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Abstract

A locally testable semigroup S is a semigroup with the property that for some nonnegative
integer k, called the order or level of local testability, two words u and v in some set of
generators for S are equal in the semigroup if (1) the prefix and suffix of the words of length
k coincide, and (2) the set of intermediate substrings of length k of the words coincide.
The local testability problem for semigroups is, given a finite semigroup, to decide, if the
semigroup is locally testable or not.

Recently, we introduced a polynomial time algorithm for the local testability problem
and to find the level of local testability for semigroups based on our previous description of
identities of k-testable semigroups and the structure of locally testable semigroups.

The first part of the algorithm we introduce solves the local testability problem.
The second part of the algorithm finds the order of local testability of a semigroup. The

algorithm is of order n2, where n is the order of the semigroup.

AMS subject classification 20M07, 68

1 INTRODUCTION

.
The concept of local testability was first introduced by McNaughton and Papert [5] and

since then has been extensively investigated from different points of view (see [1]-[6], [8]). This
concept is connected with languages, finite automata and semigroups. The purely algebraic
approach proved to be fruitful (see [6], [8]) and in this paper we use this technique.

The algorithms for the problem of local testability can be found in [1], [5]. They are poly-
nomial in terms of the size of the semigroup. In [3] a polynomial time algorithm for the local
testability problem for a given deterministic finite automaton was given. The order of this
algorithm is sn2, where n is the number of states of the automaton, and s is the size of the
alphabet.
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We introduce in this paper a new polynomial time algorithm for finding the level of local
testability for a given semigroup. Necessary and sufficient conditions for a semigroup to be
locally testable from [6] are used here.

The solution is connected with the problem from [2] (see [1], [3] too): “Is there a practical
algorithm which, given a locally testable deterministic automaton, finds k such that the au-
tomaton is properly k-testable (i.e. k-testable but not (k-1)-testable)?” We give the answer to
this question in the case that the automaton is the right regular representation of a semigroup
S. In the general case computing the order of local testability of a locally testable automaton
is NP-hard [4].

The order of our algorithm is n2, where n is the order of the semigroup. The first part
of the algorithm solves the local testability problem. The second part finds the order of local
testability.

There are two different definitions of k-testability (see [2]). Our algorithm gives an answer
in the sense of the definition used in [1] and [2].

2 NOTATION AND DEFINITIONS

Let Σ be an alphabet and let Σ+ denote the free semigroup on Σ. If w ∈ Σ+, let |w| denote
the length of w. Let k be a positive integer. Let ik(w)(tk(w)) denote the prefix (suffix) of w
of length k or w if |w| < k. Let Fk(w) denote the set of factors of w of length k. That is,
Fk(w) = {x ∈ Σ+||x| = k and w = uxv for some u, v ∈ Σ+}.

A semigroup S is called k-testable if there is an alphabet Σ and a surjective morphism
φ : Σ+ → S such that for all u, v ∈ Σ+, if ik(u) = ik(v), tk(u) = tk(v) and Fk(u) = Fk(v), then
uφ = vφ. This definition follows [4], [5], [6], [8], but [2] and [1]. In [1] the definition differs by
considering prefixes and suffixes of length k-1.

A semigroup S is locally testable if it is k-testable for some k. For local testability the two
definitions mentioned above are equivalent [2].

It is known that the set of k-testable semigroups forms a variety of semigroups [8]. Let Tk

denote the variety of k-testable semigroups.
We need the following notation and definitions.
|S| is the number of elements of the set S.
Sm denotes the ideal of the semigroup S containing products of elements of S of length m

and greater.
[u = v] denotes the variety of semigroups defined by identity u = v. By definition, S ∈ [u = v]

if and only if the identity u = v holds in S.
A semigroup S ∈ [xy = x] [S ∈ [xy = y]] is called semigroup of left [right] zeroes.
We will need to consider the following semigroup A2 =< a, b|aba = a, bab = b, aa = a, bb =

0 >. S is a 5-element 0-simple semigroup, A2 = {a, b, ab, ba, 0}, in which only b is not an
idempotent. The basis of identities A2 is the following [7].

x2 = x3, xyx = xyxyx, xyxzx = xzxyx. (1)

According to [6] Tn has the following basis of identities:
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αr : (x1...xr)
m+1x1...xp = (x1...xr)

m+2x1...xp, (2)

where r ∈ {1, ...n}, p = n− 1(mod r),m = (n− p− 1)/r,

β : t1x1...xn−1yx1...xn−1zx1...xn−1t2 = t1x1...xn−1zx1...xn−1yx1...xn−1t2. (3)

For instance, α1 is the identity: xn = xn+1. A locally testable semigroup S has only trivial
subgroups [5] and so a locally testable semigroup S with n elements satisfies identity α1.

