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The importance of time series segmentation techniques is rapidly expanding, due to the
growth in collection and storage technologies. Among them, one of the most used ones

is Piecewise Linear Representation, probably due to its ease of use. This work tries to
determine the difficulties faced by this technique when the analyzed time series shows

noisy data and a large number of measurements and how to introduce the information

about the present noise in the segmentation process. Both difficulties are met in the Air
Traffic Control domain, which exhibits position measurements of aircraft’s trajectories

coming from sensor devices (basically surveillance radar and aircraft-derived data), being

used as the motivating domain. Results from the three main traditional techniques are
presented (sliding window, top down and bottom up approaches) and compared with a

new introduced approach, the Hybrid Local Residue Analysis technique.

Keywords: Time series segmentation; piecewise linear representation; piecewise linear
approximation; BLUE residue; movement models; air traffic control.

1. Introduction

Time series domain involves a set of different concepts and procedures to understand

its importance and the available techniques. The objectives of this introductory

section are to present those concepts in a simple way, leading the reader to easily

understand the growing importance of time series, the different representation issues

and how they have been faced by the available approaches, introduce the air traffic

control domain in the context of time series, and finally outline the main aspects

of the technique developed in this work.
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Time series are sequences of data vectors, containing each of these vectors a

timestamp as one of its values. Typical examples can be found in genetic research,1

financial,2 medicine3 manufacturing4 or tourism5 applications. Also research fields

require the analysis of time series, such as Several processes can be defined re-

garding time series, such as their analysis (in order to extract different meaningful

characteristics or patterns from them, which can be used by additional processes)

or forecasting (the development of models in order to predict future values).

The importance of time series has grown exponentially in recent years, due to

the explosion in the application of collection and storage technologies, generating

huge amounts of data to be processed. In the financial domain, a clear example is

the tracking of stock prices, being constantly updated in different markets all over

the world.6 The processing of these massive amounts of data requires an approxi-

mate representation of the information that can be more efficiently and effectively

handled (as the analysis of every time point is usually not necessary nor practical,

and can even be unaffordable). Time series segmentation is a tool presented in or-

der to resolve this issue, by means of reducing the data dimension with appropriate

models for representation and approximation.

To achieve that dimensionality reduction, segmentation processes may use dif-

ferent high level representations, such as Fourier Transforms,7 Wavelets,8 Symbolic

Mappings9 or the approach, recently explored by the data mining community,6,10,11

which will be covered in this paper: Piecewise Linear Representation (PLR, also

named Piecewise Linear Approximation, PLA). We have centered the scope of our

proposal in this representation due to its wide application to different domains.

This representation can be treated both as a final result itself and/or as the basis

for different additional processes, such as fast similarity search.12 The extended

use of this particular technique may be caused by its simplicity and ease of use:

PLR segmentation is based on the approximation of a Time Series T with length

n by means of a set of K segments (where K � n), approximating each of these

segments by a linear model.

A segmentation technique, in general, is responsible of the division of a time

series into a certain number of segments (ideally, as few as possible) and the

approximation of the data in each segment by a certain simple function. This intro-

duces several interesting issues, such as the measurement of the quality of a certain

segmentation result and the consideration of the implied cost to obtain that quality

(remembering that the purpose of the whole schema is to perform a dimension-

ality reduction over the original data). Different classifications can be performed

over segmentation techniques along with the high level representation used, being

a capital one, regarding their applicability to different processes, their online or off-

line nature. Offline segmentation algorithms may use the whole data from the time
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series to obtain their segment approximation,10 whereas online algorithms perform

their segmentation based only on the available data of an incomplete data series.11

This nature usually has an impact on the complexity and accuracy of the resulting

algorithm (offline algorithms benefit from their complete knowledge of the time se-

ries to obtain a more accurate segmentation, while their computational complexity

is more impacted by the size of the considered time series).

Regardless of the concrete technique applied (or according to it, considering

that this fact may determine the concrete approximation used), representation of

the available information is the key to obtain effective and efficient segmentation

results.13 Time series may be affected by a series of factors, such as large quan-

tity of measurements and the presence of severe noise in them which may prevent

those achievements. Thus, dealing with those handicaps is an extremely important

issue for segmentation processes. These factors are especially relevant in time series

exhibiting sensor data or video tracking information.14 A paradigmatic time series

domain related with the previous difficulties is Air Traffic Control (ATC), which

analyzes the data coming from sensors measuring the position of aircraft, which is

recorded for offline validation, resulting in time series usually named opportunity

traffic. This opportunity traffic information is the only available experimental data

in this domain.

As exposed, we will use ATC as a source for opportunity traffic time series in

order to perform PLR segmentation over them. The particular importance of these

time series is related to the domain activities: ATC is a critical area related with

safety, requiring strict validation in real conditions,15 being this one of the previ-

ously mentioned domains where the amount of data has gone under an exponential

growth (in this case due to the increase in the number of passengers and flights).

