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This paper describes a system to distribute and retrieve multimedia knowledge on a cluster of 
heterogeneous high performance architectures distributed over the Internet.  The knowledge is 
represented using facts and rules in an associative logic-programming model.  Associative 
computation facilitates distribution of facts and rules, and exploits coarse grain data parallel 
computation.  Associative logic programming uses a flat data model that can be easily mapped onto 
heterogeneous architectures. The paper describes an abstract instruction set for the distributed 
version of the associative logic programming and the corresponding implementation.  The 
implementation uses a message-passing library for architecture independence within a cluster, uses 
object oriented programming for modularity and portability, and uses Java as a front-end interface to 
provide a graphical user interface and multimedia capability and remote access via the Internet.  The 
performance results on a cluster of IBM RS 6000 workstations are presented.  The results show that 
distribution of data improves the performance almost linearly for small number of processors in a 
cluster. 
 
Keywords: Associative computing, distributed computing, heterogeneous computing, Internet, 
knowledge retrieval, logic programming, modeling, simulation, symbolic computing. 

 
 
1. Introduction 

Much of the design process is incremental.  A complex object consists of many smaller 
components which are further divided into smaller sub-components.  In the current 
competitive market, the design of complex objects such as engines — automotive 
combustion engines or aircraft engines — has to be continuously modified to incorporate 
new research.  This requires the design process to be interactive, and the designed object 
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have to be reconfigured in an iterative manner to facilitate changes based upon the 
simulation results.  Previously designed components have to be modified incrementally to 
closely match the simulations.  The need to continuously change previously designed 
components requires the management of a large library of the components along with 
their attributes, so that closely matching components can to be retrieved and modified in 
an iterative manner based on the simulation results. 

Complete scientific simulation of all of the components as a whole is computationally 
prohibitive.  In order to get a simulation of a complex object in realistic time, the 
different components of the object have to be simulated on different clusters of 
computers to exploit component level parallelism [14], and the results of the multiple 
simulations have to be reconciled.  Since the architectures of high performance 
computers are very different and are continuously changing, it is necessary to design a 
simulation system which is architecture independent, supports high performance clusters 
of heterogeneous architectures, is scalable, and is portable.  An additional requirement 
consists of modeling the interconnectivity of different components of the object using 
high-level symbolic reasoning.  Symbolic reasoning is also needed for abstract rule based 
simulation of components where precise scientific computation is cost prohibitive in 
terms of time and resources. 

With the recent advances in fast Internet connectivity, it has become possible to share 
heterogeneous resources such as multimedia databases, multimedia knowledge bases, 
applications, and computing power across arbitrary distances and among a large number 
of users.  Ideally, one would like to be able to access a desired resource transparently, 
regardless of where on the network or on what type of computer system it resides.  By 
doing so, the entire Internet can be treated as a large virtual computer: information can be 
retrieved simultaneously over the Internet from multiple distributed multimedia 
knowledge bases, and can be processed at the client end in a realistic time. 

In essence, the model for the simulation of a complex object requires integration of 
five major technologies as follows: 

(i) High-performance retrieval from knowledge bases has been exploited for 
retrieving the best matching components. 

(ii) Symbolic computing has been exploited to interconnect various component 
simulations. 

(iii) Scientific computing has been interfaced for precise simulation. 
(iv) Remote accessibility and visualization of the simulation results and component 

to facilitate provides user-friendly interactive modification of objects. 
(v) The Internet has been used to share resources and to exploit the web as a giant 

virtual computer. 

In this paper, we describe an architecture, an abstract machine, and an implementation 
of a heterogeneous distributed associative knowledge base model based upon the theory 
developed in [2, 4]. This model integrates the logic-programming paradigm, 
heterogeneous computing, associative computing, the object-oriented programming 
paradigm, and Internet-based programming using Java.  Logic programming provides a 
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declarative programming model.  In the knowledge base, components and their attributes 
are represented either as logical facts or rules.  Associative computing integrates data 
parallel computing with associative search by content.  Associative search by content 
facilitates efficient search of components from a large knowledge base of library of 
components.  Associative data representation � complex data represented as a two-
dimensional associative table — reduces the overhead to linearize complex data 
structures, and provides a uniform mechanism to represent complex data structures across 
heterogeneous message architectures. The message-passing library provides this 
architecture independence.  The implementation using the object-oriented paradigm 
provides modularity and portability.  The use of Java provides a graphical user interface, 
remote access through web browsers, and multimedia retrieval capability. 

The model is suited for retrieval of knowledge distributed in clusters of high 
performance computers over the Internet (see Figure 1).  A cluster-based computation 
model consists of multiple clusters, where each cluster consists of high performance 
architectures capable of symbolic and scientific computing.  Each cluster possesses a 
coordinator and multiple servers.  Knowledge is distributed on multiple servers either 
based upon the different knowledge domains or to exploit coarse grain data parallelism 
and object level massive parallelism present on the web.  Coarse grain data parallelism is 
present since multiple knowledge bases are present on different clusters, and each cluster 
concurrently solves a goal.  Object level massive parallelism [10] is present since 
multiple individual components are simulated simultaneously.  A coordinator is used to 
manage and collect data from multiple servers, while major processing is done within the 
servers to reduce data transfer overhead. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The main contributions of this paper are as follows: 

� The model is mapped to a heterogeneous set of architectures in a user 
transparent manner.  

Fig. 1. Architecture of a distributed knowledge base on the Internet 
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� The model supports modularity, and is scalable to any number of 
machines. 

� The use of a message-passing library and the use of the associative model 
of computing make the distributed knowledge retrieval transparent to the 
user. The distributed knowledge base on the web is accessible to a user as 
a local knowledge base. 

� The coordinator-based model delegates maximum computation locally on 
distributed servers to reduce the data transfer overhead, 

� The abstract machine for distributed knowledge retrieval is generic and 
scalable. 

� Java-based multimedia interface provides remote access capability. 

