
Minimizing the Makespan for Unrelated Parallel

Machines

Y. Guo3, A. Lim1, B. Rodrigues2 and L. Yang3

1Department of IEEM, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
2School of Business, Singapore Management University, 469 Bukit Timah Road, Singapore 259756

3School of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543

June 1, 2003

Abstract

In this paper, we study the unrelated parallel machine problem for minimizing the
makespan, which is NP-hard. We used Simulated Annealing (SA) and Tabu Search (TS)
with Neighborhood Search (NS) based on the structure of the problem. We also used a
modified SA algorithm, which gives better results than the traditional SA and developed
an effective heuristic for the problem: Squeaky Wheel Optimization (SWO) hybrid with
TS. Experimental results average 2.52% from the lower bound and are within acceptable
timescales improving current best results for the problem.

Key Words: makespan, unrelated parallel machines, simulated annealing, tabu search,
squeaky wheel optimization

1 Introduction

In this work we study the problem in which n jobs are scheduled onm unrelated parallel machines
without preemption: Suppose we have n jobs, and each job is to be assigned to exactly one of
the m machines. Job j (j = 1, · · ·, n) becomes available for processing at time zero and requires
a processing times pij if job j is assigned to machine i (i = 1, · · ·, m). The objective is to
schedule jobs so that the makespan, Cmax, which is the finishing time of the latest finished job,
is minimized.

Garey and Johnson (1979) showed that the problem is NP-hard even for a special case of
identical machines, R||Cmax, where the processing time of each job does not depend on the
machine to which it is assigned. This notation is from Lawler et al [13]. R indicates that
the problem is for unrelated parallel machines. No notations between the two — means the
problem is non-preemption, no set up time for jobs, and the release times for all the jobs are
the same. Cmax indicates that our objective is to minimize the makespan. Van de Velde (1993)
proposed an exact algorithm using a branch and bound technique. However, computational
requirements are prohibitive for problems with more than 5 machines and 50 jobs. Martello et
al. (1996) developed lower bounds for this problem based on Lagrangian relaxation and additive
techniques.

Because the problem is NP-hard, effort has been directed into designing fast and efficient
approximation algorithms with good performance bounds. Glass et al. (1994) studied local

1

search heuristics for this problem and Piersma and Dijk (1996) provided an efficient search
technique which we adapt and use in this work.

This paper is organized as follows. In section 2, we develop a lower bound for the minimum
makespan problem which we will use in experiments. In section 3, we discuss two local search
heuristic methods: SA with Neighborhood Search (SA+NS) and TS with Neighborhood Search
(TS+NS), and a modified SA+NS. In section 4, we introduce another heuristic method - Squeaky
Wheel Optimization (SWO) - for this problem, which is used with local search. In section 5, we
combine SWO with our previous SA+NS and TS+NS. In section 6, we compare our experimental
results among different heuristic methods developed.

2 Preliminaries

In this section, we describe a loose lower bound C1 and then a tighter lower bound C2 which we
use to compare the quality of various heuristic methods in this work.

2.1 Lower Bound

Define, for 1 ≤ j ≤ n, Dj = mini=1,...,m{pij} and C1 =
∑n
j=1Dj
n . Obviously C1 is a lower

bound for the problem since it sums possible minimum processing times of each job under the
assumption that all machines are busy processing some job. The lower bound C1 is loose as
we can expect. Next, we define job j’s second smallest processing efficiency, ξ(j) by: ξ(j)
= job j’s second minimum processing time

job j’s smallest processing time . In order to improve the lower bound C1, we iteratively
calculate a tighter lower bound C2 as described in Algorithm 1.

Algorithm 1 The algorithm to find lower bound C2

C3 ←Minimum total processing time/Number of machines
C2 ← C3

while C2 ≤ C3 do
Remove jobs with the lowest ξ(j) values with preemption from machines with completion
time greater than C2 to their second fastest machines.
C3 ← New total processing time/Number of machines
C2 = C2 + 1

end while
C2 = C2 − 1

The idea here is to increase the total processing time from the possible minimum value step
by step. The value of the new total processing time over number of machines, namely C3 in the
algorithm, is intuitively a lower bound. The above algorithm ensures that each time we increase
the total processing time, the increase is the minimum possible. While C2 ≤ C3, we can say that
C2 remains a lower bound since C3 is the possible minimum makespan at that point of time.
Only when C2 > C3, we can not tell that C2 is still a lower bound. Thus we take the last C2

value as the lower bound.

