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EXPLICIT BRACKET IN THE EXCEPTIONAL SIMPLE
LIE SUPERALGEBRA cvect(0]3).

IRINA SHCHEPOCHKINA AND GERHARD POST

ABSTRACT. This note is devoted to a more detailed description of one of
the five simple exceptional Lie superalgebras of vector fields, cvect(0]3).,
a subalgebra of vect(4|3). We derive differential equations for its ele-
ments, and solve these equations. Hence we get an exact form for the
elements of cvect(0]3).. Moreover we realize cvect(0]3). by ”glued” pairs
of generating functions on a (3]3)-dimensional periplectic (odd symplec-
tic) supermanifold and describe the bracket explicitly.
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INTRODUCTION

V. Kac [ff] classified simple finite-dimensional Lie superalgebras over C.
Kac further conjectured [[J] that passing to infinite-dimensional simple Lie
superalgebras of vector fields with polynomial coefficients we only acquire
the straightforward analogues of the four well-known Cartan series: vect(n),
svect(n), h(2n) and €(2n+1) (of all, divergence-free, Hamiltonian and contact
vector fields, respectively, realized on the space of dimension indicated).

It soon became clear [[f], [[l], [f], [A] that the actual list of simple vectoral
Lie superalgebras is much larger. Several new series were found.

Next, exceptional vectoral algebras were discovered [{, []; for their de-
tailed description see [[0], [f]. All of them are obtained with the help of a
Cartan prolongation or a generalized prolongation, cf. [§]. This description
is, however, not always satisfactory; a more succinct presentation (similar
to the one via generating functions for the elements of h and £) and a more
explicit formula for their brackets is desirable.

The purpose of this note is to give a more lucid description of one of
these exceptions, cvect(0|3).. In particular we offer a multiplication table
for cvect(0]3), that is simpler than previous descriptions, by use of ”glued”
pairs of generating functions for the elements of cvect(0]3)..

This note can be seen as a supplement to [[[0]. To be self-contained and
to fix notations we introduce some basic notions in section 0.

Throughout, the ground field is C.

I.Shch. expresses her thanks: to D. Leites for rising the problem and help; to RFBR
grant 95-01-01187 and NFR (Sweden) for part of financial support; University of Twente
and Stockholm University for hospitality; to P. Grozman whose computer experiments
encouraged her to carry on with unbearable calculations.
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§0. BACKGROUND

0.1. We recall that a superspace V is a Z/2-graded space; V = V5 @ Vj.
The elements of V; are called even, those of V7 odd. When considering an
element x € V, we will always assume that z is homogeneous, i.e. x € Vj
or x € V;. We write p(z) =i if z € V5. The superdimension of V' is (n|m),
where n = dim(V5) and m = dim(V3).

For a superspace V', we denote by II(V') the same superspace with the
shifted parity, i.e., II(V;) = V;,1.

0.2. Let z = (u1,...,un,&1,---,&m), where ug, ..., u, are even indetermi-
nates and &1, . .., &, odd indeterminates. In the associative algebra C[x] we
have that x -y = (—1)P@PWy . 2 (by definition) and hence &7 = 0 for all i.
The derivations det(C[z]) of C[z]| form a Lie superalgebra,; its elements are
vector fields. These polynomial vector fields are denoted by vect(n|m). Its
elements are represented as

D = Zfz +Zg]a§

where f; € Clz] and g; € Clz] for all i,j = 1..n. We have p(D) = p(f;) =
p(g;) + 1 and the Lie product is given by the commutator

[Dy, Dy] = Dy Dy — (_1)p(D1)P(D2)D2D1'
On the vector fields we have a map, div : vect(n|m) — C[z], defined by

divD = div( Z fz + Z 85 Z gZJZ a Z ggj

A vector field D that satlsﬁes divD = 0 is called special. The linear space
of special vector fields in vect(n|m) forms a Lie superalgebra, denoted by
svect(n|m).

