

 343

A Scalable Distributed Multimedia Knowledge Retrieval System on a Cluster of
Heterogeneous High Performance Architectures

STEPHEN W. RYAN and ARVIND K. BANSAL

Department of Mathematics and Computer Science

Kent State University, Kent, OH 44242 - 0001, USA

E-mail: sryan@mcs.kent.edu and arvind@mcs.kent.edu

Received May 8, 1999
Accepted August 29, 1999

This paper describes a system to distribute and retrieve multimedia knowledge on a cluster of
heterogeneous high performance architectures distributed over the Internet. The knowledge is
represented using facts and rules in an associative logic-programming model. Associative
computation facilitates distribution of facts and rules, and exploits coarse grain data parallel
computation. Associative logic programming uses a flat data model that can be easily mapped onto
heterogeneous architectures. The paper describes an abstract instruction set for the distributed
version of the associative logic programming and the corresponding implementation. The
implementation uses a message-passing library for architecture independence within a cluster, uses
object oriented programming for modularity and portability, and uses Java as a front-end interface to
provide a graphical user interface and multimedia capability and remote access via the Internet. The
performance results on a cluster of IBM RS 6000 workstations are presented. The results show that
distribution of data improves the performance almost linearly for small number of processors in a
cluster.

Keywords: Associative computing, distributed computing, heterogeneous computing, Internet,
knowledge retrieval, logic programming, modeling, simulation, symbolic computing.

1. Introduction

Much of the design process is incremental. A complex object consists of many smaller
components which are further divided into smaller sub-components. In the current
competitive market, the design of complex objects such as engines — automotive
combustion engines or aircraft engines — has to be continuously modified to incorporate
new research. This requires the design process to be interactive, and the designed object

International Journal on Artificial Intelligence Tools, Vol. 9, No. 3 (2000) 343-367
© World Scientific Publishing Company

343

 344

have to be reconfigured in an iterative manner to facilitate changes based upon the
simulation results. Previously designed components have to be modified incrementally to
closely match the simulations. The need to continuously change previously designed
components requires the management of a large library of the components along with
their attributes, so that closely matching components can to be retrieved and modified in
an iterative manner based on the simulation results.

Complete scientific simulation of all of the components as a whole is computationally
prohibitive. In order to get a simulation of a complex object in realistic time, the
different components of the object have to be simulated on different clusters of
computers to exploit component level parallelism [14], and the results of the multiple
simulations have to be reconciled. Since the architectures of high performance
computers are very different and are continuously changing, it is necessary to design a
simulation system which is architecture independent, supports high performance clusters
of heterogeneous architectures, is scalable, and is portable. An additional requirement
consists of modeling the interconnectivity of different components of the object using
high-level symbolic reasoning. Symbolic reasoning is also needed for abstract rule based
simulation of components where precise scientific computation is cost prohibitive in
terms of time and resources.

With the recent advances in fast Internet connectivity, it has become possible to share
heterogeneous resources such as multimedia databases, multimedia knowledge bases,
applications, and computing power across arbitrary distances and among a large number
of users. Ideally, one would like to be able to access a desired resource transparently,
regardless of where on the network or on what type of computer system it resides. By
doing so, the entire Internet can be treated as a large virtual computer: information can be
retrieved simultaneously over the Internet from multiple distributed multimedia
knowledge bases, and can be processed at the client end in a realistic time.

In essence, the model for the simulation of a complex object requires integration of
five major technologies as follows:

(i) High-performance retrieval from knowledge bases has been exploited for
retrieving the best matching components.

(ii) Symbolic computing has been exploited to interconnect various component
simulations.

(iii) Scientific computing has been interfaced for precise simulation.
(iv) Remote accessibility and visualization of the simulation results and component

to facilitate provides user-friendly interactive modification of objects.
(v) The Internet has been used to share resources and to exploit the web as a giant

virtual computer.

In this paper, we describe an architecture, an abstract machine, and an implementation
of a heterogeneous distributed associative knowledge base model based upon the theory
developed in [2, 4]. This model integrates the logic-programming paradigm,
heterogeneous computing, associative computing, the object-oriented programming
paradigm, and Internet-based programming using Java. Logic programming provides a

Stephen W. Ryan and Arvind K. Bansal

 345

declarative programming model. In the knowledge base, components and their attributes
are represented either as logical facts or rules. Associative computing integrates data
parallel computing with associative search by content. Associative search by content
facilitates efficient search of components from a large knowledge base of library of
components. Associative data representation � complex data represented as a two-
dimensional associative table — reduces the overhead to linearize complex data
structures, and provides a uniform mechanism to represent complex data structures across
heterogeneous message architectures. The message-passing library provides this
architecture independence. The implementation using the object-oriented paradigm
provides modularity and portability. The use of Java provides a graphical user interface,
remote access through web browsers, and multimedia retrieval capability.

The model is suited for retrieval of knowledge distributed in clusters of high
performance computers over the Internet (see Figure 1). A cluster-based computation
model consists of multiple clusters, where each cluster consists of high performance
architectures capable of symbolic and scientific computing. Each cluster possesses a
coordinator and multiple servers. Knowledge is distributed on multiple servers either
based upon the different knowledge domains or to exploit coarse grain data parallelism
and object level massive parallelism present on the web. Coarse grain data parallelism is
present since multiple knowledge bases are present on different clusters, and each cluster
concurrently solves a goal. Object level massive parallelism [10] is present since
multiple individual components are simulated simultaneously. A coordinator is used to
manage and collect data from multiple servers, while major processing is done within the
servers to reduce data transfer overhead.

The main contributions of this paper are as follows:

� The model is mapped to a heterogeneous set of architectures in a user
transparent manner.

Fig. 1. Architecture of a distributed knowledge base on the Internet

K

Coordinator

K

N

S

S Symbolic node

N Numeric node

Message passing library

Cluster

N S K

Cluster

Internet Knowledge base

A Scalable Distributed Multimedia Knowledge Retrieval System

 346

� The model supports modularity, and is scalable to any number of
machines.

� The use of a message-passing library and the use of the associative model
of computing make the distributed knowledge retrieval transparent to the
user. The distributed knowledge base on the web is accessible to a user as
a local knowledge base.

� The coordinator-based model delegates maximum computation locally on
distributed servers to reduce the data transfer overhead,

� The abstract machine for distributed knowledge retrieval is generic and
scalable.

� Java-based multimedia interface provides remote access capability.

