
Using A Lagrangian Heuristic For A Combinatorial Auction Problem

Y. Guo1, A. Lim2, B. Rodrigues3, J. Tang2
1School of Computing, National University of Singapore, 3

Science Drive 2, Singapore
2Department of IEEM, Hong Kong University of Science and

Technology, Clear Water Bay, Hong Kong
3Lee Kong Chian School of Business, Singapore Management University, Singapore

Abstract

In this paper, a combinatorial auction problem is mod-
eled as a NP-complete set packing problem and a La-
grangian relaxation based heuristic algorithm is proposed.
Extensive experiments are conducted using benchmark
CATS test sets and more complex test sets. The algorithm
provides optimal solutions for most test sets and is always
1% from the optimal solutions for all CATS test sets. Com-
parisons with CPLEX 8.0 are also provided, which show
that the algorithm provides good solutions.

1 Introduction

The combinatorial auction problem we study can be de-
scribed as follows. A supplier has a total ofm jobs to fin-
ish and an auction is conducted to distribute jobs among
a set of bidders. Bidders proposen bids, and each bidbi

(1 6 i 6 n) covers a number,mi (1 6 mi 6 m) of dis-
tinct jobs. If bidbi is selected by the supplier, a profitwi

(1 6 i 6 n) is resulted for the supplier, but any other bid
that contained some same job asbi cannot be selected. The
goal is to maximize the total profit of the supplier without
violating the constraint that each job can be contained in at
most one selected bid.

DeVries and Vohra provided an excellent survey on com-
binatorial auctions [3]. Recently, the auction problem has
been modeled as a set packing problem (SPP), a well-known
NP-complete problem [9], [4], [1], [8], [5]. There have been
many solution approaches suggested for this problem, in-
cluding both exact and non-exact heuristic methods. Exact
algorithms including a branch and bound search [4], iter-
ative deepening A* search [8] and the direct application of
available CPLEX IP solver [1] have been developed and ap-
plied to the SPP problem. A relatively common test set is
CATS [7]. Experiments using CATS showed the CPLEX
6.5 solver to be a good approach among the exact meth-
ods [1]. Sandholm recently proposed a new branch-and-

bound algorithm called CABOB, which when applied to the
CATS test set with different distributions, provided gener-
ally results faster than CPLEX 7.0 [9]. CABOB and the
CPLEX integer programming solver are the current leading
exact methods for SPP. In order to cater for test sets with
large scale or more difficult distributions, non-exact meth-
ods are often preferable. Non-exact algorithms, using itera-
tive greedy heuristic [6], and stochastic local search [5] can
be found in recent literature.

In this work, we develop a heuristic method based on the
Lagrangian relaxation with subgradient optimization for the
combinatorial problem described above. Variations of this
technique have been applied to a closely related set cover-
ing problem [2], but to the best of our knowledge, no other
work has used Lagrangian relaxation for the SPP. Experi-
mental results show that the new approach compares well
with other methods as a non-exact algorithm.

Recent research on SPP reveals that CATS generated test
sets appear to be easy for exact methods like CPLEX [9].
Also from our experimental observations, CATS test sets
are proved to be relatively easy for CPLEX because of the
existence of dominating bids – bids that require few jobs
but provide high profit. These dominating bids, however,
are not realistic in real world situations. As a result, in ad-
dition to the 8 different distributions from CATS test set,
we also designed our own test sets that features reasonable
criteria such as that the profit of bid is roughly proportional
to sum of the price of individual jobs it covers. And experi-
mental results showed that CPLEX 8.0 would fail to provide
the optimal solutions in reasonable time spent as it does for
CATS, even when the test size is not very large.

The paper is organized as follows: in the next section
we will give the formal definition of SPP, and discuss our
LAHA heuristic in detail. The elaborate experimental re-
sults are presented in section 3, where results of our method
are compared with results from CPLEX 8.0. Concerns with
the test set generation together with CATS test set will be
discussed. The paper gives the conclusion in section 4.

1

2 Lagrangian relaxation based heuristic on
SPP

2.1 The combinatorial auction problem

The integer programming model for the SPP can be writ-
ten as follows:

maximize
∑

i∈N

wixi (1)

Subject to:

∑

i∈N

aijxi ≤ 1, j ∈ M (2)

xi ∈ {0, 1}, i ∈ N (3)

whereN = {1, . . . , n}, M = {1, . . . , m} and[aij] is an
n×m 0-1 matrix whereaij equals 1 only if bidi covers job
j. The first set of constraints ensures that each row is cov-
ered by at most one column and the second integrality con-
straints ensure thatxi = 1, iff bid i is in the solution. This
problem is a well-known NP-complete set packing problem,
for which no polynomial time exact algorithm exists unless
P = NP.

