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INÊS LYNCE
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Mutation in DNA is the principal cause for differences among human beings, and Single
Nucleotide Polymorphisms (SNPs) are the most common mutations. Hence, a funda-
mental task is to complete a map of haplotypes (which identify SNPs) in the human
population. Associated with this effort, a key computational problem is the inference of
haplotype data from genotype data, since in practice genotype data rather than haplo-
type data is usually obtained. Different haplotype inference approaches have been pro-
posed, including the utilization of statistical methods and the utilization of the pure
parsimony criterion. The problem of haplotype inference by pure parsimony (HIPP) is
interesting not only because of its application to haplotype inference, but also because
it is a challenging NP-hard problem, being APX-hard. Recent work has shown that a
SAT-based approach is the most efficient approach for the problem of haplotype infer-
ence by pure parsimony (HIPP), being several orders of magnitude faster than existing
integer linear programming and branch and bound solutions. This paper provides a de-
tailed description of SHIPs, a SAT-based approach for the HIPP problem, and presents
comprehensive experimental results comparing SHIPs with all other exact approaches
for the HIPP problem. These results confirm that SHIPs is currently the most effective
approach for the HIPP problem.
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1. Introduction

Over the last few years, an emphasis in human genomics has been on identify-

ing genetic variations among different people. A comprehensive search for genetic

influences on disease involves examining all genetic differences in a large number

of affected individuals. This allows to systematically test common genetic variants

for their role in disease; such variants explain much of the genetic diversity in our

species. A particular focus has been put on the identification of Single Nucleotide

Polymorphisms (SNPs), point mutations found in the population, most often with

only two possible values, and tracking their inheritance. However, this process is
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in practice very difficult due to technological limitations. At a genomic position

for which an individual inherited two different values, it is currently difficult to

identify from which parent each value was inherited. Instead, researchers can only

identify whether the individual is heterozygous at that position, i.e. whether the

values inherited from both parents are different. This process of going from geno-

types (which include the ambiguity at heterozygous positions) to haplotypes (where

we know from which parent each SNP is inherited) is called haplotype inference.

The next high priority phase of human genomics involves the development of a

full haplotype map of the human genome. The HapMap project 31 represents the

best known effort to develop a public resource that will help researchers to find

genes associated with human disease. The HapMap resource can guide the design

and analysis of genetic association studies, shed light on structural variation and

recombination, and identify sites that may have been subject to natural selection

during human evolution. The achievement of these goals depends on an efficient

method that performs inference of haplotypes from genotypes. A well-known ap-

proach to the haplotype inference problem is called Haplotype Inference by Pure

Parsimony (HIPP).1,12,14,16,18,21,34 The problem of finding such solutions is APX-

hard (and, therefore, NP-hard).21 The HIPP problem consists of finding a solution

to the haplotype inference problem that minimizes the total number of distinct hap-

lotypes used. Current methods for solving the haplotype inference problem by pure

parsimony utilize Integer Linear Programming (ILP)12,1,2 and branch and bound

algorithms.34

Recent work 23,24 has proposed the utilization of SAT for the HIPP problem.

Preliminary results are significant: on existing well-known problem instances, the

SAT-based HIPP solution (SHIPs) is the most efficient approach to the HIPP prob-

lem, being orders of magnitude faster than any other alternative exact approach for

the HIPP problem. Moreover, SHIPs is the only exact approach for the HIPP prob-

lem capable of solving a large number of problem instances from different sources.

This paper provides a unified description of the SAT-based model proposed in

two conference papers.23,24 In addition, the paper proposes an alternative lower

bound procedure, which improves the one used in previous versions of SHIPs.23,24

Moreover, the paper provides detailed experimental results comparing the perfor-

mance of all existing solutions to the HIPP problem. The results confirm that

the SAT-based approach is currently the most efficient solution to the HIPP

problem.23,24 The promising experimental results also make SHIPs competitive with

statistical methods.30,26 One potential advantage of HIPP is result reproducibility.13

This is in contrast with statistical methods, which are unable to ensure reproducibil-

ity of results.13 Hence, in settings where result reproducibility is a key requirement,

SHIPs is posed as a promising solution for the haplotype inference problem.

The paper also compares two different SAT solvers to be used within SHIPs.

Currently, the available SAT solvers are MiniSAT 7 and SATZ.22 The results clearly

suggest that MiniSAT, and consequently modern SAT techniques (including clause

learning, search restarts and lazy data structures) are essential for solving the HIPP
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problem efficiently.

Moreover, the practical effectiveness of SHIPs allows considering the SAT-based

implementation of criteria other than pure parsimony. Examples of alternative cri-

teria are outlined in Section 6.

Finally, the different SHIPs models provide a new, relevant, and essentially end-

less, source of challenging SAT problem instances, most of which can only be solved

by SAT solvers using the most effective SAT techniques, and many of which cannot

yet be solved by a state of the art SAT solver.

The paper is organized as follows. Section 2 reviews the problem of haplotype

inference, and formalizes haplotype inference by pure parsimony. Afterwards, Sec-

tion 3 reviews related work, focusing on solutions based on integer linear program-

ming. Section 4 provides a detailed description of the SAT-based approach for the

HIPP problem. Section 5 provides experimental results, comparing SHIPs with all

existing exact solutions to the HIPP problem, and Section 6 concludes the paper.

2. Haplotype Inference

The genome is the whole hereditary information of an organism that is encoded

in the DNA. The DNA is normally organized in the form of a set of large macro-

molecules called chromosomes. A chromosome contains, minimally, a very long,

continuous piece of DNA, regulatory elements and other intervening elements. In

diploid organisms, chromosomes are grouped in sets of two, where one chromosome

is inherited from the father and the other from the mother. In what follows we will

only consider diploid organisms.

The DNA is a double-stranded molecule held together by weak bonds between

base pairs of nucleotides. The position of a specific nucleotide is called a site or locus.

There are four different types of nucleotides in DNA, which can be distinguished

by the bases they contain. These bases are adenine (A), guanine (G), cytosine (C),

and thymine (T). Base pairs are formed only between A and T and between G and

C; thus the base sequence of each single strand can be deduced from that of the

other strand in the DNA.

Replication is performed by first splitting the DNA double strand, and afterwards

recreating each one of the two new strands with the corresponding bases. Since each

of the bases can only combine with one other base, the bases on the old strand dictate

which bases will be on the new strand. Each of the two double strands obtained at

the end will end up as a complete replica of the original DNA, unless a mutation

occurs.

A mutation is an imperfection in the replication process, leading to DNA se-

quence variations: a base is accidentally skipped, inserted, or incorrectly copied.

Once propagated to the next generation, a mutation may lead to variations within

a population.

A Single Nucleotide Polymorphism or SNP is a DNA sequence variation, oc-

curring when a single nucleotide is altered. For example, a SNP might change the
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nucleotide sequence TTACCGT to TCACCGT. (A variation must occur in at least

1% of the population to be considered a SNP.) SNPs make up 90% of all human

genetic variations, and occur every 100 to 300 bases along the human genome. It has

been observed that around two of every three SNPs substitute C with T. Variations

in the DNA sequences of humans can affect how humans respond to diseases and

treatments.

A gene is an ordered sequence of nucleotides located in a particular position

that encodes a specific function. The variants of a single gene are named alleles.

Different alleles give rise to differences in traits.

Different alleles may be explained in terms of SNPs. Depending on the number

of possible alleles, a SNP site can be biallelic (two different alleles) or multiallelic

(more than two different alleles). Almost always, there are only two possible alleles

for a SNP site among the individuals in a population. In what follows we will only

consider biallelic SNPs.

A haplotype is the genetic constitution of an individual chromosome. The un-

derlying data that forms a haplotype can be the full DNA sequence in the region,

or more commonly the SNPs in that region. Diploid organisms pair homologous

chromosomes, and thus contain two haplotypes, one inherited from each parent.

The genotype describes the conflated data of the two haplotypes. In other words,

an explanation for a genotype is a pair of haplotypes. Conversely, this pair of hap-

lotypes explains the genotype. If for a given site both copies of the haplotype have

the same value, then the genotype is said to be homozygous at that site; otherwise

is said to be heterozygous.