The paper is organized as follows: Section 2 describes briefly the background, the
definitions of the concepts, and the abstract machine for the implementation of
associative logic programming model. Section 3 describes an object oriented
implementation of the associative model of logic programming. Section 4 describes
heterogeneous associative logic programming model, its distributed version, and the
extension of the abstract instruction set for distributed model. Section 5 describes the
execution behavior of the distributed model. Section 6 describes the Java interface that
provides the multimedia capability. Section 7 describes an object-oriented
implementation of the Java based graphical user interface. Section 8 describes the
performance evaluation. Section 9 describes the related works, and Section 10 concludes
the work.

2. Background and Definitions

In this section, we briefly describe the related concepts of four paradigms: associative
computing, heterogeneous computing, logic programming, and object-oriented
programming.

Associative Computing searches and selects data elements for processing according to
their contents [9, 21, 22]. Data records are distributed among the processors, forming a
table of parallel fields or associated vectors such that the data elements in associated
vectors are accessed using the same index value. Vectors are processed simultaneously
by broadcasting a single instruction to all processors. The results of the computation
forms a filter vector � a new associated vector of Boolean values. Filter vectors are
used to select records for further processing.

Data parallel computing refers to the simultaneous execution of some abstract
computation on multiple data elements. Distributed computing refers to the distribution
of computation over multiple computer systems and encompasses both the data parallel
and process parallel computing models. In the absence of data dependency, distributing a
computation can result in a near linear speed up.

The object-oriented programming paradigm is well suited for distributed computing
using message passing between objects. The sub-components of a computation are

 Stephen W. Ryan and Arvind K. Bansal

 347

isolated and encapsulated in ‘objects’. An object acts as a client by making a request to
another object for some data or for some function to be performed. The receiving object
acts as a server by replying to the client with the requested information.

A message passing library [13, 26] uses message passing functions to communicate
and exchange data on a heterogeneous network. The use of a message-passing library
makes the data transfer and network communication transparent to the user.

Logic programming [17] is a popular declarative programming paradigm suitable for
high-level reasoning and knowledge representation. In a logic program, knowledge is
represented by a set of facts and rules used to describe relationships between data objects.

Java [11] is an Internet programming language derived from C++ with additional
support for multimedia display and portability over the Internet [5, 8, 10]. Java has also
been interfaced with web browsers, and is being used extensively over the Internet for
multimedia presentation. A major advantage of Java is its independence from
heterogeneous architectures over the Internet. Java has also been interfaced with
message-passing libraries to serve as a platform for cluster based multimedia display
[28].

2.1. The heterogeneous associative model

The heterogeneous associative logic programming model [4] exploits associative search
to match the clause heads with a query in a data parallel manner, and relies on execution
of compiled code for the clause bodies. In this model, data is represented by an explicit
association of fields (including index) to facilitate search by content. The presence of
associative memories in hardware facilitates search by content and automatically
improves the efficiency of the model. A software implementation of associative
operations insures the data lookup efficiency for a large number of facts on sequential
architectures as well.

In the implementation of the associative logic programming model, the left hand side
of a logic program is represented as a two-dimensional associative table with parallel
fields for the names and arguments in the clause heads. The right-hand side of the
program is compiled into low-level abstract instruction code.

In the compiled code for the right-hand side of the program, a data parallel binding
environment is generated and modified during unification of a goal with the
corresponding clause-heads or during the execution of built-in predicates. The data
parallel binding environment consists of a sequence of multiple frames, each containing
associative Boolean vectors to mark unifiable clauses and associative binding vectors to
mark the bindings of the variables in matching facts or clauses. The model also uses a set
of global registers for holding the bindings (or pointers to bindings) of arguments in the
current goal, an associative control stack to store states of computations for previous
procedure invocations, and an associative table to handle aliasing of variables. The
global registers are analogous to those in the Warren Abstract Machine [29]. The control
stack is an association of time stamps and all previous states of execution. Each state is

A Scalable Distributed Multimedia Knowledge Retrieval System

 348

Alias table Global registers Heap

Abstract instructions Control stack

Program Data parallel environment

communication association

Fig. 2. A heterogeneous associative model.

represented as an associative frame, and uses associative vectors to facilitate fast
backtracking. The vectors are indexed with respect to the base of the current frame.
Variable aliases are indicated by filter vectors and are tracked by the alias management
table. The logical OR of two vectors creates the union of two sets of aliased variables
when members of the two sets are aliased by an instruction. A detailed explanation of
this model and the corresponding abstract instructions is given in [4].

A shared variable has two occurrences in a clause body: a producer occurrence and a
consumer occurrence. The producer occurrence generates a value for the shared variable,
and the consumer occurrence uses the value of a variable.

2.2. Notations for the abstract instructions

In this section, we define the notations used in the examples. We will show examples of
the abstract instructions code for both the abstract machine of the server processes and
the distributed abstract machine used by the coordinator.

A symbol <P/arity> denotes the start of a procedure <P> with an arity of <arity>. A
symbol <P/arity>_CN denotes the start of the Nth clause of the predicate <P/arity>. A
symbol <U N> denotes a universal filter vector

�
 a vector of Boolean values associated

with a set of clauses to identify unifiable clauses. A symbol <BN> denotes a binding
filter vector

�
 a vector of Boolean values marking the values in the clause-head

representation to which a variable in a goal will be bound after unification. A symbol
<F0> denotes a fact vector

�
 a vector of Boolean values marking the facts in a

knowledge base. A symbol <CN> denotes a clause filter vector
�

 a vector of Boolean
values marking clauses with non-empty body. A symbol <AN> denotes the Nth argument
of the current goal. A symbol <TN> denotes a temporary Boolean Filter vector. A
symbol <RN> indicates a global register, and a symbol <VN> denotes a variable. A
symbol <SN> indicates a Boolean filter vector marking the servers which contain a
particular predicate, and a symbol <LN> denotes a label. Example 1 illustrates a simple
logic program. The corresponding compiled abstract instruction code is given in Figure

Stephen W. Ryan and Arvind K. Bansal

 349

3. Note that the vectors and variables have been indexed with respect the start of the
current frame.

Example 1

p(1, 2). p(2, 3). p(3, 4).

p(X, Y) :- q(Y, X).

q(2, 1). q(3, 2). q(4, 3). q(5, 4).

r(2, 2).

r(X, Z) :- p(X, Y), q(Y, Z).

We describe the general behavior of the instructions as follows. There is one entry

point in the code for each procedure in the logic program. First the goal procedure and
arguments are matched with the clause heads in a data parallel manner. The resulting
filter-vector U0 is ANDed with the filter-vector F0 which annotates the ground facts. The
resulting binding filter vector B0 indicates the bindings of the goal arguments with the
corresponding values in the facts. A clause filter vector C0 annotates the clause heads. If
facts were found, then control is returned. In the absence of matching facts or upon a
request for more solutions, the compiled code for the rules is executed using the clause-
filter vector C0.