2.2 Lagrangian relaxed heuristic

The Lagrangian relaxation used in our algorithm is to
find a nice upper bound of the IP model presented in the
previous section, and then we base our heuristic to expand
from the best upper bounds we have found to get feasible
solutions with expected high quality.

According to the original IP model for SPP, for any La-
grangian multiplier vectoru = (u1, u2, ..., um) such that
uj ≥ 0 for all j ∈ M , we define the following problem it
SPP(u):

maximize
∑

i∈N

wixi +
∑

j∈M

[uj(1−
∑

i∈N

aijxi)] (4)

Subject to:
xi ∈ {0, 1}, i ∈ N (5)

The constraint(2) has been relaxed into the dual problem.
The next, we need to prove that the dual problem is a re-
laxed problem of the original one.
Proposition 1 Problem SPP (u) is a relaxation of the
original problemSPP for any non-negative input of the
Lagrangian multiplier u.
The proposition is true by the following two facts:
(1). Every feasible solution of SPP is a feasible solution of
SPP(u) for arbitrary u.
(2). The solution value of SPP(u) is greater than or equal to
the solution value of SPP for non-negative u.

From proposition 1, any solutionx of SPP is also a
solution for SPP(u), and the result of SPP(u) is an upper

bound for SPP regardless ofu. But proposition 1 alone
is not enough to derive an upper bound for SPP, because
the lagrangian multiplieru is not a constant. However, we
know that given anyu the optimal solution of SPP(u) can
be found in linear time tomn by the following proposition
and thus, it is an upper bound for SPP.
Proposition 2 When the Lagrangian multiplieru is fixed,
the optimal solution of SPP(u) can be found in O(mn) time.
Proof According to the definition ofSPP (u) above, we
have

SPP (u) = max{
∑

i∈N

wixi +
∑

j∈M

[uj(1−
∑

i∈N

aijxi)]}

= max{
∑

i∈N

wixi +
∑

j∈M

uj −
∑

j∈M

(uj

∑

i∈N

aijxi)}

= max{
∑

i∈N

wixi +
∑

j∈M

uj −
∑

i∈N

∑

j∈M

ujaijxi}

= max{
∑

j∈M

uj +
∑

i∈N

xi(wi −
∑

j∈M

aijuj)}

From the equation above, for a fixedu,
∑

j∈M uj is a con-
stant, andwi−

∑
j∈M aijuj is deterministic for anyi ∈ N .

So the optimal solution can be constructed by examining
wi−

∑
j∈M aijuj and letxi be 1 ifwi−

∑
j∈M aijuj ≥ 0

or 0 otherwise. This algorithm runs inO(mn).
From proposition 2, it is clear that by choosing a nice

lagrangian multiplier, we can find a tight upper bound for
SPP easily, and we will refine the solution found by algo-
rithm described in proposition 2 to make it feasible for SPP.
Next, we will look into how to find a suitable Lagrangian
multiplier using subgradient optimization.

2.3 Subgradient optimization for the Lagrangian
multiplier

The quality, or rather tightness of the upper bound found
as in proposition 1, largely depends on the choice of La-
grangian multiplier. In our approach, we start with an initial
vector of multipliers and then iteratively update the multi-
plier vector by an application of the subgradient optimiza-
tion technique. We useuj to denote the multiplier vector at
iterationj, with the initialu0 to be as follows.

u0
j =

∑aij=1
i

ciPakj=1
k∑apj=1

p

∀j ∈ M (6)

This actually takes into account for any jobj ∈ M the profit
of a bid that covers jobj divided by the number of jobs
covered by that bid, and then average this variable to beu0

j .
In order to discuss how to updateuk to getuk+1, we need

to introduce a new vectorg, the subgradient vector, and use
uk+1 = uk + g×F with F a subgradient constant to obtain

2

uk+1. A widely used scheme to decide the subgradient vec-
tor g, letgj(u) = 1−∑aij=1

i xi(u) for all j ∈ M . xi(u) is
the solution ofSPP (u) givenu found by using algorithm
described in proposition 1.