0.3. Next we discuss the Lie superalgebra of Leitesian vector fields le(n).
It consists of the elements D € vect(n|n) that annihilate the 2-form w =
>, du;dé;. Hence le(n) is an odd superanalogon of the Hamiltonian vector
fields (in which case w = ), dp;dg;). Similar to the Hamiltonian case, there

is a map Le : Clz] — le(n), with z = (u1,...,un, &1, ..., &n):
B R T 1)
Ler = 2w 3+ V"5 )

Note that Le maps odd elements of C[z] to even elements of [¢e(n) and vice
versa. Moreover Ker(Le) = C. We turn C[z] (with shifted parity) into a Lie
superalgebra with (Buttin) bracket {f, g} defined by

Le{f,g} = [Lef,Leg]

A straightforward calculation shows that

8f ag ) of 9g
o) = Z o o+ (-1 5 S

This way IIC[z]/C -1 is a Lle superalgebra isomorphic to le(n). We call f
the generating function of Ley. Here and throughout p(f) will denote the
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parity in C[z], not in IIC[z]. So p(f) is the parity of the number of £ in a
term of f.

0.4. The algebra le(n) contains certain important subalgebras. First of all
there is sle(n), the space of special Leitesian vector fields:
sle(n) = le(n) N svect(n|n).

We have seen that if D € le(n) then D = Les for some f € Clz]. Now
D € sle(n) iff f is harmonic in the following sense

n 2
NG

= i1 aulafl =0

Usually we simply say f € sle(n), identifying f and Ley. This A satisfies
the condition A? = 0 and hence A : le(n) — sle(n). The image A(le(n)) =:
sle°(n) is an ideal of codimension 1 on sle(n). This ideal, sle°(n), can also
be defined by the exact sequence

0 — sle®(n) — sle(n) — C - Leg, ¢, — 0.
Note that if ® = > w;&; and f € sle(n), then
A(®f) = (n+deg, f —dege f) - f
Let v(f) = n+deg, f —deg, f. Then v(f) # 0iff f € sle°(n). So on sle®(n)
we can define the right inverse A™! to A by the formula

1
m(@f)

0.5. Cartan prolongs. We will repeatedly use Cartan prolongation. So
let us recall the definition. Let g be a Lie superalgebra and V' a g-module.
Set g_1 =V, go = g and for ¢ > 0 define the i-th Cartan prolong g; as the
space of all X € Hom(g_1,g;—1) such that

X (wo)(wy, wa, ..., w;) = (=1PEOPEDX (w) (wo, wa, - . w;)

ATl =

for all wg,... ,w; € g_1.

The Cartan prolong (the result of Cartan’s prolongation) of the pair (V, g)
is (g-1,80) = Di>—10-

Suppose that the gg-module g_; is faithful. Then

(9-1,00)« C vect(n|m) = der(Clz]), where n = dim(Vj) and m = dim(Vj)
and x = (uy,...,Un,&1,--.,&m). We have for i > 1
g; = {D € vect(n|m) : deg D =i,[D, X]| € g;—; for any X € g_1}.

The Lie superalgebra structure on vect(n|m) induces one on (g_1, go)«. This
way the commutator of vector fields [g,v], corresponds to the action g - v,
gegandv e V.

We give some examples of Cartan prolongations. Let g_; = V be an
(n|m)-dimensional superspace and gg = gl(n|m) the space of all endomor-
phisms of V. Then (g_1,g80)« = vect(n|m). If one takes for gy only the
supertraceless elements sl(n|m), then (g_1,g0)« = svect(n|m), the algebra
of vector fields with divergence 0.
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§1. THE STRUCTURE OF vect(0]3).

1.1. In this note our primary interest is in a certain Cartan prolongation
(denoted by vect(0|3),) and the extension cvect(0|3), thereof. Here we will
discuss vect(0]3).. Now vect(0[3), is a short-hand notation for the Cartan
prolongation with

V =g-1=TIA(n1,72,73)/C and go = derV’

So V is a superspace of dimension (4/3), with

Vo = (mnanz, m,n2,m3); Vi = (nams, n3m, mng2)

and dim go = (12]12).
The elements of g_; and gy can be expressed as vector fields in vect(4]3).
Choosing

Oninan3
mnenz = —0y; 1 ~ —0y;; o = — 0.
i

it is subject to straightforward verification that the elements of gg, expressed
as elements of vect(4|3) are of the form:

Oy =~ —y0g, — &20y; + £30y, —110y, ~ U110y, + §20g, + &30, + YOy

Oy =~ —Y0g, — &30y, + £10y, —120p, =~ U0y, + £10¢, + &30, + YOy

8773 = _yafg - glaﬂQ + £2au1 _7738773 = U3au3 + 51661 + 52852 + yay
MOp, ~ —u20y, +&10e, M0y, = —u10y, +620g,  MnN2130y, ~ —u10y
N20p; ~ —u30y, + &20¢, N30, ~ =20y, + &30k, N1M2130y, ~ —u20y
N30y, ~ —u10y; + &30¢, MOy, =~ —u30y, + &10e, N1M2130y, ~ —u3z0y
Mmn20n; ~ —u30g; M0y, =~ —u10g; — 20y Min20y, ~ —u20g, +£10,

n2n30n, ~ —u10g, 1am30p, ~ —u2ley — &30y 1130y ~ —u3le, + $20,
N3M0On, = —ug0g, 131 0p; ~ —uslg, — &10y N3Oy ~ —u10g, + &30,
1.2. Now we will give a more explicit description of vect(0|3).. It will turn
out that vect(0|3), is isomorphic to le(3) as Lie superalgebra; however con-

sidered as Z-graded algebras we have to define a different grading. The
Z-graded Lie superalgebra le(3;3) is le(3) as Lie superalgebra with Z-degree

of D
0 0
D= e —
zi:f Ou; +§j:g]a§j
the u-degree of f; minus 1 (or the u-degree of g;), i.e. deg & = 0.
Consider the map iy : le(3;3) — vect(4|3) given by
a.) If f = f(u) then

ifles) =Leg o1 ¢ ey

where y is treated as a parameter and (7, j, k) € As (even permutations
of {1,2,3}).
b.) If f =5 fi(u)& then

i1(Leg) = Ley — p(u) Y &k, + (—p(u)y + Alp(w)é16283)) 9y
where ¢(u) = A(f) and A as given in section 0.4.
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c.) If f=11(u)b2ls + Pa(u)€381 + P3(u)é162 then
3
0
i1(Lep) = —A(f)0y — Z%’(U)a—é-
i=1 ¢

d) If f= 1/1(?1)616263 then
i1(Lep) = —1p(u)0y.
Note that i1 preserves the Z-degree. We have the following lemma.

1.3. Lemma. The map i1 is an isomorphism of Z-graded Lie superalgebras
between le(3;3) and vect(0|3). C vect(4)3).

Proof. That i; is an embedding can be verified by direct computation. To
prove that the image of i1 is in vect(0|3), it is enough to show that this is
the case on the components le(3;3)_1 @ le(3;3)o, i.e. on functions f(u,§) of
degree < 1 with respect to u, as the Cartan prolongation is the biggest sub-
algebra g of vect(4|3), with given g_; and gg. The proof that i; is surjective
onto vect(0|3), is given in corollary 4.6. O

A generalized version of Lemma 1.3 can be found in [L{] and [{f]. It states
that le(n;n) and vect(0|n), are isomorphic for all n > 1.

§2. THE CONSTRUCTION OF cvect(0|3).

2.1. Let us describe a general construction, which leads to several new sim-
ple Lie superalgebras. Let u = vect(m|n), let g = (u_1,g0)« be a simple Lie
subsuperalgebra of u. Moreover suppose there exists an element d € ugy that
determines an exterior derivation of g and has no kernel on uy. Let us study
the prolong g = (g—1, go ® Cd)..

Lemma. FEither g is simple or g = g @ Cd.

Proof. Let I be a nonzero graded ideal of . The subsuperspace (ad u_;)**a

of u_; is nonzero for any nonzero homogeneous element a € u, and k >
0. Since g—1 = u_1, the ideal I contains nonzero elements from g_i; by
simplicity of g the ideal I contains the whole g. If, moreover, [g_1, g1] = go,
then by definition of the Cartan prolongation g = g & Cd.

If, instead, [g_1,81] = go ® Cd, then d € I and since [d,uy] = uy, we
derive that I = g. In other words, g is simple. O

As an example, take g = svect(m|n); go = sl(m|n), d = 1,,,. Then
(9-1,80 © Cd), = vect(m|n).

2.2. Definition. The Lie superalgebra cvect(0]3), C vect(4]3) is the Cartan
prolongation with cvect(0]3)_1 = vect(0|3)—1 and cvect(0]|3)g = vect(0]3)y ®

Cd, with
d=> iy + > _ &, +ydy.