The paper is organized as follows: Section 2 describes briefly the background, the 
definitions of the concepts, and the abstract machine for the implementation of 
associative logic programming model.  Section 3 describes an object oriented 
implementation of the associative model of logic programming.  Section 4 describes 
heterogeneous associative logic programming model, its distributed version, and the 
extension of the abstract instruction set for distributed model.  Section 5 describes the 
execution behavior of the distributed model.  Section 6 describes the Java interface that 
provides the multimedia capability.  Section 7 describes an object-oriented 
implementation of the Java based graphical user interface.  Section 8 describes the 
performance evaluation.  Section 9 describes the related works, and Section 10 concludes 
the work. 

2. Background and Definitions 

In this section, we briefly describe the related concepts of four paradigms: associative 
computing, heterogeneous computing, logic programming, and object-oriented 
programming. 

Associative Computing searches and selects data elements for processing according to 
their contents [9, 21, 22].  Data records are distributed among the processors, forming a 
table of parallel fields or associated vectors such that the data elements in associated 
vectors are accessed using the same index value.  Vectors are processed simultaneously 
by broadcasting a single instruction to all processors.  The results of the computation 
forms a filter vector � a new associated vector of Boolean values.  Filter vectors are 
used to select records for further processing. 

Data parallel computing refers to the simultaneous execution of some abstract 
computation on multiple data elements.  Distributed computing refers to the distribution 
of computation over multiple computer systems and encompasses both the data parallel 
and process parallel computing models.  In the absence of data dependency, distributing a 
computation can result in a near linear speed up. 

The object-oriented programming paradigm is well suited for distributed computing 
using message passing between objects.  The sub-components of a computation are 
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isolated and encapsulated in ‘objects’.  An object acts as a client by making a request to 
another object for some data or for some function to be performed.  The receiving object 
acts as a server by replying to the client with the requested information. 

A message passing library [13, 26] uses message passing functions to communicate 
and exchange data on a heterogeneous network.  The use of a message-passing library 
makes the data transfer and network communication transparent to the user.  

Logic programming [17] is a popular declarative programming paradigm suitable for 
high-level reasoning and knowledge representation.  In a logic program, knowledge is 
represented by a set of facts and rules used to describe relationships between data objects. 

Java [11] is an Internet programming language derived from C++ with additional 
support for multimedia display and portability over the Internet [5, 8, 10].  Java has also 
been interfaced with web browsers, and is being used extensively over the Internet for 
multimedia presentation.  A major advantage of Java is its independence from 
heterogeneous architectures over the Internet.  Java has also been interfaced with 
message-passing libraries to serve as a platform for cluster based multimedia display 
[28]. 

2.1. The heterogeneous associative model 

The heterogeneous associative logic programming model [4] exploits associative search 
to match the clause heads with a query in a data parallel manner, and relies on execution 
of compiled code for the clause bodies.  In this model, data is represented by an explicit 
association of fields (including index) to facilitate search by content. The presence of 
associative memories in hardware facilitates search by content and automatically 
improves the efficiency of the model.  A software implementation of associative 
operations insures the data lookup efficiency for a large number of facts on sequential 
architectures as well.  

In the implementation of the associative logic programming model, the left hand side 
of a logic program is represented as a two-dimensional associative table with parallel 
fields for the names and arguments in the clause heads.  The right-hand side of the 
program is compiled into low-level abstract instruction code.  

In the compiled code for the right-hand side of the program, a data parallel binding 
environment is generated and modified during unification of a goal with the 
corresponding clause-heads or during the execution of built-in predicates. The data 
parallel binding environment consists of a sequence of multiple frames, each containing 
associative Boolean vectors to mark unifiable clauses and associative binding vectors to 
mark the bindings of the variables in matching facts or clauses.  The model also uses a set 
of global registers for holding the bindings (or pointers to bindings) of arguments in the 
current goal, an associative control stack to store states of computations for previous 
procedure invocations, and an associative table to handle aliasing of variables.  The 
global registers are analogous to those in the Warren Abstract Machine [29].  The control 
stack is an association of time stamps and all previous states of execution.  Each state is 
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Alias table Global registers Heap 

Abstract instructions Control stack 

Program Data parallel environment 

communication association 

Fig. 2. A heterogeneous associative model. 

represented as an associative frame, and uses associative vectors to facilitate fast 
backtracking.  The vectors are indexed with respect to the base of the current frame.  
Variable aliases are indicated by filter vectors and are tracked by the alias management 
table. The logical OR of two vectors creates the union of two sets of aliased variables 
when members of the two sets are aliased by an instruction.  A detailed explanation of 
this model and the corresponding abstract instructions is given in [4]. 
 
 

 
 
 
 
 
 
 
 

 
 

 

A shared variable has two occurrences in a clause body: a producer occurrence and a 
consumer occurrence.  The producer occurrence generates a value for the shared variable, 
and the consumer occurrence uses the value of a variable. 

2.2. Notations for the abstract instructions 

In this section, we define the notations used in the examples. We will show examples of 
the abstract instructions code for both the abstract machine of the server processes and 
the distributed abstract machine used by the coordinator. 

A symbol <P/arity> denotes the start of a procedure <P> with an arity of <arity>.  A 
symbol <P/arity>_CN denotes the start of the Nth clause of the predicate <P/arity>.  A 
symbol <U N> denotes a universal filter vector 

�
 a vector of Boolean values associated 

with a set of clauses to identify unifiable clauses.  A symbol <BN> denotes a binding 
filter vector 

�
 a vector of Boolean values marking the values in the clause-head 

representation to which a variable in a goal will be bound after unification.  A symbol 
<F0> denotes a fact vector 

�
 a vector of Boolean values marking the facts in a 

knowledge base.  A symbol <CN> denotes a clause filter vector 
�

 a vector of Boolean 
values marking clauses with non-empty body. A symbol <AN> denotes the Nth argument 
of the current goal.  A symbol <TN> denotes a temporary Boolean Filter vector.  A 
symbol <RN> indicates a global register, and a symbol <VN> denotes a variable. A 
symbol <SN> indicates a Boolean filter vector marking the servers which contain a 
particular predicate, and a symbol <LN> denotes a label.  Example 1 illustrates a simple 
logic program.  The corresponding compiled abstract instruction code is given in Figure 
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3.  Note that the vectors and variables have been indexed with respect the start of the 
current frame. 
 