Given a set G of n genotypes, each of length m, the haplotype inference problem

consists in finding a set H of 2 ·n haplotypes, not necessarily different, such that for

each genotype gi ∈ G there is at least one pair of haplotypes (hj , hk), with hj and

hk ∈ H such that the pair (hj , hk) explains gi. The variable n denotes the number

of individuals in the sample, and m denotes the number of SNP sites. gi denotes

a specific genotype, with 1 ≤ i ≤ n. (Furthermore, gij denotes a specific site j in

genotype gi, with 1 ≤ j ≤ m.)

Without loss of generality, we may assume that the values of the two possible

alleles of each SNP are always 0 or 1. Value 0 represents the wild type and value

1 represents the mutant. A haplotype is then a string over the alphabet {0,1}.

Moreover, genotypes may be represented by extending the alphabet used for repre-

senting haplotypes to {0,1,2}. Homozygous sites are represented by values 0 or 1,

depending on whether both haplotypes have value 0 or 1 at that site, respectively.

Heterozygous sites are represented by value 2.

Table 1 gives twelve haplotypes of the β2AR genes.a Each haplotype has 13

sites. Each site corresponds to a specific nucleotide in a gene where a mutation

occurred. Each nucleotide is characterized by the position in the sequence. For each

nucleotide, a pair of possible alleles is given: the first allele corresponds to the wild

aData made available by Drysdale et. al.6
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Table 1. Haplotypes of the β2AR genes.

Nucl. -1023 -709 -654 -468 -406 -367 -47 -20 46 79 252 491 523
Alleles G/A C/A G/A C/G C/T T/C T/C T/C G/A C/G G/A C/T C/A
h1 A C G C C T T T A C G C C 1000000010000
h2 A C G G C C C C G G G C C 1001011101000
h3 G A A C C T T T A C G C C 0110000010000
h4 G C A C C T T T A C G C C 0010000010000
h5 G C A C C T T T G C G C C 0010000000000
h6 G C G C C T T T G C A C A 0000000000101
h7 G C G C C T T T G C A T A 0000000000111
h8 G C A C C T T T A C A C A 0010000010101
h9 A C G C T T T T A C G C C 1000100010000
h10 G C G C C T T T G C A C C 0000000000100
h11 G C G C C T T T G C G C C 0000000000000
h12 A C G G C T T T A C G C C 1001000010000

type and the second to the mutant. The last column of each haplotype contains

the representation of that haplotype. Different genotypes may result from this set

of haplotypes: for example, the pair of haplotypes (h1, h7) explains the genotype

200000020222, whereas the pair (h7, h8) explains the genotype 0020000020121.

One of the approaches to the haplotype inference problem is called Haplotype

Inference by Pure Parsimony (HIPP). A solution to this problem minimizes the total

number of distinct haplotypes used. The HIPP problem is APX-hard (see Refs. 12,

21 for proofs and historical perspective). Experimental results provide support for

this method: the number of haplotypes in a large population is typically very small,

although genotypes exhibit a great diversity. For example, consider the set of geno-

types: 2120, 2102, and 1221. There are solutions for this example that use six distinct

haplotypes, but the solution 0100/1110, 0100/1101, 1011/1101 uses only four dis-

tinct haplotypes. Moreover, existing empirical evaluations provide strong evidence

that the accuracy of HIPP is comparable with alternative approaches.12,16,34

3. Related Work

The problem of haplotype inference is an active area of research. The most

widespread approaches are based on statistical methods.30,26 An alternative is hap-

lotype inference by pure parsimony.13 A number of solutions exist for the HIPP

problem, based on Integer Linear Programming (ILP) and branch-and-bound, which

are reviewed below. Heuristic approximation algorithms include the one introduced

by Huang et al.16 One additional approach for the HIPP problem has been pro-

posed by Kalpakis and Namjoshi,18 using relaxations of a semidefinite program-

ming model. Moreover, there has been work on solving restricted cases of haplotype

inference,15,5 some of which based on 2SAT.15
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3.1. Exponential-Size Integer Linear Programming Models

Over the last few years, a number of authors have proposed optimization models for

the HIPP problem. With a few notable exceptions,34 the majority of the proposed

models are based on Integer Linear Programming (ILP).12,14,1,2

The original ILP model, RTIP, has linear space complexity on the number of

candidate haplotypes,12,13 and so it is exponential on the number of given geno-

types. For each genotype, all candidate pairs of haplotypes for explaining the geno-

type are enumerated. For example, given genotype 02122, the candidate pairs of

haplotypes for explaining it are: (00100,01111), (01100,00111), (00110,01101) and

(00101,01110). More generally, each genotype having k heterozygous sites is ex-

plained by 2k−1 pairs of haplotypes. Hence, the space complexity is O(2m) where

m is the number of sites, which represents the maximum number of heterozygous

sites per genotype.

A Boolean variable yi,u is associated with each pair u of haplotypes that can

explain a given genotype gi, and denotes whether this pair of haplotypes is used for

explaining gi. A cardinality constraint,

∑

r

yi,u = 1 (1)

requires that exactly one pair of haplotypes must be used for explaining each geno-

type, among all pairs that can explain the genotype. Each candidate haplotype

is associated with a dedicated variable xv , such that xv = 1 if the haplotype is

used. The utilization of a specific pair of haplotypes for explaining a genotype

(i.e. yi,u = 1) implies the respective xv variable, yi,u → xv , for each haplotype in

the pair. The cost function consists of minimizing the number of haplotypes used,

minimize
∑

xv (2)

This model corresponds to the TIP model.12 The RTIP model introduces one es-

sential simplification. If genotype gi can be explained by pair of haplotypes (ha,

hb), such that both ha and hb cannot explain any other genotype, then pair of hap-

lotypes (ha, hb ) needs not be considered for explaining gi. If all pairs are discarded

for a genotype gi, then it suffices to pick any pair for explaining gi.

3.2. Polynomial-Size Integer Linear Programming Models

A more recent ILP model, PolyIP, is polynomial in the number of sites m and

population size n, 14,1 with a number of constraints and variables, respectively, in

Θ(n2m) and Θ(n2+n m). The PolyIP model represents the 2 n candidate haplotypes

as sequences of Boolean variables, and then establishes conditions for the haplotypes

to explain the corresponding genotypes, such that the total number of distinct

haplotypes is minimized. Haplotypes are represented with Boolean variables yi j ,

1 ≤ i ≤ 2 n and 1 ≤ j ≤ m, i.e. m variables for each of the 2 n candidate haplotypes.



September 2, 2007 17:19 WSPC main

Haplotype Inference with Boolean Satisfiability 7

First, the PolyIP model defines conditions on the sites, with 1 ≤ i ≤ n and 1 ≤

j ≤ m:

y2i−1 j = 0 and y2i j = 0, if gij = 0,

y2i−1 j = 1 and y2i j = 1, if gij = 1,

y2i−1 j + y2i j = 1 if gij = 2

(3)

where gij ∈ {0, 1, 2} denotes the possible values at each site. Second, the PolyIP

model defines conditions for identifying different haplotypes, with 1 ≤ i, l ≤

2n and 1 ≤ j ≤ m. Boolean variable di l is defined such that di l = 1 if hi 6= hl. The

resulting conditions become:

yi j − yl j ≤ di l

yl j − yi j ≤ di l

(4)

If at least one site of hi and hl differs, then di,l needs to be assigned value 1.

Third, the model introduces the xi variables denoting whether hi is different

from all previous haplotypes hl, where 1 ≤ l < i, and defines conditions on these

variables. Boolean variable xi is defined such that xi = 1 if hi is unique with respect

to the previous haplotypes. Thus, if hi is unique, then
∑i−1

l=1
dl i = i− 1; otherwise

∑i−1

l=1
dl i < i− 1. As a result, the condition on variable xi becomes:

xi ≥ 2− i +

i−1
∑

l=1

dl i (5)

Finally, the cost function consists of minimizing the number of different haplotypes:

minimize
2n
∑

i=1

xi (6)

A number of optimizations have been proposed to the basic PolyIP model,1 with

the purpose of pruning the search space to be handled by the ILP solver.

