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Abstract

In this paper we describe a project (IMPRESS) in which machine learning (ML) tools
were created and utilised for the validation of an Air Traffic Control domain theory written
in first order logic. During the project, novel techniques were devised for the automated
revision of general clause form theories using training examples. These techniques were
combined in an algorithm which focused in on the parts of a theory which involve ordinal
sorts, and applied geometrical revision operators to repair faulty component parts. While
we illustrate the feasibility of applying ML to this area, we conclude that to be effective
it must be focused to the application at hand, and used in mixed-initiative mode within
a tools environment. The method is illustrated with experimental results obtained during
the project.
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1 Introduction

Validation of requirements theories for large, complex systems, particularly those involving
safety-critical elements, poses a problem which is difficult to solve. This is particularly
the case if the theory is updated during its lifetime, for it will then require re-validation.
The problems in coordination and communication within large software system projects
are reported by Easterbrook and Callahan [1]. The report emphasises the importance
of requirements analysis and tracking and the effect a good quality specification has on
subsequent design and implementation. In another study [2], an analysis was undertaken
of 387 software errors uncovered during the development of Voyager and Galileo space-
craft. This analysis shows that errors in identifying or understanding functional or interface
requirements frequently lead to safety-related software errors; this is because safety-related
functional faults are particularly related to imprecise or unsystematic specifications. Safety-
critical software projects frequently necessitate that precise, mathematical models of their
requirements domains be constructed. Validation and maintenance of realistic domain
theories is a very time consuming, expensive process where the role of support tools is
vital.

One of the most useful techniques for validation is to execute the mathematical model
of the specification. In general, formal notations are not executable, although there are
some directly executable formal notations such as Spill [3] and OBJ [4, 5]. There are con-
flicting points of view about the advisability of a notation being executable. An opposing
view is Hayes and Jones [6], where it is stated that the ability to be able to reason about
a specification is an important validation task, and this is difficult with executable lan-
guages. However Fuchs [7], makes the case for executability in that it is also important
to demonstrate the functionality of a formal specification to a customer or user and this
can be achieved by exercising the specification code. A further discussion and summary of
both points of view is presented by Gravell and Henderson [8].

The issue of executability is examined by Hoare [9], in which three forms of the greatest
common divisor (gcd) function are compared. The first version is in first order logic,
which is (in theory) ‘executable’ via a search of all proofs. The first version is ‘refined’1

and translated to the logic programming language Prolog to produce the second version.
However the Prolog used was an early form which did not possess negation, and the resulting
Prolog program would not terminate. The third version is a functional program and is a
‘refined’ version of the second – this does terminate. However the ease of understanding of
each version is less good than the previous version. In other words, clarity of requirements
decreases with executability of the gcd function. The inference of his paper is that clarity
should not be sacrificed for executability. Hoare suggests that the high level language chosen
for program implementation should be as close as possible to the original specification. He
also suggests the use of such an implementation for a rapid check on the adequacy of a
specification.

In order to overcome the perceived difficulty of the customer and/or developer in un-
derstanding requirements yet retain clarity, one solution is to animate a form of the re-
quirements [10, 11], where a tool is created which will translate the requirements theory
into a prototype that is executable on a test-set. The draft IEC standard on industrial
safety-related systems [12], states that the aim of prototyping/animation is

“To check the feasibility of implementing the system against the given con-
straints. To communicate the specifier’s interpretation of the system to the
customer, in order to locate misunderstandings.”

The test-set is usually acquired from domain experts and includes an expected result.
Where the results of the execution are not as expected, faulty parts or flaws of the theory
are identified. However, even when an animated version and appropriate tests are available,
it is not easy to first pinpoint and then correct flaws in the theory.

1in the sense of being made executable
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The field of machine learning (ML) is an important area of Artificial Intelligence and
within it are possible solutions to the validation problems: these solutions form the principle
subject of our paper. ML incorporates knowledge acquisition and knowledge refinement,
and encompasses both symbolic learning techniques of induction and deduction, as well as
the sub-symbolic areas of artificial neural networks and genetic algorithms [13]. In our work
we view a precise requirements theory as an imperfect theory of the requirements domain
that needs to undergo refinement to remove the faults in the theory or to reflect changes
in the domain. At the symbolic level, a great deal of research has been carried out into the
acquisition and refinement of domain theories [14] using examples or counter examples as
the main input to generalisation algorithms. Some workers have concentrated on inducing
theories from scratch [15], whereas others assume we have an imperfect theory already and
the examples are used for theory refinement/ theory revision (TR) [16], where an initial,
flawed theory is refined. Theories may be refined or adapted [17, 18], because they are
inaccurate, or because they fail some operating criteria, as in the field of explanation-based
learning (EBL) [19]. The TR field is also referred to as theory patching, and an early
example of its use is the MIS system [20].

This paper describes the development and application of ML tools for the validation
and maintenance of a formal specification of a real application. The validation problem
involved the uncovering and repairing of faulty parts of the requirements theory called the
‘Conflict Prediction Specification’ (the CPS). This represents air traffic control separation
standards, operating methods and airspace information for the Atlantic oceanic area, in
a customised form of many-sorted logic (here called msl). When the CPS was initially
engineered, a set of ‘conventional’ validation tools were built including one which animated
the msl via translation into Prolog syntax.

The work reported here was carried out in a project called IMPRESS2. At the end of
the project we had developed ML tools and (in particular) a TR tool which were integrated
within the conventional validation environment. The tools embody novel theory refinement
algorithms dealing with some of the size and expressiveness problems typically encountered
when automating the refinement of a large theory. During the process of developing and
using the ML tools, enough flaws were uncovered and removed from the CPS to significantly
reduce the error rate of our tests using the CPS ’s animated form. Notably, we found that
the tools were useful in automated maintenance, in that they could induce new parts
of the theory from batches of training examples which embodied changes in practice.

The paper structure is as follows. Section 2 describes the CPS and its original validation
environment. Section 3 describes existing tools and methods followed by a description of
ML tools we developed ourselves. The tools described enhanced the validation environment
described in Section 2. Section 4 describes a novel TR tool which automatically induces
a refined version of the CPS from an existing version and some examples. Section 5
describes work done by other researchers which is related to ours and Section 6 presents
some conclusions and future work.