Example 1 

p(1, 2).  p(2, 3).  p(3, 4). 

p(X, Y) :- q(Y, X). 

q(2, 1).  q(3, 2).  q(4, 3).  q(5, 4). 

r(2, 2). 

r(X, Z) :-  p(X, Y), q(Y, Z). 

 
We describe the general behavior of the instructions as follows.  There is one entry 

point in the code for each procedure in the logic program.  First the goal procedure and 
arguments are matched with the clause heads in a data parallel manner.  The resulting 
filter-vector U0 is ANDed with the filter-vector F0 which annotates the ground facts.  The 
resulting binding filter vector B0 indicates the bindings of the goal arguments with the 
corresponding values in the facts.  A clause filter vector C0 annotates the clause heads.  If 
facts were found, then control is returned.  In the absence of matching facts or upon a 
request for more solutions, the compiled code for the rules is executed using the clause-
filter vector C0. 

The compiled code for rules copies the goal arguments in global registers [3, 4] and 
calls the sub-goals.  The three load_procedure instructions are used to load the three 
procedures in the program representation. 

 
p/2:   match_arg      A0, U0   /* match the 1st  argument*/ 

backtrack_if_empty   U0     /* backtrack if no matching positions */ 
match_arg     A1, U0  /* matching  the 2nd  argument*/ 
backtrack_if_empty  U0   /* backtrack if no matching positions */ 
and_bit_vectors        F0,U0, B0 /* mark the binding values in facts */ 
store_vector_id   B0, A0  /* store the binding of the 1st  argument*/ 
store_vector_id   B0, A1  /* store the binding of the 2nd argument */ 
comp_bit_vector    F0, T1   /* complement F0 into T1 */ 
and_bit_vectors   T1, U0, C0 /* mark unifiable rules  */ 
return_if_empty   B0, L10  /* return if binding vector B0 is empty */ 

L10:   try_me_else    C0   /* next unifable clause  until C0 is empty*/ 
p/2_cl:  copy_reference   A1, A0, q/2 /* build the 1st argument to call q/2 */ 

copy_reference   A0, A1, q/2 /*build the 2nd argument to call q/2 */ 
call       q/2   /* branch to subroutine with label p/2*/ 
return         /* return from the procedure p/2*/ 

q/2:   match_arg      A0, U0  /* match the 1st argument*/ 
backtrack_if_empty  U0   /* backtrack if no matching positions */ 
match_arg      A1, U0  /* match the 2nd argument*/ 
backtrack_if_empty   U0   /* backtrack if no matching positions */ 
and_bit_vectors    F0, U0, B0 /* mark the binding values in facts */ 
store_vector_id    B0, A0  /* store the bindings of 1st argument*/ 
store_vector_id    B0, A1  /* store the binding of the 2nd argument */ 
comp_bit_vector    F0, T1  /* complement F0 into T1 */ 
and_bit_vectors    T1, U0, C0 /* mark unifiable rules */ 
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return_if_empty   B0, L25  /* return if binding vector B0 is empty */ 
L25:   try_me_else    C0    /* next unifable clause else backtrack */ 
r/2:   match_arg      A0, U0  /* match with the 1st argument */ 

backtrack_if_empty   U0   /* backtrack no matching positions is */ 
match_arg      A1, U0  /* match  the 2nd argument */ 
backtrack_if_empty  U0   /* backtrack if no matching positions */ 
and_bit_vectors    F0, U0, B0 /* mark the binding values in facts */ 
store_vector_id    B0, A0  /* store the binding of 1st argument */ 
store_vector_id    B0, A1  /* store the binding of 2nd argument */ 
compl_bit_vector   F0, T1  /* complement F0 into T1 */ 
and_bit_vectors    T1, U0, C0 /* mark the binding values in facts */ 
return_if_empty    B0, L36  /* return if binding vector B0 is empty */ 

L36:   try_me_else     C0   /* next unifable rule else backtrack */  
r/2_cl1:  copy_reference   A0, A0, p/2 /* build the 1st argument to call p/2*/ 

load_new_variable   A1, V3, p/2 /* build the 2nd argument to call p/2 */ 
call       p/2   /* call the set of instructions at label p/2 */ 

  L40:  continue      L40   /* save L40 and execute next instruction */ 
L41:   copy_reference   A0, V3   /* build 1st argument to call q/2 */ 

copy_reference   A1, A1, q/2 /* build 2nd argument to call q/2 */ 
repeat_else_backtrack  L44   /* next value of shared variable */ 

L44:   load_next_vector_value A0   /* load the next value for variable Y */ 
call       q/2   /* call the set of instructions at label q/2 */ 
return         /* return from this routine */ 

Load:  load_procedure    p/2   /* load the procedure p/2 into a table */ 
load_procedure   q/2   /* load the procedure q/2 into a table */ 
load_procedure   r/2   /* load the procedure r/2 into a table */ 

Fig. 3. The compiled code for Example 1 

3. Object Oriented Implementation of Associative Logic Programming Model 

This section describes an object model needed to provide modularity in the distributed 
execution of the heterogeneous associative logic program system. 

3.1. Class hierarchy  

There are two primary classes in the object model: the abstract-machine class and the 
program class.  The abstract-machine class represents an abstract machine, and the 
program class encapsulates the associative representation of a logic program.  Figure 4 
illustrates the overall class structure. 

The public interface of the abstract-machine class allows for loading a program, 
solving a goal, requesting alternate solutions, and retrieving binding information for the 
goal arguments.  The private member functions of the abstract-machine class include 
functions for executing the instruction code of the program, including the implementation 
of the abstract instruction set, and functions for backtracking and controlling the flow of 
the program. The two major subclasses of the abstract-machine class encapsulate the 
registers and the control stack. 