3 SOME AUXILIARY RESULTS

Lemma 1. Let a semigroup S be locally testable and assume that Sk = Sk+1. Then the ideal
Sk is 2-testable and belongs to varA2.

Proof. A locally testable semigroup S satisfies identities (2), (3) for some n and for all
numbers greater than n. So we may suppose that n ≥ k. All words from Sk may be presented
as words of length k and greater and so Sn = Sk. The identity αk−1: (x1...xk)

2 = (x1...xk)
3 of

S implies the identity x2 = x3 in Sk. The identity αk of S implies the identity xyx = xyxyx in
Sk. Now consider a word a from Sk. The word a may be presented in the form a = t1bt2, where
b is of length k. Then

ayaza = t1bt2yt1bt2zt1bt2

. Using identity (3) for the words b, t2yt1, t2zt1 we see that
ayaza = t1bt2yt1bt2zt1bt2 = t1bt2zt1bt2yt1bt2 = azaya.
So all the identities (1) are true in Sk. Thus Sk belongs to varA2 and is 2-testable because

A2 is 2-testable.
The lemma is proved.

Now from the necessary and sufficient conditions of local testability [6] we have the following.

Corollary. Let Sn = Sn+1 for some n in some semigroup S. Then S is locally testable iff Sn

belongs to varA2.

The following statement is well known.

Lemma 2. Let S be a finite semigroup, Sm = Sm+1 for somem. Let E be the set of idempotents
of S. Then any element of Sm is divided by an idempotent, that is Sm = SES.

Proof. Let a belong to Sm. Then a may be represented by a word of length greater then
|S|. So we can construct a chain of left subwords of a such that each element of the chain is a
left divisor of the following element and the number of elements is greater then |S|. This implies
that there are two different left subwords b and bc such that b = bc. Then b = bc = bcc and
b = bcn. For some n, cn is an idempotent and a right unit of b. The element b divides a and the
right unit of b divides a too. Thus Sm is contained in SES. The opposite inclusion is obvious.
So Sm = SES.

Lemma 3. Let S be a finite semigroup such that S2 = S and S ∈ [x2 = x3, xyx = xyxyx].
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The following two conditions are equivalent in S:
a) S satisfies the identity xyxzx = xzxyx.
b) No two distinct idempotents e, i from S such that eie = e, iei = i have a common unit

in S. That is, there is no idempotent f ∈ S such that ef = e = fe and if = i = fi.
Proof Suppose S belongs to [xzxyx = xyxzx] and for some idempotents e, i in S eie = e,

iei = i. Suppose f is a common unit of e, i. The identity xyxzx = xzxyx implies that
ei = fefif = fifef = ie. Now e = eie = eei = ei = eii = iei = i. Thus the idempotents e, i
are not distinct.

Suppose now that S does not belong to [xyxzx = xzxyx]. So for some a, b, c of S abaca 6=
acaba. Since S2 = S, Lemma 2 implies that a is divided by some idempotent e, a = peq. Then
peqbpeqcpeq 6= peqcpeqbpeq. This implies that eqbpeqcpe and eqcpeqbpe are distinct. From the
identity xyx = xyxyx it follows that i = eqbpe and j = eqcpe are idempotents. They have the
common unit e and are distinct, because ij and ji are distinct.

Consider the elements iji and jij. In view of the identity xyx = xyxyx they are idempotents
too. It is routine to prove that they belong to an idempotent subsemigroup of S. The element
e is then a common unit for iji and jij.

Now suppose that iji = jij. We have ij = eije = eijeije = eijije = ejijje = jij.
Analogously ji = jij. So ij = ji in contradiction to the above result. We conclude that
iji 6= jij. So the distinct idempotents iji, jij belong to a band and have common unit e.

The lemma is proved.
From the Corollary to lemma 1 and lemmas 2 and 3 we obtain the following result.

Theorem 3.1 Let S be a finite semigroup, and let E be the subset of idempotents of S. Suppose
that SES satisfies the identities x2 = x3, xyx = xyxyx and every two idempotents i, j in S
having a common unit and such that ij = i, ji = j or ij = j, ji = i coincide. Then S is locally
testable.

This theorem will be the basis for the first part of the algorithm to verify the local testability
of a finite semigroup.

Recall that a semigroup S is called locally idempotent iff eSe is an idempotent subsemigroup
for any idempotent e ∈ S. Obviously, the set SES for a locally idempotent semigroup S with
set of idempotents E satisfies identities x2 = x3, xyx = xyxyx. A locally testable semigroup is
locally idempotent [1], [5]. Then from the result of the last theorem follows.

Theorem 3.2 (1) A finite semigroup S is locally testable iff it is locally idempotent and S does
not contain the three-element monoid with two left [right] zeroes. That is, S is locally testable
iff eSe is a semilattice for all e = e2 ∈ S.