The compiled code for rules copies the goal arguments in global registers [3, 4] and
calls the sub-goals. The three load_procedure instructions are used to load the three
procedures in the program representation.

p/2: match_arg A0, U0 /* match the 1st argument*/

backtrack_if_empty U0 /* backtrack if no matching positions */
match_arg A1, U0 /* matching the 2nd argument*/
backtrack_if_empty U0 /* backtrack if no matching positions */
and_bit_vectors F0,U0, B0 /* mark the binding values in facts */
store_vector_id B0, A0 /* store the binding of the 1st argument*/
store_vector_id B0, A1 /* store the binding of the 2nd argument */
comp_bit_vector F0, T1 /* complement F0 into T1 */
and_bit_vectors T1, U0, C0 /* mark unifiable rules */
return_if_empty B0, L10 /* return if binding vector B0 is empty */

L10: try_me_else C0 /* next unifable clause until C0 is empty*/
p/2_cl: copy_reference A1, A0, q/2 /* build the 1st argument to call q/2 */

copy_reference A0, A1, q/2 /*build the 2nd argument to call q/2 */
call q/2 /* branch to subroutine with label p/2*/
return /* return from the procedure p/2*/

q/2: match_arg A0, U0 /* match the 1st argument*/
backtrack_if_empty U0 /* backtrack if no matching positions */
match_arg A1, U0 /* match the 2nd argument*/
backtrack_if_empty U0 /* backtrack if no matching positions */
and_bit_vectors F0, U0, B0 /* mark the binding values in facts */
store_vector_id B0, A0 /* store the bindings of 1st argument*/
store_vector_id B0, A1 /* store the binding of the 2nd argument */
comp_bit_vector F0, T1 /* complement F0 into T1 */
and_bit_vectors T1, U0, C0 /* mark unifiable rules */

A Scalable Distributed Multimedia Knowledge Retrieval System

 350

return_if_empty B0, L25 /* return if binding vector B0 is empty */
L25: try_me_else C0 /* next unifable clause else backtrack */
r/2: match_arg A0, U0 /* match with the 1st argument */

backtrack_if_empty U0 /* backtrack no matching positions is */
match_arg A1, U0 /* match the 2nd argument */
backtrack_if_empty U0 /* backtrack if no matching positions */
and_bit_vectors F0, U0, B0 /* mark the binding values in facts */
store_vector_id B0, A0 /* store the binding of 1st argument */
store_vector_id B0, A1 /* store the binding of 2nd argument */
compl_bit_vector F0, T1 /* complement F0 into T1 */
and_bit_vectors T1, U0, C0 /* mark the binding values in facts */
return_if_empty B0, L36 /* return if binding vector B0 is empty */

L36: try_me_else C0 /* next unifable rule else backtrack */
r/2_cl1: copy_reference A0, A0, p/2 /* build the 1st argument to call p/2*/

load_new_variable A1, V3, p/2 /* build the 2nd argument to call p/2 */
call p/2 /* call the set of instructions at label p/2 */

 L40: continue L40 /* save L40 and execute next instruction */
L41: copy_reference A0, V3 /* build 1st argument to call q/2 */

copy_reference A1, A1, q/2 /* build 2nd argument to call q/2 */
repeat_else_backtrack L44 /* next value of shared variable */

L44: load_next_vector_value A0 /* load the next value for variable Y */
call q/2 /* call the set of instructions at label q/2 */
return /* return from this routine */

Load: load_procedure p/2 /* load the procedure p/2 into a table */
load_procedure q/2 /* load the procedure q/2 into a table */
load_procedure r/2 /* load the procedure r/2 into a table */

Fig. 3. The compiled code for Example 1

3. Object Oriented Implementation of Associative Logic Programming Model

This section describes an object model needed to provide modularity in the distributed
execution of the heterogeneous associative logic program system.

3.1. Class hierarchy

There are two primary classes in the object model: the abstract-machine class and the
program class. The abstract-machine class represents an abstract machine, and the
program class encapsulates the associative representation of a logic program. Figure 4
illustrates the overall class structure.

The public interface of the abstract-machine class allows for loading a program,
solving a goal, requesting alternate solutions, and retrieving binding information for the
goal arguments. The private member functions of the abstract-machine class include
functions for executing the instruction code of the program, including the implementation
of the abstract instruction set, and functions for backtracking and controlling the flow of
the program. The two major subclasses of the abstract-machine class encapsulate the
registers and the control stack.

The program class has two subclasses: progdata and proginst. The subclass progdata
represents an associative table of clause-heads. The subclass proginst represents the

Stephen W. Ryan and Arvind K. Bansal

 351

compiled code for the clause bodies. The subclass progdata has two subclasses:
predtable and proctable. The subclass predtable maps predicate names to a numeric
predicate-id. The subclass proctable is used for fast lookup of the predicate and the entry
point in the compiled code for each procedure. All of the components of the program
class are public and manipulated directly by the abstract machine

The associative data types are encapsulated in the two classes associative-filter and
associative-vector. The associative-filter class represents an associative filter vector. It
supports logical operations and assignment. The associative-vector class is used to
represent associative data vectors. It is implemented using the C++ template facility to
support arbitrary data types. Functions are provided to manipulate the associative vector
using associative techniques.

4. The Distributed Heterogeneous System

The distributed system consists of two types of abstract machines: a coordinator abstract
machine and a heterogeneous associative abstract machine (see Figure 5).

4.1. Abstract data structures

The coordinator launches server processes on a local or remote host. Each server has
a heterogeneous associative abstract machine as described in Subsection 2.1, with the
additional ability to receive goals and send solutions to the coordinator using a message-
passing interface such as PVM or MPI. Three additional data structures

�
 an associative

server table, a coordination table, and an associative binding area
�

 are needed in the
distributed model.

The associative server table stores the information about the predicates processed by
the servers. For each server/procedure pair there is an entry of the form (server-id,
procedure-id, clause-count) in the server table. The server-id uniquely identifies a
server. The procedure-id is a reference to an entry in the procedure table. The clause-
count is the number of clauses the server has that match the goal. The last entry is the

Fig. 4. An object oriented data representation

Stack

Interaction Class

Progdata Proginst

Predtable Progtable Alias

Registers Goal

Bindings Abstract machine Program

A Scalable Distributed Multimedia Knowledge Retrieval System

 352

server-capability vector which identifies the list of servers which can execute a
procedure. An illustration for the program in Example 2 is given in Figure 7.