The program class has two subclasses: progdata and proginst.  The subclass progdata 
represents an associative table of clause-heads.  The subclass proginst represents the 
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compiled code for the clause bodies. The subclass progdata has two subclasses: 
predtable and proctable.  The subclass predtable maps predicate names to a numeric 
predicate-id.  The subclass proctable is used for fast lookup of the predicate and the entry 
point in the compiled code for each procedure.  All of the components of the program 
class are public and manipulated directly by the abstract machine 

The associative data types are encapsulated in the two classes associative-filter and 
associative-vector.  The associative-filter class represents an associative filter vector.  It 
supports logical operations and assignment.  The associative-vector class is used to 
represent associative data vectors.  It is implemented using the C++ template facility to 
support arbitrary data types.  Functions are provided to manipulate the associative vector 
using associative techniques. 

 
 
 
 
 
 
 
 
 
 
 

4. The Distributed Heterogeneous System 

The distributed system consists of two types of abstract machines: a coordinator abstract 
machine and a heterogeneous associative abstract machine (see Figure 5). 

4.1. Abstract data structures 

The coordinator launches server processes on a local or remote host.  Each server has 
a heterogeneous associative abstract machine as described in Subsection 2.1, with the 
additional ability to receive goals and send solutions to the coordinator using a message-
passing interface such as PVM or MPI.  Three additional data structures 

�
 an associative 

server table, a coordination table, and an associative binding area 
�

 are needed in the 
distributed model. 

The associative server table stores the information about the predicates processed by 
the servers.  For each server/procedure pair there is an entry of the form (server-id, 
procedure-id, clause-count) in the server table.  The server-id uniquely identifies a 
server.  The procedure-id is a reference to an entry in the procedure table.  The clause-
count is the number of clauses the server has that match the goal.  The last entry is the 

Fig. 4. An object oriented data representation 
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server-capability vector which identifies the list of servers which can execute a 
procedure.  An illustration for the program in Example 2 is given in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The coordination table is a sequence of coordination-vectors — Boolean vectors 

marking the executable procedures which have not returned the bindings for the current 
goal.  The coordination table is associated with the server table to facilitate the 
association of Boolean vectors with the procedures.  Initially the Boolean vector is the 
same as the server-capability vector.  Upon receiving a failure from a server, the 
corresponding bit in the coordinator vector is reset.  The coordinator backtracks to 
previous the coordination vector when the current coordinator vector becomes empty. 

The associative binding area stores the bindings incrementally as they are received 
from the servers.  The data elements in the associative binding area are of the form 
(server-id, time-stamp, variable-id, value, type).  A filter vector associated with  this table 
identifies the vectors bound to a register at a given time-stamp. 

4.2. The execution model 

A schema file prepared by the user specifies a list of remote hosts and the file names of 
the logic programs to be loaded onto the various hosts.  The coordinator reads the schema 
file and initiates the server processes.  After each server process has been successfully 
initialized and has loaded its program, it reports back to the coordinator with a list of the 
executable procedures.  The coordinator builds up the server table from these reports.  

To solve a goal, the coordinator performs an associative search on the server table to 
obtain a filter vector marking all servers with the corresponding predicate.  The result of 
this search initializes the corresponding coordination vector.  The goal is broadcast to 
these servers.  Upon receiving a message, each server first searches its facts and then its 
rules for a solution.  After finding a set of solutions, the server waits for further 
instructions from the coordinator. 

Fig. 5. A distributed heterogeneous associative system 
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After broadcasting the goal, the coordinator queries each matching server for 
solutions. The coordinator requests solutions one server at a time.  However, this process 
can easily be made concurrent.  Each server, when prompted, transmits the bindings for 
the goal arguments to the coordinator.  Anticipating further requests, the servers 
backtrack to find additional solutions.  Meanwhile, the coordinator stores the received 
bindings in the associative binding area along with the current time-stamp and the server-
id.  The time-stamp is used in backtracking and is incremented before the solution of each 
subgoal. 

After collecting the solutions from one server, the coordinator reports the solutions to 
the user.  Upon further request from the user, the coordinator requests a new set of 
solutions from the matching servers.  Additional bindings received from the servers are 
added to the associative binding area.  A server sends a failure in the absence of 
additional solutions.  After receiving a failure, the coordinator removes that server from 
the list of matching servers.  This process is repeated until the list of servers is empty.  
When this occurs, the coordinating process backtracks and tries other rules.  The other 
rules in the coordinator also occur in servers, and servers have already sent the values 
from their corresponding domains.  However, in the presence of shared variables, the 
bindings generated from one server have to be passed to other servers to generate a 
complete set of bindings.  All the servers except a server S returning a binding spawn 
their procedures again to consume the bindings of the shared variable generated by S.  
Multiple servers concurrently consume the values of shared variables generated by other 
servers, and spawn multiple subgoals concurrently.  The coordinator manages this 
process. 

4.3. Serving multiple subgoals 

At a particular instant, a server might have solutions for more than one subgoal.  After 
receiving a request to solve a subgoal, a server generates initial solutions.  Upon request, 
the server sends the resulting bindings to the coordinator, and proceeds to generate 
alternate solutions.  However, the coordinator's next request may be to solve the next 
subgoal instead of requesting the alternate solutions.  The server then saves its state, 
including the alternate solutions to the first subgoal, and proceeds to solve the second 
subgoal.  If the coordinator backtracks, it first requests more solutions to the second 
subgoal.  After reporting failure to the coordinator, the server reverts back to its previous 
state with the alternate solutions to the first subgoal.  The coordinator receives the failure 
message and removes this server from the list of servers for the second subgoal.  If the 
list of servers becomes empty for the second subgoal, the coordinator backtracks and 
requests alternate solutions to the first subgoal.  
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4.4. Distributed abstract instructions  

There are four new abstract instructions in the coordinating abstract machine [23]: 
get_servers, broadcast_goal, receive_binding, and repeat_else_try that facilitate 
distributed processing. 

