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Video segmentation is one of the most important tasks in high-level video processing
applications. Stationary cameras are usually used in applications such as video surveil-
lance and human activity recognition. However, possible changes in the background of
the video such as waving flags, fluctuating monitors, water surfaces, etc. make the detec-
tion of objects of interest particularly challenging. These types of backgrounds are called
quasi-stationary backgrounds. In this paper we propose a novel, non-statistical technique
to generate a background model and use this model for background subtraction and fore-

ground region detection in the presence of such challenges. The main advantage of the
proposed method over the state of the art is that unlike statistical techniques the accu-
racy of foreground regions is not limited to the estimate of the probability density. Also,
the memory requirements of our method are independent of the number of training sam-
ples. This makes the proposed method useful in various scenarios including the presence
of slow changes in the background. A comprehensive study is presented on the efficiency
of the proposed method. Its performance is compared with various existing techniques
quantitatively and qualitatively to show its superiority in various applications.

Keywords: Background modeling; background subtraction; quasi-stationary back-
grounds; support vector data description; support vectors.
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(a) (b) (c)

Fig. 1. Examples of challenges in quasi-stationary backgrounds: (a) Fluctuating monitors.
(b) Rain/Snow. (c) Waving tree branches.

1. Introduction

Detecting foreground regions in videos is one of the most important tasks in high-
level video processing applications. One of the major issues in detecting foreground
regions using background subtraction techniques is that because of inherent changes
in the background, such as fluctuations in monitors and fluorescent lights, waving
flags and trees, water surfaces, etc. the background may not be completely station-
ary. These difficult situations are illustrated in Fig. 1.

In the presence of these types of backgrounds, referred to as quasi-stationary, a
single background frame is not enough to accurately detect moving regions. There-
fore the background of the video has to be modeled in order to detect foreground
regions which are newly introduced objects to the scene, while allowing for quasi-
stationary backgrounds.

There is also a great amount of diversity in scenarios where the background
modeling techniques are used to detect foreground regions. Applications vary from
indoor scenes to outdoor, from completely stationary to dynamic backgrounds, from
high quality videos to low contrast scenes and so on. Therefore, a single system that
addresses all possible situations while being time and memory efficient is yet to be
devised.

Pless et al.28 evaluated different models for dynamic backgrounds. Typically,
background models are defined independently on each pixel, and depending on the
complexity of the problem employ the expected pixel features (i.e. colors)7,31 or
consistent motion.27,49 They also may employ pixel-wise information48 or regional
models of the features.46,10,20 To improve robustness to noise, spatial24 or spatio-
temporal19 features may be used.

In Ref. 48 a single 3-D Gaussian model for each pixel in the scene is built, where
the mean and covariance of the model are learned in each frame. This system tried
to model the noise and used a background subtraction technique to detect those
pixels whose probabilities are smaller than a threshold. However, the system fails
to label a pixel as foreground or background when it has more than one modal-
ity due to fluctuations in its values, such as a pixel belonging to a fluctuating
monitor.
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Kalman Filtering16,13,14 is also used to update the model, while linear prediction
using Wiener filtering is presented in Ref. 46. These background models were unable
to represent multi-modal situations.

A mixture of Gaussians modeling technique was proposed in Refs. 35, 34 and 8
to address the multi-modality of the underlying background. In this modeling
technique background pixels are modeled by a mixture of a number of Gaussian
functions. During the training stage, parameters of each Gaussian and their weights
are trained and used in the background subtraction, where the probability of each
pixel is generated using the mixture of Gaussians. The pixel is labeled as foreground
or background based on its probability.

There are several shortcomings for mixture learning methods. First, the number
of Gaussians needs to be specified. Second, this method does not explicitly handle
spatial dependencies. Even with the use of incremental-EM, the parameter estima-
tion and its convergence is noticeably slow where the Gaussians adapt to a new
cluster. The convergence speed can be improved by sacrificing memory as proposed
in Refs. 21 and 22, limiting its applications where mixture modeling is pixel-based
and over long temporal windows.

A recursive filter formulation is proposed by Lee in Ref. 18 to speed up the
convergence. However, the problem of specifying the number of Gaussians as well
as the adaptation in later stages still exists. Moreover, this model does not account
for situations where the number of Gaussians changes due to occlusion or uncovered
parts of the background.

In Ref. 7, El Gammal et al. proposed a non-parametric kernel density estimation
method (KDE) for pixel-wise background modeling without making any assumption
on its probability distribution. Therefore, this method can easily deal with multi-
modality in background pixel distributions without specifying the number of modes
in the background. However, there are several issues to be addressed using non-
parametric kernel density estimation.

These methods are memory and time consuming since the system has to com-
pute the average of all kernels centered at each training sample for each pixel in
each frame. Also the size of temporal window used as the background model needs
to be specified. Too small a window increases speed, while it does not incorporate
enough history for the pixel, resulting in a less accurate model. Another issue is
that the adaptation will be problematic by using small window sizes. Increasing
the window size improves the model accuracy but at the cost of higher memory
requirements and slower convergence. Finally, the non-parametric KDE methods
are pixel-wise techniques and do not use spatial correlation of pixel features. In
order to adapt the model a sliding window is used in Ref. 23. However the model
convergence is problematic in situations where the illumination suddenly changes.