2 The CPS and its Tools Environment

2.1 Background

The aim of the IMPRESS project was to develop machine learning tools and evaluate their
application to the validation of requirements domain theories written in customised, many-
sorted first order logic (msl). To drive the research we used an air traffic control application
where a domain theory had been captured in a previous project called FAROAS [21].
The theory, called the CPS , represents aircraft separation criteria and conflict prediction
procedures relating to airspace over the North East Atlantic and consisted of axioms in

2IMProving the quality of formal REquirements SpecificationS
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msl. The CPS had been encased in a tools environment which aids in the automation of
the validation and maintenance process. IMPRESS was supported by the UK National Air
Traffic Services (NATS), and hence an additional objective was to identify and document
errors found in, and refinements carried out on, the CPS . At certain milestones of the
project, updates of the CPS were delivered to NATS.

Air traffic in airspace over the eastern North Atlantic is controlled by air traffic control
(ATC) centres in Shannon, Ireland and Prestwick, Scotland. It is the responsibility of air
traffic control officers to ensure that air traffic in this airspace is separated in accordance
with minima laid down by the International Civil Aviation Organisation. Central to the
air traffic control task are the processes of conflict prediction – the detection of potential
separation violations between aircraft flight profiles and conflict resolution – the planning
of new conflict free flight profiles. A flight profile is the detailed, planned specification of
an aircraft’s flight which consists of a sequence of several ‘straight line’ segments. Each
segment is defined by a pair of 4 dimensional points, and the Mach number (i.e. speed)
that the aircraft will attain when occupying the segment. Two different profiles adhere
to separation standards if they are either vertically, longitudinally or laterally separated.
The controllers have tool assistance available for their tasks in the form of a flight data
processing system which maintains detailed information about the controlled airspace; the
CPS was created to contribute towards the requirements specification for a decision support
system for air traffic controllers.

The aim of FAROAS had been to formalise and make complete the requirements of
the separation standards with respect to the specific task of predicting and explaining
separation violations (i.e. conflicts) between aircraft flight profiles, in such a way that those
requirements could be rigorously validated and maintained. The FAROAS project consisted
of four phases: (i) scoping and domain analysis; (ii) formalism choice and customisation;
(iii) domain capture via the chosen formalism and (iv) creation of an environment for
validation. The formalism chosen was msl and the reasons for its choice included its
suitability for the ATC domain and its expressiveness. The choice of formalism took place
early in the project and before the Formal Requirements Engineering Environment (FREE)
was developed. This supported validation of the CPS in 5 key ways:

parsing the ‘theoretical form’ (TF) of the formal specification and identifying syntactic
errors;

prototyping: an ‘Execution Form’ of the specification (the CPSEF ) was automatically
generated (in the logic programming language Prolog) and batches of expert-derived
test cases were used to compare expected and actual results. Tests take the form of
two flight plans in conflict violation with one-another, or else separated to the required
standard. The raw test data was translated to msl via the FREE environment, and
hence to Prolog;

viewing: the specification in non-technical form – a ‘Validation Form’ (VF) of the specifi-
cation was generated and was used by Air Traffic Control experts for visual inspection;

reasoning about internal consistency: a reduced minimal set of the specification ax-
ioms were shown to be consistent;

animation: ATC experts tested the model themselves via a custom-built interface which
had been integrated with the Execution Form prototype.

The parsing and translation sub-processes of the FREE tool form process 1 of Figure 1 and
these are outlined in the next subsection.

2.2 Parsing and translating (process 1)

Test batches were supplied to us by NATS, where a batch of test data represents the historic
data in ‘raw’ form for several hundred cleared aircraft profiles describing flight plans across
the Atlantic in one calendar day. Raw, historical test data is translated into msl, then into
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Figure 1: CPS Tools Environment

Prolog. The fragment of the raw test data shown is taken from a batch provided by the
ATC and is part of the cleared flights of a single day, the profile data. It comprises part of
a segmented flight path of a single aircraft XXXX 3 flying West at a constant speed of 0.86
Mach and at a height of 35,000 feet. The aircraft is planned to enter the first and second
segments at 1042hrs and 1122hrs respectively. BZZZ represents the type of aircraft.

150497 1042 XXXX BZZZ W M086 M086 350 350

57/010 57/020 58/030

1042 1122 1203

350 350 350

The following shows part of the translation to msl axioms:

"(the_Segment(profile_XXXX, 57 N ; 010 W ; FL 350 ; FL 350 ;

10 42 GMT day 0, 57 N ; 020 W ; FL 350 ; FL 350 ;

11 22 GMT day 0, 0.86) belongs_to profile_XXXX)".

"(the_Segment(profile_XXXX, 57 N ; 020 W ; FL 350 ; FL 350 ;

11 22 GMT day 0, 58 N ; 030 W ; FL 350 ; FL 350 ;

12 03 GMT day 0, 0.86) belongs_to profile_XXXX)".

which translates to Prolog:

the_Segment(profile_XXXX,fourD_pt(threeD_pt(twoD_pt(lat_N(57),

long_W(10)),fl_range(fl(350),fl(350))),time(10,42,0)),

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(20)),

3This represents the call sign. The real call signs and some other details are undisclosed for confidentiality
reasons.
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fl_range(fl(350),fl(350))),time(11,22,0)),0.86)

belongs_to profile_XXXX.

the_Segment(profile_XXXX,fourD_pt(threeD_pt(twoD_pt(lat_N(57),

long_W(20)),fl_range(fl(350),fl(350))),time(11,22,0)),

fourD_pt(threeD_pt(twoD_pt(lat_N(58),long_W(30)),

fl_range(fl(350),fl(350))),time(12,3,0)),0.86)

belongs_to profile_XXXX.

where sorts such as FL are replaced by Prolog functors such as fl. The CPS relates to
separation of flight profiles and contains several hundred ‘high level’ and ‘auxiliary’ axioms
which mirror complex definitions and procedures, mainly taken from the Manual of Air
Traffic Services, Part 2 [22]. ‘Lower level’ axioms define domain object classes (i.e. the
sorts in msl) serving as primitives in the model. The CPS is translated to the CPSEF ,
which consists of a set of Prolog clauses, where all or part of each clause represents a CPS
axiom. The highest level axiom of the CPS specified the criteria for two different aircraft
to be in conflict, that a segment from each of their flight paths be in conflict:

" (Segment1 of Profile1 and Segment2 of Profile2

are_in_oceanic_conflict)

<=>

[(Segment1 belongs_to Profile1)

&

(Segment2 belongs_to Profile2)

&

(Segment1 and Segment2 are_in_oceanic_conflict)

] ".

which translates to Prolog:

profiles_are_in_oceanic_conflict(Segment1,Profile1,Segment2,Profile2):-

Segment1 belongs_to Profile1,

Segment2 belongs_to Profile2,

segments_are_in_oceanic_conflict(Segment1,Segment2).