The get-servers instruction takes a procedure-id as an argument and returns a filter 
vector that identifies the servers that can solve that goal.  The broadcast_goal instruction 
sends a goal to the servers indicated by a server filter vector.  The receive_binding 
instruction is executed repeatedly to retrieve the bindings from the servers.  The 
arguments for a receive-bindings instruction are a server vector and a binding vector.  
The bindings from each server in the server table are added to an associative binding 
area.  The binding filter vector points to the new binding vectors.  If all the matching 
servers transmit failure, this instruction releases the repeat label from the control stack, 
and the coordinator backtracks. 

The abstract instruction repeat_else_try enables the repeated execution of the 
receive_bindings instruction with the capability to backtrack in the absence of bindings.  
It puts a repeat label and try_me_else label on the control stack, which controls the 
execution of the receive_bindings instruction. 

5. A Distributed Domain  

In this section, we present the execution trace of a simple logic program working on 
knowledge distributed over two servers.  
 
Example 2 

The program in Figure 6 illustrates a distributed version of the program in Example 1.  
To simplify the compiled code, only the facts were altered.  The compiled code consists 
of two types of codes: server-level code and coordinator-level code. 
 

Server 1 
 
p(1, 2). 
P(3, 4). 
p(X,Y) :- q(Y,X) 
 
q(2, 1). 
q(2, 6). 
 
r(2,2). 
r(X, Z) :- p(X, Y), q(Y, Z). 

 
 
p(2, 3). 
 
 
 
q(3, 2). 
q(3, 7). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Server 2 
 
p(1, 4). 
p(3, 6). 
p(X,Y) :- q(Y,X). 
 
q(4, 3). 
q(4, 8). 
 
r(2, 3). 
r(X, Z) :- p(X, Y), q(Y, Z). 

 
 
p(2, 5). 
 
 
 
q(5, 4). 
q(5, 9). 
 
 
 

Fig. 6. A simple example of knowledge in two different domains 

 
Figure 7 illustrates the compiled code for the coordinator.  The major difference is 

that the coordinator spawns the subgoals, collects the bindings, interacts with the outside 
world, and coordinates the values of shared variables if bindings from one server are 
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passed to another server.To simplify the trace, the programs in both servers have the 
same structure and differ only in their facts. 

 
p/2:   get_servers                 p/2, S0  /* get servers for p/2 into S0*/ 

backtrack_if_empty  S0   /* backtrack if no more servers */ 
broadcast_goal    p/2, S0  /* broadcast p/2 to marked servers */ 
repeat_else_try    L5, L10  /* repeatedly call L4 else branch to L9 */ 

L5:   receive_bindings   S0, B0  /* receive the bindings in B0 */ 
store_vector_id   B0, A0  /* store the binding of the 1st argument */ 
store_vector_id   B0, A1  /* store the binding of the 2nd  argument */ 
backtrack_if_empty  B0   /* backtrack if vector B0 is empty */ 
return         /* return from the procedure p/2 */ 

L10:   try_me_else    C0   /* next server until vector C0 is empty */ 
p/2_cl:   copy_reference   A1, A0, q/2 /* build the 1st argument to call q/2 */ 

copy_reference   A0, A1, q/2 /* build the 2nd argument to call q/2 */ 
call       q/2   /* call the procedure q/2 */ 
return         /* return from the procedure p/2 */ 

q/2:   get_servers     q/2, S0  /* get servers for q/2 into filter vector  S0*/ 
backtrack_if_empty  S0   /* backtrack if servers are exhausted */ 
broadcast_goal    q/2, S0  /* broadcast q/2 to servers marked by S0 */ 
repeat_else_try    L18, L23  /* call routine at L19 else branch to L24*/ 

L19:  receive_bindings   S0, B0  /* receive the bindings into vector B0 */ 
store_vector_id   B0, A0  /* store the binding of the 1st argument */ 
store_vector_id   B0, A1  /* store the binding of the 2nd argument */ 
backtrack_if_empty  B0   /* backtrack if vector B0 is empty */ 
return         /* return from the procedure q/2 */ 

L24:   try_me_else    C0   /* next server until vector C0 is empty */ 
r/2:   get_servers     r/2, S0  /* get servers for r/2 into vector  S0*/ 

backtrack_if_empty  S0    /* backtrack if all severs are exhausted */ 
broadcast_goal    r/2, S0  /* broadcast r/2 to servers marked by S0 */ 
repeat_else_try    L28, L33  /* call routine at L29 else branch to L34 */ 

L29:  receive_bindings   S0, B0  /* receive the bindings into vector B2 */ 
    store_vector_id   B2, A0  /* store the bindings of the 1st argument */ 
    store_vector_id   B2, A1  /* store the binding of the 2nd argument */ 

backtrack_if_empty  B0   /* backtrack if vector B0 is empty */ 
return         /* return from the procedure r/2 */ 

L34:   try_me_else    C0   /* next server until C0 is empty */ 
r/2-r1:   copy_reference    A0, A0, p/2 /* build the 1st argument of p/2 */ 

load_new_variable   A1, V3, p/2 /* build the 2nd argument of p/2 */ 
call       p/2   /* call procedure p/2 */ 

L38:  continue     L37   /* continue to next level L39 */ 
L39:   copy_local_register  A0, V3  /* buildup the 1st argument of q/2 */ 

copy_reference   A1, A0, q/2 /* copy the 2nd argument of q/2 */ 
repeat_else_backtrack  L42, A0  /* Call L42 until A0 is empty */ 

L42:  load_next_vector_value A0   /* load next value from A0 */ 
call       q/2   /* call procedure q/2  */ 
return         /return from the procedure r/2 */ 

 
Load:  load_procedure    p/2   /* load the information of p/2 */ 

load_procedure   q/2   /* load the information of q/2 */ 
load_procedure   r/2   /* load the information of r/2 */ 

Fig. 7. The distributed compiled code 
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5.1. The execution behavior of the distributed abstract machine 

To create a distributed abstract machine, a schema file with the host and path-name for 
each program is prepared as follows: 

 host1.domain1 /path/on/host1/program1 
host2.domain2 /path/on/host2/program2 

The command "dalps program schema" initiates the coordinator process.  The first 
argument (the file name of the coordinator’s program) is used to create a program object.  
A distributed abstract machine is then instantiated to execute the program.  The 
coordinator process reads the schema file, and creates a server process for each entry. 