2

3 SA+NS, TS+NS and a modified SA+NS

3.1 Neighborhood Generating Mechanisms

We develop a local search method here where two operations are used to generate local search
neighborhoods. These operations are the:

• Move Operation: Reassigning one job from a machine with maximum completion time to
another machine

• Swap Operation: Swap one job from a machine with maximum completion time with one
job from another machine

These two operations are illustrated in Figure 1 and Figure 2.
In Figure 1, we have 14 jobs and 4 machines. The number in each rectangular box is the label
of a job. The length of the rectangular box represents the processing time of the job on that
machine. Machine 1 and 2 have the maximum completion time. The move operation reassigns
job 1 from machine 2 to machine 4.
In Figure 2, the swap operation swaps job 1 on machine 2 with job 6 on machine 4.

3.2 Simulated Annealing with Neighborhood Search

Simulated annealing is an optimization metaheuristic based on the cooling properties of solids
(Kirkpatrick, Gelatt and Vecchi, 1983) and is a local search algorithm capable of escaping local
optima using hill-climbing moves. Here, we implement an SA approach to the problem.

3.2.1 Implementation of Neighborhood Generation in SA

• The Move Operation
We investigate all jobs assigned to the machines that have maximum completion time
among all machines. If we can assign one job to other machines we may be able to decrease
the makespan. For SA, we use C(S), to denote the makespan of solution S and we accept
a move with probability e−∆(C)/T , where ∆ represents the difference in costs and T the
temperature, in the SA process. Since we use SA, we need to make moves as random as
possible. If we always move a job from one of the machines with maximum completion time
to the machine with the smallest label, i.e. machine 1, when as T is large in the beginning,
machines with small labels will have larger makespan because jobs from machines with
maximum completion time are always moved to these machines, and machines with large
labels will have small makespan. Besides, we must take into considerations the order of
machines we assign jobs to in the move operation when T is very small, to guarantee a
possible downhill move. To overcome these problems, we use the following steps of control
in the implementation:

– Step 1:
Check all machines to find those machines with maximum completion time. We may
find more than one machines.

3

– Step 2:
Randomly reorder the labels of those machines found in step 1 and record their new
labels.

– Step 3:
Randomly reorder the labels of machines other than those found in step 1 and record
their new labels.

– Step 4:
Move a job from the machine with smallest label in step 2 to a machine with smallest
label in step 3.

These four steps assure the SA process has moves that are sufficiently random.

• The Swap Operation

Choose a machine from those machines that have the maximum completion time, and
randomly choose another machine. Check the jobs assigned to these two machines to see
whether we can swap a pair of jobs between the two machines. We can use the same
probability function used in the Move operation to decide whether to accept a swap. In
addition, the steps of control are also used in the swap operation.

3.3 Modified SA+NS

We have experimentally found it possible to improve the quality and running time by modifying
the existing SA heuristic; this is done as follows: instead of selecting one neighbor, we select m
acceptable neighbors and use the best one.

This modification decreases the effect of temperature. After many experiments, we find that
this change can decrease running time without any degradation in solution quality.
Figure 3 gives the pseudocode of Modified SA+NS algorithm:

3.4 TS+NS

Tabu Search is a metaheuristic developed by Glover (Glover 1986, 1989, 1990, 1997). The
basic strategy is to avoid becoming trapped in cycles using memory techniques by forbidding or
penalizing moves, in the next iteration, which take the solution to points in the solution space
previously visited (hence ”tabu”).

Selected attributes that occur in solutions recently visited are labeled tabu-active and so-
lutions that contain tabu-active elements, or particular combinations of these attributes are
tabu.

There are four types of memory structures in Tabu Search: Recency-based memory; Frequency-
based memory; Quality-based memory and Influence-based memory. Using these memories, we
have two important components of TS which are intensification and diversification.

Intensification strategy is based on modifying choice rules so as to encourage move combina-
tions and solution features historically found to be good by thoroughly searching part of solution
space.