The translation process ensures that each clause in the CPSEF logically follows from the
original axiom in the CPS following rules established in Lloyd [23]. The process was general
enough to cover all the axioms of the CPS . The resulting program had some recursion and
many negated literals. However it happened to be the case that negated literals ¬ p(x)
(where x represents the tuple of free variables of p) were of the form that either p is
fully instantiated, or any free variables in p are existentially quantified: ¬ ∃x(p(x)). Thus
problems with ‘floundering’ were avoided, which can result from the existence of expressions
such as ¬ ∀x(p(x)). This form of negation is sometimes termed constructive [24, 23].

3 The Utilisation of Machine Learning

3.1 Existing tools and methods

As explained in the previous section, the IMPRESS project utilised the tools environment
and initial specification (CPS ) inherited from FAROAS. Unfortunately, however, the ex-
perience of FAROAS was that these diverse forms of validation, although essential, were
still insufficient as far as uncovering and fixing flaws was concerned; for example, tests may
succeed for the wrong reasons, and where tests fail (i.e the expert decision is at variance
with the prototype’s decision) it is still very difficult to identify the faulty or incomplete
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requirements. After examining relevant ML techniques, we produced a critical review of
the related research and prototype tools [25]. Our review included ‘explanation based’ tools
and methods, tools which ‘induced’ a theory from examples and general theory revision
tools.

As indicated in Section 2.2, the executable form of the CPS contains a significant
number of literals of the form ¬ (∃xp(x)). A central requirement for our ML tool de-
velopment was for a tool which generates a proof tree from a successful Prolog query
via explanation-based generalisation (EBG). However the ‘text-book’ meta-interpreters for
generating proof trees [26, 27], cannot cope with general programs (i.e. containing negated
literals). In Siqueira and Puget [28], a method is described for generating a failed proof
tree, namely, explanation-based generalisation of failures (EBGF). A sufficient condition is
derived from the failed proof tree which is satisfied by the instance and ensures the failure
of the goal. However clause bodies contributing to the failed tree can contain only positive
literals. A review and extension is in work by Schrödl [29, 30], where EBGF has been
used to aid the generation of trees for proofs which use SLDNF-resolution. For positive
literals, a traditional EBG tree is generated. However for negative literals a subsidiary
tree is generated via EBGF. The EBGF tree is joined to the main tree via a subsidiary
function. The tree generator recurses between EBG and EBGF. The derived formula con-
tains negative goals, disjunctions and existential quantifiers. It is then converted to a set of
clauses via standard translation rules [23]. However the requirements for the CPS were for
a tree which explicitly indicated failure nodes and their children as illustrated in Figure 2
of Section 3; the EBG/EBGF method was unsuitable for our purposes.

The CPS contains significant numerical components; machine learning in domains con-
taining significant numerical components has previously been accomplished by using neural
networks [31]. This is because of problems in encoding numeric properties in the logic pro-
gramming context. One solution is the utilisation of background knowledge in the frame-
work of Inductive Logic Programming (ILP). For example P-Progol [32], exploits the fact
that background knowledge has very few restrictions placed on by the ILP framework.
P-Progol utilises background predicates that implement statistical and numerical analy-
sis procedures in order to induce first order theories to scientific problems. Background
knowledge available to P-Progol includes (for example) simple arithmetic and trigonom-
etry, inequalities, regression models and numerical differentiation. Two non-trivial case
studies are presented, where experimental results are input and constraints on variables
which explain the input data are obtained. There are some similarities of the case studies
to the CPS , in the use of background knowledge in encoding trigonometrical equations
and the like. The main differences lie in the underlying model. The two experiments in
P-Progol utilise around 10 input ordinal variables whereas the CPSEF domain utilises 22
ordinal variables from the two aircraft. (These are detailed in Section 2 and comprise flight
levels, speeds, positions, etc.) Separation criteria also includes many non-ordinal variables
such as ‘type of aircraft’ and whether or not an aircraft meets certain nautical standards.

A further solution to the problem of numeric literals in a logic programming context is
the use of Constraint Logic Programming. The Constraint Logic Programming frame sub-
sumes the logic programming frame. It has been shown [33], that a discriminant induction
problem can be transformed into a Constraint Satisfaction Problem, and hence solvable
via Constraint Logic Programming. The approach is pursued by Anthony and Frisch [34],
where an algorithm, NUM is presented which generates numeric literals. Usage declara-
tions are meta-predicates which restrict the form of the numeric literals. For example a
particular numeric literal might be restricted to an inequality or to a linear relationship.
The work is in its early stages and it is not clear how, or if, it would scale up to deal with
real-world examples such as the CPS .

As part of our survey into existing tools we conducted a small feasibility study involving
the use of the theory revision tool FORTE [16]. The study concluded that while theory
revision or refinement methods as used by FORTE would be useful in validation, the
size and expressive nature of the CPSEF would present various problems. For example,
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in order for FORTE to cope with function symbols, the theory requires flattening [35],
the transformation to an equivalent theory without function symbols. Flattening replaces
functors by predicates and in our case this meant that functors representing types were
replaced by typing predicates. An example of a simple clause with a functor called fl_range

is:

the_min_Flight_level_of_fl_range(fl_range

(Flight_level1,Flight_level2),Flight_level2):-

Flight_level2 is_at_or_below Flight_level1.