The coordination table is a sequence of coordination-vectors — Boolean vectors

marking the executable procedures which have not returned the bindings for the current
goal. The coordination table is associated with the server table to facilitate the
association of Boolean vectors with the procedures. Initially the Boolean vector is the
same as the server-capability vector. Upon receiving a failure from a server, the
corresponding bit in the coordinator vector is reset. The coordinator backtracks to
previous the coordination vector when the current coordinator vector becomes empty.

The associative binding area stores the bindings incrementally as they are received
from the servers. The data elements in the associative binding area are of the form
(server-id, time-stamp, variable-id, value, type). A filter vector associated with this table
identifies the vectors bound to a register at a given time-stamp.

4.2. The execution model

A schema file prepared by the user specifies a list of remote hosts and the file names of
the logic programs to be loaded onto the various hosts. The coordinator reads the schema
file and initiates the server processes. After each server process has been successfully
initialized and has loaded its program, it reports back to the coordinator with a list of the
executable procedures. The coordinator builds up the server table from these reports.

To solve a goal, the coordinator performs an associative search on the server table to
obtain a filter vector marking all servers with the corresponding predicate. The result of
this search initializes the corresponding coordination vector. The goal is broadcast to
these servers. Upon receiving a message, each server first searches its facts and then its
rules for a solution. After finding a set of solutions, the server waits for further
instructions from the coordinator.

Fig. 5. A distributed heterogeneous associative system

PVM

PVM
Remote interface

association

communication
Knowledge server

Server interface

Knowledge server

Server interface

Remote interface

Server
table

Coordination
table

Coordinator abstract machine

Stephen W. Ryan and Arvind K. Bansal

 353

After broadcasting the goal, the coordinator queries each matching server for
solutions. The coordinator requests solutions one server at a time. However, this process
can easily be made concurrent. Each server, when prompted, transmits the bindings for
the goal arguments to the coordinator. Anticipating further requests, the servers
backtrack to find additional solutions. Meanwhile, the coordinator stores the received
bindings in the associative binding area along with the current time-stamp and the server-
id. The time-stamp is used in backtracking and is incremented before the solution of each
subgoal.

After collecting the solutions from one server, the coordinator reports the solutions to
the user. Upon further request from the user, the coordinator requests a new set of
solutions from the matching servers. Additional bindings received from the servers are
added to the associative binding area. A server sends a failure in the absence of
additional solutions. After receiving a failure, the coordinator removes that server from
the list of matching servers. This process is repeated until the list of servers is empty.
When this occurs, the coordinating process backtracks and tries other rules. The other
rules in the coordinator also occur in servers, and servers have already sent the values
from their corresponding domains. However, in the presence of shared variables, the
bindings generated from one server have to be passed to other servers to generate a
complete set of bindings. All the servers except a server S returning a binding spawn
their procedures again to consume the bindings of the shared variable generated by S.
Multiple servers concurrently consume the values of shared variables generated by other
servers, and spawn multiple subgoals concurrently. The coordinator manages this
process.

4.3. Serving multiple subgoals

At a particular instant, a server might have solutions for more than one subgoal. After
receiving a request to solve a subgoal, a server generates initial solutions. Upon request,
the server sends the resulting bindings to the coordinator, and proceeds to generate
alternate solutions. However, the coordinator's next request may be to solve the next
subgoal instead of requesting the alternate solutions. The server then saves its state,
including the alternate solutions to the first subgoal, and proceeds to solve the second
subgoal. If the coordinator backtracks, it first requests more solutions to the second
subgoal. After reporting failure to the coordinator, the server reverts back to its previous
state with the alternate solutions to the first subgoal. The coordinator receives the failure
message and removes this server from the list of servers for the second subgoal. If the
list of servers becomes empty for the second subgoal, the coordinator backtracks and
requests alternate solutions to the first subgoal.

A Scalable Distributed Multimedia Knowledge Retrieval System

 354

4.4. Distributed abstract instructions

There are four new abstract instructions in the coordinating abstract machine [23]:
get_servers, broadcast_goal, receive_binding, and repeat_else_try that facilitate
distributed processing.

The get-servers instruction takes a procedure-id as an argument and returns a filter
vector that identifies the servers that can solve that goal. The broadcast_goal instruction
sends a goal to the servers indicated by a server filter vector. The receive_binding
instruction is executed repeatedly to retrieve the bindings from the servers. The
arguments for a receive-bindings instruction are a server vector and a binding vector.
The bindings from each server in the server table are added to an associative binding
area. The binding filter vector points to the new binding vectors. If all the matching
servers transmit failure, this instruction releases the repeat label from the control stack,
and the coordinator backtracks.

The abstract instruction repeat_else_try enables the repeated execution of the
receive_bindings instruction with the capability to backtrack in the absence of bindings.
It puts a repeat label and try_me_else label on the control stack, which controls the
execution of the receive_bindings instruction.

5. A Distributed Domain

In this section, we present the execution trace of a simple logic program working on
knowledge distributed over two servers.

Example 2

The program in Figure 6 illustrates a distributed version of the program in Example 1.
To simplify the compiled code, only the facts were altered. The compiled code consists
of two types of codes: server-level code and coordinator-level code.

Server 1

p(1, 2).
P(3, 4).
p(X,Y) :- q(Y,X)

q(2, 1).
q(2, 6).

r(2,2).
r(X, Z) :- p(X, Y), q(Y, Z).

p(2, 3).

q(3, 2).
q(3, 7).

Server 2

p(1, 4).
p(3, 6).
p(X,Y) :- q(Y,X).

q(4, 3).
q(4, 8).

r(2, 3).
r(X, Z) :- p(X, Y), q(Y, Z).

p(2, 5).

q(5, 4).
q(5, 9).