Every server is implemented individually as a remote abstract machine object.  The 
remote abstract machine spawns a server process on the specified host using PVM, loads 
the specified program into the server, and then acts as a communication interface between 
the coordinator and the server.  

After creating the remote abstract machines, the distributed abstract machine requests 
that each server transmit a list of its procedures.  This information is inserted into the 
server table as shown in Table 1. 

Table 1. A server table for Example 2 

Procedure id Server id Clause count Server capability vector 
p/2 1 4 1 
p/2 2 4 1 
q/2 1 4 1 
q/2 2 4 1 
r/2 1 2 1 
r/2 2 2 1 

5.2. An execution trace of the coordinator 

Let us suppose that the user enters the goal p(X, Y).  The distributed abstract machine 
initializes registers for the arguments X and Y, and starts executing the instructions from 
the label p/2. 

The get_servers instruction performs an associative match against the server table with 
the procedure p/2.  The resulting server capability vector S0 represents matching servers. 
The backtrack_if_empty instruction tests S0.  This instruction triggers the backtracking of 
the coordinator in the absence of a server.  In this example, the filter vector S0 marks 
servers one and two. 

The broadcast_goal instruction builds a goal consisting of procedure p/2 and the two 
unbound arguments, and broadcasts the goal to the servers indicated by the universal 
filter vector S0. 

The repeat_else_try instruction puts the repeat label L23 on the control stack.  After 
the return instruction sees the label L5 on the stack, the program counter is reset to L5, 
and the execution of the following code is repeated.  A try_me_else label L10 is also 
placed on the stack to handle failure.  Upon backtracking, the control is transferred to the 
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label L10.  The receive_bindings instruction is used to report the bindings for the goal 
arguments from each eligible server.  The initial set of received bindings corresponds to 
the ground facts.  In this example, server 1 returns the bindings p(1, 2), p(2, 3) and p(3, 
4); and server 2 returns the bindings p(1, 4), p(2, 5) and p(3, 6).  The distributed abstract 
machine adds these bindings to its associative binding area as illustrated in Table 2.  The 
time-stamp for these bindings is 0 (the initial time-stamp). 

Table 2. The binding area for the goal p/2 

Index Server Time-stamp Argument 1 Argument 2 

0 
1 
2 
3 
4 
5 

1 
1 
1 
2 
2 
2 

0 
0 
0 
0 
0 
0 

1 
2 
1 
1 
2 
3 

2 
3 
4 
4 
5 
6 

The distributed abstract machine builds a binding vector B0 associated with the 
associative binding area by matching against the current timestamp 0.  The next two 
store_vector_id instructions store a reference to the binding vector B0 in the registers for 
both the arguments.  The backtrack_if_empty instruction would backtrack if the 
corresponding binding vector is empty; and the control would be transferred to the 
try_me_else label L10.  Since B0 is not empty, the return instruction places the repeat label 
L5 in the program counter and returns.  The distributed abstract machine reports the 
current bindings to the user and waits. On request from the user, execution resumes at 
label L5, and requests the next set of bindings from the servers. The timestamp is 
incremented by the receive_bindings instruction in order to differentiate the new bindings 
from those previously received.  The bindings for the rule p(X, Y) :- q(Y, X) are added to 
the associative binding area at timestamp 1 as illustrated in Table 3. 

The distributed abstract machine again builds a new binding vector B0 by matching 
against the timestamp 1.  The sequence of three instructions 

�
 store_vector_id, 

backtrack_if_empty and return 
�

 is executed as before, and the new bindings are 
reported to the user.  On further request from the user, control is transferred to the repeat 
label L5.  This time the receive_bindings instruction fails in the absence of additional 
solution for p/2 from the servers.  The repeat label is removed from the control stack, and 
control is transferred to the try_me_else label L10.  The try_me_else instruction transfers 
control to the code for the rule at the label p/2-cl1 The copy_reference instructions 
allocate new registers for the arguments to the subgoal q(Y, X).  The call instruction then 
transfers control to the entry point for the compiled code of the procedure q/2.  Both 
servers are requested to solve the goal q/2.  The bindings from their ground facts are 
added to the associative binding area.  Requests for further bindings result in failure, and 
the execution terminates. 
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Table 3. The binding area (second bindings) 

Index Server Time-stamp Argument 1 Argument 2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
1 
1 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 

0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
1 
2 
3 
1 
2 
3 
4 
6 
7 
8 

2 
3 
4 
4 
5 
6 
2 
3 
4 
5 
2 
3 
4 

5.3. An execution trace of the servers 

In this subsection we trace the execution of the code by the servers.  The various states of 
the servers are illustrated in Table 4.  

Let us assume that a user gives the goal r(X, Z) to a coordinating process.  The 
distributed abstract machine broadcasts the goal to the matching servers.  Upon receiving 
the goal, the servers load their registers with the given arguments and start executing their 
instruction code at label r/2.  First a match_arg instruction identifies all of the matching 
clauses in the vector U0.  For the first server, a filter vector points to the fact r(2, 2) and 
the rule r(X, Y) :- p(X, Y), q(Y, Z).  The resulting filter vector U0 is ANDed with the fact 
filter F0, and the resulting binding vector B0 is stored as the bindings for the two 
arguments.  The complement of this fact vector F0 ANDed with the vector U0 represents 
the matching rules in vector C0, and is saved for further processing.  The binding filter 
vector B0 is then tested.  Since the vector B0 is not empty, the program returns the 
control to the coordinator.  The server waits in state 1 for further instructions. 

