Therefore, for
sle◦(3) and only for it among the sle◦(n), the regrading R determines a
nontrivial automorphism. In terms of generating functions the regrading is
determined by the formulas:

1) degξ(f) = 0: R(f) = ∆(fξ1ξ2ξ3);
2) degξ(f) = 1: R(f) = f ;

3) degξ(f) = 2: R(f) = D3
ξ (∆

−1f).

Note that R2(f) = (−1)p(f)+1f . Now we can formulate the following propo-
sition.

4.4. Proposition. The nondirect sum of the images of i1 and i2 covers the

whole cvect(0|3)∗, i.e.,

i1(le(3; 3)) + i2(le(3)) = (cvect(0|3))∗.

We also have

i1(le(3; 3)) ∩ i2(le(3)) ∼= sle◦(3; 3) ∼= sle◦(3).

Proof. The first part follows from Lemma 4.2. The second part follows by
direct calculation from solving i2(Lef ) = i1(Leg). Note that Lef ∈ sle◦(3)
iff ∆(f) = 0 and D3

ξf = 0, and similar for Leg ∈ sle◦(3; 3). The equation

i2(Lef ) = i1(Leg) is only solvable if f ∈ sle◦(3) and g ∈ sle◦(3; 3), and in

this case we obtain g = (−1)p(f)+1Rf .

Therefore, we can identify the space of the Lie superalgebra cvect(0|3)∗ with
the quotient space of le(3; 3) ⊕ le(3) modulo

{(−1)p(g)+1Rg ⊕ (−g), g ∈ sle◦(3)}.

In other words, we can represent the elements of cvect(0|3)∗ in the form of
the pairs of functions

(f, g), where f, g ∈ ΠC[u, ξ]/C · 1 (4.7)

subject to identifications

(−1)p(g)+1(Rg, 0) ∼ (0, g) for any g ∈ sle◦(3).

4.5. Corollary. The map ϕ defined by the formula

ϕ|i1(le(3;3)) = sign i2i
−1
1 ; ϕ|i2(le(3)) = i1i

−1
2

is an automorphism of cvect(0|3)∗. Here sign(D) = (−1)p(D)D.

The map ϕ may be represented in inner coordinates of vect(4|3) as a
regrading by setting deg y = −1; deg ui = 1; deg ξi = 0.

In the representation (4.7) we have

ϕ(f, g) = (g, (−1)p(f)+1f).

Now we can complete the proof of Lemma 1.3.

4.6. Corollary. The embedding i1 : le(3) → cvect(0|3)∗ is a surjection onto

vect(0|3)∗.
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Proof. By Proposition 4.4 we merely have to prove that i2(Lef ) ∈ vect(0|3)∗
iff ∆f = 0 and D3

ξf = 0. Applying equation (2.7) to i2(Lef ), this follows
immediately.

§5 The bracket in cvect(0|3)∗

Now we can determine the bracket in cvect(0|3)∗ in terms of representation
(f, g) as stated in formula (4.7).

We do this via αg. By Theorem 3.1 any D ∈ cvect(0|3)∗ is of the form
D = i2(f) + αg for some generating functions f and g. To determine the
bracket [i2(f), i1(h)], we

1. Compute the brackets [i2f, αg] for any f, g ∈ C[u, ξ]/C · 1;
2. Represent i1(h) in the form

i1(h) = i2a(h) + αb(h) for any h ∈ C[u, ξ]/C · 1; (5.1)

In Lemma 4.2 we expressed αg in i1 and i2.

Remark. The functions a(h) and b(h) above are not uniquely defined. Any
representation will do.

5.1. Lemma. For any functions f, g ∈ C[u, ξ]/C · 1 the bracket [i2f, αg] is
of the form

[i2f, αg] = i2F + αG, (5.2)

where

F = f ·D3
ξg − (−1)(p(f)+1)(p(g)+1)Agf and G = −f∆g

Proof. Direct calculation gives that

[i2f, αg] = [Lef , Ag] + (−1)p(f)p(g)+p(f)+1∆g ·Af

+ y
(

[Af , Ag] + (−1)p(f)p(g)+p(f)+1 · 2 ·D3
ξg · Af

)

+ (−1)p(g)+1
(

{f,∆g}+ (−1)p(f)∆f ·∆g
)

∂y

+
(

(−1)p(g)+1Af (∆g) + (−1)p(f)p(g)+p(g)+1Ag(∆f)

+ 2 · (−1)p(g)+1{f,D3
ξg} + 2 · (−1)p(f)+p(g)+1D3

ξf ·∆g
)

y∂y

+(−1)p(f)+p(g)+12 ·D3
ξf ·D3

ξg · y
2∂y.