In order to update the background for scene changes such as moved objects,
parked vehicles or opened/closed doors, Kim et al. in Ref. 15 proposed a layered
modeling technique. This technique needs an additional model called cache and
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assumes that the background modeling is performed over a long period of time. It
should also be used as a post-processing stage after the background is modeled.

Another approach to model variations in the background is to represent these
changes as different states, corresponding to different environments, such as lights
on/off, night/day, sunny/cloudy. For this purpose Hidden Markov Models (HMM)
have been used in Refs. 29 and 36. However, these techniques suffer from slow model
training speed and are sensitive to model selection and initialization.

Recently, we investigated two statistical methods for background modeling,
based on adaptive kernel density estimation (AKDE),39 and recursive modeling
(RM).41

The theory behind the AKDE algorithm is to estimate the probability of each
pixel being background based on a number of samples in its history. One advantage
of the AKDE method over existing density estimation techniques is that in the
proposed algorithm, instead of a single threshold for all pixels in the scene, for
each pixel a different threshold is used. By employing these localized thresholds
the system works efficiently on different video scenes and is more robust to local
changes in the same scene. Also the AKDE method exploits dependency between
pixel color components. This results in a more accurate background model.

The RM method is a recursive counterpart for the AKDE technique which uses
pixel intensity/color values in new frames to update the background model at that
pixel location. Since the update process is performed continuously, the background
model converges to the actual one as more frames are processed. This gives the RM
method the ability to detect foreground regions in situations where the background
changes are very slow and do not fit in a small number of training frames. Also in
videos without a set of empty background frames the RM technique has the ability
to generate a clear background model. The proposed RM method uses a schedule
for learning, which makes the background model converge to the actual one and
recover from the expired model faster.

There is a major drawback in all of the statistical modeling methods including
the AKDE and the RM techniques. The accuracy of these methods is limited to the
accuracy of the estimated probability density function for the background pixels.
In this paper we present a non-statistical method that addresses this difficulty.

Furthermore, there is an additional issue with all statistical foreground detection
techniques including the AKDE and the RM methods. In all statistical methods
the assumption is that there are two classes, namely foreground and background,
and the model is trained on background samples which are present during a short
period of time (the AKDE) or from the beginning of the video (the RM). Note that
until a foreground object appears in the scene, there is no information about the
foreground class. This problem is addressed by using thresholds in the classification
stage to label pixels as foreground/background.

The contribution of this paper is in its ability to explicitly address the above
issues, dependence to probability estimation and the single-class classification prob-
lem. We propose a non-statistical background modeling technique based on support
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vector data description modeling (SVDDM). The SVDDM uses support vectors to
generate a description for the known data; i.e. the background. These support vec-
tors along with the classifier information for each pixel are stored and used in the
classification stage to label pixels in new frames as foreground/background. The
performance of this system is studied and its experimental results on both syn-
thetic data and real video sequences are compared with other existing techniques
in the literature.

The rest of this paper is organized as follows. In Section 2 the theory behind the
support vector data description is presented. Section 3 gives a detailed algorithm
of the support vector data description method in detecting foreground regions in
video sequences. The performance of the proposed method is evaluated in Section 4.
Section 5 presents a comparison between the performance of the proposed method
and other existing techniques on real videos as well as synthetic data and a com-
parison summary is drawn in Section 6. Finally, Section 7 concludes the proposed
method and gives future direction of research.

2. Support Vector Data Description Modeling (SVDDM)

In this section a novel technique in describing one class of known data samples,
called Support Vector Data Description Modeling,40 is presented. The backbone of
the proposed method is a theory based on describing a data set using their support
vectors.44,42 In the following we present the SVDDM theory and the algorithm
which detects foreground regions using this theory in detail.

A normal data description is a description which gives a closed boundary around
the data. A simple normal data description can be considered as a sphere with
center a and radius R > 0, which encloses all of the training samples xi. The data
description is achieved by minimizing the error function:

F (R, a) = R2 (1)

subject to the constraints:

‖xi − a‖2 ≤ R2, ∀i . (2)

In order to allow for outliers in the training data set, the distance of each
training sample xi to the center of the sphere a should not be strictly smaller than
R2. However, large distances should be penalized. Therefore, after introducing slack
variables εi ≥ 0 the minimization problem becomes:

F (R, a) = R2 + C
∑

i

εi (3)

subject to the new constraints:

‖xi − a‖2 ≤ R2 + εi, ∀i (4)

where C controls the trade-off between the sphere volume and the description error.
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In order to solve the minimization problem in equation (3), the constraints of
equation (4) are introduced to the error function using Lagrange multipliers:

L(R, a, αi, γi, εi) = R2 + C
∑

i

εi −
∑

i

αi[R2 + εi − (‖xi − a‖2)]−
∑

i

γiεi (5)

where αi ≥ 0 and γi ≥ 0 are lagrange multipliers. Optimization is achieved by
minimizing L.