Fig. 6. A simple example of knowledge in two different domains

Figure 7 illustrates the compiled code for the coordinator. The major difference is

that the coordinator spawns the subgoals, collects the bindings, interacts with the outside
world, and coordinates the values of shared variables if bindings from one server are

Stephen W. Ryan and Arvind K. Bansal

 355

passed to another server.To simplify the trace, the programs in both servers have the
same structure and differ only in their facts.

p/2: get_servers p/2, S0 /* get servers for p/2 into S0*/

backtrack_if_empty S0 /* backtrack if no more servers */
broadcast_goal p/2, S0 /* broadcast p/2 to marked servers */
repeat_else_try L5, L10 /* repeatedly call L4 else branch to L9 */

L5: receive_bindings S0, B0 /* receive the bindings in B0 */
store_vector_id B0, A0 /* store the binding of the 1st argument */
store_vector_id B0, A1 /* store the binding of the 2nd argument */
backtrack_if_empty B0 /* backtrack if vector B0 is empty */
return /* return from the procedure p/2 */

L10: try_me_else C0 /* next server until vector C0 is empty */
p/2_cl: copy_reference A1, A0, q/2 /* build the 1st argument to call q/2 */

copy_reference A0, A1, q/2 /* build the 2nd argument to call q/2 */
call q/2 /* call the procedure q/2 */
return /* return from the procedure p/2 */

q/2: get_servers q/2, S0 /* get servers for q/2 into filter vector S0*/
backtrack_if_empty S0 /* backtrack if servers are exhausted */
broadcast_goal q/2, S0 /* broadcast q/2 to servers marked by S0 */
repeat_else_try L18, L23 /* call routine at L19 else branch to L24*/

L19: receive_bindings S0, B0 /* receive the bindings into vector B0 */
store_vector_id B0, A0 /* store the binding of the 1st argument */
store_vector_id B0, A1 /* store the binding of the 2nd argument */
backtrack_if_empty B0 /* backtrack if vector B0 is empty */
return /* return from the procedure q/2 */

L24: try_me_else C0 /* next server until vector C0 is empty */
r/2: get_servers r/2, S0 /* get servers for r/2 into vector S0*/

backtrack_if_empty S0 /* backtrack if all severs are exhausted */
broadcast_goal r/2, S0 /* broadcast r/2 to servers marked by S0 */
repeat_else_try L28, L33 /* call routine at L29 else branch to L34 */

L29: receive_bindings S0, B0 /* receive the bindings into vector B2 */
 store_vector_id B2, A0 /* store the bindings of the 1st argument */
 store_vector_id B2, A1 /* store the binding of the 2nd argument */

backtrack_if_empty B0 /* backtrack if vector B0 is empty */
return /* return from the procedure r/2 */

L34: try_me_else C0 /* next server until C0 is empty */
r/2-r1: copy_reference A0, A0, p/2 /* build the 1st argument of p/2 */

load_new_variable A1, V3, p/2 /* build the 2nd argument of p/2 */
call p/2 /* call procedure p/2 */

L38: continue L37 /* continue to next level L39 */
L39: copy_local_register A0, V3 /* buildup the 1st argument of q/2 */

copy_reference A1, A0, q/2 /* copy the 2nd argument of q/2 */
repeat_else_backtrack L42, A0 /* Call L42 until A0 is empty */

L42: load_next_vector_value A0 /* load next value from A0 */
call q/2 /* call procedure q/2 */
return /return from the procedure r/2 */

Load: load_procedure p/2 /* load the information of p/2 */

load_procedure q/2 /* load the information of q/2 */
load_procedure r/2 /* load the information of r/2 */

Fig. 7. The distributed compiled code

A Scalable Distributed Multimedia Knowledge Retrieval System

 356

5.1. The execution behavior of the distributed abstract machine

To create a distributed abstract machine, a schema file with the host and path-name for
each program is prepared as follows:

 host1.domain1 /path/on/host1/program1
host2.domain2 /path/on/host2/program2

The command "dalps program schema" initiates the coordinator process. The first
argument (the file name of the coordinator’s program) is used to create a program object.
A distributed abstract machine is then instantiated to execute the program. The
coordinator process reads the schema file, and creates a server process for each entry.

Every server is implemented individually as a remote abstract machine object. The
remote abstract machine spawns a server process on the specified host using PVM, loads
the specified program into the server, and then acts as a communication interface between
the coordinator and the server.

After creating the remote abstract machines, the distributed abstract machine requests
that each server transmit a list of its procedures. This information is inserted into the
server table as shown in Table 1.

Table 1. A server table for Example 2

Procedure id Server id Clause count Server capability vector
p/2 1 4 1
p/2 2 4 1
q/2 1 4 1
q/2 2 4 1
r/2 1 2 1
r/2 2 2 1

5.2. An execution trace of the coordinator

Let us suppose that the user enters the goal p(X, Y). The distributed abstract machine
initializes registers for the arguments X and Y, and starts executing the instructions from
the label p/2.

The get_servers instruction performs an associative match against the server table with
the procedure p/2. The resulting server capability vector S0 represents matching servers.
The backtrack_if_empty instruction tests S0. This instruction triggers the backtracking of
the coordinator in the absence of a server. In this example, the filter vector S0 marks
servers one and two.

The broadcast_goal instruction builds a goal consisting of procedure p/2 and the two
unbound arguments, and broadcasts the goal to the servers indicated by the universal
filter vector S0.

The repeat_else_try instruction puts the repeat label L23 on the control stack. After
the return instruction sees the label L5 on the stack, the program counter is reset to L5,
and the execution of the following code is repeated. A try_me_else label L10 is also
placed on the stack to handle failure. Upon backtracking, the control is transferred to the

 Stephen W. Ryan and Arvind K. Bansal

 357

label L10. The receive_bindings instruction is used to report the bindings for the goal
arguments from each eligible server. The initial set of received bindings corresponds to
the ground facts. In this example, server 1 returns the bindings p(1, 2), p(2, 3) and p(3,
4); and server 2 returns the bindings p(1, 4), p(2, 5) and p(3, 6). The distributed abstract
machine adds these bindings to its associative binding area as illustrated in Table 2. The
time-stamp for these bindings is 0 (the initial time-stamp).

Table 2. The binding area for the goal p/2

Index Server Time-stamp Argument 1 Argument 2

0
1
2
3
4
5

1
1
1
2
2
2

0
0
0
0
0
0

1
2
1
1
2
3

2
3
4
4
5
6

The distributed abstract machine builds a binding vector B0 associated with the
associative binding area by matching against the current timestamp 0. The next two
store_vector_id instructions store a reference to the binding vector B0 in the registers for
both the arguments. The backtrack_if_empty instruction would backtrack if the
corresponding binding vector is empty; and the control would be transferred to the
try_me_else label L10. Since B0 is not empty, the return instruction places the repeat label
L5 in the program counter and returns. The distributed abstract machine reports the
current bindings to the user and waits. On request from the user, execution resumes at
label L5, and requests the next set of bindings from the servers. The timestamp is
incremented by the receive_bindings instruction in order to differentiate the new bindings
from those previously received. The bindings for the rule p(X, Y) :- q(Y, X) are added to
the associative binding area at timestamp 1 as illustrated in Table 3.