Upon receiving the next request for bindings from the coordinator, the server extracts 
the bindings from the registers to get the vector of values.  After transmitting the bindings 
(2 and 2 in this example), the server looks for additional solutions.  In this example, the 
server passes control to the try_me_else instruction at label L36.  The control is transferred 
to the code of the first (and only) rule of r/2 at the label r/2_cl.  The server sets up the 
arguments and calls Procedures p/2 and q/2.  The server finds another set of bindings for 
r/2, and waits in State 2 for further instructions from the coordinator. 

After receiving a request for the second set of bindings, the server sends the bindings 
to the coordinator.  The server resumes search for additional solutions.  This time the 
server backtracks, and picks up the additional solutions derived from the rule p(X, Y) :- 
q(Y, X ) as given by State 3. 

The server sends the requested bindings, and tries for additional solutions.  The server 
(in State 4) replies with failure.  Upon receiving this message, the coordinator uses the 
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rule for the procedure r/2, and requests the server to solve the subgoal p(X, Y).  The 
server complies with the request and waits on state 5. 

Table 4. Different states of the servers 

State Time Description 

1 
2 
3 
4 
5 
6 
7 
7 
8 
8 
9 
10 
11 
11 
12 
12 
13 

1 
2 
3 
4 
4 
5 
5 
6 
5 
7 
5 
6 
6 
7 
6 
7 
6 

bindings from r/2 � ground facts 
bindings from r/2 � first solution 
bindings from r/2 � second solution 
no more solution for r/2 
bindings from p/2 � ground facts 
bindings from p/2 rule 
solution from p/2 rule 
solution form q/2 
second solution from p/2 rule 
no more solution from q/2 
second solution from p/2 rule 
no more solution for p/2 
no more solution for p/2 
solution from q/2 ground facts 
no more solution for p/2 
no more solution for q/2 
no more solution for p/2 

When requested, the server sends the bindings corresponding to its ground facts for 
the procedure p/2, and searches for additional solutions given by the rule p(X, Y) :- q(X, 
Y).  Since the coordinator is working on the rule r(X, Z) :- p(X, Y), q(Y, Z), its next request 
is to solve the goal q/2.  Upon receiving this request, the server increments its register and 
control stack pointers and begins working on the new goal.  The second set of bindings 
for the previous goal p/2 is unreported but is not overwritten due to the incrementing of 
the pointers.  The bindings corresponding to the ground facts for the procedure q/2 
become the new current bindings (see State 7).  Upon request from the coordinator, the 
servers report the current bindings for q/2.  Since there are no additional solutions, the 
query fails (see State 8). 

The coordinator reports the solutions of p/2 and q/2 to the user.  On a request for 
additional solutions, the coordinator backtracks to the rule r(X, Z) :- p(X, Y), q(Y, Z), and 
requests additional solutions to the subgoal q/2.  The server reports failure upon the 
coordinator's request.  The abstract machine of the server backtracks to the state prior to 
receiving the request to solve the goal q/2, and awaits the next request from the 
coordinator (see State 9).  The current bindings are now the second solution previously 
determined for the goal p/2.  The coordinator backtracks, and broadcasts a request for 
additional bindings for p/2.  After receiving the new solutions to the subgoal p/2, the 
coordinator requests the servers (except the one generating the bindings for Procedure 
p/2) for solutions to the subgoal q/2.  The servers save the current state of the goal p/2, 
and compute solutions for the goal q/2 (see State 11).  On request, the server returns the 
solutions for q/2.  The server fails to find additional solutions for the goal q/2 (see State 
12). 
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When the coordinator backtracks and requests more solutions to the subgoal q/2, the 
server responds with failure and decrements its register and control pointers (see State 
13).  The coordinator continues to backtrack, and asks the server for additional solutions 
for the first subgoal p/2.  The server again responds with failure, and empties its control 
stack.  The coordinator finally fails. 

6. A Web Based Multimedia Interface 

In this section, we describe the implementation of the Java graphical user interface and 
front end [24] to the Distributed Associative Logic Programming System.  The Java 
based front end contains: 

(i) a lexical analyzer and a parser for the input of logical goals and assertions, 
(ii) a compiler to generate instruction code and data for the Associative Logic 

Program engine, 
(iii) routines for communicating with the distributed logic engine, and 
(iv) a graphical user interface to retrieve multimedia  information  from the Internet 

via URLs. 
The complete model with the Java Interface is shown in Figure 8.  The Java interface 

provides a link from the user to an ALPS server or DALPS coordinator.  A Java 
application parses and translates the query into an associative logic program query at the 
client’s end.  This translated query is then transferred to the coordinator or server. 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
The Java interface is shown in Figure 9.  It consists of a window for viewing the text 

of a logic program and a text entry field for entering new facts, rules and goals.  The 
existing programs are opened either from a local file or from the Internet by specifying a 
URL.  Programs can be saved to the local disk or published to a web address.  

A compiled version of the program can also be saved to the local disk by selecting the 
Compile menu. The program is automatically compiled when launching a server.  The 

Fig. 8. A distributed heterogeneous associative system 
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first option on the Servers menu will spawn a server process on any host in the currently 
configured cluster, compile the current program, and load it into the new server. 

We demonstrate a multimedia query (see Figure 10) through a small knowledge base 
about famous artists and their paintings.  The knowledge base contains two types of facts 
and one rule as follows: 

painted(Artist, Paintings). 
picture(Painting, URL). 
pictureby(Artist,Picture) :- painted(Artist,Painting), picture(Painting,Picture). 

 

Fig. 9. Launching a knowledge server 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The rule will match the artists in the multimedia knowledge base with images of their 
work on the Internet.  There may be several such Internet sites.  With this system, it 
would be possible to access this distributed multimedia knowledge, create a server for 

Fig. 10. An example of a multimedia solution to a query  
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each individual knowledge base on a local high performance computer cluster and query 
the knowledge transparently as if it were a single, local knowledge base. 