∂L

∂R
= 0 :

∑
i

αi = 1 , (6)

∂L

∂a
= 0 : a =

∑
i αixi∑

i αi
=

∑
i

αixi , (7)

∂L

∂γi
= 0 : C − αi − γi = 0 . (8)

From the above equations and the fact that the Lagrange multipliers are not all
negative, when we add the condition 0 ≤ αi ≤ C, Lagrange multipliers γi can be
safely removed. By replacing results of (6)-(8) into (5) we have:

L =
∑

i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) ∀αi : 0 ≤ αi ≤ C . (9)

A set of αi values can be achieved using equation (9). If a sample xi satisfies
the inequality in equation (4) its corresponding Lagrange multiplier will be zero
(αi = 0). For all the training samples for which the equality in Eq. (4) is satisfied
the Lagrange multipliers become greater than zero (αi > 0). These are the possible
scenarios for a given sample yi:

|yi − a|2 < R2 ⇒ αi = 0, γi = C , (10)

|yi − a|2 = R2 ⇒ 0 < αi < C, γi > 0 , (11)

|yi − a|2 > R2 ⇒ αi = C, γi = 0 . (12)

Note that from equation (7), the center of the sphere is a linear combination of
the training samples. Only those training samples xi which satisfy (4) by equality
are needed to generate the description since their coefficients are not zero. Therefore
these samples are called Support Vectors.

The above theory describes the normal data description which is the smallest
sphere surrounding the training data. However, this simple, normal description
is not enough for more complex data which dose not fit into a sphere, i.e. the
description needs more complex boundaries.

Here we describe the extension of the normal data description in order to allow
more general boundaries. To achieve a more flexible description, instead of a simple
dot product of the training samples (xi ·xj), we can perform the dot product using
a kernel function:

K(xi,xj) = Φ(xi) · Φ(xj) . (13)
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Fig. 2. General vs. simple data descriptions, using the kernel function to extend the description
to higher dimensions.

This is done by using a mapping function Φ which maps the data into another
(higher dimensional) space. By performing this mapping any complicated boundary
(description of data) in low dimension can be modeled by a hyper-sphere in a higher
dimension. Several kernel functions have been proposed in the literature,47 among
which the Gaussian kernel gives a closed data description:

K(xi,xj) = exp

(
−‖xi − xj‖2

σ2

)
. (14)

This can be seen from Figure 2, where the blue dots are the samples, the red
dashed line is the simple description and the green dotted line is the extended
(general) description obtained by mapping the data into the kernel space using
equation (14).

According to the above theory the proposed SVDDM method generates a sup-
port vector data description for each pixel in the scene using its history. These
descriptions are then used to classify each pixel in new frames as a background or
a novel/foreground pixel. In the following section the actual implementation of the
system is presented.

3. The Algorithm

The methodology described in section 2 is used in our technique to build a de-
scriptive boundary for each pixel in the background training frames in order to
generate its model for the background. These boundaries are then used to classify
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1. Initialization; C : Confidence, N: Number of training frames, σ : bandwidth

For each pixel xij

1.1. Training stage
SVD(i,j)← Train(xij [1:N]) 2. For each frame at time t

For each pixel xij

2.1. Classification stage
DV(i,j)← Test(xij[Current Frame],SVD(i,j))
Label pixel based on DV(i,j).

2.2. Update stage
if !(t mod 10)

SVD(i,j)← Train(xij[t−N:t])
Fig. 3. The SVDDM algorithm.

their corresponding pixels in new frames as background and novel (foreground)
pixels. There are several advantages in using the Support Vector Data Description
(SVDD) method in detecting foreground regions:

• The proposed method, as opposed to existing statistical modeling methods,
explicitly addresses the single-class classification problem. Existing statistical
approaches try to estimate the probability of a pixel being background, and then
use a threshold for the probability to classify it into background or foreground
regions. The disadvantage of these approaches is in the fact that it is impossible
to have an estimate of the foreground probabilities, since there are no foreground
samples in the training frames.

• The proposed method has lower memory requirements compared to non-
parametric density estimation techniques, where all the training samples for the
background need to be stored in order to estimate the probability of each pixel
in new frames. The proposed technique only requires a very small portion of the
training samples, the support vectors, to classify new pixels.

• The accuracy of our method is not limited to the accuracy of the estimated
probability density functions for each pixel. Also the fact that there is no need
to assume any parametric form for the underlying probability density of pixels
gives the proposed method superiority over the parametric density estimation
techniques, i.e. mixture of Gaussians.

• The efficiency of our method can be explicitly measured in terms of false reject
rates. The proposed method considers a goal for false positive rates, and generates
the description of data by fixing the false positive tolerance of the system. This
helps in building a robust and accurate background model.