In order to find the functions F and G, it suffices to observe that the co-
efficient of ∂y, non-divisible by y, should be equal to (−1)p(G)+1∆G. This
implies the equations:

(−1)p(G)+1∆G = (−1)p(g)+1
(

{f,∆g}+ (−1)p(f)∆f ·∆g
)

or

(−1)p(G)+1∆G = (−1)p(f)+p(g)+1∆(f ·∆g).

Here p(G) = p(f ·∆g) = p(f) + p(g) + 1. Hence, ∆G = ∆(−f∆g). Since G
is defined up to elements from sle◦(3), we can take G = −f∆g.

The function F to be found is determined from the equation

i2F = [i2f, αg]− αG. (5.3)
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By comparing the coefficients of y∂y in the left and right hand sides of (5.3)
we get

(−1)p(F )+1∆F = (−1)p(g)+1Af (∆g) + (−1)p(f)p(g)+p(g)+1Ag(∆f)

+ 2(−1)p(g)+1{f,D3
ξg}+ (−1)p(f)+p(g)+12 ·D3

ξf ·∆g

− 2 · (−1)p(f)+p(g)D3
ξ (−f∆g).

Observe that

D3
ξ (f∆g) = (D3

ξf)∆g + (−1)p(f)Af (∆g) +

3
∑

i=1

∂f

∂ξi

∂

∂ui
(D3

ξg)

= (D3
ξf) ·∆g + (−1)p(f)Af (∆g) + (−1)p(f){f,D3

ξg}.

Then

(−1)p(F )+1(∆F ) = (−1)p(g)Af (∆g) + (−1)p(f)p(g)+p(g)+1Ag(∆f).

By comparing parities we derive that

p(F ) + 1 = p(Af (∆g)) = p(f) + 1 + p(g) + 1 = p(f) + p(g).

It follows that

∆F = (−1)p(f)Af (∆g) + (−1)p(f)p(g)+p(f)+1Ag(∆f).

Let us transform the right hand side of the equality obtained. The sums
over i, j, k are over (i, j, k) ∈ A3:

(−1)p(f)Af (∆g) + (−1)p(f)p(g)+p(f)+1Ag(∆f)

=
∑

(−1)p(f)∂ξj∂ξkf · ∂ξi(
3

∑

s=1

∂us∂ξsg)

+ (−1)p(f)p(g)+p(f)+1
∑

∂ξj∂ξkg∂ξi(
3

∑

s=1

∂us∂ξsf)

=(−1)p(f)p(g)+p(f) ·
∑

((∂uj
∂ξi∂ξjg + ∂uk

∂ξi∂ξkg) · ∂ξj∂ξkf)

− (−1)p(f)p(g)+p(f) ·
∑

(∂ξj∂ξkg(∂uj
∂ξi∂ξjf + ∂uk

∂ξi∂ξkf))

=(−1)p(f)p(g)+p(f)
∑

∂uk
(∂ξi∂ξkg · ∂ξj∂ξkf + ∂ξj∂ξkg · ∂ξk∂ξif)

=(−1)p(f)p(g)+p(f)+p(g)
3

∑

k=1

(∂uk
∂ξk(Agf)− ∂uk

D3
ξg · ∂ξkf))

=− (−1)(p(f)+1)(p(g)+1)∆(Agf) + (−1)p(f)p(g)+p(f)∆(D3
ξg · f)

=∆(f ·D3
ξg) − (−1)(p(f)+1)(p(g)+1)∆(Agf).