If now

3
f=> &0k + 20,
i=1
then it is clear that f € vect(0[3) @ Cd, but f & vect(0|3).
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2.3. Theorem. The Lie superalgebra cvect(0|3), is simple.

Proof. We know that vect(0]3), = le(3; 3) is simple. According to Lemma 2.1
it is sufficient to find an element F' € cvect(0|3);, which is not in vect(0|3);.
For F one can take

F = y&10¢, + y&2e, + y&30e, + y°0y — £1620u; — 36100, — £2630,
Indeed, one easily checks that 0, F = f, while
[Og,, F| = =0y, (1=1,2,3),
and moreover [d,,, F'] = 0. This proves the claim. O

Similar constructions are possible for general n. For n = 2 we obtain
coect(0]2), = vect(2|1), while for n > 3 one can prove that cvect(0|n), is
not simple. For details, we refer to [[L0].

2.4. Lemma. A wvector field

3
D = (P, + Qidu,) + RO,
i=1
in vect(4]3) belongs to cvect(0[3). if and only if it satisfies the following
system of equations:

0Q; p0) 08 o
o, +(-1) 9 0 for any i # j; (2.1)
0Q); mobP 1 0Q; OR .
+(-PP = | YT ) fori=1,2,3; (2.2)
aui 8& 2 155<3 8Uj ay
0Q;  0Q; L . 0Q;
+ =0 for any i,j; in particular =0; 2.3
o6, o, for any i, j; in p 2%, (2.3)
or, oprP; »(D) OR
8Uj 8’&@ N ( 1) afk (2'4)
. 1 2 3
for any k and any even permutation <Z j k‘)
0Q; . .
oy 0 fori=1,2,3; (2.5)
O _ )1 0Qi _ 9Q;
. 1 2 3
for any k and for any even permutation <z j /<;>

Proof. Denote by g = @®;>_1¢; the superspace of solutions of the system
(2.1)—(2.6). Clearly, g—; = vect(4[3)_1. We directly verify that the images of
the elements from vect(0]3) @ Cd satisfy (2.1)—(2.6). Actually, we composed
the system of equations (2.1)-(2.6) by looking at these images.

The isomorphism gy = vect(0]3) & Cd follows from dimension considera-
tions.
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Set
P, 0  0Qi 0. OR D
J( ) g((‘)uj 8& au]' 8114) 8Uj 3y
P, 0 0Qi 0. 0RO
D, (D) = 9 oR 9
y(D) ;( oy 96 " oy ow) T ay oy
- oP, &  0Q; 0 OR 0
D¢ (D) = (—1)PP)NT (L 2 220 Ty (D) 28
o0 =0 2 Gg ag * 35 ) TV a5 3y

i<3

The operators Dy, Dy and ng, clearly, commute with the g_j-action. Ob-
serve: the operators commute, not supercommute.

Since the operators in the equations (2.1)—(2.6) are linear combinations of
only these operators D,,;, D, and l~)§j, the definition of Cartan prolongation
itself ensures isomorphism of g with cvect(0[3).. O

2.5. Remark. The left hand sides of eqs. (2.1)—(2.6) determine coefficients
of the 2-form Lpw, where Lp is the Lie derivative and w = ), _, .5 du;d§;.
It would be interesting to interpret the right-hand side of these equations in
geometrical terms as well.

2.6. Remark. Lemma 2.4 illustrates how cvect(0]3), can be characterized
by a set of first order, constant coefficient, differential operators. This is a
general fact of Cartan prolongations; one just replaces the linear constraints
on go by such operators. For example, for vect(0|3). we have the equations
(2.1)—(2.6) and

OR 0Q;
i > =0 (2.7)

Indeed, this equation is satisfied by all elements of vect(0|3)q, see section
1.1, but not by d.