Now we consider the definition of n-testability from [1] and [2]. The results of [8] and [6]
may be repeated in this case too. We present this fact without proof. Consider the following
identity.

x1...xn−1yx1...xn−1zx1...xn−1 = x1...xn−1zx1...xn−1yx1...xn−1. (4)

Let Bn be the set of n-testable semigroups in the sense of [1].
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Theorem 3.3 a) Bn is a variety,
b) A basis of identities for Bn for n ≥ 2 consists of identities (2) and the identity (4),
c) B1=[x2 = x, xy = yx].

The only difference between the identities (3) and (4) is the omission in (4) of the first and
last letters t from (3). Therefore, we have the following.

Corollary. Tn contains Bn. Bn contains Tn−1. B2 = varA2.

The following lemma enables us to find the level of local testability of a semigroup S.
Lemma 4. Let S be a finite semigroup satisfying the identities (2) for some n. Then the

following two conditions are equivalent in S:
a) The semigroup S is n-testable.
b) Every two distinct idempotents e, i in S such that ei = e, ie = i [ei = i, ie = e] have no

common left [right] divisor in Sn−1.
Proof: Let us denote X = x1...xn−1.
Suppose first that S is n-testable. Then according to theorem 3.3, S satisfies the identity

XyXzX = XzXyX. (5)

Consider idempotents e, i such that ie = i, ei = e having common left divisor a in Sn−1.
We will prove that e = i. Let i = ab, e = ac. We have i = ie = iei = abacab. The identity (5)
implies that abacab = acabab = eii = ei = e. So e = i, and a) implies b).

Suppose now that S is not n-testable. Then S does not satisfy identity (5). So for some
elements a, b, c, where a ∈ Sn−1, we have abaca 6= acaba. One of the equalities abaca = abacaba,
acaba = abacaba does not hold in S. Without loss of generality suppose that acaba and abacaba
are distinct. In view of the identity

XyX = XyXyX, (6)

we have abacaba 6= acabacaba. Then abacab and acabacab are distinct. Let as denote
e=abacab, i=acabacab. e, i are distinct. Using (6) we have

e = abacab = abacabacab = abacababacab=e2. Analogously i is idempotent too. Now
ei=abacabacabacab=abacab=e. Analogously ie=i. So we find two distinct left zeroes having a
common left divisor in Sn−1.

Let S be a finite locally testable semigroup and let φ : Σ+ → S be a surjective morphism
for some alphabet Σ. Let a be an element from S \ SES. Let m be the maximal number such
that am+1 6= am+2. Suppose a = bc. Since a belongs to S \SES, it follows that a, b, c have only
a finite number of preimages in Σ+. Denote |a|, |b|, |c| the maximal length of the preimages of
the elements a, b, c in the alphabet Σ, correspondingly. Suppose n = max((|b|+ |c|)m+ |b|+ 1
if am+1b 6= am+2b, |a|m+ 1 otherwise) for all a ∈ S \ SES and for all b, c such that bc = a.

Lemma 5. The minimal number for which S satisfies identities (2) is equal to n+1.

Proof: Consider some identity αr from (2) and the corresponding words (a1...ar)
m+1a1...ap,

(a1...ar)
m+2a1...ap.Denote a = a1...ar, b = a1...ap, c = ap+1...ar. Because am+1 6= am+2 the
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semigroup S is not n-testable for n = m|a|+1. If the words am+1b and am+2b are not equal
then the semigroup S is not n-testable for n = m (|b|+ |c|)+|b|+1. So the maximum of all such
numbers n gives us the precise bound for which the identities (2) are not valid.

From Lemmas 4 and 5 we have the following theorem.

Theorem 3.4 . Let S be a finite locally testable semigroup. Let a be an element of S \ SES.
Let b be a proper left divisor of a and a = bc. Let |a|, |b|, |c| be the maximal length of the
words a, b, c in some alphabet Σ. Let m be the maximal number such that am+1 6= am+2. Let
n=max((|b| + |c|)m + |b| + 1 if am+1b 6= am+2b, |a|m+1 otherwise) for all a ∈ S \ SES and for
all b, c such that bc = a.

Let e, i be idempotents of a left [right] zero subsemigroup and let a be a left [right] com-
mon divisor of maximal length. Let l(e, i) = |a| + 1 [r(e, i) = |a| + 1] and let l=max(l(e, i))
[r=max(r(e, i))] for all pairs of left [right] zeroes.

Then max(n, r, l)+1 is equal to the exact level of local testability of the semigroup S.

Recall that a semigroup S is a left (right) zero semigroup if S satisfies the identity xy =
x(xy = y). The following proposition is useful for the next algorithm.