Diversification strategy encourages the search process to examine unvisited regions and to
generate solutions that differ in various significant ways from those seen before and can be
achieved by radically moving to another part of the solution space.

4

To avoid retracing the steps used, the method records recent n steps’ moves in one or more
Tabu lists. Any tabu move is forbidden. However, if a solution we get from a move is the
current best solution we have, we accept this move even if it is tabu, which is an improved-best
aspiration criterion.

3.4.1 Control flow of TS

There are four parts for the TS implementation for our problem; these are: Controller, Inten-
sification and Diversification, Restart and TS. Each time, Controller passes the elite result list
containing all elite results found so far to Intensification and Diversification. Intensification and
Diversification then analyzes those elite results to get some constraints for restarting. Restart
receives and follows these constraints to get one intensification solution and one diversification
solution which will be returned to Controller and be used as initial solutions in TS in the next
iteration. TS searches the neighbors of these two initial solutions and generates a list of elite
solutions. Within TS, some randomly chosen elite results are used as initial solutions to start
with, and update the elite solution list when appropriate. Later, TS returns this elite result list
to Controller which needs to start the new round of processes if stop criterion is not met. Figure
4 shows the flow of TS method.

• Controller
Controller guides TS to find a good solution more efficiently, and passes the information
between Intensification and Diversification component and TS component.

• Intensification and Diversification
These are two important components of TS which use some memory-based techniques to
guide search direction.

Intensification: We find common elements. Here, a common element is the same job
assigned on the same machine of elite results. To get an intensification result, we continue
to use these common elements. For other elements that are not the same, Restart is used.

Diversification: We find common elements of those elite results, and for those common
elements, we assign the jobs to a different machine where it can run fastest.

• Restart

The component receives the partial solution and those unassigned jobs from the Intensi-
fication and Diversification component, and assign those jobs to the machines. Here, we
use the following two rules while assigning the jobs:

Rule 1: Assign the job to the machine such that the resulting makespan is the smallest
among different assignments.

Rule 2: If there is more than one assignment that will result in the smallest makespan,
adopt one of the assignments where the job on the machine runs fastest among these
assignments.

Rule 1 is natural since when we assign jobs to machines, we want to minimize the makespan;
Rule 2 is to ensure the efficiency of a job because though different assignments may result
in the same makespan, the time to process the newly-assigned job should be taken as the
selection criterion.

5

• Tabu Search

The most important component in Tabu Search is the neighborhood generating mecha-
nisms. We need to search all the neighbors of the current solution and choose the best
non-tabu neighbor as the new solution. We also use the improved-best aspiration criterion
explained above. We store all elite solutions within pre-defined tolerance to the current
best solution and use these elite results as initial solutions to run TS for the next iteration.

In the implementation, when a better solution is found, we refined the elite solution list.
Since we have improved the best solution, previous elite results may be outside the tol-
erance used and thus removed from the elite solution list. We randomly select an elite
solution from this new elite solution list, and perform the new TS iteration. If we cannot
find a better solution in a prescribed number of iterations, we restart using the diversifi-
cation strategy.

The control flow for TS is shown in Figure 5.

3.5 Time Complexity for Neighborhood Search in SA+NS and TS+NS:

Let n and m be the number of jobs and machines respectively.

1. In SA+NS, for the two random reorderings, the time complexity is clearly O(m).

2. For Move Operation: Considering the worst case, all the machines have the same com-
pletion time, so each job will have m − 1 possible moves. So totally there are n(m − 1)
possibilities. Hence the time complexity is O(nm)

3. For Swap Operation: Considering the worst case, still all the machines have the same
complete time, so each job will have (n − x) (here, x is the number of jobs on the same
machine) possible change pairs. Again for the worse case, x = 1. So totally n(n − 1)
possibilities. Hence the time complexity is O(n2) under the ordinary situations when
m = O(n).

It shows that the time complexity of finding a neighbor is O(n2).

4 Squeaky Wheel Optimization

4.1 Overview

SWO is a general metaheuristic approach to optimization problems developed by Joslin and
Clements (1999). We can describe it as an iteratively greedy approach. The core of this algorithm
is a Construct/Analyze/Prioritize cycle which continues until some stop criteria is met or some
acceptable solution is found.