In iterationk, the Lagrangian multiplieruk is derived.
And Xk, the optimal solution for SPP(uk) can be obtained.
This solution is probably infeasible for SPP so we need to
adjustXk to ensure the feasibility for the original set pack-
ing problem. We have used 2 methods to make a solution
Xk feasible. The first one is a random heuristic, in which
we first sort the bids selected inXk in decreasing order
of their reduced profitci, whereci = wi −

∑aij=1
j uk

j ,
∀i ∈ N , which is also used in [2]. Then we will con-
sider the bids one by one. Each bid has a probability of
0.9 to be selected, and a bid is only allowed to be selected
if it does not contain any common job as the previously se-
lected bids. This random heuristic will run 200 times for
eachXk and thus 200 feasible solutions are obtained. In
addition, another deterministic method is also used to ob-
tain feasible solutions fromXk. Let the setT be the set of
jobs covered by more than one bid inXk, i.e, jobj ∈ T iff
∃bidi ∈ N ∃bidp ∈ N, bidi ∈ Xk, bidp ∈ Xk, aij = 1
andapj = 1. The deterministic algorithm first include all
bids selected inXk, then exclude one bid at a time with the
smallest ci

|T T bidi| , until T = Ø. Then the solution is fea-
sible with respect to SPP. And a single feasible solution is
obtained from eachXk. And among all the solutions we
find, the best 50 are kept for later refinement as we will ex-
plain in the next section. The framework of our heuristic is
elaborated in Algorithm 1.

Algorithm 1 Subgradient optimization to improve La-
grangian multiplier

uj ←
Paij=1

i
ciPakj=1

kPapj=1
p

∀j ∈ M

F ← 1
iteration ← 0
while F > 0.01 do

iteration ← iteration + 1
Calculate the solutionX for u as in proposition 2
Run the random heuristic 200 times to get feasible so-
lution fromX for SPP
Run the deterministic algorithm to obtain one feasible
solution fromX
Update the best 50 solutions
gj ← 1−∑aij=1

i Xi ∀j ∈ M
u ← u + g × F
if For N1 iterations, the 50 best solutions do not im-
provethen

F=F/2
end if

end while

2.4 Refinement of solutions

After the 50 best solutions are found as described in the
previous section, a greedy local search is applied to explore
the vicinity of those solutions in the hope to improve the
solution quality. Our experimental result, shows the greedy
refinement is efficient to increase the solution quality by up
to 3%. The refinement algorithm is described in Algorithm
2.

Algorithm 2 Greedy refinement of solution quality
S ← set of bids appeared in any of the 50 solutions
while |S| < 1500 and S ≤ n do

Select a bidbi with maximum profit among all bids not
in S
S ← S

⋃
bi

end while
for Each of the 50 solutions ti, i ≤ 50 do

while For some bid bj ∈ S, that bj /∈ ti and wj >∑n
p=1 wp for bp ∈ ti and ∃k ∈ M, apk = ajk = 1

do
ti = ti−bp for bp ∈ ti and ∃k ∈ M, apk = ajk =
1
ti = ti + bj

end while
end for
Output the best among the 50 solutions

The set of bidsS is the candidate set that we choose from
to add to the 50 solutions. The constraint of maximum 1500
bids inS is to ensure the time efficiency of the refinement.
The greedy method tries to add in new bids from the can-
didate set that after removing all conflicting bids with the
new ones, will result in the increase of the total profit. The
outer while loop is terminable since the profit of eachti is
monotonically increasing.

3 Experimental results

In this section we will present the experimental results
of our LAHA heuristic and comparison with the CPLEX
8.0 integer programming solver. According to [9], the cur-
rent leading exact algorithm, the branch and bound method
CABOB outperforms CPLEX 7.0 moderately for most test
sets they used from CATS. However, for 7 out of 9 distrib-
utions they used, both CPLEX 7.0 and CABOB generated
optimal results within 10 seconds for the worst test case of
each distribution. For another distributions that CABOB
runs in 20 seconds for the worst test set while CPLEX 7.0
only needs less than 10 seconds. Only for 1 out of the 9
distributions, namely the components distribution, CABOB
produces the optimal solution within 1 second and CPLEX
7.0 suddenly requires more than 800 seconds according to
[9]. As a result, we believe CPLEX solver is still a compet-

3

itive tool to solve the SPP on CATS test sets. We also base
our comparison with CPLEX 8.0, which is in general 40%
faster than CPLEX 7.0 for integer programming problems
according to Ilog company.

All experiments are done on a 2.8GHz Pentium(R) 4
machine with 1GB Memory. LAHA was implemented in
ANSI C++ and compiled with GNU GCC 3.2 compiler. In
order to conduct a fair comparison, parameters of CPLEX
were tuned for SPP before the experiment. Because of the
various natures and characteristics of our benchmarks, there
is not a general parameter setting which works best for all
kinds of instances. After careful considerations, we decided
to set the parameters for CPLEX 8.0 as follows:1. setmip
strategy to emphasize feasibility;2. setmip clique cut gen-
eration strategy to 2 (aggressive);3. explore the ”up” branch
first in the enumeration tree. Default values were used for
all the other parameters. We find that the above setting
works especially well for the difficult benchmarks.