More recently, Brown and Harrower introduced a new polynomial-size formula-

tion, HybridIP, representing a hybrid of the RTIP and PolyIP formulations.2 Nev-

ertheless, our experimental results (see Section 5) suggest that the performance of

the two polynomial models does not differ significantly.

3.3. Branch-and-Bound Solutions

The RTIP model 12 inspired a branch-and-bound algorithm, Hapar, to the HIPP

problem.34 Similarly to RTIP, Hapar considers all pairs of haplotypes explaining

each genotype. A greedy procedure is used for computing an initial set of haplo-

types explaining all genotypes, which serves as the initial upper bound. Afterwards

standard branch-and-bound search is performed. The existing upper bound is used

for pruning portions of the search tree where a solution smaller than the current

upper bound cannot be identified. Moreover, one significant optimization consists

of eliminating pairs of haplotypes that are guaranteed not to yield solutions better

than the solutions produced by other pairs of haplotypes.34
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3.4. Simplifications to the Input Genotypes

A key technique for tackling the HIPP problem consists of using the structural

properties of genotypes with the purpose of reducing the search space.b Observe

that, in the presence of two equal genotypes, one can be discarded, assuming the

two genotypes are to be explained identically. Hence, the solution for the remaining

genotype is also the solution for the discarded genotype. Duplicate sites can also be

discarded, i.e. pairs of sites for which every genotype has equal values. Moreover,

complemented sites can also be discarded, where two sites are complemented if the

homozygous sites have complemented values.

For example, consider the following set of genotypes:

00102

11021

22210

00102

(7)

For this set of genotypes, the last genotype equals the first genotype, and so can

be discarded. Moreover, the second site is a duplicate of the first site, and so the

second site can be discarded. Finally, the third site is the complement of the first

site, and so the third site can also be discarded. The resulting simplified instance

becomes:

002

121

210

(8)

In practice, the simplification of the input genotypes is an essential step for any

approach to the HIPP problem, allowing significant reductions in the number of

genotypes and sites.2,23

4. SAT-Based Haplotype Inference

This section presents the SAT-based approach for the HIPP problem (SHIPs). The

section is organized in three main parts. First the top-level SHIPs algorithm is

described. Afterwards, Section 4.2 presents the core model, which contains the key

ideas of the SAT-based model for the HIPP problem. The core model is ineffective

in practice.23,24 Hence, a number of key optimizations are detailed in Section 4.3.

The resulting (complete) SHIPs model is extremely effective in practice.

4.1. The SHIPs Algorithm

Algorithm 1 summarizes the top-level operation of SHIPs. The algorithm accepts a

set of genotypes G and a lower bound on the number of haplotypes lb necessary to

explain the set of genotypes. A trivial value for lb is 1. The algorithm searches for

bThese techniques have previously been proposed for ILP approaches to the HIPP problem.2
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Algorithm 1 Top-level SHIPs algorithm

SHIPs(G, lb)

1 G ← ApplySimplifications(G)

2 r ← lb

3 while (true)

4 do Generate ϕr given G and r

5 if SAT(ϕr) = true

6 then return r

7 else r ← r + 1

the least value r such that there exists a set H of haplotypes, with r = |H|, which

explain all genotypes in G. Observe that the value of r is guaranteed to be such

that lb ≤ r ≤ 2 n. Clearly, a solution with 2 n haplotypes is guaranteed to exist.

For each value of r considered, a CNF formula ϕr is created, and a SAT solver is

invoked (identified by the function call SAT(ϕr)).

The search for the minimum number of haplotypes proceeds through increasing

values of r, starting with r = lb and terminating when the resulting instance of SAT

is satisfiable. The last value of r is returned.

Other organizations of the top-level SHIPs algorithm could be considered. Ex-

amples include searching down from an upper bound or performing a binary search

between a lower and an upper bound. The motivation for searching up from a lower

bound is to ensure that the generated CNF formulas are the most compact. With

the proposed approach, the largest CNF formula is the one generated for the number

of haplotypes corresponding to the target solution. Alternative approaches would

generate necessarily larger CNF formulas.

The simplification techniques described in Section 3.4 are implemented via the

function call ApplySimplifications(G) in line 1 of Algorithm 1.

4.2. The Core Model

In what follows we assume n genotypes each with m sites. The same indexes will

be used throughout: i ranges over the genotypes and j over the sites, with 1 ≤

i ≤ n and 1 ≤ j ≤ m. In addition, r candidate haplotypes are considered, each

with m sites, and with 1 ≤ r ≤ 2 n. An additional index k is associated with

haplotypes, 1 ≤ k ≤ r. As a result, hkj ∈ {0, 1} denotes the jth site of haplotype

k. Moreover, a haplotype hk, is viewed as a m-bit word, hk 1 . . . hk m. A valuation

v : {hk 1, . . . , hk m} → {0, 1} to the bits of hk is denoted by hv
k. Observe that

valuations can be extended to other sets of variables.

For a given value of r, the model considers r haplotypes and seeks to associate

two haplotypes (which can possibly correspond to the same haplotype) with each

genotype gi, 1 ≤ i ≤ n. The process of selecting two haplotypes for explaining each
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Fig. 1. Associating haplotypes with each genotype

genotype is illustrated in Figure 1.

For each genotype gi, the model uses selector variables for selecting which hap-

lotypes are used for explaining gi. Since the genotype is to be explained by two

haplotypes, the model uses two sets, a and b, of r selector variables, respectively sa
ki

and sb
ki, with k = 1, . . . , r. Hence, genotype gi is explained by haplotypes hk1

and

hk2
if sa

k1i = 1 and sb
k2i = 1. Clearly, gi is also explained by the same haplotypes if

sa
k2i = 1 and sb

k1i = 1.

Observe that the operation of the SHIPs model can be described by the matrix

formulation G = Sa ·H⊕Sb ·H , where G is a n×m matrix describing the genotypes,

H is a r×m matrix of haplotype variables, Sa and Sb are n× r matrices of selector

variables, and ⊕ is the explanation operation.c

We can now derive the conditions for the SHIPs model. If a site gij of a genotype

gi is either 0 or 1, then this is the value required at this site and so this information

is used by the model.

If a site gij is 0, then the model requires, for k = 1, . . . , r:

(¬hkj ∨ ¬s
a
ki) ∧ (¬hkj ∨ ¬s

b
ki) (9)

Hence, if haplotype k is selected for explaining genotype i, either by the a or the b

representative, then the value of haplotype k at site j must be 0.

If a site gij is 1, then the model requires, for k = 1, . . . , r:

(hkj ∨ ¬s
a
ki) ∧ (hkj ∨ ¬s

b
ki) (10)

Hence, if haplotype k is selected for explaining genotype i, either by the a or the b

representatives, then the value of haplotype k at site j must be 1.

Otherwise, one requires that the haplotypes explaining the genotype gi have

opposing values at site i. This is done by creating one variable tij ∈ {0, 1}, such that

site j of the haplotype selected by the a representative selector assumes the same

value as tij , and site j of the haplotype selected by the b representative selector

cAn alternative matrix-based model for capturing the process of selecting two haplotypes for
describing each genotype has been considered by other authors in the context of using semidefinite
programming for the HIPP problem.18
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assumes the complemented value of tij . As a result, the model requires, for k =

1, . . . , r:

(hkj ∨ ¬tij ∨ ¬s
a
ki) ∧ (¬hkj ∨ tij ∨ ¬s

a
ki)∧

(hkj ∨ tij ∨ ¬s
b
ki) ∧ (¬hkj ∨ ¬tij ∨ ¬s

b
ki)

(11)

Observe that hkj equals tij if sa
ki = 1 and hkj equals ¬tij if sb

ki = 1.