In the Constructor component, a solution is constructed using a greedy algorithm. The
priorities used in the greedy algorithm are assigned in the Prioritizer component according to the
blame factor of the solution. That solution is then analyzed to find the elements that are ”trouble
makers”. The priorities of the troublemakers are then increased, causing the Constructor to deal
with them earlier in the next iteration.

6

4.1.1 The Three Components of SWO

• Constructor: For a sequence of problem elements, the Constructor generates a solution
using greedy algorithm according to the order given by Prioritizer.

• Analyzer: In the solution constructed by Constructor, for each element, the Analyzer
gives it a numeric blame factor according to the problem’s constraints.
By analyzing a solution, we can often identify the elements of the solution that work well,
and also the elements that work poorly.

• Prioritizer: Using the blame factor, the Prioritizer modifies the previous sequence of the
problem elements. The elements that receive a higher blame factor are moved towards the
front of the sequence, and thus, will be dealt with earlier in the next iteration.

4.2 Problem Transformation

4.2.1 Transformation within polynomial time

We transform the original problem to a new problem so that we can employ the SWO heuristic.
This transformation runs in polynomial time. The idea is to try to guess a makespan C ′max, and
then try to assign the jobs to machines without overshooting the makespan C ′max using heuristic
methods - SWO - here. If we cannot find a feasible makespan which is not greater than C ′max
using SWO, we increase our guess of C ′max.

We divide the problem into four main components similar to the TS heuristic, namely the
Controller, Initializer, Restart and the SWO approach:

1. The Controller invokes the Initializer for an initial solution and then uses this solution to
make a guess of the bound for Cmax, i.e. C ′max

2. The Controller sends the solution got from Initializer together with the bound and C ′max
to the SWO component

3. The SWO component generates a solution and sends the solution to the Controller.

4. The Controller analyzes the solution got from the SWO component to tighten the bound
of Cmax, and decides whether to restart.

The control flow is shown in Figure 7.

4.2.2 Implementation

• Controller

This component will guide SWO to find a sequence of better solutions by tightening the
bound of Cmax. It first gets the Initializer to build a solution, and then analyzes the
solution to get an upper bound U and a lower bound L. We set the guess C ′max for Cmax
as (U + L)/2, and then pass this C ′max to SWO as an initial solution. Each time SWO

7

generates a solution, the Controller analyzes the solution following Rule 3 to Rule 5:
Rule3: If we find an arrangement such that the makespan is less than U , we set U to be
that makespan.
Rule4: If the SWO component cannot improve the solution in N (prescribed) iterations,
we take the guess C ′max as too small, and set L to be C ′max and C ′max to be (U + L)/2.
Rule5: If the difference between L and U is less than our defined tolerance, we stop and
take U as our final result.

• Initializer

Initializer is used for generating an initial solution, which puts each job onto the machine
that processes it fastest. This initial solution is taken as the upper bound U of the
makespan. If we add up all the jobs’ process time and divide it by the number of machines,
we can get the lower bound (Lemma 1).

• Restart

If we cannot improve the current best solution after N iterations, we consider the C ′max

we are using is not feasible. So we need to increase the bound of Cmax and use the
newly-guessed C ′max to construct a new solution.

4.3 Implementation of SWO

As C ′max is a guess for the makespan Cmax, our aim in SWO is to assign all the jobs to the
machines so that the makespan is no greater than C ′max.

Each time, we use priority to select a job and greedy strategy to find a machine for the job.
In the Analyzer component, we analyze the result using rules we defined to give a numeric blame
factor to each job.

We describe the implementation of SWO in terms of three main components.

• Constructor

The Constructor generates a solution by assigning the jobs one at a time in the order they
occur in the priority sequence. We choose a job with the highest priority in the job list
given by Prioritizer and assign the job to the machine using the following rule:
Rule6: If there are some machines such that after assigning the job to them, the makespan
is still no greater than C ′max, we will select the machine where the job has the fastest
processing time; if no matter which machine is selected, the makespan will exceed C ′max,
we mark this job as unassigned and apply Rule 1 and Rule 2 to assign the job later.

• Analyzer

The Analyzer will assign a numeric blame factor to each job. The blame assigned to a
job is its ”excess cost” (the difference between its actual processing time and its shortest
processing time). The value of the blame factor of job j depends on the value b(j) =
(current process time of j − minimum process time of j)/maximum process time of j.