3.1 Comparison using CATS test set

We have used a total of 8 different distributions from
CATS, namely theexponential, random, uniform, bino-
mial, decay, scheduling, matchingand paths distribu-
tions. Test cases of the first 5 distributions are exactly the
same as used in [1], and we generated the later 3 extra distri-
butions directly from CATS. We will follow the name con-
vention in describing the results. For example,exp− p− q
is the test set of exponential distribution withp jobs andq
bids.

The results are presented in Table 1.µDensity is the aver-
age density of the 10 test set in each group. The density of

a test set is defined as
P

i∈N

P
j∈M aij

n×m which is an indicator
as how many jobs one bid covers.µCplex andµLAHA is
the average result CPLEX 8.0 and LAHA obtained for each
category. tCPLEX and tLAHA is the average time spent
in seconds.δ is the difference between LAHA’s result and
CPLEX’s optimal result.

From this table we see that for all CATS test sets LAHA
provides high quality results. For exponential, random, bi-
nomial and scheduling distributions LAHA get all optimal
results while for the other 4 distributions the results are all
within 1% of optimal. With respect to time efficiency, for
most test sets except the uniform, random and binomial dis-
tributions, CPLEX is very efficient as it provides optimal
results within several seconds. On the other hand, LAHA’s
time spent is longer than CPLEX for those test sets but the
efficiency is still very high, providing quality results in tens
of seconds. However, LAHA’s time spent from 0.8 to 54
seconds, has a smaller variation than CPLEX, which runs
in 0.2 to 230 seconds. This, to our belief is due to the fact
that LAHA is a heuristic with relative stable computational
complexity, and CPLEX’s branch and cut algorithm would
largely depends on the nature of test sets.

3.2 Comparison using PBP test set

In this section, another test set different from CATS
is used to compare the performance of CPLEX 8.0 and
LAHA. Some of the CATS generated test cases appeared
to be easy. After careful investigations, we have found out
because CATS’s generation mechanism may lead to lots
of dominating bids in the test cases. The problems’ scale
can usually be decreased dramatically after the dominance
has been removed. And usually the LP relaxation of those
CATS problems is very close, if not equal, to its original IP,
thus it made such problems trivial for any LP based Branch
and Bound solvers. However, for the real world combinato-
rial auction problems, the price for a bid is usually related to
the quantity and quality of the jobs which it covers. While
the real value for a job may fluctuate according to the mar-
ket changes, it is usually proportional to the number of bids
which cover it. We now propose a new methodology to pro-
duce a Proportional Bid Price(PBP) SPP test set based on
this observation. The test cases turn out be hard for CPLEX
to solve with only hundreds of rows and columns. The PBP
test sets are generated as described in Algorithm 3.

Algorithm 3 Price Proportional Bid Test Set Generation
Specify n,m and probability density for coefficient matrix
a
Step 1: Generate coefficient matrixa
for all bid i from 1 to ndo

for all job j from 1 to mdo
aij ← 1 with probability density specified

end for
end for
Step 2: Generate price for the jobs
for all job j from 1 to mdo

price ofjobj ← # of bids which coversjobj froma×f ,
wheref is a random in the range (0.9, 1.1)

end for
Step 3: Generate the price for the bids
for all bid i from 1 to ndo

price of bidi ← summation of the price of the jobs it
covers× f , wheref is random in (0.9, 1.1)

end for
Output the coefficient matrixa and the prices for the bids.

We have generated test cases from PBP of different sizes.
Sine CPLEX 8.0 could not give the optimal results for many
test cases within reasonable time spent, we have set the time
limit of CPLEX for 1800 seconds. The results are presented
in Table 2.δ1 is the ratio of LAHA’s result over CPLEX’s,
andD is the density.