Clearly, for each i, and for a or b, it is necessary that exactly one haplotype

is used, and so exactly one selector variable can be assigned value 1. This can be

captured with the following cardinality constraints:
(

r
∑

k=1

sa
ki = 1

)

∧

(

r
∑

k=1

sb
ki = 1

)

(12)

The traditional way of encoding cardinality constraints into SAT is by explicitly

representing clauses to exclude all possible combinations of variables being simulta-

neously true, thus being quadratic on the number of variables 33. Other encodings

typically require a linear number of clauses at the cost of introducing additional

variables 11,29. The general idea of these improved encodings is to build a count-

and-compare hardware circuit and then translate this circuit to CNF.

Given that the cardinality constraints required represent the constraint = 1, we

have used a CNF representation of a simplified adder circuit requiring the output

of the adder to be equal to 1. The encoding in CNF of the adder circuit requires

the utilization of additional variables va
ki and vb

ki. These variables are set to 1 if

the partial sum is equal to 1. We consider the case for the a variables; for the b

variables the model is exactly the same. The va
ki variables are defined as follows,

with 1 ≤ k ≤ r:

(¬va
1 i) ∧

(¬va
ki ∨ ¬s

a
ki) ∧

va
k+1 i ↔ (sa

ki ∨ va
ki) ∧

(va
r+1 i)

(13)

The CNF clauses for these constraints are straightforward to generate. Observe that

the size of the above formula is linear in the number of s variables, and that the

encoding is decided by unit propagation, i.e. it ensures arc-consistency.11 Hence,

the proposed encoding is optimal in the number of clauses produced.29

The core SHIPs model is summarized in Table 2. Next, we analyze the correct-

ness and the space complexity of the model. Given a set G of genotypes, let ϕr

be the CNF formula associated with r candidate haplotypes. Using equations (9),

(10), (11), (12), (13) and taking into consideration that 1 ≤ i ≤ n, 1 ≤ j ≤ m and

1 ≤ k ≤ rf , where rf is the final value of r, we can establish the following results.

Theorem 4.1. ϕr is satisfiable iff the set G of genotypes can be explained with r

or fewer haplotypes.

Proof.
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Table 2. The Core SHIPs Model.

Condition Equation Clauses Indexes

gij = 0 (9) (¬hkj ∨ ¬sa
ki) ∧ (¬hkj ∨ ¬sb

ki)
1 ≤ k ≤ r

1 ≤ i ≤ n

1 ≤ j ≤ m

gij = 1 (10) (hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki)
1 ≤ k ≤ r

1 ≤ i ≤ n

1 ≤ j ≤ m

gij = 2 (11)
(hkj ∨ ¬tij ∨ ¬sa

ki) ∧ (¬hkj ∨ tij ∨ ¬sa
ki)∧

(hkj ∨ tij ∨ ¬sb
ki) ∧ (¬hkj ∨ ¬tij ∨ ¬sb

ki)

1 ≤ k ≤ r

1 ≤ i ≤ n

1 ≤ j ≤ m

(12) (13)

(¬va
1 i) ∧ (¬va

k i ∨ ¬sa
k i) ∧ (va

r+1 i)∧
(¬sa

k i ∨ va
k+1 i) ∧ (¬va

k i ∨ va
k+1 i) ∧ (sa

k i ∨ va
k i ∨ ¬va

k+1 i)

(¬vb
1 i) ∧ (¬vb

k i ∨ ¬sb
k i) ∧ (vb

r+1 i)∧

(¬sb
k i ∨ vb

k+1 i) ∧ (¬vb
k i ∨ vb

k+1 i) ∧ (sb
k i ∨ vb

k i ∨ ¬vb
k+1 i)

1 ≤ k ≤ r

1 ≤ i ≤ n

→ Let us assume ϕr is satisfiable. From (12) and (13) is is clear that, for each

i, 1 ≤ i ≤ n, only one a representative selector variable and only one b

representative selector variable can be assigned value 1. Without loss of

generality let us consider a fixed site j of a fixed genotype i. Exactly one

a representative selector variable and one b representative selector variable

can be assigned value 1, and so the selector variables do not trivially satisfy

the clauses created with equations (9), (10) and (11). Let k1 and k2 be

the indexes for the a and b representatives, respectively, i.e. sa
k1i = 1 and

sb
k2i = 1. Now depending on the value of gij one of (9), (10) and (11) has

been used. If (9) was used, then the values of hk1j and hk2j must be 0,

otherwise the formula would not be satisfiable. If (10) was used, then the

values of hk1j and hk2j must be 1, otherwise the formula would not be

satisfiable. Finally, if (11) was used, then the values of hk1j and hk2j must

differ, i.e. hk1j = tij
and hk2j = ¬tij

; otherwise the formula would not be

satisfiable. Hence, genotype gi is explained by the haplotypes hk1
and hk2

.

Observe that the number of haplotypes used for explaining the m genotypes

can be equal to or less than r.

← Without loss of generality consider a genotype gi which is explained by two

haplotypes hk1
and hk2

. Moreover, consider the formula ϕr. The selector

variables can be assigned such that hk1
and hk2

are used for explaining gi,

e.g. by setting sa
k1i = 1 and sa

k2i = 1. All other selector variables associated

with genotype gi can be assigned value 0. Hence (12) is satisfied. Now, since

hk1
and hk2

explain gi, for each site j one of following three cases can take

place:

(1) The value of gij is 0, in which case the model uses (9) and the clause

is satisfied, since by hypothesis the haplotypes hk1
and hk2

have value

0 at site j.

(2) The value of gij is 1, in which case the model uses (10) and the clause



September 2, 2007 17:19 WSPC main

Haplotype Inference with Boolean Satisfiability 13

is satisfied, since by hypothesis the haplotypes hk1
and hk2

have value

1 at site j.

(3) The value of gij is 2, in which case the model uses (11) and the as-

sociated clauses are satisfied, since by hypothesis the haplotypes have

different values at site j and we can assign the Boolean variable tij so

as to satisfy the clauses of (11).

Observe that the number of haplotypes used for explaining the m genotypes

can be equal to or less than r.

Hence the results follows.

Corollary 4.1. The value returned by Algorithm 1 represents the smallest number

of haplotypes that explain all genotypes in set G.

Proof. Suppose there could exist a smaller value q < r such that the genotypes in

G could be explained with q haplotypes. Since Algorithm 1 considers the values of r

in increasing order, then by Theorem 4.1, ϕq would be satisfiable, and so the value

returned by the algorithm would be q; a contradiction.

Theorem 4.2. If a solution is found with rf haplotypes, then the number of con-

straints of the SAT model is O(rf n m), which is O(n2 m). In addition, the number

of variables is O(n m + rf m + rf n), which is O(n2 + n m).

Proof. Assume a solution is found with rf haplotypes. Clearly, the number of t

variables is O(n m), the number of h variables is O(rf m), and the number of s

and v variables is O(rf n). Hence, the number of variables is O(n m + rf m + rf n),

which is O(n2 + n m), since rf = O(n).

The number of clauses generated by (9), (10) and (11) is O(rf n m), taking into

consideration the ranges for the i, j and k indexes. Finally, the number of clauses

generated by (13) is O(rf n). Hence, the total number of clauses is O(rf n m), which

is O(n2 m), since rf = O(n). It is also straightforward to conclude that the number

of literals is also O(rf n m).

Finally, observe that the number of constraints and variables of the PolyIP

model 1 are, respectively, in Θ(n2 m) and Θ(n2 + n m), hence exhibiting the same

worst-case complexity as the SHIPs model. Nevertheless, rf is in practice usually

much smaller than n, and so the SAT-based model yields significantly more compact

representations than other IP models.1,2

4.3. The Complete Model

As mentioned before, the core SHIPs model is not effective in practice. As a result,

several key improvements have been developed, which are essential for obtaining

significant performance gains over existing approaches. These improvements are

described next.
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4.3.1. Breaking symmetries on the h variables

A key technique for pruning the search space is motivated by observing the existence

of symmetries in the problem formulation. Consider two haplotypes hk1
and hk2

,

and the selector variables sa
k1i, sa

k2i, sb
k1i and sb

k2i. Furthermore, consider Boolean

valuations vx and vy to the sites of haplotypes hk1
and hk2

. Then, hvx

k1
and h

vy

k2
, with

sa
k1is

a
k2is

b
k1is

b
k2i = 1001, correspond to h

vy

k1
and hvx

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 0110, and

one of the assignments can be eliminated. Elimination of redundant assignments can

be achieved by enforcing an ordering of the Boolean valuations to the haplotypes.d

Hence, for any valuation v to the problem variables we require:

hv
1 < hv

2 < . . . < hv
r (14)

Observe that the matrix model proposed earlier in Section 4.2, G = Sa·H⊕Sb·H ,

allows applying symmetry breaking by lexicographically ordering the rows of matrix

H = [h1h2 . . . hr]
T .8

It is straightforward to enforce each sorting constraint between two haplotypes

in linear size on the number of sites. This is done by representing in CNF a Boolean

comparator circuit between hk and hk+1, with 1 ≤ k < r, and requiring hk < hk+1.