The same clause is now flattened so that there are no functors. A new predicate fl_range_pred
is also added to the background theory:

the_min_Flight_level_of_fl_range(Flight_level_range,

Flight_level2):-

fl_range_pred(Flight_level1, Flight_level2,

Flight_level_range),

Flight_level2 is_at_or_below Flight_level1.

/* new ‘typing’ predicate */

fl_range_pred(Flight_level1, Flight_level2,

fl_range(Flight_level1,Flight_level2)).

As can be seen, the size of the resulting theory is increased by the introduction of typing
predicates (such as fl_range_pred). FORTE was run using a subset of the CPSEF and a
set of instances. The result was that FORTE over-generalised the theory by removing the
typing predicates (such as fl_range_pred) and thus ‘improved’ its accuracy. The incorrect
removal of typing predicates could have been prevented by ‘shielding’ these predicates.
However, the pilot study indicated a huge increase of theory size due to the generation of
a large number of typing predicates. The typing predicates arise from the existence of the
many functors in the CPSEF which model the sorts of the CPS , as explained in Section 2.2.
The increase in size of an already large specification would have created an intractability
problem.

Since the existing tools and methods were not suitable for our purpose, and for reasons
of ease of tool integration, it was decided to construct ML tools in-house. The tools
developed during IMPRESS are shown in Figure 1 and comprise processes 2 and 3, where
process 1 utilises parsing and translation (from the FREE tool). Process 2 classifies and
analyses the test output of process 1 (the profile data) and process 3 revises and outputs
a new version of the CPSEF .

3.2 Test analysis and validation (process 2)

The profile data is input to a Test Harness as a series of data sets, each set representing the
characteristics of mutually-cleared flight profiles passing through ‘Oceanic’ airspace. This
assumes that the order of the input of profiles reflects the order in which they were cleared
by air traffic control officers. The Test Harness can be used to execute queries relating
to those flight profiles or specifically to check if the CPS deems that they are in conflict.
One important function of the latter is to repeatedly execute the main relation, concerning
conflict prediction, and systematically check pairs of profiles:

profiles are in oceanic conflict(P1,P2,S1,S2).

Each profile P1 is compared with a given number N of chronologically previous profiles
P2 cleared before P1. (E.g. for N = 20, and for 500 profiles to clear in a day’s worth
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of data, around 10,000 runs of the main relation are generated.) For given P1 and P2, if
this relation succeeds when executed by the Prolog interpreter, then there are at least two
segments (S1 from P1, and S2 from P2) that are in conflict, in which case P1 and P2 are
deemed to be in conflict and the test result ‘positive’. If this relation fails, then the P1
and P2 are separated to the required standard, according to the CPS and the test result
‘negative’.

Mismatches between the expected result and the result returned by the CPSEF drive
the diagnosis of flaws and subsequent repair processes. Our testing process was biased
by the fact that we could obtain virtually limitless negative examples of the main conflict
relation using records of actual clearances of flight profiles over the Atlantic. On the other
hand, we could only obtain a handful of positive examples that had to be constructed by
air traffic experts. The classification of test results is given in Table 1, where positive
and negative test results are compared with positive and negative classification of NATS
experts.

Table 1: Terminology for the classification of tests.
Classification by Theory
Positive Negative

Positive True False
positive negative

Expert’s (TP) (FN)
Classification Negative False True

positive negative
(FP) (TN)

An example of an FP instance (Example 1) occurs when a comparison is made between
profile XXXX from Section 2.2 and cleared profile YYYY :

instance_of_concept(profiles_are_in_oceanic_conflict(

the_Segment(profile_XXXX,

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(10)),

fl_range(fl(350),fl(350))),time(10,42,0)),

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(20)),

fl_range(fl(350),fl(350))),time(11,22,0)),0.86),profile_XXXX,

the_Segment(profile_YYYY,

fourD_pt(threeD_pt(twoD_pt(lat_N(56),long_W(10)),

fl_range(fl(340),fl(340))),time(10,35,0)),

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(20)),

fl_range(fl(340),fl(340))),time(11,18,0)),0.86),profile_YYYY)

, fail).

/* Example 1 */

As indicated in Figure 1, the instances were utilised to generate explanations of the possible
conflicts, including both symbolic and graphical output. They were also used to generate
proof trees which provided some indications of ‘blame’ for faulty clauses of the CPSEF .

3.2.1 Test log and graphical output

The Test Harness produces a record of each test run, which includes a brief explanation
of every profile pair that is in conflict according to the CPS. Where the pair are classified
as not in conflict by experts, the explanation may provide clues to the faulty parts of the
specification. An example is provided by part of the output from Example 1:
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************ Segments are not Separated ************

CallSign - Type - Mach - non-MNPS? - Steep Sgmt? - Irregular Sgmt?

--------- ------ ------ ---------- -------------- ---------------

yyyy bzzz 0.86 no no no

xxxx bzzz 0.86 no no no

Entry: Time FL Lat Long Exit: Time FL Lat Long

----- ---- -- --- ---- ----- ---- -- --- ----

yyyy 10 35 340 56 0 10 0 11 18 340 57 0 20 0

xxxx 10 42 350 57 0 10 0 11 22 350 57 0 20 0

Required vertical separation is 2000

Actual separation is 1000

vertical separation contravened

longitudinal separation should be: 15 minutes

The conflict box of xxxx is 60nm lateral 225.0nm longitudinal

yyyy is inside box at distance 50.0nm lateral 98.0nm longitudinal

longitudinal separation should be: 15 minutes

/*Explanation For Example 1 */

By examining the output from some of the instances it was found that a percentage of
‘false positives’ were found to be so because the separation value was only very marginally
being exceeded. This indicated a flaw in the geometry, and currently we suspect that the
CPS’s local flat earth assumption is to blame.

By using the batch results, a collection of test queries can then be formulated with the
aim of investigating in greater detail the suspect parts. The test log file was input to a
graphical flight simulation using a multi-media platform which can display the profiles and
conflict area, and simulate the planned aircraft flights [36]. This particular tool helped us
spot some invalid data. Inspection of several apparent ‘false positives’ using the display
clearly showed that the flight profiles were in fact in conflict. The invalid data had been
sent to us in error.