The distributed abstract machine again builds a new binding vector B0 by matching
against the timestamp 1. The sequence of three instructions

�
 store_vector_id,

backtrack_if_empty and return
�

 is executed as before, and the new bindings are
reported to the user. On further request from the user, control is transferred to the repeat
label L5. This time the receive_bindings instruction fails in the absence of additional
solution for p/2 from the servers. The repeat label is removed from the control stack, and
control is transferred to the try_me_else label L10. The try_me_else instruction transfers
control to the code for the rule at the label p/2-cl1 The copy_reference instructions
allocate new registers for the arguments to the subgoal q(Y, X). The call instruction then
transfers control to the entry point for the compiled code of the procedure q/2. Both
servers are requested to solve the goal q/2. The bindings from their ground facts are
added to the associative binding area. Requests for further bindings result in failure, and
the execution terminates.

A Scalable Distributed Multimedia Knowledge Retrieval System

 358

Table 3. The binding area (second bindings)

Index Server Time-stamp Argument 1 Argument 2

0
1
2
3
4
5
6
7
8
9
10
11
12

1
1
1
2
2
2
1
1
1
1
2
2
2

0
0
0
0
0
0
1
1
1
1
1
1
1

1
2
3
1
2
3
1
2
3
4
6
7
8

2
3
4
4
5
6
2
3
4
5
2
3
4

5.3. An execution trace of the servers

In this subsection we trace the execution of the code by the servers. The various states of
the servers are illustrated in Table 4.

Let us assume that a user gives the goal r(X, Z) to a coordinating process. The
distributed abstract machine broadcasts the goal to the matching servers. Upon receiving
the goal, the servers load their registers with the given arguments and start executing their
instruction code at label r/2. First a match_arg instruction identifies all of the matching
clauses in the vector U0. For the first server, a filter vector points to the fact r(2, 2) and
the rule r(X, Y) :- p(X, Y), q(Y, Z). The resulting filter vector U0 is ANDed with the fact
filter F0, and the resulting binding vector B0 is stored as the bindings for the two
arguments. The complement of this fact vector F0 ANDed with the vector U0 represents
the matching rules in vector C0, and is saved for further processing. The binding filter
vector B0 is then tested. Since the vector B0 is not empty, the program returns the
control to the coordinator. The server waits in state 1 for further instructions.

Upon receiving the next request for bindings from the coordinator, the server extracts
the bindings from the registers to get the vector of values. After transmitting the bindings
(2 and 2 in this example), the server looks for additional solutions. In this example, the
server passes control to the try_me_else instruction at label L36. The control is transferred
to the code of the first (and only) rule of r/2 at the label r/2_cl. The server sets up the
arguments and calls Procedures p/2 and q/2. The server finds another set of bindings for
r/2, and waits in State 2 for further instructions from the coordinator.

After receiving a request for the second set of bindings, the server sends the bindings
to the coordinator. The server resumes search for additional solutions. This time the
server backtracks, and picks up the additional solutions derived from the rule p(X, Y) :-
q(Y, X) as given by State 3.

The server sends the requested bindings, and tries for additional solutions. The server
(in State 4) replies with failure. Upon receiving this message, the coordinator uses the

Stephen W. Ryan and Arvind K. Bansal

 359

rule for the procedure r/2, and requests the server to solve the subgoal p(X, Y). The
server complies with the request and waits on state 5.

Table 4. Different states of the servers

State Time Description

1
2
3
4
5
6
7
7
8
8
9
10
11
11
12
12
13

1
2
3
4
4
5
5
6
5
7
5
6
6
7
6
7
6

bindings from r/2 � ground facts
bindings from r/2 � first solution
bindings from r/2 � second solution
no more solution for r/2
bindings from p/2 � ground facts
bindings from p/2 rule
solution from p/2 rule
solution form q/2
second solution from p/2 rule
no more solution from q/2
second solution from p/2 rule
no more solution for p/2
no more solution for p/2
solution from q/2 ground facts
no more solution for p/2
no more solution for q/2
no more solution for p/2

When requested, the server sends the bindings corresponding to its ground facts for
the procedure p/2, and searches for additional solutions given by the rule p(X, Y) :- q(X,
Y). Since the coordinator is working on the rule r(X, Z) :- p(X, Y), q(Y, Z), its next request
is to solve the goal q/2. Upon receiving this request, the server increments its register and
control stack pointers and begins working on the new goal. The second set of bindings
for the previous goal p/2 is unreported but is not overwritten due to the incrementing of
the pointers. The bindings corresponding to the ground facts for the procedure q/2
become the new current bindings (see State 7). Upon request from the coordinator, the
servers report the current bindings for q/2. Since there are no additional solutions, the
query fails (see State 8).

The coordinator reports the solutions of p/2 and q/2 to the user. On a request for
additional solutions, the coordinator backtracks to the rule r(X, Z) :- p(X, Y), q(Y, Z), and
requests additional solutions to the subgoal q/2. The server reports failure upon the
coordinator's request. The abstract machine of the server backtracks to the state prior to
receiving the request to solve the goal q/2, and awaits the next request from the
coordinator (see State 9). The current bindings are now the second solution previously
determined for the goal p/2. The coordinator backtracks, and broadcasts a request for
additional bindings for p/2. After receiving the new solutions to the subgoal p/2, the
coordinator requests the servers (except the one generating the bindings for Procedure
p/2) for solutions to the subgoal q/2. The servers save the current state of the goal p/2,
and compute solutions for the goal q/2 (see State 11). On request, the server returns the
solutions for q/2. The server fails to find additional solutions for the goal q/2 (see State
12).

A Scalable Distributed Multimedia Knowledge Retrieval System

 360

When the coordinator backtracks and requests more solutions to the subgoal q/2, the
server responds with failure and decrements its register and control pointers (see State
13). The coordinator continues to backtrack, and asks the server for additional solutions
for the first subgoal p/2. The server again responds with failure, and empties its control
stack. The coordinator finally fails.

6. A Web Based Multimedia Interface

In this section, we describe the implementation of the Java graphical user interface and
front end [24] to the Distributed Associative Logic Programming System. The Java
based front end contains:

(i) a lexical analyzer and a parser for the input of logical goals and assertions,
(ii) a compiler to generate instruction code and data for the Associative Logic

Program engine,
(iii) routines for communicating with the distributed logic engine, and
(iv) a graphical user interface to retrieve multimedia information from the Internet

via URLs.
The complete model with the Java Interface is shown in Figure 8. The Java interface

provides a link from the user to an ALPS server or DALPS coordinator. A Java
application parses and translates the query into an associative logic program query at the
client’s end. This translated query is then transferred to the coordinator or server.

The Java interface is shown in Figure 9. It consists of a window for viewing the text

of a logic program and a text entry field for entering new facts, rules and goals. The
existing programs are opened either from a local file or from the Internet by specifying a
URL. Programs can be saved to the local disk or published to a web address.