One possible solution consists of using additional variables ltkj and lttkj , and the

comparison constraints become, with 1 ≤ k ≤ r:

(¬ltk 0) ∧

lttk j ↔ (¬hk j ∧ hk+1 j) ∧

ltk j ↔ (lttk j ∨ ltk j−1) ∧

(ltk m) ∧

(¬hk j ∨ hk+1 j ∨ ltk j−1)

(15)

which are straightforward to represent in CNF. The number of added clauses is

O(r m), hence not affecting the asymptotic complexity of the number of clauses.

4.3.2. Breaking symmetries on the s variables

Besides the symmetries associated with the h variables, it is also possible to elimi-

nate symmetries on the s variables. Observe that the model consists of selecting a

candidate haplotype for the a representative and another haplotype for the b repre-

sentative, such that each genotype is explained by the a and b representatives. Given

a set of r candidate haplotypes, let hk1
and hk2

, with k1, k2 ≤ r, be two haplotypes

which explain a genotype gi. This means that gi can be explained by the assignments

sa
k1is

a
k2is

b
k1is

b
k2i = 1001, but also by the assignments sa

k1is
a
k2is

b
k1is

b
k2i = 0110.

This symmetry can be eliminated by requiring that only one arrangement of

the s variables can be used to explain each genotype gi. One solution is to require

that the haplotype selected by the sa
ki variables always has an index smaller than

dSee for example Ref. 9 for a survey of work on the utilization of lexicographic orderings for
symmetry breaking.
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the haplotype selected by the sb
ki variables. This requirement is captured by the

following conditions:
(

sa
ki →

k−1
∧

k2=1

¬sb
k2i

)

,

(

sb
ki →

r
∧

k1=k+1

¬sa
k1i

)

(16)

Clearly, each condition above can be represented by a single clause, for each k1

(or k2) and i. Moreover, observe that for genotypes without homozygous sites, the

upper limit of the first constraint can be set to k and the lower limit of the second

condition can be set to k. Overall, the number of added clauses is O(r n), for r

candidate haplotypes, and so the added clauses do not affect the worst-case space

complexity of the model.

Observe that the matrix model proposed earlier in Section 4.2, G = Sa · H ⊕

Sb · H , allows again an alternative representation of symmetry breaking.8 If Sa =

[sa
1 . . . sa

n]T and Sb = [sb
1 . . . sb

n]T , then we can impose the condition sa
i ≤ sb

i , 1 ≤

i ≤ n, i.e. for each genotype i, the strings representing the selector variables a and

the selector variables b are lexicographically ordered.

4.3.3. Constraining the s variables of incompatible genotypes

The s variables can be further constrained due to the fact that the haplotypes that

can explain a given genotype may not be used for explaining another genotype.

Definition 4.1. Two genotypes, gi and gl, are declared incompatible iff there exists

a site for which the value of one genotype is 0 and the other is 1.

For example, g1 = 012 is incompatible with g2 = 112, whereas the genotypes g1 and

g3 = 210 are not incompatible. Incompatible genotypes cannot be explained with

common haplotypes.

Consider two incompatible genotypes, gi1 and gi2 , and a candidate haplotype hk.

Hence, if either sa
ki1

or sb
ki1

is activated, and so hk is used for explaining genotype

gi1 , then haplotype hk cannot be used for explaining gi2 ; hence both sa
ki2

and sb
ki2

must not be activated.

The implementation of this condition is achieved by adding the following clauses

for each pair of incompatible genotypes gi1 and gi2 and for each candidate haplotype

hk:

(¬sa
ki1
∨ ¬sa

ki2
) ∧ (¬sa

ki1
∨ ¬sb

ki2
) ∧ (¬sb

ki1
∨ ¬sa

ki2
) ∧ (¬sb

ki1
∨ ¬sb

ki2
) (17)

In the worst case, the number of incompatible pairs of genotypes is quadratic on

the number of genotypes. Hence, the number of added clauses is O(r n2), where r is

the number of candidate haplotypes. In practice, this worst-case space complexity

was never observed, and the search pruning obtained from the added clauses can

be significant.

The complete SHIPs model is summarized in Table 4.3.3, where predicate

χ(ga, gb) holds provided genotypes ga and gb are incompatible.
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Table 3. The Complete SHIPs Model.

Condition Equation Clauses Indexes

gi j = 0 (9) (¬hk j ∨ ¬sa
k i

) ∧ (¬hk j ∨ ¬sb
k i

)

1 ≤ k ≤ r

1 ≤ i ≤ n

1 ≤ j ≤ m

gi j = 1 (10) (hk j ∨ ¬sa
k i

) ∧ (hk j ∨ ¬sb
k i

)

1 ≤ k ≤ r

1 ≤ i ≤ n

1 ≤ j ≤ m

gi j = 2 (11)
(hk j ∨ ¬ti j ∨ ¬sa

k i
) ∧ (¬hk j ∨ ti j ∨ ¬sa

k i
)∧

(hk j ∨ ti j ∨ ¬sb
k i

) ∧ (¬hk j ∨ ¬ti j ∨ ¬sb
k i

)

1 ≤ k ≤ r

1 ≤ i ≤ n

1 ≤ j ≤ m

(12) (13)

(¬va
1 i) ∧ (¬va

k i
∨ ¬sa

k i
) ∧ (va

r+1 i)∧

(¬sa
k i

∨ va
k+1 i

) ∧ (¬va
k i

∨ va
k+1 i

) ∧ (sa
k i

∨ va
k i

∨ ¬va
k+1 i

)

(¬vb
1 i) ∧ (¬vb

k i
∨ ¬sb

k i
) ∧ (vb

r+1 i)∧

(¬sb
k i

∨ vb
k+1 i

) ∧ (¬vb
k i

∨ vb
k+1 i

) ∧ (sb
k i

∨ vb
k i

∨ ¬vb
k+1 i

)

1 ≤ k ≤ r

1 ≤ i ≤ n

(14) (15)

(¬ltk 0) ∧ (ltk m) ∧ (hk+1 j ∨ ¬lttk j)∧

(¬hk j ∨ ¬lttk j) ∧ (¬hk+1 j ∨ hk j ∨ ¬lttk j)

(¬ltk j−1 ∨ ltk j) ∧ (¬lttk j ∨ ltk j)∧

(ltk j−1 ∨ lttk j ∨ ¬ltk j)(¬hk j ∨ hk+1 j ∨ ltk j−1)

1 ≤ k < r

1 ≤ j ≤ m

– (16)
“

¬sa
k i

∨
Wk−1

k2=1
¬sb

k2 i

”

∧
“

¬sb
k i

∨
Wr

k1=k+1
¬sa

k1 i

” 1 ≤ k ≤ r

1 ≤ i ≤ n

χ(gi1 , gi2) (17)
(¬sa

k i1
∨ ¬sa

k i2
) ∧ (¬sa

k i1
∨ ¬sb

k i2
)∧

(¬sb
k i1

∨ ¬sa
k i2

) ∧ (¬sb
k i1

∨ ¬sb
k i2

)

1 ≤ k ≤ r

1 ≤ i1 ≤ n

1 ≤ i2 ≤ n

4.4. Using Lower Bounds

This section presents two approaches for computing lower bounds. The first one was

used in earlier published results on SHIPs.23,24 The second lower bound improves

on this earlier approach for computing lower bounds, and is used in the results

presented in this paper.