Figure 3 shows the proposed algorithm in pseudo-code format.a The only critical
parameter is the number of training frames (N) that needs to be initialized. The
support vector data description confidence parameter C is the target false reject
rate of the system, which accounts for the system tolerance. Finally the Gaussian

aThe proposed method is implemented in MATLAB 6.5, using Data Description toolbox.45
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kernel bandwidth, σ does not have a particular effect on the detection rate as long
as it is not set to be less than one, since features used in our method are normalized
pixel chrominance values. For all of our experiments we set C = 0.1 and σ = 5.
The optimal value for these parameters can be estimated by a cross-validation
stage.

3.1. Training stage

In order to generate the background model for each pixel the SVDDM method
uses a number of training frames. The background model in this technique is the
description of the data samples (color and or intensity of pixels). The background
training buffer is a First In First Out (FIFO) buffer with Round Robin replacement
policy. Since the buffer uses Round Robin replacement policy, once the buffer is full
the new frames replace the oldest ones in the buffer.

The data description is generated in the training stage of the algorithm. In this
stage for each pixel a SVDD classifier is trained using the training frames, detecting
support vectors and the values of Lagrange multipliers that maximize equation (9).

The support vectors and their corresponding Lagrange multipliers are stored
as the classifier information for each pixel. This information is used for the clas-
sification step of the algorithm. The training stage can be performed off-line in
cases where there are no global changes in the illumination or can be performed in
parallel to the classification to achieve efficient foreground detection.

In the current implementation the training stage is computationally extensive
since a quadratic programming optimization is performed to compute Lagrange
multipliers. However, an on-line training scheme is under investigation to train the
system based on the trained values from previous frames.

3.2. Classification stage

In this stage, for each frame its pixels are evaluated by their corresponding classifier
to label them as background or foreground. To test each pixel zt the distance to
the center of the description hyper-sphere is calculated:

‖zt − a‖2 = (zt · zt)− 2
∑

i

αi(zt · xi) +
∑
i,j

αiαj(xi · xj) . (15)

A pixel is classified as a background pixel if its distance to the center of the hyper-
sphere is smaller or equal to R2:

‖zt − a‖2 ≤ R2 . (16)

R2 is the distance from the center of the hyper-sphere to its boundary which is
also equivalent to the distance of each support vector to the center of the hyper-
sphere. All support vectors which fall outside the boundary are disregarded:

R2 = (xk · xk)− 2
∑

i

αi(xi · xk) +
∑
i,j

αiαj(xi · xj) . (17)
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Note that in the implementation of the algorithm, since the boundaries of the
data description are more complicated than a hyper-sphere, a kernel is used to map
the training samples into a higher dimension according to equations (13) and (14).
As the result the mapped samples in the higher dimension can be described by a
high dimensional hyper-sphere and the above discussion can be used.

3.3. Update stage

In order to update the classifiers for each pixel to adapt the system to changes in
the illumination a similar approach to AKDE39 is devised for the SVDDM method.
We assume that the scene illumination may undergo gradual changes all the time.
To adapt the system to gradual changes, every 16 seconds (corresponding to 480
frames of the video) each pixel in the scene undergoes a re-training process.

This retraining process is performed in a similar fashion to the original training,
but using as samples only the current support vectors and the current pixel value.
To make the system adaptive to gradual changes in illumination, we replace pixels in
the oldest background frame with those pixels belonging to the current background
mask.

In order to detect sudden global changes in the illumination, the area of the
detected foreground objects is checked. If the foreground mask area is greater than
50% of the frame size a sudden global change is detected. Upon the detection
of sudden global illumination change the classification stage of the algorithm is
suspended and new frames replace all those in the background training buffer.

However, because of the high computational cost of the training stage, this
adaptation process is not performed at each frame.

In the current implementation the time needed for retraining is about 0.8 sec-
onds for the whole frame. Before the results of retraining are ready the system uses
the previous support vector description to detect foreground regions. When the
retraining is completed its results are used in the detection stage. The detection
stage is very fast since it only uses a few support vectors compared to the number
of initial training sample points. The classification stage detects foreground regions
at a rate of 10 frames per second.

Currently an online training scheme is under investigation to improve the re-
training speed of the system and make it suitable for real-time applications. In the
current implementation, the retraining process is performed in parallel to the clas-
sification stage and as soon as the new classifier is trained for each pixel it is used
instead of the older classifier.

4. Performance Evaluation

In this section the SVDDM performance is evaluated in terms of memory require-
ments and computation cost. The key to evaluate the performance of this technique
is to analyze the optimization problem solved by the system to find support vectors.
This issue is discussed in detail in the following.
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Table 1. Per-pixel memory requirements for the SVDDM method.

Memory Req. Intensity Chrominance Both Asymp.

Bytes/pixel [5× f(C, σ)] ≥ 10 [8× f(C, σ)] ≥ 24 [f(C, σ)] ≥ 32 O(1)

No. of SVs f(C, σ) ≥ 2 f(C, σ) ≥ 3 f(C, σ) ≥ 4 O(1)

f is a function of the description target accuracy.