§3. SOLUTION OF DIFFERENTIAL EQUATIONS (2.1) — (2.6)

3_ __ &
Set D¢ = sgogog-

3.1. Theorem. FEwvery solution of the system (2.1) — (2.6) is of the form:
D =Tes+yAs — (-1 (yA(f) + 42 DEf) O+

Ay = (=199 (A(g) + 2yDig) 0,
where f,g € Clu, &] are arbitrary and the operator Ay is given by the formula:
_ 0 P 0 ®F 0
062083 0§1 083061 0&2 061082 O€3

Proof. First, let us find all solutions of system (2.1)-(2.6) for which Q; =
Q2 = Q3 = 0. In this case the system takes the form

(3.1)

Ay (3.2)

%? =0 for i #j (2.1)
(_1)p(D)% — 18_R for 1= 1,273 (22,)

& 20y
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du;  dui (—1) e, for (i,7,k) € As (2.47)
88—1} =0 for k=1,2,3 (2.6")

From (2.1"), (2.2') and (2.6') it follows that

Pi = \I/’i(u17u27u3) + gi(,D(Ul,UQ,U?,),

where ¢ = %(—1)”@)%—};. For brevity we will write ¥;(u) and ¢(u). Then

R = (=1)PP) - 2¢(u)y + Ro(u,§).
Let us expand the 3 equations of type (2.4); their explicit form is:

e =~ (PG - T 1y (L - P,
e = —(CUPPAGE - T (1 (g - P,
e =~ (PG - T 1y - P,
The integration of these equations yields
Ro = (~1PP) (Wo(w) — (G2 — T2 -
(g—i)’ - 2—2)52 - (g—: - %)53 - (5—225351 + g—i&ﬁg + 5—125152))

= (—1)PP)(Wo(u) + A(—T 1283 — Ualsly — UaE1&n — 0€162E3)).

Therefore, any vector field D with @1 = Q2 = Q3 = 0 satisfying (2.1) —
(2.6) is of the form

3
D =" Wi(u)e, + p(u) > &0, + (~1)P)
' i=1

=1
(Yo (u) + A(=W1&83 — Walz&r — V3618 — 0€1&283) + 20(1)y) 0y .

where, as before,

3
0 0
A _;auia_gi‘
Set

g(u, &) = go(u, &) — V1&&z — o3&y — V3&1&e — €128,
with Ago = ¥g and degg(go) < 1. Then

3 3
4g = Z Wi, + @Zfia&% Dg’g = @ and (—1)P(D) = (_1)p(g)+l
i=1 i=1

for functions ¢ homogeneous with respect to parity. In the end we get:
D = Ay + (—1)PP)(A(g) + 2yDig)d,

= Ay~ (~1)79)(A(g) + 24DE0)0) 33)
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Let us return now to the system (2.1) — (2.6). Equations (2.3), (2.5), (2.6)
imply that there exists a function f(u,&) (independent of y!) such that

af .
_ _(_1\p(D) L =
Qi =—(-1) 2, for i =1,2,3.

Then (2.1) implies that

of

P, =
8’[1,2'

+ filu, &, ).

From (2.6) it follows that

ofi

By O¢;0¢, f for even permutations (i, j, k)
Y

or
Observe that P; satisfy (2.1') and (2.6'); hence, in view of (2.2), %Zi does
not depend on i. Therefore, we can choose R so that (R,R) satisfy eqs.
(2.1), (2.2"), (2.4), (2.6"). Thanks to the linearity of system (2.1) — (2.6)
the vector field D is then of the form

D =D;+ D, (3.4)

where Dy and D are solutions of (2.1) — (2.6) such that D = 3 P;d,, + R,
(i.e., D is of the form (3.3)) and

0 0
Dy =3 -1r 5 0+ 2 ac) + 37 006,06, 106) + By -

= Les +yA; + Ry0,.
It remains to find Ry. Equation (2.2) takes the form

o,

(DPyDYf = S~ PA ) + F)

Hence,
Ry = (=P 2 DEf +y - (Af) + Ro(u,8)).

Then, we can rewrite (2.4) as

Vg, T o, — V0ud 06 — y0u00ct
NS

Observe that the right hand side of the last equation is equal to —Yg, -

This means that %_}g: = 0 or Ry = Ro(u). Therefore, replacing R with

R+ Ry we may assume that Ry = 0. Then
Dy = Ley +yAs + (—1)PP)(y(Af) + y>DEf),. (3.5)

By uniting (3.3) — (3.5) we get (3.1). O



10 IRINA SHCHEPOCHKINA AND GERHARD POST

§4 HOW TO GENERATE cvect(0|3), BY PAIRS OF FUNCTIONS

We constructed cvect(0[3), as an extension of vect(0]3). = [e(3;3), see
lemma 1.3. Using the results of section 3, we obtain another embedding
i9 : le(3) — vect(0[3)..