Observe that the HIPP problem is APX-hard.21 As a result, the computed lower

bounds are not guaranteed to be tight. Whereas for ILP-based approaches the use-

fulness of non-tight lower bounds is not clear, the iterative SHIPs algorithm is likely

to gain from using non-trivial lower bounds, even if the lower bounds are not tight.

First, the number of iterations of the SHIPs algorithm is reduced. Second, and more

importantly, tighter lower bounds allow simplifying the generated instances of SAT.

An existing alternative lower bound approach is based on computing the rank

of a matrix representing the genotypes.18,3 This approach provides only a numeric

lower bound, and so it is not clear whether it can be also used for simplifying the

SAT model. In addition, our experiments indicate that the lower bounds proposed
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in this section are competitive, and most often of better quality, than the rank-based

lower bound. Observe that the rank R of the genotype matrix is at most Rm, the

minimum between the number of genotypes and the number of sites, and most often

this value is guaranteed not to be reached. In contrast, the lower bounds described

in this section are larger than Rm for a large number of examples considered in

Section 5.

4.4.1. A Clique-Based Lower Bound

As mentioned earlier, trivial lower and upper bounds on the number of haplotypes

are 1 and 2 n, respectively. This section describes an approach for computing lower

bounds on the number of haplotypes. Lower bounds allow reducing the number of

iterations of the top-level SHIPs algorithm, but also allow reducing the number of

variables and constraints in the model.

The techniques for computing lower bounds rely on information regarding incom-

patible genotypes (Definition 4.1 in the previous section). The approach proposed

uses a maximal clique for computing a lower bound on the number of required

haplotypes. Clearly, for two incompatible genotypes, gi and gl, the haplotypes that

explain gi must be distinct from the haplotypes that explain gl. Given the incom-

patibility relation we can create an incompatibility graph I , where each vertex is a

genotype, and two vertexes have an edge if they are incompatible. Suppose I has a

clique of size k. Then the number of required haplotypes is at least 2 · k− σ, where

σ is the number of genotypes in the clique which do not have heterozygous sites.

Consider the following set of genotypes:

0102

1021

2210

1101

(18)

These genotypes are incompatible among each other. Hence, in the incompatibility

graph, the genotypes form a clique with 4 vertexes. The obtained lower bound is

2 · 4 − 1 = 7, because the last genotype is homozygous, and so can be explained

with a single haplotype. Hence, a lower bound on the number of haplotypes for this

example is 7.

In order to maximize the computed lower bound, the objective is to identify the

maximum clique in I . Since this problem is NP-hard,10 we use the size of a maximal

clique in the incompatibility graph, computed using a simple greedy heuristic. The

genotype with the highest number of incompatible genotypes is first selected. At

each step, the genotype selected is one that is still incompatible with all the already

selected genotypes, and preference is given to the haplotype with the (statically

computed) highest number of incompatible genotypes.

Moreover, we note that the information regarding the lower bound can be used

for reducing the size of the model, and so it can also potentially reduce the search
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space. If a genotype gi is part of the clique and has at least one heterozygous site,

then we can associate two dedicated haplotypes with gi. If a genotype gi is part of

the clique and all its sites are homozygous, then we associate only one dedicated

haplotype with gi. In addition, when considering the candidate haplotypes for a

genotype gl, which is incompatible with genotype gi included in the clique, the

haplotypes associated with gi need not be considered as candidates for gl. This

eliminates s variables and the corresponding clauses.

Furthermore, it is possible to increase the lower bound obtained with a maximal

clique. Suppose a genotype gi is heterozygous at site j, and further assume that all

other genotypes assume the same homozygous value (either 0 or 1) at site j. Then,

it is straightforward to conclude that explaining genotype gi requires one haplotype

which cannot be used to explain any of the other genotypes. Hence, gi can be used

to increase the lower bound by 1.

4.4.2. An Improved Lower Bound

This section describes an alternative approach for computing lower bounds for

SHIPs. Similarly to the procedure outlined in the previous section, a maximal clique

is computed. In addition, analysis of the structure of the genotypes allows the lower

bound to be further increased. The objective of the new procedure is to identify

heterozygous sites which require at least one additional haplotype given a set of pre-

viously chosen genotypes. The procedure starts from the clique-based lower bound

(see previous section) and grows the lower bound by searching for these heterozy-

gous sites among genotypes not yet considered for lower bounding purposes. Since

the algorithm starts from the clique-based lower bound, it is guaranteed never to

be less than the bound obtained from the computed clique.

Algorithm 2 summarizes the alternative lower bound procedure. The procedure

MergeGenotypes 3creates a new genotype from a set of genotypes such that any

heterozygous site or a site with genotypes having both 0 and 1 becomes heterozy-

gous. If all genotypes have the same homozygous site, then the merged site keeps

the same value. For each genotype g not in the clique, if the genotype has a het-

erozygous site and all compatible genotypes have the same value at that site (either

0 or 1), then g is guaranteed to require one additional haplotype to be explained.

Hence the lower bound can be increased by 1.

The proposed lower bound procedure runs in polynomial time. A straightfor-

ward analysis yields a run time complexity in O(n2 m), by observing that each

call to the MergeGenotypes function can involve at most O(n) genotypes and

each pairwise merge runs in time O(m). Finally, observe that the asymptotic time

complexity of the alternative lower bound procedure is the same as the asymptotic

time complexity for generating the SHIPs model. In practice, the computational

overhead of computing the lower bound is negligible.
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Algorithm 2 Improved the clique-based LB

ImproveLB(G, GC , lb)

1 � G is the set of genotypes

2 � GC is a clique of mutually incompatible genotypes

3 � lb is the lower bound obtained from GC

4 Sort GNC by increasing number of heterozygous sites � Optional step

5 GNC ← G−GC � GNC : set of non-clique genotypes

6 GS ← GC � Working set of genotypes starts with GC

7 for each g ∈ GNC � Analyze genotypes in (sorted) order

8 do S ← {cg ∈ GS : Compatible(g, cg)}

9 if (∃1≤j≤m Heterozygous(g[j]) ∧ ∃v∈{0,1} ∀s∈S s[j] = v)

10 then

11 lb← lb + 1

12 � Set sites with differing values to 2 and update GS

13 ng ←MergeGenotypes(S, g)

14 GS ← (GS − S) ∪ {ng}

15 return lb

Algorithm 3 Merging genotypes

MergeGenotypes(S, g)

1 ng ← g

2 for each s ∈ S

3 do for j = 1 to m

4 do if (s[j] 6= ng[j])

5 then ng[j]← 2

6 return ng

4.5. Using Lower Bounds

As mentioned above, lower bounds play a dual and key role in SHIPs. First, by using

lower bounds the number of iterations of the SHIPs algorithm is reduced. Second,

and more importantly, tighter lower bounds allow simplification of the generated

SAT instances. As shown earlier, the SHIPs lower bound procedures described in

this section associate one or two haplotypes with specific genotypes. As a result, the

resulting SAT model is simplified; genotypes with associated haplotypes need not

select from a set of candidate haplotypes. Moreover, when identifying the candidate

haplotypes for a given genotype g having no associated haplotype, it is only neces-

sary to consider haplotypes not associated with a specific genotype or haplotypes

associated with genotypes that are compatible with g. The simplification of the SAT
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model given lower bound information is in practice very beneficial for the efficiency

of the SHIPs algorithm.

5. Experimental Results

The model described in the previous section, referred to as SHIPs (Sat-based Hap-

lotype Inference by Pure Parsimony), has been implemented as a Perl script, corre-

sponding to Algorithm 1. The algorithm iteratively generates CNF formulas which

are then handed to a SAT solver. Currently, MiniSAT v1.14 7 or SATZ v215.2 22

can be used.