• Parameters. As described earlier in this chapter the support vector data de-
scription (SVDD) is an elegant technique to describe one class of data samples
without any information about data belonging to other (novel) classes. In order
to generate the data description, a hyper-sphere of minimum size which contains
most of the training samples is constructed, which represents the boundary of
the known class. There are parameters involved with the construction of the
class boundary (i.e. hyper-sphere), namely, the number of training samples N

and trade off factor C in equation (3) and the bandwidth of the Gaussian kernel
σ in (14). As mentioned in section 3 for all experiments the values for C and
σ are 0.1 and 5, respectively. This leaves the system with only the number of
frames as a scene-dependent parameter.

• Memory requirements. It is not easy to answer how many data samples are
required to find a sufficiently accurate description of a target class boundary. It
not only depends on the complexity of the data itself but also on the distribution
of the outlier (unknown) class. However, there is a trade-off between the number
of support vectors to describe the data set and the driven description accuracy.
In that sense a lower limit can be found for the number of samples that can
describe the data which corresponds to the rigid hyper-sphere containing most
of the data samples with the target error goal.

In theory only d + 1 support vectors in d dimensions are sufficient to con-
struct a hyper-sphere and their corresponding Lagrange multipliers (αi) sum to
1. The center of the sphere lies within the convex hull of these support vectors.
This translates to the function f in Table 1. The minimum number of support
vectors needed is a function of the accuracy of description that we require. The
least accurate description which is a hyper-sphere requires only d + 1 support
vectors. To preserve more accuracy one needs to retain more support vectors
which results in more memory requirements and less generalization. So there is a
trade off between memory requirements of the system and its generalization and
accuracy.

— Using only intensity values. Since by using intensity for each pixel there is
only one feature value the support vectors are 1-D and therefore the mini-
mum number of support vectors required to describe the data will be 2. For
each pixel 2 bytes are required to store the intensity and 8 bytes to store
the Lagrange multipliers, resulting in at least 10 bytes per pixel memory
requirements.
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Table 2. Per-pixel memory requirements for the AKDE, the RM and the SVDDM.

Memory Req. Intensity Chrominance Both Asymptotic

The AKDE39 N + 8 8N + 20 9N + 40 O(N)

The RM38 1024 2048 3072 O(1)

The SVDDM [f(C, σ) × 5] ≥ 10 [f(C, σ)× 8] ≥ 24 f(C, σ) ≥ 32 O(1)

— Using chrominance values. By using red and green chrominance values, cr

and cg, a minimum of 3 support vectors need to be used. This results in at
least 24 bytes per pixel memory requirements.

The above argument is about the lower limit of the number of support vectors.
Obviously in practical applications this lower limit is far from being useful for
implementation. The only fact that can be used from the above discussion is that
the number of support vectors required to sufficiently describe a data set is related
to the target accuracy of the description. Therefore, the memory requirements of
the SVDDM method are independent of the number of training frames.

Table 1 shows memory requirements in bytes per pixel for the SVDDM
method using intensity, chrominance values and their combinations respectively.
In conclusion the asymptotic memory requirements of the SVDDM algorithm are
constant O(1) since they are independent of the number of training frames.

• Computation cost. Training the SVDDM system for each pixel needs to max-
imize (9) which is a quadratic programming (QP) optimization problem. The
most common technique to solve the above QP is Platt’s algorithm (sequential
minimal optimization),26,25 which runs in polynomial time.

5. Experimental Results and Comparison

In this section we evaluate the performance of proposed technique using several real
video sequences that pose significant challenges. The performance is also compared
to the mixture of Gaussians method,35 the spatio-temporal modeling presented in
Ref. 19, the RM in Ref. 38, the AKDE method in Ref. 39 and the simple KDE
method.7 We use different scenarios to test the performance of the proposed tech-
niques and discuss where each method appears to be particularly suitable.

In some experiments the results of the proposed method are compared with re-
sults of the AKDE method39 and/or the RM method.38,41 As mentioned in Refs. 38–
41, these methods outperform other existing algorithms.

In the real video experiments conducted below, N = 300 frames are used in the
background training stage unless otherwise stated, corresponding to 10 seconds of
the videos sequence. The background training buffer is a First In First Out (FIFO)
buffer with Round Robin replacement policy.

From Table 2 we notice that the memory requirements of the AKDE technique
presented in Ref. 39 and the SVDDM are lower than those of the RM method38 if
the number of training frames is small enough. That is, for situations when a small
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(a) (b) (c) (d)

Fig. 4. Rapidly fluctuating background: (a) Handshake video sequence. Detected foreground
regions using (b) AKDE; (c) RM; (d) SVDDM.

number of frames can cover most changes that occur in the background, by using a
sliding window of limited size the AKDE method needs less memory than the RM
technique. Note that SVDDM needs even less memory than the AKDE and like the
RM its memory requirements are independent of the number of training samples.

5.1. Rapidly fluctuating backgrounds

As described above, for videos with rapidly changing backgrounds, the AKDE
method has a better performance in terms of memory requirements and speed.
Our experiments showed that for videos where possible fluctuations in the back-
ground occur in about 10 seconds, the AKDE technique needs less memory and
works faster compared to the RM and SVDDM methods.