3.2.2 Proof tree generation

Central to the development of the ML tools was the use of meta-interpreter techniques
to re-execute the CPSEF with training examples classified as FP, FN, TN and TP. The
meta-interpreter is used to build up proof trees or failure traces in order to pinpoint sus-
pect clauses of the CPSEF by assigning blame to those involved in erroneous proofs or
those clauses that failed in a trace that should have produced a proof. In order to store
information about clauses in a convenient and efficient manner, each is provided with an
automatically generated identity number and the information as to its revisable ‘status’
(i.e. whether it is revisable or not to be revised). This information is stored in a Prolog
structure. The tree generator is derived from a standard meta-interpreter, but has been
extended to overcome the problem of negated literals.

Each clause F in CPSEF was provided with a numeric ID and the tree generator takes as
input an expression Expr and outputs a proof tree PTree and a tree of clause-IDs IDTree

which were involved in the proof of Expr. A problem is that the translation process from
msl to Prolog resulted in negated expressions not(Expr) within the bodies of some clauses.
In the case of the CPSEF , negation is such that either Expr is fully instantiated, or any free
variables in Expr are existentially quantified. A meta-interpreter was written which could
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generate proof trees which explicitly represent negative rules of the above kind from general
logic programs. The meta-interpreter is briefly described using the following small program.

Small Tree Example
The number (ID) of each clause is shown:

\* clauses numbered from 101 to 104 *\

r(A) :- t(A), not__(p(A,Y)).

p(A, 2) :- m(A, X), Y is 12*X, Y < 24000 .

p(A, 3) :- m(A, X), Y is 12*X, Y < 36000 .

p(A, 1) :- m(A, X), Y is 12*X, Y < 20000 .

\* clauses numbered from 111 to 114 *\

m(a, 1000). m(b, 3000).

t(a). t(b).

For IDTree, we adopted the convention that if a clause F had ID n, then ¬ F in a proof
tree was denoted by ID −n. In the example program presented above, a call to the tree
generator will provide the following response:

| ?- generate_trees(r(b), r(X), P, GenP).

P = [101,[r(b),[114,t(b),

-102,[not__(p(b,2)),[112,m(b,3000),0,36000 is

12*3000,0,not__(36000<24000)]],

-103,[not__(p(b,3)),[112,m(b,3000),0,36000 is

12*3000,0,not__(36000<36000)]],

-104,[not__(p(b,1)),[112,m(b,3000),0,36000 is

12*3000,0,not__(36000<20000)]]]]],

GenP = [101,[r(X),[114,t(X),

-102,[not__(p(X,2)),[112,m(X,_B),0,

_A is 12*_B,0,not__(_A<24000)]],

-103,[not__(p(X,3)),[112,m(X,_D),0,

_C is 12*_D,0,not__(_C<36000)]],

-104,[not__(p(X,1)),[112,m(X,_F),0,

_E is 12*_F,0,not__(_E<20000)]]]]] ?

As can be seen each of the negated clauses is expanded out and is represented in the tree.
Negated clauses are provided with a negated identity number. Since there are three clauses
with predicate head p, all contribute to the proof. Clauses m(b,3000), 36000 is 12*3000

all succeed and contribute to the proof, so they are included.
The explicit representation of negative clauses is achieved by first unfolding negative

literals and then transforming them using De Morgan’s laws. This extension is based on
Clark’s notion of the completion of a general logic program [37]. The following is an outline;
full technical details can be found in the supporting literature [38]. Suppose predicate p is
defined by m statements of the form:

p(ti)←−Wi

where Wi is a conjunction of literals and ti a tuple of variables. The completed definition
of p is a disjunction:

∀x( p(x)←→
∨

i ∃yi(x = ti) ∧ Wi )
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where yi are the variables of the original clause. Thus input expressions to the tree gener-
ator not(Expr) can be expanded into the following conjunction:

¬ ∃xp(x)←→ ∀x(
∧

i ¬ (∃yi(x = xi) ∧ Wi)).

Since each Wi is a conjunction of literals
∧

j E j
i , in generating the tree we need to obtain

proofs of expressions such as ¬
∧

j E j
i . Expanding to obtain the disjunction

∨
j (¬ E j

i ),
we may find that (since Prolog uses a left-to-right computation rule) a given component
is insufficiently instantiated. In order to make sure that each component is sufficiently
instantiated we utilize the following equivalence:

¬ (Lk ) ∨ ¬ (
∨

i(E
j
i ))←→ ¬ (Lk ) ∨ ((Lk ) ∧ ¬ (

∨
i E j

i )).

In the small example, a variable shared by two literals is ‘X ’ which is shared by literals
m(A,X) and Y is 12*X.

Figure 2 contains a pictorial representation of a fragment of a typical tree which was
generated during IMPRESS. The tree represents the proof that a pair of aircraft have
planned flight paths which potentially violate separation rules. The Figure indicates which
nodes succeed and which succeed by failure. The difference between the EBG/EBGF
method described in Section 3.1 and our work is that the EBGF tree is defined separately
from the EBG tree. In our work the failed predicates are unfolded and integrated with
the successful predicates. Thus negation is ‘deferred’ to the leaf nodes of the tree. This
has the advantage that the failed predicates of interest, viz. the unshielded predicates are
immediately identifiable. The information obtained from generated proof trees was input

 after a common pointNOT-1047

-51

Basic Mimimum 
long sep of 15 

  47     26

Minimum vertical

sep. of 2000 feet

7

vertical conflict

NOT Basic Min Long  

minutes

of 6 minutes

8  Lateral and longitudinal conflict

2  Segments of profiles in conflict

1  Profiles in conflict

Figure 2: Example of Proof Tree which Includes Negative Literals

into the TR tool, as indicated in Figure 1. A further function of proof tree generation was
full explanation analysis. For individual test runs where the conflict predicate succeeds,
the code analysis process can produce a generalised proof tree, using explanation-based
generalisation, as mentioned above. This is useful for inspecting the outcome of false
positive queries, although somewhat tedious as even the generalised proof trees are 30 -
40 pages in length. This did allow us to spot a very subtle flaw which resulted from the
animation process. An auxiliary axiom relating the speeds of two aircraft is shown in
Example 2 below:
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" [ (Segment1 and Segment2 are_after_a_common_pt_from_which_profile

_tracks_are_same_thereafter)

or

(Segment1 and Segment2 are_after_a_common_pt_from_which_profile

_tracks_are_diverging_thereafter)

]

=>

[ (the_preceding_aircraft_on Segment1 or_on Segment2 is_faster

_by Val mach)

<=>

[ [ (the_aircraft_on Segment1 precedes_the_aircraft_on Segment2)

&

the_machno_Val_on(Segment1) - the_machno_Val_on(Segment2) = Val

]

or

[ (the_aircraft_on Segment2 precedes_the_aircraft_on Segment1)

&

the_machno_Val_on(Segment2) - the_machno_Val_on(Segment1) = Val

]

]

] ".