4.1. Lemma. The map
io : Ley — Ley + yAy — (=1)PY) (yA(f) + y2DEf) 9, (4.1)

determines an embedding of le(3) into cvect(0|3).. This embedding preserves
the standard grading of le(3).

Proof. We have to verify the equality

Z‘Q(Le{ﬁg}) = [ig(Lef),ig(Leg)].

Comparison of coefficients of different powers of y shows that the above
equation is equivalent to the following system:

Lesq = [Leg, Leg). (4.2)
Agrgy = Lep, Agl + [Ag, Leg] — (=1)PV(A(f) - Ay + (—1)”(’[)”(9)&(9)1211)?;)
Ay, Ag) = (—1)P0) (Dg FoAy+ (—1)P<f>p<9>D§gAf> . (4:4)

A({f.g}) = {Af. g} = (~1)PD{f, Ag). (4.5)

DE{f,g} = {D}f, g} — (—1)PU{f, Dig} — (~1)P)(A;(Ag) (46)

+(=1)PUPD A (Af)) + AfDEg — DEfAg.

Equation (4.2) is known, see section 0.3. The equalities (4.3)—(4.6) are
subject to direct verification. O

We found two embeddings i1 : [e(3;3) — vect(0]3). and iy : [e(3) —
coect(0]3).. Let us denote

ag= A, — (~1)P9(Ag + 2yDg)d,.

We want to prove that the sum of the images of i1 and iy cover the whole
ecvect(0]3),. According to Theorem 3.1, it is sufficient to represent ¢, in the
form oy = 4191 + i2g2. For convenience we simply write f instead of Ley.

4.2. Lemma. For oy we have:

0 if degeg =0
o — i1(—(Ag)&1€283) if degeg=1
9= i1(9) if degeg =2

i1(—ATH(D{g)) +i2(ATH(DEg)) if degeg=3.

The right inverse A~! of A is given in section 0.4.
The proof of Lemma 4.2 is a direct calculation.
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4.3. A wonderful property of sle°(3). In the standard grading of g =
5[e°(3) we have: dimg_1 = (3|3), go = spe(3). For the regraded superalgebra
Rg = sle°(3;3) C [e(3;3) we have: dim Rg_1 = (3|3), Rgo = svect(0|3) =
spe(3). For the definition of spe(3) we refer to [[f] or [I(]. Therefore, for
5[e°(3) and only for it among the sle®(n), the regrading R determines a
nontrivial automorphism. In terms of generating functions the regrading is
determined by the formulas:

1) dege(f) =0: R(f) = (f51§253);

2) dege(f) =1: R(f) =

3) dege(f) =2: R(f) = ( 1)
Note that R?(f) = (—1)P() +1 f. Now we can formulate the following propo-
sition.
4.4. Proposition. The nondirect sum of the images of i1 and io covers the
whole coect(0[3)., i.e.,

i1(1e(3;3)) + i2(le(3)) = (cvect(0]3))..

We also have

i1 (1e(3; 3)) Nia(le(3)) 2 s1e°(3; 3) 2 s1e°(3).

Proof. The first part follows from Lemma 4.2. The second part follows by
direct calculation from solving is(Les) = i1(Legy). Note that Le; € sle®(3)
ifft A(f) =0 and Dg’f = 0, and similar for Le, € sle°(3;3). The equation
io(Les) = i1(Ley) is only solvable if f € sle°(3) and g € sle°(3;3), and in
this case we obtain g = (—1)P(+1Rf. O
Therefore, we can identify the space of the Lie superalgebra cvect(0[3), with
the quotient space of le(3;3) @ le(3) modulo

{(~1)"9* Rg @ (~g), g € sle°(3)}.

In other words, we can represent the elements of cvect(0|3), in the form of
the pairs of functions

(f,9), where f,g€TIIC[u,&]/C-1 (4.7)
subject to identifications

(=1)PW+(Rg,0) ~ (0,9) for any g € sle°(3).