Figure 4 shows the detection results of the AKDE, RM and the SVDDM
algorithms on the Handshake video sequence where the pixel values correspond-
ing to monitors fluctuate rapidly. As it can be seen from this figure, capturing
dependencies between chrominance features results in more accurate foreground
regions (Fig. 4(b)), showing that AKDE performs better than both the RM and
the SVDDM. Note that in this particular frame the color of foreground objects is
very close to the background in some regions. The SVDDM technique results in very
smooth and reliable foreground regions because this technique uses the confidence
factor C to eliminate false positives in the classification. This may lead to missing
some parts of the foreground which are very close in color to the background. Also
notice that in all methods fluctuations in monitors are completely modeled as a
part of background and not detected as foreground regions.

5.2. Low contrast videos

To evaluate the accuracy of the SVDDM technique in low contrast video sequences
and compare its results with those of the AKDE technique the experiment is per-
formed again on the Handshake video sequence but we intentionally decreased the
quality of the images by down-sampling them by a factor of 4. Figure 5 shows a
frame where the background and foreground colors are reasonably different. The
accuracy of the foreground region detected using the SVDDM technique is clearly
better than that of the AKDE method. The reason is that the SVDDM method
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(a) (b) (c)

Fig. 5. Low contrast videos: (a) Handshake video sequence. Detected foreground regions using
(b) AKDE; (c) SVDDM.

fixes the false reject rate of the classifier and generates a discrimination boundary
independent of the estimated probability density function of the single known class;
i.e., the background class. On the other hand, the AKDE method attempts to use
a statistical binary classification for a single-class classifier introducing statistical
Bayes error to the model.

5.3. Slowly changing backgrounds

For videos with slowly changing backgrounds or backgrounds whose changes are not
periodic, the AKDE method needs more training frames to generate a good model
for the background. This increases the system memory requirements and drastically
decreases its training and foreground detection speed. In this example in order to
get a reasonably accurate foreground, a large number of frames is required. Since
asymptotic training time, detection time and memory requirements of the AKDE
are O(N), it is not an efficient method for this scenario. In order to achieve an
efficient foreground detection in the AKDE we used N = 300 frames as background
training frames.

In these situations the SVDDM technique is a very good alternative, since its
detection speed and memory requirements are independent of the number of train-
ing frames. Note that in order to cover the possible changes in slowly changing
backgrounds, both SVDDM and AKDE require a large number of training frames.
However, in SVDD once the background model is trained the system only retains
support vectors. As discussed earlier in section 4 the number of support vectors
needed to detect foreground regions is asymptotically constant and independent of
the number of training frames. The proposed retraining scheme makes the SVDDM
adaptation more efficient. As seen in Fig. 6 the SVDDM results are better than the
AKDE.

Figure 6(a) shows an arbitrary frame of the Water video sequence. In this fig-
ure the detection results of the AKDE and the SVDDM methods are presented.
This example is particularly difficult because waves do not follow a regular mo-
tion pattern and their motion is slow. As it can be seen from Fig. 6(b), using the
AKDE method without any post-processing results in many false positives where
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(a) (b) (c)

Fig. 6. Slowly changing background: (a) Water video sequence. Detected foreground region using
(b)AKDE; (c) SDDM.

the SVDDM (Fig. 6(b)) learns the background more accurately using more training
frames.

From this figure we can conclude that the SVDDM method has a better perfor-
mance compared to the AKDE in situations where the background has a slow and
irregular motion. Also in the AKDE there is a sliding window of limited size which
may not cover all changes in the background resulting in an inaccurate probability
density estimation but the model built in the SVDDM uses the decision bound-
aries of the single training class instead of bounding the training accuracy to the
accuracy of the probability estimation.

5.4. Other difficult examples

Figure 7 shows three more video sequences with challenging backgrounds. In column
(a) the original frames are shown, while column (b) and (c) show the results of the
AKDE and the SVDDM methods, respectively. In this figure, from top row to the
bottom, heavy rain, waving tree branches and the water fountain pose significant
difficulties in detecting accurate foreground regions.

5.5. Quantitative evaluation

Performance of our proposed method is evaluated quantitatively on randomly se-
lected samples from different video sequences, taken from Ref. 19. Figure 8 shows
the ground truth masks for some challenging video sequences.

To evaluate the performance of each method we use the similarity measure
between two regions A (detected foreground regions) and B (ground truth), defined
by:

S(A,B) =
A ∩ B
A ∪ B . (18)

This measure increases monotonically with the similarity between detected
masks and the ground truth, ranging between 0 and 1. By using this measure we
report the performance of the SVDDM method, the AKDE,39 the spatio-temporal
technique presented in Ref. 19 and the mixture of Gaussians (MoG) in Ref. 35.



August 7, 2008 9:53 WSPC/Guidelines-IJAIT 00408

650 A. Tavakkoli et.al.

(a) (b) (c)

Fig. 7. Other difficult examples: (a) Original frame. Detected foreground region using (b) AKDE;
(c) SVDDM.