Example 2

Inspection of the proof tree for a misclassified instance in the suspected longitudinal sep-
aration clauses revealed that ‘the machno Val on(Segment)’ was returning a float value
when animated using the Prolog interpreter. As a consequence a comparison of the form
‘0.0199999.. = 0.02’ was occurring when the clause corresponding to this axiom was exe-
cuted. This problem resulted from an error in our translation tools rather than an error in
the CPS .

A further function of Process 2 is a ‘blame assignment process’. In order to determine
the likely candidate clause(s) for revision, the blame assignment process inputs the theory
CPSEF and the false positive examples FP , and outputs a list RP of clauses (which are the
revision points) in descending order. In RP each clause and its identification number in
CPSEF is associated with a potential where the potential of a clause is the number of proof
trees it occurs in. (Multiple occurrences of a clause in a single proof are ignored.) Thus
clause number −1045 has a potential of 3 if it occurs in 3 proof trees. The next section
describes how the output from Process 2 is input to Process 3, viz Focused Revision.

4 Focused Revision (Process 3)

The blame assignment and explanation-based tools discussed above focus the user’s atten-
tion on those parts of the theory that are likely to be faulty. We wanted to go much further
in this project: our aim was to construct batch processes to input the results of blame
assignment, in the form of an ordered list of faulty clauses, and output the most promising
refinement(s) to the clauses. The resulting updated theory would then be submitted to the
other validation processes for checking.

To employ a theory refinement approach we have on the one hand to make sure it is
effective in suggesting useful changes to the theory, while on the other hand overcome the
significant computational complexity problems of the underlying algorithms. Theory re-
finement algorithms are characterised by the refinement operators they embody. These
define the primitive changes that are made to the theory by the refinement algorithm. A
very general approach to theory refinement is to use coarse grained ‘syntactic’ refinement
operators [39, 16]. These employ techniques such as deleting clauses or deleting/adding
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literals from/to clauses. Unfortunately, in our experience with the CPS such operators are
superficial in their effect, and research prototypes containing them appear to be limited in
scope. Simply deleting literals from clauses, for example, is unlikely to lead to an improved
theory if the theory has already undergone some validation mechanism.

Fine grained operators which have the potential to refine the internal content and
structure of literals would be more effective, but exacerbate the complexity problems. To
design an effective TR algorithm for use with a non-trivial technical specification such as
the CPS , one must analyse the likely sources of error – in particular those errors that will
be left after syntax checking, batch testing and hand validation. Hence we managed the
complexity problems by designing what we termed focused and composite TR operators.
These are based around the sort structure of the CPS . The CPSEF is automatically
generated from the CPS , whose sorts can be characterised as being either totally ordered
or not, depending on the properties of the relations associated with it. During the initial
validation of the CPS we found that errors were associated with complex ordering relations
and their sorts. We call the sorts that are unordered nominal, and those that are ordered
ordinal, where each ordinal sort is associated with a set of binary, transitive, ordering
relations {�1, ..,�n}.

Examples of nominal sorts in the CPS are Aircraft, Airspace, Segment, Profile. Exam-
ples of ordinal sorts are Flight Level, Time and Latitude, where primitive order relations
are for example is above, is at or later than, is west of etc. An example of an ordinal
atom is:

fl(330) is above fl(290)

where fl(330) and fl(290) are of sort Flight Level. Therefore, each clause in the CPSEF has
a domain which is a product of sorts:

X1 × . . .×Xn ×D1 × . . .×Dm

where each Xi is an ordinal sort and each Dj is a nominal sort. For example the clause
providing the conditions for aircraft to have a minimum vertical separation of 2000 feet,
where A, C are flight levels and B, D are segments which refer to flight levels A and C
respectively is:

the_min_vertical_sep_Val_in_feet_required_for(A, B, C, D, 2000) :-

( both_are_flown_at_subsonic_speed(B, D),

( A is_above fl(290) ; C is_above fl(290))

;

one_or_both_of_are_flown_at_supersonic_speed(B, D),

(A is_at_or_below fl(430) ; C is_at_or_below fl(430)) ).

/* Example 3*/

This clause has domain of sorts Flight level × Segment × Flight level × Segment and can
be paraphrased as:

“The minimum vertical separation value in feet required for two flight levels
of two segments is 2,000 ft if both are subsonic and at least one flight level is
above 29,000 ft, or at least one is supersonic and at least one flight level is at
or below 43,000 ft”

The CPS contains several hundred ordinal atoms. Most of these are primitive, as in the ex-
amples given, in the sense that they are not decomposable into simpler relations. There are
also non-primitive ordinal relations - these are ones that are defined immediately in terms of
primitive ordinal relations. For example the relation one or both are at or below takes 3
flight levels as arguments, and is defined in terms of the primitive relation is at or below .
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Given the number and complexity of ordinal relations, and the likelihood of errors
involving them, it was decided to focus a TR algorithm on the revision of clauses containing
and defining them. (The nominal components were left fixed.) In the CPSEF there are
many clauses involving limiting values of the form x � a, where a is a constant. (See
Example 3.) These might not have been encoded correctly initially from the expert sources,
or they may need to be changed to cope with changing requirements.

4.1 A refinement operator that changes ordinal regions

As well as focusing in on parts of the theory, refinement operators need to be composite
in the sense that they compose of a number of single refinements. This increases the
efficiency of the TR process. The refinement operator we describe below is both focused
and composite in this sense.