Among all the 15 test cases we generated as in Ta-
ble 2, LAHA obtained 14 results as good as CPLEX 8.0,
and 4 results outperformed CPLEX by 2% to 11%. And
one is 1% worse than CPLEX result. From the table, we
see that LAHA at least obtained 8 optimal solutions for

4

Test set # instance µDensity µCP LEX tCP LEX µLAHA tLAHA δ
EXP-30-3000 10 0.09 44723.8 0.27 44723.8 0.81 0

RND-400-2000 10 0.50 16143.8 5.14 16143.8 14.62 0
UNI-100-500 10 0.03 129050.0 31.31 128254 2.3954 0.6%
BIN-150-1500 10 0.20 94792.7 234.00 94792.7 7.91 0

DEC-200-10000 10 0.02 196266.0 34.81 194957.0 54.01 0.7%
SCH-400-2200 10 0.02 54.256 0.27 54.256 25.91 0
MAT-600-2000 10 0.01 997.419 0.26 997.218 12.63 0.02%
PAT-600-2000 10 0.01 61.898 0.46 61.852 19.28 0.07%

Table 1. Experimental results on CATS test set

Test set D LAHA tLAHA CPLEX tCP LEX δ1
100-200 0.05 901.42? 0.984 901.42 5.797 1.00
100-200 0.10 1428.17? 0.844 1428.17 11.407 1.00
100-200 0.15 1818.26? 0.625 1818.26 4.75 1.00
200-200 0.03 946.62? 1.547 946.62 23.594 1.00
200-200 0.05 1296.03? 1.281 1296.03 97.360 1.00
200-200 0.10 1916.20? 0.921 1916.2 11.172 1.00
200-1500 0.10 18118.9 7.953 17486.4 tle 1.04
200-1500 0.15 21937.5? 6.781 21937.5 972.703 1.00
200-1500 0.20 25583.9? 8.453 25583.9 1060.92 1.00
500-2000 0.03 17598.5 21.41 17312.2 tle 1.02
500-2000 0.10 33883.2 12.75 32284.8 tle 1.05
500-2000 0.15 47070 15.91 42329.9 tle 1.11
500-5000 0.05 58210.2 27.31 58741.2 tle 0.99
500-5000 0.15 121007.0 42.67 121007.0 tle 1.00
500-5000 0.20 148706.0 38.17 148706.0 tle 1.00

1 ? means optimal solution is found
2 tle means CPLEX cannot obtain the optimal result within 1800
seconds, and the best result at that time is reported.

Table 2. Experimental results on PBP test set

which CPLEX has successfully acquired within 1800 sec-
onds. Notably, LAHA’s time efficiency is much better than
CPLEX, always producing the quality result within 15%,
and often less than 1% the time required by CPLEX 8.0.
The experiments on PBP test sets showed our heuristic is an
compelling approach to SPP.

4 Conclusion

In this paper, the combinatorial auction problem is mod-
eled as a NP-complete set packing problem. And various
approaches to this problem in literature are discussed. We
proposed a new Lagrangian heuristic LAHA to solve this
problem. This non-exact approach showed reasonably good
performance when compared with the currently leading ex-
act CPLEX 8.0 solver on various CATS test sets, by provid-
ing optimal results for half the test cases and 1% form the
optimal for the rest. When applied on the Price Proportional
Bid (PBP) test sets, LAHA provides equally good or better
results than CPLEX with always less than 20% and mostly
less than 1% time required by CPLEX.

References

[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer pro-
gramming for combinatorial auction winner determina-
tion. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence, pages 39–46, 2000.

[2] A. Caprara, M. Fischetti, and P. Toth. A heuristic
method for the set covering problem.Lecture Notes in
Computer Science 1084, Springer, 72–84., 1995.

[3] Sven de Vries and Rakesh V. Vohra. Combinatorial
auctions: A survey.INFORMS Journal on Computing,
(3):284–309, 2003.

[4] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Tam-
ing the computational complexity of combinatorial auc-
tions: Optimal and approximate approaches. InSix-
teenth International Joint Conference on Artificial In-
telligence, pages 548–553, 1999.

[5] Holger H. Hoos and Craig Boutilier. Solving combi-
natorial auctions using stochastic local search. InPro-
ceedings of the Seventeenth National Conference on Ar-
tificial Intelligence, pages 22–29, 2000.

[6] Hoong Chuin Lau and Yam Guan Goh. An intel-
ligent brokering system to support multi-agent web-
based 4th-party logistics. InProceedings of the Four-
teenth International Conference on Tools with Artificial
Intelligence, pages 10–11, 2002.

[7] Kevin Leyton-Brown, Mark Pearson, and Yoav
Shoham. Towards a universal test suite for combina-
torial auction algorithms. InACM Conference on Elec-
tronic Commerce, pages 66–76, 2000.

[8] Tuomas Sandholm. Algorithm for optimal winner de-
termination in combinatorial auctions.Artificial Intelli-
gence, 135(1-2):1–54, 2002.

[9] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and
David Levine. CABOB: A fast optimal algorithm for
combinatorial auctions. InIJCAI, pages 1102–1108,
2001.

5