(a) (b)

(c) (d)

Fig. 8. Ground truth masks for some challenging video sequences: (a) Meeting Room. (b) Water
Surface. (c) Fountain. (d) Side Walk.
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Table 3. Quantitative evaluation and comparison. The sequences are Meeting

Room, Lobby, Campus, Side Walk, Water and Fountain, from left to right.

Video
Method

MR LB CAM SW WAT FT Avg. S(A,B)

SVDDM 0.84 0.78 0.70 0.65 0.87 0.80 0.77
AKDE39 0.74 0.66 0.55 0.52 0.84 0.51 0.64
Spatio-Temp19 0.91 0.71 0.69 0.57 0.85 0.67 0.74
MoG35 0.44 0.42 0.48 0.36 0.54 0.66 0.49

❛❛❛❛❛❛

Table 4. Computation time.

Videos Init. Train Retraining† Segmentation‡ Avg. Time∗ Speed∗∗

Handshake 24 0.8 0.085 279 12
Fountain 25.6 0.85 0.1 326 11

†: Mean time for 1 frame, every 480 frames (sec)
‡: Mean time for 1 frame, every frame (sec)
∗: Mean process time over 3000 frames (sec)
∗∗: Speed (fps)

By comparing the average of the similarity measure over different video sequences
in Table 3, we can see that the SVDDM method outperforms other techniques.
This also shows that the SVDDM method works consistently well on a wide range
of video sequences. Also note that unlike the existing techniques the SVDDM and
AKDE methods are automatic, without the need for fine-tuning a large number of
parameters for each scene.

5.6. Computation time

In this section we discuss the speed of our algorithm on the Handshake and Foun-
tain video sequences. The frame size is 120 × 160 and it is in RGB color format.
The system is implemented on an Intel Dual Processor Pentium 4 with 4.8 GHz
cpu clock. We used N = 300 frames for the initial background training process.
The retraining is performed every 16 seconds.

In the current implementation, the retraining stage is performed on the whole
frame in parallel with detection process. Once ready, the results of the retraining
process are used in the foreground detection stage.

Table 4 shows the computation time of the system. The initial training is per-
formed once at the beginning of the process as well as after the detection of a
sudden global change. The rest of the adaptation process uses the retraining stage.

5.7. Synthetic data sets

In this section we use a synthetic data set, which represents randomly distributed
training samples with an unknown distribution function (banana data set). Figure 9
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(a)
(b)

Fig. 9. Comparison between different classifiers on a synthetic data set: (a) Decision boundaries
of different classifiers after training. (b) Data points (blue dots) outside decision boundaries are
false rejects.

shows a comparison between different classifiers. This experiment is performed on
150 training samples using support vector data description (SVDDM), mixture
of Gaussians (MoG), kernel density estimation (AKDE) and k-nearest neighbors
(KNN).

Parameters of these classifiers are manually determined to give a good perfor-
mance. For all classifiers the confidence parameter is set to be 0.1. In MoG, we used
3 Gaussians. The Gaussian kernel bandwidth in the AKDE classifier is considered
σ = 1, for the KNN we used 5 nearest neighbors, and for the SVDDM classifier the
Gaussian kernel bandwidth is chosen to be 5.

Figure 9(a) shows the decision boundaries of different classifiers on 150 training
samples from banana dataset. From Fig. 9(b), SVDDM generalizes better than the
other three classifiers and classifies the test data more accurately. In this figure the
test data is composed of 150 samples drawn from the same probability distribution
function as the training data, which should be classified as the known class.

Here we need to define the False Reject Rate (FRR) and Recall Rate (RR) for a
quantitative evaluation. By definition, FRR is the percentage of missed targets, and
RR is the percentage of correct predictions (True Positive rate). These quantities
are given by:

FRR =
#Missed targets

#Samples
, RR =

#Correct predictions
#Samples

. (19)

Table 5 shows a quantitative comparison between different classifiers. In this
table, FRR and RR of classifiers are compared after training them on 150 data
points drawn from an arbitrary probability function and tested on the same number
of samples drawn from the same distribution. As it can be seen from the above
example, the FRR for SVDDM is less than that of the other three, while its RR
is higher. This proves the superiority of this classifier in the case of single class
classification over the other three techniques.
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Table 5. Comparison of False Reject Rate and

Recall Rate for different classifiers.

Method SVDDM MoG AKDE KNN

FRR 0.1067 0.1400 0.1667 0.1333
RR 0.8933 0.8600 0.8333 0.8667

Table 6. Need for manual optimization and number of parameters.

Method SVDDM MoG AKDE KNN RM

No. of parameters 1 4 2 2 2
Need manual selection No Yes Yes Yes Yes

Table 7. Comparison of memory requirements for different classifiers.