Assume we factor out the Xi from the Dj components, for each clause in the CPSEF .
Then for tuples satisfying the conditions of the clause there is defined an n dimensional
region R which corresponds to a domain of applicability of the clause. Applying the clause
in Example 3 to profiles XXXX and YYYY of Example 1 it can be seen that (A,B,C,D) is
in the domain of applicability of the clause where:

A = fl(350)

B = the_Segment(profile_XXXX,

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(10)),

fl_range(fl(350),fl(350))),time(10,42,0)),

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(20)),

fl_range(fl(350),fl(350))),

time(11,22,0)),

0.86)

C = fl(340)

D = the_Segment(profile_YYYY,

fourD_pt(threeD_pt(twoD_pt(lat_N(56),long_W(10)),

fl_range(fl(340),fl(340))),time(10,35,0)),

fourD_pt(threeD_pt(twoD_pt(lat_N(57),long_W(20)),

fl_range(fl(340),fl(340))),

time(11,18,0)),

0.86)

/* Variables from Example 1 */

Suppose that a clause F contains an ordinal variable x , and R is a � x � b. Assume
we calculate values c, d of x , (c � d), where c is the maximum value of x found in FP
training examples, and d the minimum of the values. Then a useful refinement operator
would be to remove the overlapping part of interval c � x � d from a � x � b. In order
to accomplish this, we can specialise the clause F as follows: for each ordinal variable x ,
occurrences in the unrevised body of F of some logical expression E(x ) should be replaced
in the revised body of F by E(x ) ∧ ¬ (c � x � d).

This idea generalises for potentially faulty clauses with several ordinal variables e.g. A,C
of Example 3. Note that, in the presence of true positive instances of F , the minimum and
maximum of each ordinal variable may have to be further restricted so that the overall re-
vision does not result in any false positive examples. For detailed algorithms implementing
our refinement operators the reader is referred to our associated publication [40].

Generalisation can be explained in a similar manner: in order for FN instances to
succeed, appropriate intervals are added to the region, and the region is calculated in an
analogous manner.
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4.2 Testing the composite refinement operator

New requirements for vertical separation of aircraft provided the opportunity for testing the
revision operator described above. The new criteria involved new conditions for flight level
intervals for both aircraft undergoing a conflict probe, for minimum separations of 1000
feet and 2000 feet. The new criteria were collectively called Reduced Vertical Separation
Minima (RVSM). Version 3 of the CPS (the current version at the time) did not reflect
this and was therefore out of date. (See Example 3 for a clause representing part of the
old criteria for 2000 feet.) To obtain classified tests we ran a batch of approximately
5000 separated profile pairs taken from post-RVSM aircraft profile data. These runs were
simulations of positive clearance decisions taken by Air Traffic Control Officers from among
660 flight profiles for April 15th, 1997. The CPSEF output a set FP consisting of 82 false
positives, the rest being true negatives. The input to the ordinal refinement algorithm
included (i) the set FP ; (ii) a set TP of 12 true positives; (iii) a set TN of 12 examples
randomly taken from the several thousand negatives in the batch run. The set TP consisted
12 pairs of profiles that were expertly judged to be in conflict, and which the CPSEF had
also judged to be in conflict. These positive examples of profile conflict had been supplied
to us by air traffic experts. The following trace is taken from the output of the first round
of revisions to the CPSEF :

the_min_vertical_sep_Val_in_feet_required_for(A, B, C, D, 2000) :-

( the_machno_Val_on(B, H),

H<100,

limitvar(1),

( ( not__(is_greater_eq(H,80))

; not__(is_less_eq(H,86))

)

; ( not__(is_greater_eq(A,fl(330)))

; not__(is_less_eq(A,fl(370)))

)

; not__(is_greater_eq(C,fl(330)))

; not__(is_less_eq(C,fl(370)))

),

......

26 with accuracy, from REGION, is 93.33333333333333

.......

The revision process selects those clauses with limits (ordinal relations of the form x � a)
which appeared as faulty in the blame assignment stage. These ‘limits’ are marked in order
using a dummy ‘limitvar’ literal, then revisions are made as explained above. The revision
given in Example 3 had constructed altered intervals for flight levels A, C and speed range
H. For A and C, it induced that the 2000ft separation rule was no longer valid for aircraft
flying in the 33,000ft – 37,000ft interval, and flying at subsonic speed. The region for
supersonic speeds was unaltered. In fact, this corresponds exactly to the flight level range
in which the RVSM criteria are in operation.

The region change to H , the speed, was made firstly by the algorithm expanding out
the both are flown at subsonic speed predicate in Example 3, as it is made up directly of
ordinal relations. Secondly, the speed interval for all the examples which no longer require
2000ft separation was induced to be between mach 0.8 and mach 0.86. This restriction did
not represent any change in the theory, but reflected the fact that mach 0.8 to mach 0.86
is a common speed interval for subsonic aircraft in the Atlantic area.

The presence of both true negatives and true positives in the training runs is required
to limit the generalisation operators’ scope. With only false positives, for example, the
TR operator could make arbitrarily generalisations such as lowering separation distances
to zero (which would of course change all FPs into true negatives).
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4.3 A refinement operator that replaces ordinal relations

As well as errors appearing in limits, a common error is to encode the wrong relation within
an ordinal atom. Ordinal relations are grouped by sort in the CPS . For example, altitudes
have the following associated relations:

is at or above, is at or below , is above, is below , same Flight level

and similarly for time:

is at or later than, is earlier than, is at or earlier than

We designed a refinement operator that in essence ‘replaces’ one ordinal relation for another
in its group. For example, if the rule in Example 3 was identified as being potentially faulty,
then each of the occurrences of is above and is at or below could be replaced by any of the
other three relations in altitude’s group. The TR algorithm replaces each ordinal relation
with a new relation from its sort, and checks its fitness using trace information. It then
implements the most successful relation and evaluates the revised clause’s accuracy using
a full test run.

4.4 Testing the replacement operator

An experiment was conducted to test the application of the replacement operator in our TR
algorithm [41]. To overcome the dearth of positive examples of aircraft profiles in conflict,
in this experiment we focused the revision space on the longitudinal separation criterion
rather than the whole CPSEF .