4.5. Corollary. The map ¢ defined by the formula
©liy (1e(3;3)) = sign iy s Plia(1e(3)) = iviy *
is an automorphism of cvect(0|3),. Here sign(D) = (—1)P(P)D.

The map ¢ may be represented in inner coordinates of vect(4]3) as a
regrading by setting degy = —1;degu; = 1;deg&; = 0.
In the representation (4.7) we have

o(f,9) = (g, (=1)PDTLp).

Now we can complete the proof of Lemma 1.3.

4.6. Corollary. The embedding iy : le(3) — cvect(0|3), is a surjection onto
vect(0]3).
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Proof. By Proposition 4.4 we merely have to prove that ip(Ley) € vect(0]3),
iff Af =0 and Dg’f = 0. Applying equation (2.7) to ia(Ley), this follows
immediately. U

§5 THE BRACKET IN cvect(0]3).

Now we can determine the bracket in cvect(0]3), in terms of representation
(f,g) as stated in formula (4.7).

We do this via ay. By Theorem 3.1 any D € cvect(0[3), is of the form
D = is(f) + a4 for some generating functions f and g. To determine the
bracket [ia(f),i1(h)], we

1. Compute the brackets [iaf, og] for any f, g € Clu,£]/C - 1;
2. Represent i;(h) in the form

i1(h) = iz2a(h) + oy for any h € Clu, {]/C - 1; (5.1)
In Lemma 4.2 we expressed o in 71 and 7.

Remark. The functions a(h) and b(h) above are not uniquely defined. Any
representation will do.

5.1. Lemma. For any functions f,g € Clu,£]/C -1 the bracket [iaf, o] is
of the form

[’iQf, Oég] =19 F + ag, (5.2)
where

F=f. Dé”g _ (_1)(p(f)+1)(p(9)+1)Agf and G =—fAg
Proof. Direct calculation gives that
liaf, ) = [Leg, Ag] + (—=1)Pp@)+p(N)+1 A . Ay
Yy ([Af, Ag] + (—1)PR@+(+L o D Af>
+ (1O ({f, A} + (-1PDAf - Ag) 9,
i ((—1)p(9)+1Af(Ag) 4 (— )PP+ 4 (A F)
+ 2. (—1)POFLLf, D3g} 4+ 2. (—1)pHP@ I D3y Ag) Y0,
+(_1)p(f)+p(g)+12 . Dg’f . Dg’g . y28y.

In order to find the functions F' and G, it suffices to observe that the co-
efficient of J,, non-divisible by y, should be equal to (—1)PG+1AG. This
implies the equations:

(—1)”(G)+1AG _ (_1)p(g)+1 <{f7 Ag} + (_1)p(f)Af . Ag>
. (—1)PEHAG = (—1)PUHP@OHIA(F . Ag).

Here p(G) = p(f - Ag) = p(f) +p(g9) + 1. Hence, AG = A(—fAg). Since G
is defined up to elements from sle°(3), we can take G = —fAg.
The function F' to be found is determined from the equation

ioF = [i2f, o) - ac. (5.3)
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By comparing the coefficients of y9, in the left and right hand sides of (5.3)
we get

(—1)p(F)+1AF - (—1)p(9)+1Af(Ag) + (_1)p(f)p(g)+p(g)+lAg(Af)
+2(=1)P@tlg Dg’g} + (=1)PNFplo)+ig. D?f - Ag
—9. (_1)p(f)+p(g)Dg(_ng)'
Observe that

3

Di(fAg) = (DEf)Ag+ (—1)P D Ap(Ag) + > of 9
i=1

— (D}f) - Ag+ (—1)PD As(Ag) + (1PN {f, Dig}.

(Dg)

Then
(—1)P(F)+1(AF) = (—1)p(9)Af(Ag) + (_1)p(f)p(g)+p(g)+1Ag(Af).
By comparing parities we derive that

p(F) +1=p(Ar(Ag)) = p(f) + 1 +p(9) + 1 =p(f) +p(9).
It follows that
AF — (—1)1”(f)Af(Ag) + (_1)p(f)p(g)+p(f)+1Ag(Af)'

Let us transform the right hand side of the equality obtained. The sums
over i, j, k are over (i,j, k) € As:

(—1)p(f)Af(Ag) + (_1)p(f)p(g)+p(f)+1Ag(Af)