This section presents results comparing SHIPs with all existing exact solutions

to the HIPP problem, namely the ILP-based approaches (RTIP, PolyIP and Hy-

bridIP), and a branch and bound solution (Hapar). The next section outlines the

experimental setup and the following sections provide results for different classes of

instances, using MiniSAT.7 The last section evaluates the relevancy of the actual

SAT solver used.

5.1. Experimental Setup

For evaluating SHIPs, as well as other tools, we have collected a comprehensive

number of problem instances. Instances for the haplotype inference problem may

be obtained following two different approaches:

• Generate problem instances: Synthetic problem instances are typically gen-

erated using Hudson’s program ms.17 This program generates haplotypes follow-

ing a standard coalescent approach. Given the haplotypes, the genotypes are

generated by pairing haplotypes either uniformly (repeated haplotypes are re-

moved) or non-uniformly (repeated haplotypes are not removed and so have a

higher probability of being paired). Moreover, we obtained instances that were

generated using a coalescent model (loosely based on Hudson’s program) that

additionally incorporates variation in recombination rates and demographic

events.28 The parameters of the model were chosen to match aspects of data

from a sample of white Americans. These problem instances were recently used

to evaluate some phasing algorithms.25

• Obtain real problem instances: The HapMap

project (www.hapmap.org) 31,32 provides a comprehensive source of genotype

data over four populations. In addition, haplotypes for small genomic regions

have been identified and are available from scientific publications.19,27,6,4,20

Accordingly, the instances used for evaluating the different algorithms are or-

ganized into four classes shown in Table 5.1. For each class we give the num-

ber of instances, and the minimum and maximum number of SNPs and geno-

types, respectively. The ms class of instances contains the uniform and non-

uniform instances used by Brown 2 but extended with additional, more complex
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Table 4. Classes of instances used: number of SNPs and genotypes.

Class # Instances minSNPs maxSNPs minGENs maxGENs

ms 380 10 100 30 100
phasing 329 14 194 90 90
hapmap 24 30 75 7 68
biological 450 13 103 5 50

Total 1183 10 194 5 100

Table 5. Classes of instances used: number of SNPs and genotypes after sim-
plifications.

Class # Instances minSNPs maxSNPs minGENs maxGENs

ms 380 4 57 9 94
phasing 329 14 188 34 90
hapmap 24 4 29 5 68
biological 450 4 77 4 49

Total 1183 4 188 4 94

problem instances. The phasing class of instances is described by Schaffner 28

and corresponds to the SU-100kb, SU1, SU2 and SU3 classes available from

http://www.stats.ox.ac.uk/∼marchini/phaseoff.html. The hapmap class of

instances is the one used by Brown,2 which was extracted from the HapMap

project. Finally, the instances for the biological class are generated from data

available.19,27,6,4,20

All these problem instances were simplified according to the techniques described

in 3.4, i.e. duplicated genotypes as well as duplicated and complemented SNPs

were removed. The simplification time is negligible (always less than 1 second even

for large instances) and therefore will not be taken into account. The size of the

resulting instances is summarized in Table 5.1. Again, the number of instances and

the minimum and maximum number of SNPs and genotypes is given for each class

of problem instances. Clearly, most of the instances are significantly reduced due to

these simplifications. For example, problem instances from the ms class have been

reduced from ≥10 to 4 SNPs and from ≥30 to 9 genotypes.

More instances could have been generated and used. However, as the results

below clearly demonstrate, besides SHIPs, existing approaches are unable to solve

the vast majority of problem instances in reasonable time. Hence, we believe that

the problem instances considered suffice to provide a comprehensive comparison of

SHIPs with existing solutions to the HIPP problem.

All results shown were obtained on a 3.0 GHz Intel Xeon 5160 with 4GB of

RAM running RedHat Linux. For the ILP-based HIPP solvers, the ILP package

used was CPLEX version 10.2. Given the large number of problem instances and

HIPP solvers considered, and taking into consideration that all approaches except

SHIPs abort many problem instances, a timeout of 1000 seconds was used.
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Fig. 2. HIPP solvers on all instances

5.2. Results on All Instances

The results on all instances are shown in Figure 2. For each solver, the plot gives

the run times for solving each instance. The run times are sorted for each solver.

We should note that many instances are solved by all solvers within a few seconds.

Indeed, 202 problem instances are solved by any of the HIPP solvers in less than

10 seconds.

As can be concluded, SHIPs is the HIPP tool capable of solving the largest num-

ber of problem instances. SHIPs aborts 67 problem instances out of 1183 instances,

whereas RTIP aborts 378 instances, Hapar aborts 603 instances, HybridIP aborts

708 instances and PolyIP aborts 709 instances. SHIPs takes on average 7.87 sec-

onds for solving the non-aborted instances. RTIP takes 5.53 seconds, Hapar takes

39.9 seconds, PolyIP takes 82.56 seconds and HybridIP takes 86.66 seconds. The

surprising small time required for RTIP is explained due to the fact that usually

RTIP either solves a problem instance in a small amount of time or aborts due to

memory exhaustion: 96% of the problem instances aborted by RTIP were aborted

due to memory exhaustion and on average an instance is aborted due to memory

exhaustion in 37.54 seconds. Clearly, RTIP may be competitive for solving some

problem instances but it is not a robust solver.

Two scatter plots comparing the run times of RTIP and Hapar with SHIPs

on all instances are shown in Figure 3. A log scale is used for both axis. Each

point corresponds to one problem instance, where the x-axis represents the run
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Fig. 3. Run times of SHIPs vs. Hapar and RTIP on all instances

time required by SHIPs and the y-axis represents the run time required by RTIP

or Hapar. Points in the top left half part of the plot are instances where SHIPs

performed better than the other solvers.

As can be concluded, with the exception of a few outliers, the performance of

SHIPs is significantly better than either RTIP or Hapar. Hapar is only more effective

for instances where both SHIPs and Hapar take less than 1 second. Also, and with

the exception of 8 instances in total, RTIP is only more effective for instances where

both SHIPs and RTIP take less than 1 second.

5.3. MS Instances

The results for the instances of class ms are shown in Figure 4. SHIPs has the best

performance: SHIPs solves all instances, and only requires more than 2 seconds for

two instances (which require 2.27 and 4.41 seconds). Besides SHIPs, only RTIP

can solve all the problem instances. Indeed, almost every instance in the ms class

is also solved by RTIP in less than 2 seconds, except for one instances which is

solved in 9.74 seconds. Hapar is the HIPP solver having the 3rd best performance,

but it aborts 98 out of 380 problem instances. For the other ILP-based solvers the

results are significantly worse: PolyIP and HybridIP perform much worse than RTIP,

respectively aborting 250 and 254 instances out of 380. (It is interesting to observe

that, for all classes of instances, the results for PolyIP and HybridIP are in general

very similar.) From these results it is clear that the best performing HIPP solvers

are SHIPs and RTIP, followed by Hapar. Hence we compare the results obtained

for each problem instance using SHIPs and using RTIP or Hapar.

Two scatter plots comparing the run times of RTIP and Hapar with SHIPs are

shown in Figure 5.
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Fig. 5. Run times of SHIPs vs. RTIP and Hapar on ms instances

As can be observed, SHIPs is always faster than RTIP on very easy instances,

for which SHIPs requires less than 1 second. This is probably related with the setup

time required by CPLEX. Overall, SHIPs is faster than RTIP in 321 out of 380

instances.



September 2, 2007 17:19 WSPC main

Haplotype Inference with Boolean Satisfiability 25

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

C
P

U
ti
m

e

instances

Class phasing with 329 instances

RTIP
PolyIP

HybridIP
Hapar
SHIPs

Fig. 6. HIPP solvers on phasing instances

Hapar is in general more efficient for easy instances, i.e. instances for which both

Hapar and SHIPs require less than 1 second. However, there is a large number of

instances solved by SHIPs which Hapar aborts. For each of the 98 instances for

which Hapar aborts after 1000 seconds, SHIPs takes less than 5 seconds.