Using 667 profiles from 4th January 1996, we obtained 33 FPs and 5037 TNs out of
5070 runs of the conflict predicate. Longitudinal separation was selected by studying the
output of blame assignment for all the FPs, and the generalised explanation output for
individual FPs. (See for example the proof tree in Figure 2.) From these, we suspected a
flaw in the specification of longitudinal separation values. Longitudinal separation values
in minutes can be 5, 6, 7, 8, 9, 10, 15, 20 or 30, and the CPS contains formalised criteria for
all of these. 75 training instances of the longitudinal separation predicate were generated
from proof trees and proof traces in which a longitudinal separation value of 10 minutes
was assigned to two aircraft at least one of which is flying at subsonic speed. The training
instances included 25 FN and 50 TP, the concept being:

the basic min longitudinal sep Val in mins
required for(Segment1,Segment2) = 10

The set TP was generated by re-running the day’s worth of instances, and identifying those
pairs of profiles in vertical conflict that gave a longitudinal separation of 10 minutes, but
were not in overall conflict according to both air traffic experts and the CPSEF . This
lowered the possibility of noisy data, since as the profiles are all separated but in vertical
conflict, the CPS’s decision that they are laterally/longitudinally separated is correct, and
hence the choice of a particular separation value is more likely to be correct.

The FNs for the concept are derived directly from the 33 false positives from the conflict
predicate. The TR algorithm, using ordinal relation replacement, returned a new theory
with two clauses altered. 74 of the training instances were now true positive, and only one
false negative remained. Significantly, one of the clauses (clause 1047) that was revised,
defined the predicate:

are after a common pt from which profile tracks
are same or diverging thereafter and at which
both aircraft have already reported by
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The definition of this predicate was discovered to be an incorrect reading of an ATC Manual,
in that its reference to ‘the time of the conflict probe’ had been wrongly represented. The
revision (a change of two ordinal relations) was subsequently used to help create a new
version of the CPS . An important point about this result was that, as can be seen from
Figure 2, the ID for this clause was recorded in the revision points only negatively. In other
words the negative part of the proof trees had to be explored to uncover the contribution
made by this rule to faulty proof trees. Using a blame assignment that was not sensitive
to clauses occurring in the negative part of a tree would not have uncovered this faulty
clause.

5 Results and Comparison with Related Work

The systems we have produced have been implemented in compiled versions of Prolog, and
run on Unix or PC platforms. Approximately 30,000 distinct tests have been processed
using the CPSEF , the overwhelming majority via the execution of the conflict relation with
negative examples. The results of the tests have been used to maintain the CPS during the
course of the project resulting in the current version of the CPS [42]. During the course of
the project, the percentage of FPs during testing has decreased by a factor of 10, to less
than half of one percent.

As far as we are aware our work is the first to apply machine learning tools to a
requirements domain theory, although related work occurs in the field of Knowledge-based
Refinement (KBR). Both areas have to adopt strategies to overcome the complexity pitfalls
surrounding the use of TR, where theoretical results suggest that no polynomial algorithm
exists to perform global optimisation in hill climbing algorithms [43]. In both MOBAL [44]
and KRUST[45], refinement techniques have been used in a kind of incremental fashion,
whereas our main effort has been directed towards the use of the automated analysis of a
batch of proof trees of successful predicates, and in the case of unsuccessful predicates, the
analysis of failure traces. In KRUST [46], for example, test cases are used one at a time to
refine the KBS, in contrast to our focusing procedure, which uses multiple examples and a
form of statistical blame assignment. In MOBAL, an interactive environment for knowledge
acquisition has been used with a large security rule base. The tool utilises several learning
algorithms in concert with an inference engine and a graphical user interface. Experience
with MOBAL is consistent with our own in that ML tools work well in the context of a
diverse tools environment.

According to Wrobel’s classification [39], our ordinal TR algorithm exhibits first order,
multiple-clause, multiple predicate learning which includes negation-as-failure literals. This
contrast with FORTE [16], where theories are posed as sets of Horn Clauses. In our work, we
utilise a blame algorithm which takes into account ‘negative trees’ and is thus more accurate
than one in which negation is automatically shielded. In a similar manner, Wogulis [47]
has developed a system, A3, that can revise first-order function-free theories containing
errors within the scope of a negation. A3 finds the set of all single literal assumptions
that could be made to prove each incorrectly classified example. All succeeding and failing
goals in the proof of an example are candidates. Assumptions are then graded according to
the number of examples they cover, and the depth of the assumption. (The identification
and grading of candidate assumptions can be compared with our Blame Assignment.) A3
attempts to repair each clause according to how it uses the assumption, either positively or
negatively. In contrast to this work, the CPS utilises functions in a fundamental way, and
as indicated in Section 3.1 there are intractability problems in searches for faulty clauses
which did not focus on ordinal clauses.
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6 Conclusions and Further Work

The project has succeeded in applying ML techniques, in particular theory refinement,
to the area of validation of formal requirements models. The design, implementation,
and testing of integrated tools making up an automated validation environment has been
accomplished with techniques incorporating novel forms of blame assignment and theory
revision. The TR tool itself has succeeded in revising the theory to take into account the
new RVSM rule, and to eliminate an error in longitudinal separation criteria.

The main research contributions of the project are (i) it has shown the feasibility and
advantages of integrating machine learning techniques into a validation environment for
a formally specified requirements theory and (ii) it demonstrates that when a formal set
of requirements have been captured, a largely automated, integrated and diverse set of
validation procedures are essential to ensure and maintain the accuracy of the theory.

The project showed that it is feasible to use ML tools in the requirements manage-
ment phases of a safety-related software project, where the requirements theory is formally
represented and can be translated to an executable language. On the other hand, it also
illustrated that to be effective these tools need to be: (i) customised to the application at
hand e.g. with specific refinement operators; (ii) used in a ‘mixed-initiative’ mode - that
is directed by a human expert; (iii) used in conjunction with other tools within a larger
validation environment. The work reported here opens up possibilities for further research.
These include the development of more specialised TR operators for requirements theories.
The TR operators reported here do not affect the overall structure of the theory, and it is
an open question as to whether they can be extended to do so. Our immediate future work
will concentrate on the further development of our validation environment, and the creation
of a generic tool for use with other requirements theories stated in their own customised
form of msl.
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