Then

F = f ·D3
ξg − (−1)(p(f)+1)(p(g)+1)Agf + F0, where ∆F0 = 0.
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We have shown how to find functions F and G. To prove Lemma 5.1 it
only remains to compare the elements of the same degree in y in the right-
hand and the left-hand side, i.e., to verify the following three equalities:

(−1)p(F )+1D3
ξF =2(−1)p(f)+p(g)+1D3

ξf ·D3
ξg

LeF +AG =[Lef , Ag] + (−1)p(f)p(g)+p(f)+1∆g ·Af

AF =[Af , Ag] + 2 · (−1)p(f)p(g)+p(f)+1D3
ξg · Af

The verification is a direct one.

5.3. Lemma. The representation of i1h in the form (5.1) is as follows:

i1h =















i2(∆(hξ1ξ2ξ3)) if degξ h = 0,
i2h+ α(∆h)ξ1ξ2ξ3 if degξ h = 1,

αh if degξ h = 2,
α∆−1(D3

ξ
h) if degξ h = 3.

Proof. It suffices to compare the definition of αg with the definitions of

i1 and i2. If degξ h = 0 use the equalities
∑ ∂f

∂ui
ξjξk = ∆(fξ1ξ2ξ3) and

A∆(fξ1ξ2ξ3) = Lef . In the remaining cases the verification is not difficult.

Making use of the Lemmas 5.1, Lemma 5.2 and Lemma 4.2 we can com-
pute the whole multiplication table of [i2f, i1h]:

• degξ h = 0. Then

i1h = i2(∆(hξ1ξ2ξ3)) and [i2f, i1h] = i2{f,∆(hξ1ξ2ξ3)}.

We also have

{f,∆(hξ1ξ2ξ3)} =

{

0 if degξ f = 3
−{∆f, h}ξ1ξ2ξ3 if degξ f = 2.

• degξ h = 1. Then

[i2f, i1h] = [i2f, i2h+ α(∆h)ξ1ξ2ξ3 ] =
i2{f, h} − i2(f∆h) + i2(∆h ·

∑

ξi∂ξif) + α−f ·∆((∆h)ξ1ξ2ξ3).

• degξ h = 2. Then

[i2f, i1h] = [i2f, αh] = (−1)p(f)i2(Ahf)− α(f∆h) =














i1({f,∆h}ξ1ξ2ξ3) if degξ f = 0
i1(∆(fh)− f∆h) if degξ f = 1

i2(Ahf)− i2(∆
−1D3

ξ (f∆h)) + i1(∆
−1D3

ξ (f∆h)) if degξ f = 2

−i2(hD
3
ξf) if degξ f = 3.

• degξ h = 3. Then

[i2f, i1h] = [i2f, α∆−1(D3

ξ
h)] = −αf ·D3

ξ
h =















0 if degξ f = 0
i1(−∆(f ·D3

ξh)ξ1ξ2ξ3) = i1(−f∆h−∆f · h) if degξ f = 1

i1(−f ·D3
ξg) if degξ f = 2

i1(∆
−1(D3

ξf ·D3
ξg)) − i2(∆

−1(D3
ξf ·D3

ξg)) if degξ f = 3.

The final result is represented in the following tables.
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The brackets [i2f, i1h]

degξ(f) degξ(h) = 0 degξ(h) = 1

0 i2({f,∆(hξ1ξ2ξ3)}) −i1({∆(fξ1ξ2ξ3), h})
1 i2({f,∆(hξ1ξ2ξ3)}) i1(∆

−1{f,∆h})+
i2({f, h} −∆−1{f,∆h})

2 −i2({∆f, h}ξ1ξ2ξ3) i2(∆(fh)−∆(f)h)
3 0 i2(f∆(h) + ∆(f)h)

degξ(f) degξ(h) = 2 degξ(h) = 3

0 i1({f,∆h}ξ1ξ2ξ3) 0
1 −i1(∆(fh) + f∆h) i1(−f∆(h)−∆(f)h)
2 i1(∆

−1D3
ξ (f∆h))+ i1(−fD

3
ξh)

i2(Ahf −∆−1D3
ξ (f∆h))

3 i2(−hD
3
ξf) i1(∆

−1(D3
ξf ·D3

ξh))−

i2(∆
−1(D3

ξf ·D3
ξh))
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