• Prioritizer

Once the blame factor has been assigned, Prioritizer modifies the previous sequence of jobs
by moving jobs with higher priority forward in the sequence.

8

For each job j (1 ≤ j ≤ n), we define the total process time TPT (j) =
∑

i pij and the
maximum total processing time to be TPTmax = maxj=1,...n(TPT (j)). We then define the

Ratio, R(j), of a job j by R(j) := TPT (j)
TPTmax

and an additional rule:
Rule7: Choose to assign the job that has the largest Ratio first.

Using the combination of the blame factor, which is derived from Rule 7 and the job’s
previous priority, we define the priority of job j in a new iteration of SWO by: Priority
(j) = α.b(j) + β.R(j) + γ.b′(j), where α, β, γ are constants which are determined from
experimental results which give best performance of the SWO heuristic and b′(j) is the
current priority assigned to job j.

Figure 8 is the pseudocode of Prioritizer:

4.4 Implementation of SWO with Iterative Improvement Local Search

In order avoid the intrinsic problem that SWO may become trapped in cycles, we need to restart
periodically. As we know, SWO can have large changes in both prioritizer space and solution
space: A small change in the sequence of elements generated by the Prioritizer can correspond to
a large change in the solution generated by the Constructor. Hence, by restarting periodically,
we hope to change the solution generated by Constructor greatly and thus avoid small cycles.
To reduce the drawbacks of SWO and Local Search, we use SWO and Local Search together.
For every iteration, after Constructor constructs a solution, we pass this solution to a Local
Search as an initial solution, fro which SA will return a local minimum solution. Here, we use
an Iterative Improvement Local Search which has the constraint that every move must be a
downhill move, which means the result of every move must cause the maximum makespan to be
unchanged or be reduced. In our implementation, we used the two neighborhood operations in
SA and set initial temperature to be zero.

The modified SWO cycle is shown as Figure 12:

5 SWO with SA+NS and SWO with TS+NS

SWO with Iterative Improvement Local Search gives better results than SWO or Iterative Im-
provement Local Search alone as determined from experimental results. This led to combining
SA and TS with SWO. For the combined SWO heuristic, we make use of the Analyzer and
Prioritizer to analyze the best solution from SA or TS, and construct a new solution as the
initial solution for the next iteration of SA or TS.

5.1 SWO with SA+NS

For each result generated by Constructor, we use it as an initial solution to run SA. After
meeting some stop criteria, we return the best result found by SA in this iteration to Analyzer.
After many tests, we found that SWO with SA did not have obvious advantage over SA. This
is possibly due to the fact that the effect of SWO is negated by the randomness present in the
initial part of SA when temperature is large.

9

5.2 SWO with TS+NS

We consider this method as one which uses TS to refine the result obtained from Constructor
of SWO. This approach can also be viewed as using SWO to guide the restart in TS instead
of using intensification and diversification strategies. This method give us the best solution in
both quality and running time among all the methods, as found from experiments.

Figure 11 is the pseudocode of SWO with TS+NS:

6 Experimental Results

We run the test cases on an Intel Pentium 2 Processor (300 MHz) with SD-RAM 192MB. Figure
11 shows the results of different heuristic methods.

In the table, m is the number of machines, n is the number of jobs, and Time is CPU
time based on second. To measure the quality of the results from different heuristics, we define
relative error by ∆ = (Solution - C2)/C2.

6.1 Test Case Generation

We use process times, pij (1 ≤ i ≤ m ; 1 ≤ j ≤ n), which are is uniformly distributed within
the interval [10, 100].

6.2 Comparison between Heuristics

Based on the quality of the five heuristic methods, we found from experiments that the heuristics
performed in the following order, with SWO as the worst performer and SWO with TS as the
best: SWO, SWO with Iterative improvement, SA, SWO with SA, TS, Modified SA, SWO with
TS. For running times, the fastest was SWO and the slowest was SWO with SA: SWO, SWO
with Iterative improvement, SWO with TS, TS, Modified SA, SA, SWO with SA. As a result,
taking the result quality as a major measure of the heuristics, SWO with TS+NS gives us the
best results. Hence, we propose the SWO with TS+NS heuristic as the solution to our unrelated
parallel machine problem.