A compiled version of the program can also be saved to the local disk by selecting the
Compile menu. The program is automatically compiled when launching a server. The

Fig. 8. A distributed heterogeneous associative system

Client

Server interface
PVM

PVM

Coordinator abstract machine

communication

association

Server interface

Knowledge server

Knowledge server
Remote interface

Remote interface

Server
table

Coordination
table

Internet JAVA GUI

Java parser

Stephen W. Ryan and Arvind K. Bansal

 361

first option on the Servers menu will spawn a server process on any host in the currently
configured cluster, compile the current program, and load it into the new server.

We demonstrate a multimedia query (see Figure 10) through a small knowledge base
about famous artists and their paintings. The knowledge base contains two types of facts
and one rule as follows:

painted(Artist, Paintings).
picture(Painting, URL).
pictureby(Artist,Picture) :- painted(Artist,Painting), picture(Painting,Picture).

Fig. 9. Launching a knowledge server

The rule will match the artists in the multimedia knowledge base with images of their
work on the Internet. There may be several such Internet sites. With this system, it
would be possible to access this distributed multimedia knowledge, create a server for

Fig. 10. An example of a multimedia solution to a query

A Scalable Distributed Multimedia Knowledge Retrieval System

 362

each individual knowledge base on a local high performance computer cluster and query
the knowledge transparently as if it were a single, local knowledge base.

7. Object Oriented Implementation of Java Interface

The structure of the Java application is shown in Figure 11. The user interface is
integrated with a parser, defined by the ALParser class, for handling the input from the
user plus an array of RemoteAbsMachine objects each of which provides the interface for
communicating with a server process, indicated here as an ALPServer.

The ALProgram class actually contains two representations of the program. The first is
an array of procedures. Each procedure is an array of clauses. This is the representation
that is built via the parser and corresponds directly to the textual version of the program.
The second representation of the program is the tabular data and instruction code that is
used by the associative logic programming engine.

A logic program passes through the lexical analyzer and is parsed. This populates the
symbol table and the initial representation of the program in the Program class. At
compile time (when the user selects ‘Compile’ from the Compile menu or launches a
server for the program), the associative representation of the program is created within
the ALProgram object. This is then written to disk or passed to the server via the
RemoteAbsMachine class.

The RemoteAbsMachine class masks the remote nature of the ALPServer. Requests
made against the RemoteAbsMachine are actually packed into messages and sent to the
server process via the message passing system. Each RemoteAbsMachine object can
represent a single server or, by specifying a schema file instead of a simple program, a
coordinator that represents a system of distributed servers.

After all servers have been launched, goals may be submitted via the text entry line of
the user interface. Launching of multiple servers results into the submission of the goal

Fig. 11. The structure of Java application

Remote abstract machine

Graphical user interface

A L parser Remote abstract machine

ALP server

ALP server

Stephen W. Ryan and Arvind K. Bansal

 363

to all of those servers. Textual results of the query are displayed in the text window.
Multimedia results, such as images or sounds, are displayed accordingly on the screen.

The object-oriented implementation of the parser is illustrated in Figure 12. The
ALParser class accepts a logical query from the user and builds an abstract
representation. Within the parser, there is a lexical analyzer (the LexAn class), a symbol
table (the SymbolTable class), and a representation of the logic program (the ALProgram
class).

8. Performance Evaluation

We tested the non-distributed (single processor) version of the abstract machine against
the distributed version using a knowledge base of 20,000 facts. For the distributed
version, we tested configurations of two, four, six, and eight IBM RS/6000 processors
(with the facts distributed evenly on each) to study the overhead in going to a distributed
paradigm. The results are summarized in Table 5. We conclude that there is definitely a
speedup to be gained by distributing the data. The break-even point, where the
communication costs negate any further distribution of the data, seems to be at six
processors with a granularity of 3,333 facts.

Table 5. Performance results

Processors Facts Time
(milliseconds)

1
2
4
6
8

20000
10000
5000
3333
2500

230
130
90
90

120

These tests show that the granularity of the data (for this test environment) should be
more than 3,000 facts per processor. The model is thus appropriate for distributing large

Fig. 12. A Java based parser for a logical query

Lex analyzer Symbol table

Procedure

Clause Predtable Proctable

Progdata

AL program

ALP parser

A Scalable Distributed Multimedia Knowledge Retrieval System

 364

knowledge bases. Allowing processors to perform more local computation will further
reduce the communication overhead.

9. Related Works

We are not aware of any other distributed associative models to retrieve multimedia
knowledge on a heterogeneous cluster of high performance computer systems. There are
other logic programming models [6, 7, 18, 20, 27] for web based Internet programming
that have been developed. JINNI [27] is a web-oriented logic programming system that
utilizes Java. It relies on the native BinProlog engine when high performance is required.
W-ACE [20] is a constraint-based logic programming system that is capable of web
based logic programming.

BinProlog and ACE are some of the fastest implementation of WAM-based logic
programming models [20, 27]. However, they do not support content-based knowledge
retrieval. Our model supports content based knowledge retrieval, is cluster based, and is
scalable to any architecture and number of processors due to the use of associative data
structures. For local concurrency among servers W-ACE exploits fine grain AND-OR
parallelism suitable for tightly coupled servers. Fine grain parallelism has a higher
overhead of data transfer on a loosely coupled network.

Our model has evolved due to the need to model a complex simulation on a cluster of
high performance architectures in a realistic time. Our distributed knowledge base
system is efficient on a loosely coupled cluster of servers since coordinator based
parallelism exploits both data parallelism and coarse grain parallelism. The use of the
message-passing libraries in our model provides a natural capability to interface with
distributed simulation software developed in other languages.

There is also work on using Java as a web based parallel language for cluster based
multimedia computing [5, 8, 10] and as an interface with high performance Fortran
programming. The goal of this project is to use Java in combination with message
passing libraries such as PVM [26] and MPI [13] to treat the web as a large cluster based
virtual computer. This work is complementary. Both our work and this work are
designed to use the web as a massive parallel computer for high performance engineering
design and simulation. Their work, however, focuses on high performance scientific
simulation, while our work focuses on high performance knowledge retrieval from the
component library and for high performance symbolic integration of multiple scientific
simulations of different components of complex objects. We believe that the integration
of these two approaches will be the key for the simulation of complex objects in realistic
time. Both approaches will mutually benefit from these concepts.

We believe that all these models of Internet based intelligent knowledge retrieval and
web based computing will provide insight to this new, uncharted, and fast growing field
of virtual intelligent computing and resource sharing among computers on the Internet.