7. Object Oriented Implementation of Java Interface 

The structure of the Java application is shown in Figure 11.  The user interface is 
integrated with a parser, defined by the ALParser class, for handling the input from the 
user plus an array of RemoteAbsMachine objects each of which provides the interface for 
communicating with a server process, indicated here as an ALPServer. 
 

 
 
 
 
 
 

 
 
 
 
 
 

The ALProgram class actually contains two representations of the program.  The first is 
an array of procedures. Each procedure is an array of clauses. This is the representation 
that is built via the parser and corresponds directly to the textual version of the program.  
The second representation of the program is the tabular data and instruction code that is 
used by the associative logic programming engine. 

A logic program passes through the lexical analyzer and is parsed.  This populates the 
symbol table and the initial representation of the program in the Program class.  At 
compile time (when the user selects ‘Compile’ from the Compile menu or launches a 
server for the program), the associative representation of the program is created within 
the ALProgram object. This is then written to disk or passed to the server via the 
RemoteAbsMachine class. 

The RemoteAbsMachine class masks the remote nature of the ALPServer.  Requests 
made against the RemoteAbsMachine are actually packed into messages and sent to the 
server process via the message passing system. Each RemoteAbsMachine object can 
represent a single server or, by specifying a schema file instead of a simple program, a 
coordinator that represents a system of distributed servers. 

After all servers have been launched, goals may be submitted via the text entry line of 
the user interface.  Launching of multiple servers results into the submission of the goal 

Fig. 11. The structure of Java application 
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to all of those servers.  Textual results of the query are displayed in the text window.  
Multimedia results, such as images or sounds, are displayed accordingly on the screen. 

The object-oriented implementation of the parser is illustrated in Figure 12.  The 
ALParser class accepts a logical query from the user and builds an abstract 
representation.  Within the parser, there is a lexical analyzer (the LexAn class), a symbol 
table (the SymbolTable class), and a representation of the logic program (the ALProgram 
class). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

8. Performance Evaluation 

We tested the non-distributed (single processor) version of the abstract machine against 
the distributed version using a knowledge base of 20,000 facts.  For the distributed 
version, we tested configurations of two, four, six, and eight IBM RS/6000 processors 
(with the facts distributed evenly on each) to study the overhead in going to a distributed 
paradigm.  The results are summarized in Table 5.  We conclude that there is definitely a 
speedup to be gained by distributing the data.  The break-even point, where the 
communication costs negate any further distribution of the data, seems to be at six 
processors with a granularity of 3,333 facts. 
 

Table 5. Performance results  

Processors Facts Time 
(milliseconds) 

1 
2 
4 
6 
8 

20000 
10000 
5000 
3333 
2500 

230 
130 
90 
90 

120 

These tests show that the granularity of the data (for this test environment) should be 
more than 3,000 facts per processor.  The model is thus appropriate for distributing large 

Fig. 12. A Java based parser for a logical query 
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knowledge bases.  Allowing processors to perform more local computation will further 
reduce the communication overhead. 

9. Related Works 

We are not aware of any other distributed associative models to retrieve multimedia 
knowledge on a heterogeneous cluster of high performance computer systems.  There are 
other logic programming models [6, 7, 18, 20, 27] for web based Internet programming 
that have been developed.  JINNI [27] is a web-oriented logic programming system that 
utilizes Java.  It relies on the native BinProlog engine when high performance is required. 
W-ACE [20] is a constraint-based logic programming system that is capable of web 
based logic programming.  

BinProlog and ACE are some of the fastest implementation of WAM-based logic 
programming models [20, 27].  However, they do not support content-based knowledge 
retrieval.   Our model supports content based knowledge retrieval, is cluster based, and is 
scalable to any architecture and number of processors due to the use of associative data 
structures.  For local concurrency among servers W-ACE exploits fine grain AND-OR 
parallelism suitable for tightly coupled servers.  Fine grain parallelism has a higher 
overhead of data transfer on a loosely coupled network.  

Our model has evolved due to the need to model a complex simulation on a cluster of 
high performance architectures in a realistic time.  Our distributed knowledge base 
system is efficient on a loosely coupled cluster of servers since coordinator based 
parallelism exploits both data parallelism and coarse grain parallelism.  The use of the 
message-passing libraries in our model provides a natural capability to interface with 
distributed simulation software developed in other languages.  

There is also work on using Java as a web based parallel language for cluster based 
multimedia computing [5, 8, 10] and as an interface with high performance Fortran 
programming.  The goal of this project is to use Java in combination with message 
passing libraries such as PVM [26] and MPI [13] to treat the web as a large cluster based 
virtual computer.  This work is complementary.  Both our work and this work are 
designed to use the web as a massive parallel computer for high performance engineering 
design and simulation. Their work, however, focuses on high performance scientific 
simulation, while our work focuses on high performance knowledge retrieval from the 
component library and for high performance symbolic integration of multiple scientific 
simulations of different components of complex objects.  We believe that the integration 
of these two approaches will be the key for the simulation of complex objects in realistic 
time.  Both approaches will mutually benefit from these concepts. 

We believe that all these models of Internet based intelligent knowledge retrieval and 
web based computing will provide insight to this new, uncharted, and fast growing field 
of virtual intelligent computing and resource sharing among computers on the Internet. 
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Another interesting related work is the retrieval of images from a description of 
incomplete images [16, 19].  Currently we are investigating how to integrate into our 
system the retrieval of complete multimedia objects given partial images. 

10. Conclusions 

In this paper, we have discussed a generic architecture of an independent abstract 
machine for the distributed execution of logic programs on a heterogeneous collection of 
computers accessed via the Internet.  The object-oriented implementation is portable, 
flexible and extensible.  The use of a message-passing library provides scalability and 
architecture independence.  The performance results show that distributing the data 
provides a significant performance improvement.  More local processing will reduce 
overhead due to data transfer and can further improve performance. 
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