6.3 Comparisons of the Results with Previous Work

We compared our results with van de Velde’s results (column ”vdV” in Figure 14) and Martello
et al.’s results (column ”MST” in Figure 14). Martello et al. developed a lower bound based
on Lagrangian relaxations and other techniques which is different from the iterative-generated
lower bound used here. The numerical values in column MST in Figure 14 are relative to that
lower bound which we include here for completeness.

For comparison purposes, we generate small test cases such as test cases of 2 machines with
60 jobs, 3 machines with 40 jobs and 5 machines with 30 jobs. We use standard Branch and
Bound (B&B) algorithm to get the optimal solution for these test cases (Refer to Figure 11).
We found that our SA+NS, TS+NS, SWO with Iterative Improvement Local Search, SWO with
SA+NS and SWO with TS+NS obtain optimal solutions for these test cases and perform better
than MST and vdV.

Another point to notice is the tightness of the lower bound. From Figure 11, we see that
when optimal results are available, the gap between the optimal result and lower bound can be

10

as large as 7%. Our best heuristic results (SWO with TS+NS) give the optimal results for all
small test cases where B&B is applicable. For large test cases, SWO with TS+NS give good
results as the gap between the heuristic and the lower bound ranges from 0.1 to 7 percent for
most cases and an exceptional 18 percent for a test case with 20 machines and 50 jobs. The
average error of SWO with TS+NS with large test cases is 2.52%.

7 Conclusions

The parallel machine scheduling problem is of importance to industry. In this paper, we studied
the unrelated parallel machine problem for minimizing the makespan which is NP-hard. In a
new approach, we used Simulated Annealing (SA) and Tabu Search (TS) with Neighborhood
Search which was developed for this problem. We also used a modified SA algorithm, which
gives better results than the traditional SA and developed an effective heuristic for the problem:
Squeaky Wheel Optimization (SWO) hybred with TS. Performance improved significantly using
the latter. Experimental results are good with solutions coming in with an average of 2.52% of
the lower bound for large test cases and within acceptable timescales which improve on results
achieved by others.

11

References

[1] Garey A.M and Johnson D.S, (1979) Computers and intractability: A Guide to the theory
of NP-completeness, Freeman, San Francisco.

[2] Glass, C.A., Potts, C.N. and Shade, P. (1994) Unrelated Parallel Machine Scheduling Using
Local Search. Mathematical Computer Modeling, Vol.20, No. 2, 1994, pp. 41-52.

[3] Glover, F. (1986) Future Paths for Integer Programming and Links to Artificial Intelligence.
Computers Operations Research, Vol.13, pp. 533-549

[4] Glover, F. (1989) Tabu Search Part I. ORSA Journal on Computing Vol.1, pp.190-206

[5] Glover, F. (1990) Tabu Search Part II. ORSA Journal on Computing Vol.2, pp.4-32

[6] Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publisher

[7] Johnson, David S., Aragon, Cecilia R., McGeoch, Lyle A. and Catherin Schevon Optimiza-
tion by Simulated Annealing: An Experimental Evaluation. Operations Research, Vol. 37,
Issue 6, pp. 865-892.

[8] Joslin, David E. and Clements, David P (1999) ”Squeaky Wheel” Optimization. Journal of
Artificial Intelligence Research, Vol. 10, pp. 353 - 373.

[9] Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983) Optimization by Simulated Annealing.
Science Vol. 220(4598): pp. 671-680

[10] Piersma, N. and Dijk, W.Van, (1996) A Local Search Heuristic for Unrelated Parallel Ma-
chine Scheduling with Efficient Neighborhood Search. Mathematical Computer Modelling,
Vol. 24, No. 9, pp. 11-19.

[11] Martello, M., Soumis, F. and Toth, P, (1996) Exact and approximation algorithms for
makespan minimization on unrelated parallel machines. Discrete Applied Mathematics,
Vol. 75, 169-188.

[12] van de Velde S.L. (1993), Duality-based algorithms for scheduling unrelated parallel ma-
chines, ORSA Journal of Computing, Vol.5, pp. 192-205.