Stephen W. Ryan and Arvind K. Bansal

 365

Another interesting related work is the retrieval of images from a description of
incomplete images [16, 19]. Currently we are investigating how to integrate into our
system the retrieval of complete multimedia objects given partial images.

10. Conclusions

In this paper, we have discussed a generic architecture of an independent abstract
machine for the distributed execution of logic programs on a heterogeneous collection of
computers accessed via the Internet. The object-oriented implementation is portable,
flexible and extensible. The use of a message-passing library provides scalability and
architecture independence. The performance results show that distributing the data
provides a significant performance improvement. More local processing will reduce
overhead due to data transfer and can further improve performance.

Acknowledgments

This research was supported in part by NASA Lewis Research Center through a NASA
GSRP grant. The authors also acknowledge Greg Follen and other researchers and NASA
administration for useful discussions and continued support of this project.

References

[1] A. K. Bansal, and J. L. Potter, An Associative Model to Minimize Matching and Backtracking

Overhead in Logic Programs with Large Knowledge Bases, The International Journal of

Engineering Applications of Artificial Intelligence, 5:3 (1992) 247 – 262.

[2] A. K. Bansal, An Associative Model to Integrate Knowledge Retrieval and Data-parallel

Computation, International Journal on Artificial Intelligence Tools, 3:1 (1994) 97 - 125.

[3] A. K. Bansal, L. Prasad, and M. Ghandikota, A Formal Associative Model of Logic

Programming and its Abstract Instruction Set, Proceedings of the International Conference of

Tools with Artificial Intelligence, (1994) 145--151.

[4] A. K. Bansal, A Framework of Heterogeneous Associative Logic Programming, International

Journal of Artificial Intelligence Tools,. 4:1 & 2 (1995) 33 - 53.

[5] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski, and G. Premchandran,

WebFlow � A Visual Programming Paradigm for Web/Java based coarse grain distributed

computing, Concurrency Practice and Experience 9:6 (1997) 555-577.

[6] P. Bonnet, S. Bressan, L. Leth, and B. Thomsen. Towards ECLiPSe Agents on the

INTERNET, Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET

Applications, JICSLP'96, Bonn, Germany, (1996).

[7] D. Cabeza, M. Hermenegildo, and S. Varma, The PiLLoW/CIAO Library for

INTERNET/WWW Programming, Proceedings of the 1st Workshop on Logic Programming

Tools for INTERNET Applications, JICSLP'96, Bonn, Germany, (1996) 72-90.

A Scalable Distributed Multimedia Knowledge Retrieval System

 366

[8] K. Dincer and G. Fox, Using Java and JavaScript in the Virtual Programming Laboratory: a

web-based parallel programming environment, Concurrency Practice and Experience, 9:6
(1997) 521-534.

[9] J. A. Feldman, and D. Rovner, An Algol Based Associative Language, Communications of

the ACM, 12:8 (1969) 439 - 449.

[10] G. Fox and W. Furmanski, Java for Parallel Computing and as a General Language for

Scientific and Engineering Simulation and Modeling, Concurrency: Practice and Experience

9:6 (1997) 415-425, http://www.npac.syr.edu/users/gcf/01/terri/SCCS_793.

[11] J. Gosling, B. Joy, and G. Steele, The Java Language Specification, Addision-Wesley,

(1996), also see http://www.javasoft.com.

[12] D. Gries, The Science of Programming, Monograph, Springer Verlag, New York, (1987).

[13] W. Gropp, E. W. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with

Message Passing Interface, MIT Press, (1994).

[14] P. T. Homer and B. Schlichting, Using Schooner to support distribution and heterogeneity in

the Numerical Propulsion System Simulation Project, Concurrency Practice and Experience,

6:4 (1994) 271-287.

[15] K. Hwang, and F. A. Briggs, Computer Architecture and Parallel Processing, Mcgraw Hill

Book Company, New york, USA, (1984).

[16] J. Khan, Intermediate Annotationless Dynamical Object-Index-Based Query in Large Image

Archives with Holographic Representation, Journal of Visual Communication and Image

Representation, 7:4 (1996) 378 – 394.

[17] R. Kowalski, Logic for Problem Solving, Elsevier-North Holland, (1979).

[18] S. W. Loke, and A. Davison, Logic Programming with the World-Wide Web, Proceedings of

the 7th ACM Conference on Hypertext, Washington DC, USA, (1996) 235 – 245.

[19] V. Ogle and M. StoneBraker, Chabot: Retrieval from a Relational Database of Images, IEEE

Computer 28:9 (1995) 40-48.

[20] E. Pontelli and G. Gupta, W-ACE: A Logic Language for Intelligent Internet Programming,

Proceedings of the Ninth International Conference on Tools with Artificial Intelligence,

Newport Beach, CA, USA, (1997) 2 -10.

[21] J. L. Potter, Associative Computing, Plenum Publishers, New York, (1992).

[22] J. Potter, J. Baker, A. K. Bansal, S. Scott, C. Ashtagiri, Associative Model of Computing,

IEEE Computer, 27:11 (1994) 19 – 25.

[23] S. W. Ryan and A. K. Bansal, A Scalable Heterogeneous Associative Logic Programming

System, Proceedings of the Ninth International Conference on Tools with Artificial

Intelligence, Newport Beach, California, (1997) 37 – 44.

[24] S. W. Ryan and A. K. Bansal, Applying Java for the Retrieval of Multimedia Knowledge

Distributed on High Performance Clusters on the Internet, Proceedings of the International

Conference on Practical Applications of JAVA, London, UK, (1999) 193 – 203.

[25] S. W. Ryan and A. K. Bansal, A Scalable Distributed Associative Multimedia Knowledge

Base System for the Internet, Proceedings of the 8th International Conference on Intelligent

Systems, Denver, Colarado, USA, (1999) 1 - 6.

Stephen W. Ryan and Arvind K. Bansal

 367

[26] V. S. Sunderam et. al., PVM: A Framework for Parallel Distributed Computing,

Concurrency: Practice and Experience, 2 (1990), 315 - 339.

[27] P. Tarau, Jinni: a Lightweight Java-based Logic Engine for Internet Programming,

Proceedings of JICSLP'98 Implementation of LP languages Workshop, Manchester, UK,

(1998) 1- 15.

[28] D. Thurman, jPVM: A native methods interface to PVM for the Java platform,

http://www.chmsr.gatech.edu/research/projects/software.

[29] D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Report 309, SRI

International, (1983).

A Scalable Distributed Multimedia Knowledge Retrieval System