Method SVDDM MoG AKDE KNN RM

Memory needs (bytes) 1064 384 4824 4840 1024

Table 6 compares the number of parameters of each classifier and the need for
manually selecting these parameters for a single class classification problem. As it
can be seen, the only method that automatically determines data description is
the SVDDM technique. In all other classification techniques there is at least one
parameter that needs to be manually chosen to give a good performance. Note
that this table refers to the parameters of the classifiers not the technique used for
background modeling. In methods such as AKDE and MoG there has been efforts
to learn some of these parameters and make the system automatic in detecting
foreground regions.

Table 7 shows memory requirements for each classifier. As it can be seen from
the table, SVDDM requires much less memory than the KNN and AKDE methods,
since in SVDDM we do not need to store all the training data. Only the MoG
and the RM methods need less memory than the SVDDM technique, but in MoG
methods we need to manually determine the number of Gaussians to be used which
is not practical when we are training one classifier per pixel in real video sequences.

6. Comparison Summary

Table 8 summarizes this study and provides a comparison between different tradi-
tional methods for background modeling and our proposed method. The comparison
includes the classification type, memory requirements, computation cost and type
of parameter selection.

As seen in Table 8, the RM method uses a MAP decision criterion where other
systems except the SVDDM use a Bayes classifier. The only method which explicitly
deals with the single class classification is the SVDDM technique which fits the
description of data belonging to the background class in its rather simple training
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Table 8. Comparison between the proposed methods and traditional techniques.

SVDDM AKDE39 RM38 KDE7 Spatio-temp19 MoG35 Wallflower46

Automated Yes Yes Yes No No No No
Post proc. No No No No Yes No No
Classifier SVD Bayes MAP Bayes Bayes Bayes K-means
Memory req.∗ O(1) O(N) O(1) O(N) O(N) O(1) O(N)
Comp. cost∗ O(N) O(N) O(1) O(N) O(N) O(1) O(N)

∗ : Per-pixel N : number of training frames

Table 9. Scenarios where each method appears to be particularly suitable.

SVDDM AKDE39 RM38 KDE7 Spat-tmp19 MoG35 Wallflower46

Low contrast S S NS S NS NS NS
Close Bg/Fg color NS S NS NS NS NS NS
Slow changing Bg S NS S NS S S S
Fast changing Bg S S S S S NS S
Sudden changes S NS S NS S S NS
Non-empty Bg NS NS S NS S S S
Hand-held NS NS S NS NS NS NS

S: Suitable NS: Not suitable

stage. Other methods shown in the table use a binary classification scheme and use
heuristics (Refs. 7, 35 and 46) or a more complex training scheme (Refs. 39 and 38)
to make it useful for the single-class classification problem of background modeling.

Table 9 shows different scenarios and illustrates where each method appears to
be particularly suitable for foreground region detection. As expected the SVDDM
method is suitable for a wide range of applications. In case of low contrast videos
the SVDDM works reasonably well in detecting foreground regions. This is due to
the fact that this technique aims to build and accurate background model from a
finite number of background training frames. However the accuracy of the back-
ground model is limited to the false reject rate of the classifier in the SVDDM
technique. This makes the SVDDM method unable to detect foreground regions in
those locations where the background color is very close to the foreground color
but being more robust to noise. The AKDE is more sensitive to noise compared to
the SVDDM but on the other hand works better in these situations.

As discussed earlier and also seen from Table 9, the only method suitable for
scenarios where there is a steady and very slow motion in the background; such as
the hand-held camera scenario, is the RM technique. The other methods fail to build
a very long term model for the background model because of the fact that their cost
grows linearly by the number of training background frames, as it can be seen from
Table 8. Also in scenarios where there is no empty set of background, called non-
empty backgrounds, only RM method is suitable and works independently without
any need to perform post processing steps.
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7. Conclusions and Future Work

As discussed in the previous sections, the detection of foreground regions is a crucial
step in many high-level video processing applications such as video indexing, video
compression, video surveillance and activity recognition. In some applications it is
assumed that the camera is fixed and its parameters do not change. In this context
the problem of detecting foreground regions is a challenging issue because the back-
ground may not be completely stationary due to fluctuations in the background,
changes in the illumination and small camera shakes.

In this paper a novel approach is proposed to label pixels in video sequences
into foreground and background classes using a support vector data description.
The contributions of our method can be described along the following directions:

• The model accuracy is not bounded to the accuracy of the estimated probability
density functions.

• The memory requirements of the proposed technique are lower than those of non-
parametric techniques and are independent of the number of training samples.

• Because the support vector data description explicitly models the decision bound-
ary of the known class, it is suitable for novelty detection without the need to use
thresholds. This results in less parameter tuning, leading to a scene-independent
algorithm.

• The classifier performance in terms of false positives is controlled explicitly.

Directions of future study related to this work include investigating an on-line
training scheme for the SVDDM technique to make it more efficient in terms of
speed and computational cost. One can also use tracking information combined
with pixel features to achieve more accurate detection results. Incorporating de-
tection/tracking results into useful information for high-level stages of the video
processing application such as activity recognition is another important issue that
needs to be formalized. As an interesting extension to this work, we are also working
on a reliable foreground model using the detection results to relax the stationary
camera assumption.
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