12

2 4 10 11

1 3 7

5 9 13 14

6 8 12

Machine 1

Machine 2

Machine 3

Machine 4

2 4 10 11

3 7

5 9 13 14

8 12 1

Machine 1

Machine 2

Machine 3

Machine 4
6

Figure 1: Move Operation

13

2 4 10 11

1 3 7

5 9 13 14

6 8 12

Machine 1

Machine 2

Machine 3

Machine 4

2 4 10 11

3 7

5 9 13 14

8 12 1

Machine 1

Machine 2

Machine 3

Machine 4

6

Figure 2: Swap Operation

14

__

ALGORITHM MODIFIED_SA

__

1. Generate an initial schedule S0 and temperature T0

2. Set the initial best schedule S=S0

3. Compute cost of S0: C(S0) = C(S)

4. Set the temperature T = T0

5. While stop criterion is not satisfied do:

5.1 WHILE have not got m acceptable results DO

5.1.1 Select a random neighbor S1 to the current schedule, (S1 N(S0))

5.1.2 Set (C)=C(S1)-C(S0)

5.1.3 If ((C) 0) (downhill move)

5.1.3.1 Accept this solution

5.1.4 If (C) > 0(uphill move)

5.1.4.1 Choose a random number r uniformly from [0, 1]

5.1.4.2 If r<e
- (C)/T

, accept this solution

5.2 Select the best solution among these m neighbors as an initial solution of the next

iteration

5.3 Every n iterations, update (or reduce) temperature T

6. Return the schedule S

__

Figure 3: Modified SA+NS

Controller

TS
Intensification
 Diversification

Restart

Initial solution

Elite result list

Elite

result

list

Current

solution

Current solution

Elite result list

Diverse

initial

solution

Constraints

Intense

initial

 solution

Constraints

Elite result list

Figure 4: Control flow of TS method

15

Elite results: Non-

Tabu neighbors that

are within the

defined tolerance

Refine the elite

results list

Look for a best

solution among all

the solution we got

so far

Solutions in

neighborhood

space

Current

solution

Pick the best

non-Tabu

solution

Solution found

No such solution

Figure 5: Control flow for TS

Analyzer

Constructor Prioritizer

Blame
Solution

Priorities

Figure 6: SWO Construct/Analyze/Prioritize cycle

Controller

Initializer
 Restart
 SWO

A solution

Tighten bound

Initial solution

guess

for

 Cmax

A

solution

Figure 7: Control flow of the method using SWO

16

__

INPUT: Job list J and current job blame list b’

OUTPUT: job priority queue Jq

ALGORITHM PRIORITIZER (List J, List b’)

__

1. FOR each job in J DO

1.1 Set Priority (j) = *b(j) + * R(j) + * b’(j)

1.2 Insert this job into the priority queue Jq based on Priority (j)

2. return Jq

__

Figure 8: Pseudocode of Prioritizer

Local Search Analyzer

Constructor Prioritizer

BlameA solution

Priority

Local optima

Figure 9: SWO cycle with Local Search

__

ALGORITHM SWO_TS ()

__

1. WHILE result has not been improved for N* iterations DO

1.1 Use the rules defined in SWO, Constructor generates a solution

1.2 Record this solution as an elite solution

1.3 WHILE result has not been improved for M iterations DO

1.3.1 Randomly select an elite solution

1.3.2 Use this solution as an initial solution to run Tabu Search

1.3.2.1 Record down all the elite solutions, which are those within some defined

tolerance with the best result found so far

1.3.3 Refine the elite solutions (If the result has been improved, remove those

results outside the tolerance)

1.4 Send the best solution to Analyzer and Prioritizer of SWO
*: N and M are constants defined by the program

Figure 10: Pseudocode of SWO with TS+NS

17

m n SWO SA+NS SWO with GL Modified

SA+NS

TS+NS SWO with

TS+NS

MST** vdV

Optimal

Solution

(Branch

& Bound)