5.4. Phasing Instances

The results for the instances of class phasing are shown in Figure 6. For this class of

instances, the results are clear: SHIPs is significantly more efficient than the other

approaches. SHIPs aborts 62 instances out of 329, HybridIP 243, PolyIP 255, RTIP

301 and Hapar 321. SHIPs is able to solve 240 instances in less than 10 seconds and

244 instances in less than 100 seconds. Observe that contrary to what happens for

all other classes of instances, RTIP is less competitive than the other IP approaches.

This can be explained by the memory requirements for this class of instances: these

instances are the ones with the highest average number of SNPs and genotypes.

Indeed, these are challenging problem instances, which no other HIPP approach

can efficiently solve, and which motivate further research work.

Two scatter plots comparing the run times of HybridIP and RTIP with SHIPs

are shown in Figure 7. Although PolyIP is the 3rd most competitive approach, after

SHIPs and HybridIP, its performance is quite similar to the HybridIP performance.

For this reason we compare SHIPs with RTIP instead. These two plots confirm what

we have mentioned before: SHIPs not only solves the largest number of problem
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Fig. 7. Run times of SHIPs vs. HybridIP and RTIP on phasing instances

instances but also is in general significantly faster than the other approaches. The

only exception if for some instances when compared with RTIP: RTIP requires less

time than SHIPs for solving 17 problem instances, of which 5 instances are aborted

by SHIPs. The existence of these 5 outliers is interesting, albeit not significant.

5.5. Hapmap Instances

The results for the instances of class hapmap are shown in Figure 8. As with the

previous classes of instances, the performance difference between SHIPs and the

other HIPP solvers is again clear. With the exception of instance test chr21 YRI 75,

SHIPs is the only HIPP solver capable of solving every instance in less than 1 second.

For instance test chr21 YRI 75, SHIPs takes 69.92 seconds. RTIP is unable to solve

4 out of 24 instances in less than 1000 seconds, Hapar 6, PolyIP 8 and Hybrid 8.

Two scatter plots relating the run times of RTIP and Hapar with SHIPs are

shown in Figure 9. As can be concluded, SHIPs is always faster than RTIP on

solving the hapmap instances. Also, similarly to the previous classes of instances,

Hapar is in general more efficient for easy instances, for which both Hapar and

SHIPs require less than 1 second. However, for the harder instances Hapar takes

orders of magnitude more time than SHIPs.

5.6. Biological Instances

The results for the instances of class biological are shown in Figure 10. As with

all previous classes of instances, the performance difference between SHIPs and the

other HIPP solvers is clear. From the 450 problem instances, SHIPs is able to solve

407 instances in less than 1 second and 427 instances in less than 10 seconds. SHIPs

is unable to solve 5 out of 450 instances in less than 1000 seconds, RTIP 73, Hapar
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Fig. 9. Run times of SHIPs vs. RTIP and Hapar on hapmap instances

178, PolyIP 196 and HybridIP 203. RTIP performs significantly better than the

other approaches probably because the number of candidate haplotype pairs is in

general small. For this class of problem instances, RTIP aborts 16% of the problem

instances, Hapar 40%, PolyIP 44% and HybridIP 45%.



September 2, 2007 17:19 WSPC main

28 Lynce & Marques-Silva

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450

C
P

U
ti
m

e

instances

Class biological with 450 instances

RTIP
PolyIP

HybridIP
Hapar
SHIPs

Fig. 10. HIPP solvers on biological instances

Two scatter plots relating the run times of RTIP and Hapar with SHIPs are

shown in Figure 11. As can be concluded, SHIPs is almost always faster than RTIP.

Also, SHIPs is in most of the cases orders of magnitude faster than RTIP. Similarly

to the previous classes of instances, Hapar is in general more efficient for easy

instances, i.e. instances for which both Hapar and SHIPs require less than 1 second.

However, for all instances for which both Hapar and SHIPs require more than 1

second, Hapar can take orders of magnitude more time than SHIPs.

5.7. Additional Remarks

The results presented in the previous sections are consistent and conclusive: the uti-

lization of SAT is the most effective exact approach for the HIPP problem. Indeed,

for the large majority of instances, SHIPs is orders of magnitude more efficient than

any other existing approach for the HIPP problem, and this is true across a large

number of classes of instances. In addition, SHIPs is the only exact approach for

the HIPP problem capable of solving a vast number of problem instances, which no

other exact approach for the HIPP problem can solve e. More interestingly, SHIPs

solves most of these instances in a few CPU seconds. Hence, the SHIPs approach

allows considering using HIPP as an effective alternative to the more widely used

eThis of course will depend on the allowed CPU time. In our case the experiments restricted the
CPU times to 1000 seconds.
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Fig. 11. Run times of SHIPs vs. RTIP and Hapar on biological instances

alternatives based on statistical methods.30,26

Despite the very promising results, SHIPs is unable to solve 67 problem in-

stances in less than 1000 seconds, out of the 1183 problem instances considered.

These challenging problem instances motivate further research work in SAT-based

haplotype inference.

5.8. SAT Solver Relevancy

This section evaluates how sensitive the SHIPs model is to techniques in the ac-

tual SAT solver used. Two SAT solvers are compared: SATZ 22 and MiniSAT 7.

SATZ implements the basic DPLL algorithm enhanced with a powerful look-ahead

heuristic. MiniSAT also implements DPLL but is enhanced with clause learning,

lazy data structures, adaptive branching heuristics and search restarts. MiniSAT is

expected to search more nodes per second, although learning useless clauses may

bring a significant overhead. MiniSAT usually performs better on structured in-

stances, such as industrial problem instances, whereas SATZ performs better on

random or handmade instances. The set of instances considered is the same used in

the previous sections.

The results are summarized in Figure 12, and are conclusive: with a few ex-

ceptions, for the easiest problem instances, for which the run times are similar,

MiniSAT outperforms SATZ by a large margin. In addition, a scatter plot compar-

ing SHIPs using MiniSAT and SHIPs using SATZ on all problem instances is shown

in Figure 13. Clearly, MiniSAT is faster than SATZ on the vast majority of problem

instances. For instances where MiniSAT requires more than 10 CPU seconds, the

speedups of MiniSAT over SATZ exceed 2 orders magnitude. Hence, the results

support the claim that a modern SAT solver is essential for the performance gains
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of SHIPs compared to all other exact HIPP solutions. Indeed, the results obtained

suggest that the most effective component of SHIPs is the SAT solver used and

the search techniques it integrates in order to focus the search on more structured

parts of each problem instance, namely clause learning. We believe that haplotype

inference problem instances are structured instances for which some parts of the

problem are trivially solved whereas some other parts are quite hard to solve. This

observation seems straightforward if we consider that for some genotypes it may be

trivial to identify an explaining pair of haplotypes whereas from some other geno-

types, for which explaining haplotypes may also explain many other genotypes, to

identify such haplotypes may become a hard task.

Interestingly, though, even when SATZ is used instead of MiniSAT, SHIPs is

still more competitive than all the other existing solvers. SHIPs with SATZ aborts

176 instances, whereas RTIP aborts 378 instances, followed by the other solvers.

6. Conclusions and Future Work

This paper describes SHIPs, a SAT-based approach for the problem of haplotype

inference by pure parsimony (HIPP). The paper also provides experimental re-

sults demonstrating that SHIPs drastically outperforms all other existing exact ap-

proaches for the HIPP problem. Besides being much more efficient than alternative

HIPP solvers, SHIPs is able to solve a large number of problem instances that no

other HIPP solver is capable of. Moreover, SHIPs shares the accuracy of all HIPP

solutions, and HIPP is competitive with the most widely used solutions.12,16,34

Despite the promising results, several challenges remain. As the results indicate,
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SHIPs is still unable to solve some instances from the phasing and the biologi-

cal classes. This motivates additional optimizations to the SAT-based approach.

Finally, the SAT-based approach allows considering criteria other than pure parsi-

mony. For example, one may give preference to selecting haplotypes that explain the

largest number of genotypes, even though the number of required haplotypes may

not be minimum. The development of these alternative criteria and their practical

evaluation is subject of future research work.

It should also be observed that the proposed SAT-based models also provide a

new, essentially endless, source of challenging SAT instances, which can be used for

driving the development of more optimized SAT solvers.
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