3
=D (VP09 06, f - 0> 0u.0¢.9)

s=1

3
+ (1PN O 0 g0 (S 04,06, 1)

s=1

:(_1)p(f)p(g)+p(f) . Z((auj ¢, 0,9 + Ouy, 0,0, 9) - O, 0e, f)
_ (_1)p(f)p(g)+p(f) ) Z(agj e, (0w, 0¢, O, f + 0y, O, e, f))

:(_1)p(f)p(g)+p(f) Z Ou (8& 0e,9 - 853‘ e, f + 853‘ 0e,g - O, 8€if)
3
=(—1)PP@)+r(H)+p(9) Z(&Lka&c (Agf) — 3%1)?9 -0, f))
k=1
= (_1)(p(f)+1)(p(g)+1)A(Agf) + (_1)p(f)p(g)+p(f)A(D§g - f)

=A(f - Dg’g) — (=1)PN+DP9+) A(A,f).
Then

F=f. Dgg _ (_1)(p(f)+1)(p(g)+1)Agf + Fy, where AF,=0.
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We have shown how to find functions F' and G. To prove Lemma 5.1 it
only remains to compare the elements of the same degree in y in the right-
hand and the left-hand side, i.e., to verify the following three equalities:

(—1)”(F)+1D§’F :2(_1)p(f)+p(g)+1Dg,f . Dg’g
Ler + Ag =[Ley, Ag] + (—1)PIOP@HPINFIAG A,
Ap =[Ap, Agl +2- (_1)p(f)p(g)+p(f)+1Dgg A

The verification is a direct one. O

5.3. Lemma. The representation of i1h in the form (5.1) is as follows:

i2(A(h§16283))  if degeh =0
ioh + a(an)e e, U degeh =1,
ap if degeh =2,

QA1 (D2h) if degeh =3

I

ith =

Proof. It suffices to compare the definition of o, with the definitions of

i1 and ip. If dege h = 0 use the equalities ) affjfk = A(f&&¢3) and
An(fere265) = Ley. In the remaining cases the verification is not difficult. [0

Making use of the Lemmas 5.1, Lemma 5.2 and Lemma 4.2 we can com-
pute the whole multiplication table of [ia f,71h]:

e deg: i =0. Then
ith = ig(A(h§1&28€3)) and [iaf,i1h] = io{ f, A(h&16263)}
We also have

0 if deg, f =3
{f, A(h&16283)} = {_{Af, h}&1&283  if deg:f =2

e dege h =1. Then

lia f,11h] = [ia f,i2h + a(Ah)€1€2§3] =
io{foh} —i2(fAR) +ia(Ah - 320 f) + ap.A(AR)E £2s)-

e deg: h =2. Then

liaf,irh] = [iaf, an] = (—=1)PDig(Anf) — a(ran =
i({f, Ah}&&a€s) if dege f =0
i1(A(fh) — fAR) if dege f=1
io(Anf) — i2(AT'DE(fAR)) + i1 (AT DE(fAR)) if dege f =2
—12( D{f) if dege f = 3.
e deg: h = 3. Then
[iafyinh] = liaf, en-1(p3m)] = —@p.psn =

0 if degg f =0

i(—A(f - D3h)§15253) =i1(—fAh—Af-h) if dege f=1

i(=f- Dg) if dege f =2

i(ATHDEf - Dig)) — ( HDEf - Dég))  if dege f=3.

The final result is represented in the following tables.
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THE BRACKETS [iaf,i1h]

| deg,(f) || dege(h) =0 | dege(h) =1 |
0 io({f, A(h&1&283)}) | —i1({A(f§16283), 1))
1 io({f, A(h&1€263)}) i(AHf, Ah})+
i2({f7 h} — A_l{fv Ah})
2 —i2({Af, h}€16283) i2(A(fh) — A(f)R)

3 0 ia(fA(h) + A(f)h)
| dege(f) || dege(h) =2 | dege(h) =3 |

0 i1 ({f, Ah}&16283) 0

1 —i1(A(fh) + fAR) | ir(=fA(R) — A(f)h)

2 i (AT DE(fAR))+ i(—fDZh)

i2(Anf — AT'DZ(fAR))

3 i2(—hD;f) i(ATH(Df - DEh))—

i2(A~N(DEf - DEh))
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