Proposition Let E be the set of idempotents of a semigroup and let |E| = n. We represent
E as an ordered list [e1, . . . , en]. Then there exists an algorithm of order n2 that reorders the
list so that the maximal left (right) zero subsemigroups of S appear consecutively in the list.

Finding the maximal semigroup of left zeroes containing a given idempotent needs n steps.
So to reorder E we need at most n2 steps.

4 ALGORITHMS

1.Testing whether a finite semigroup S is locally testable.

Suppose |S| = k. We begin by finding the set of idempotents E. This is a linear time
algorithm. After this we find SE and then SES using two times O(k2) steps.

In view of Theorem 3.1 we begin by verifying the first two identities from (1) in SES.
Verifying the identity x2 = x3 needs O(k) steps, verifying the identity xyx = xyxyx needs
O(k2) steps.

Now consider the last identity from (1). In view of Lemma 3 consider the set E. We can
reorder E according to the proposition above in a chain such that the subsemigroups of left
zeroes form intervals in this chain. We note the bounds of these intervals. We find for each
element e of E the first element i in the chain such that e is a unit for i. Then we find in the
chain the next element j with the same unit e. If i and j belong to the same subsemigroup of
left zeroes we conclude that S is not testable (Lemma 3) and end the process. If they are in
different left zero semigroups, we replace i by j and continue the process of finding a new j.
This takes O(k2) steps.

Then we repeat the same process for right zeroes. According to Theorem 3.1 we can give a
positive answer to the question in the case we do not find two different left [right] idempotents
with the same unit.
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2.Finding the level of local testability.

The idea is based on theorem 3.4.
Suppose the semigroup S is locally testable, |S| = k, E is the set of idempotents of S, as

above.
We use the sets E, SE and SES found above. According to lemma 1, SES = Sl, where

Sl = Sl+1. We find G = S \ SES as well.
In the case that G is empty the semigroup S belongs to varA2 and is 2-testable in both

senses. Verifying of 1-testability reduces to testing the identities x = x2, xy = yx. So we are
done in this case. Now suppose that G is not empty.

We start with the assignment n := 2 to a variable n that will change during the algorithm
below.

For each element a we find a maximal number m that am+1 6= am+2. Denote this number
by m(a). This is an algorithm of order at most k. The maximum of all such m(a) gives us a
first lower bound of the order of local testability.

Then we find generators for G. It is easy to see that the unique minimal generating set for G
is G \G2. This takes k2 steps. We denote the set of these elements by G1. The maximal length
of elements from G1 is 1. We now define a sequence of sets Gi, i ≥ 1. We want Gi to be equal to
the set of elements in G that can be written as a product of i elements from G1, but that cannot
be written as a product of more than i elements of G1. Assume that we have correctly defined
Gi for some i ≥ 1. Then we let Gi+1 = (G1Gi)\ ((G\G1)Gi). It is easy to see by induction that
this correctly defines Gi for 1 ≤ i ≤ l− 1. Elements of Gi are said to have level i. Each element
of G has a well defined level. This process need k2 steps, because |G| = |G1| + ...|Gl−1|. We
know that the level of an element g ∈ G is equal to its maximal length in any set of generators
for G and will be denoted by |g|.

Consider now all possible products bc for b, c from G. This takes O(k2) and on each step for
a ∈ G we do the following:

Suppose that a = bc. Let n = max(n,m(a)|a|+1). Consider the element am+2b. If this is not
equal to the element am+1b, we make the following assignment n := max(n, (|b|+ |c|)m+ |b|+1).

After considering all pairs we get a value for n. In view of Lemma 5 the semigroup S does
not satisfy identities (2) for n and satisfies (2) for n+1.

Now consider the identity (4). What follows will be based on Lemma 4. We first reorder
the set of idempotents E as in the proposition for left zero subsemigroups. We note the bounds
between the subsemigroups. In view of the Proposition this takes at most O(k2) steps.

Let us assign L := n.
For each g of G we form the intersection gSES ∩ E. Then we verify: are all elements

of the intersection within the bounds or not. If there are two idempotents not within the
bounds the semigroup S is not (|g| + 1)-testable and may be only |g| + 2-testable. Now assign
L := max(L, |g| + 1). This needs at most 2k steps. Repeating this process for all g from G, we
find the maximum L for all such g, using at most 2k2 steps. The semigroup S is not L-testable
and may be only L+ 1-testable.

Then we repeat the procedure for the right order of E and right divisors of idempotents. As
a result the upper bound R may be obtained.
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Theorem 3.3 gives us the level of local testability as 1 + maximum of the three above-
mentioned numbers n, R and L.

The algorithm is a polynomial time algorithm of order O(k2), where k is the order of the
semigroup.

Both parts of the algorithm give us a way to verify testability and to find its level.
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