Time * Time Time Time Time Time Time Time

2

20

30

40

50

60

80

100

200

0.01

0.01

0.05

0.1

0.1

0.2

0.3

2

0

0

0

0

0.1

0.2

0.2

0.1

0.1

0.1

0.1

0.3

1

10

20

500

0

0

0

0

0

0.15

0.1

0.03

0.01

0.01

0.05

0.05

0.1

0.1

0.5

1

0

0

0

0

0

0.15

0.1

0.08

0.1

0.1

0.1

0.3

1

10

20

300

0

0

0

0

0

0.15

0.1

0.03

0.01

0.1

0.2

0.3

1

1

5

40

0

0

0

0

0

0.15

0.15

0.08

0.01

0.1

0.2

0.3

0.5

1

1

5

0

0

0

0

0

0.15

0.1

0.03

1

1

1

1

1

1

2

7

0.0

0.0

0.1

0.1

0.0

0.0

0.0

0.0

1

1

1

1

1

1

1

3

0.0

0.1

0.2

0.3

0.2

0.1

2.3

0.1

1.5

1.0

0.7

0.4

0.2

-

-

-

3

20

30

40

50

60

80

100

200

0.1

0.1

0.1

0.1

0.2

0.2

0.3

2

0

0

0

0.2

1

0.8

0.8

0.4

0.1

1

10

20

20

20

40

600

0

0

0

0

0.8

0.5

0.5

0.15

0.1

0.1

0.1

0.1

0.2

0.3

1

2

0

0

0

0

0.8

0.6

0.6

0.2

0.1

1

10

10

15

15

30

200

0

0

0

0

0.7

0.5

0.5

0.1

0.1

0.2

0.8

1

1

1

15

60

0

0

0

0

0.8

0.5

0.5

0.1

0.1

0.2

0.3

0.4

1

1

1

30

0

0

0

0

0.7

0.5

0.5

0.1

1

1

1

2

2

2

4

11

0.0

0.1

0.0

0.2

0.1

0.1

0.1

0.1

1

1

1

1

1

3

6

40

1.0

1.2

1.0

1.1

0.5

0.7

0.6

 0.5

3.0

1.5

1.0

0.9

-

-

-

-

5

20

30

40

50

60

80

100

200

0.1

0.1

0.2

0.1

0.3

0.8

1

2

0

1.2

5

5

3

3

2

1

2

3

4

5

10

80

100

600

0

0

3.5

3

1.5

1.1

1.1

0.5

0.1

0.1

0.1

0.2

0.3

0.3

1

2

0

0

3.5

4.5

2.5

2.2

1.8

0.5

3

10

20

20

30

80

80

300

0

0

3.5

3

1.5

1

1

0.4

0.1

0.1

0.2

0.5

1

2

5

600

0

0

3.5

3

1.5

1

1.1

0.5

0.1

0.1

0.2

1

1

1

3

80

0

0

3.5

3

1.5

1

1

0.4

1

1

2

2

5

5

8

32

0.6

0.4

0.1

0.2

0.3

0.2

0.4

0.3

1

2

12

16

33

96

87

-

5.4

4.4

3.8

4.1

2.7

 1.9

 2.2

-

7.0

5.0

-

-

-

-

-

-

10

50

100

200

500

1000

0.1

0.1

0.1

1

1

10

8

4

3.0

1.5

15

30

200

350

1200

9

5

2.0

1.2

0.6

0.1

0.1

0.8

1

1

9.5

6.0

3.5

1.2

0.8

30

60

200

300

1000

8.8

4.0

1.4

1.0

0.4

1

8

50

1000

4000

9

3.5

1.7

1.2

0.6

2

8

50

500

1000

7

3.5

1.4

1.0

0.4

3

5

4

18

75

1.7

1.3

1.0

0.4

0.3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

20

50

100

200

500

1000

0.1

0.1

0.1

1

2

20

11

8

4

2.7

20

100

200

300

1000

20

10

6.0

2.6

1.0

0.1

0.1

0.5

2

1

20

10

8.0

3

2

50

80

60

500

2000

20

8.5

5.0

1.8

0.7

2

10

40

100

500

20

8.5

4.0

1.8

1.5

1

5

50

500

2000

18

8.5

4.0

1.8

0.7

8

13

8

28

86

1.4

2.0

2.0

1.1

0.6

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

 *Here = (Solution we get from heuristic – lower bound)/lower bound * 100%

**MST uses a different lower bound from ours. The relative error is computed using his own lower bound.

 The rightmost column is the optimal result from Branch and Bound if available. For testcases optimal result is available, the relative error is compared with the

Figure 11: Comparison of results between different heuristics and MST, vdV for R||Cmax

18