This has led to the need of automation processes in order to help the work of hu-

man operators.16 These automation procedures can be basically divided into two

different basic processes: the required online tracking of the aircraft (along with the

decisions required according to this information) and the offline validation of sensor

data processors. The evaluation task is usually separated into two sub-processes,

segmentation,17,18 showing a slightly different meaning to the one introduced in this

section, as it only covers the division of the time series into a series of segments,

and reconstruction,15 which covers the approximation of the segments which the

trajectory was divided into. Artificial intelligence techniques have been applied for

different purposes, such as establishing a formalization of the domain theory and

its associated validation process.19 Considering it from the segmentation point of

view, opportunity traffic provides very interesting time series due to the difficul-

ties which segmentation processes have to face in them. These difficulties, along

with the characteristics of data measurements, may include reconsiderations of the

quality functions used to measure the accuracy of a segmentation result (due to

the high noise in the measurement values and the knowledge of the motion models

which the aircraft may perform).
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The purpose of this paper is to review the performance of traditional segmenta-

tion techniques and propose a new approach for these particularly difficult domains

to deal with for PLR segmentation: noisy domains with a large number of mea-

surements. The technique presented is built according to established segmentation

design characteristics, also discussing the treatment which these design character-

istics have received in the available algorithms. The presented approach is based

on the technique and results presented in Refs. 17 and 18, generalizing the pro-

posal in those works to the general PLR domain, and leading to the introduction

of the Hybrid Local Residue Analysis (HLRA) segmentation technique, including

the mechanisms to handle these situations, and particularizing the results for the

ATC domain. The introduction of quality measures is also required in order to cope

with the noisy data and the multi-objective nature of the problem solutions, which,

along with the proper statistical tests, will be used to test the relevance of the

obtained results over a dataset containing opportunity traffic trajectories from the

ATC domain.

The introduction to the domain and its difficulties are explained in the sec-

ond section. The third section presents the segmentation issue as a whole, along

with three traditional techniques whose results will be compared with the algo-

rithm proposal. The HLRA algorithm is presented in the fourth section, while the

fifth compares the computational complexity of the four options. The sixth section

presents the individual results and their comparison, leading to the final conclusions

section.

2. Segmentation Issues in the ATC Domain

The traditional PLR segmentation techniques exhibit a series of problems and is-

sues in domains with high noise and very long series. These domains are particularly

interesting when there is available information about the introduced noise (or accu-

rate estimations of its value), being a clear example of this fact the measurements

obtained by sensor devices (having an individual model for their measuring errors),

which have in the ATC domain one of its most representative examples. Thus, the

introduction to these domains will be performed by the description of the partic-

ular ATC domain, in order to be able to build the argumentation leading to the

proposed technique.

The basic data in the ATC domain are the trajectories recorded from flying

commercial aircraft, containing sensor plots with the following components: stere-

ographic projections of their x and y components (which are a representation in a

common reference frame of the different radar measurements), covariance matrix

(representation of the noise introduced by the positioning system: radar, GPS, mul-

tilateration, etc) and detection time. This domain also allows us to exploit some

related knowledge due to the fact, as has already been pointed out in several refer-

ences17,15 that the movement models (MM’s) of commercial flights have a certain

uniformity in their values (meaning that they tend to follow certain MM’s smoothly,
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without abrupt changes in the position values). This prevents the application

of approaches to detect abrupt changes, such as the one exposed in Ref. 13, based

on the identification of those changes (named feature points).

In this domain, the models followed by an aircraft can be usually simplified

into three different possibilities achieving remarkable results15: uniform, turn and

acceleration MM’s (which might be reduced even to only two, considering that a

turn is only a transversal acceleration MM). An important consideration is the

length of the maneuvers when we compare them to the uniform segments of the

trajectory. If we consider that in a whole time series q measurements were recorded

while the aircraft was performing some kind of maneuver and p measurements were

recorded while the aircraft was performing a uniform MM, for the vast majority of

trajectories, p >>> q. These trajectories are performed in airways areas, the most

common situation in the available airspace. When the plane approaches a terminal

in the surroundings of airports, it gets into terminal maneuvering areas (TMA),

where this rule does not apply. To illustrate these differences we have included into

the considered dataset racetracks examples, the trajectories performed by aircraft

during the landing procedures, which we will analyze later.

Therefore, the right identification of the uniform segments becomes the key fac-

tor in this domain (which involves the difficulty of being able to differentiate the

effects of the noise from those due to the start or end of a maneuver). An effective

PLR segmentation technique should be able to adequately identify those long uni-

form segments accurately. There is very valuable information which algorithms must

seek to introduce. This information includes noise and maneuvers data. The noise

introduced in the time series’ values is caused, as explained, by different measur-

ing devices, usually external, such as radars20 or automatic dependent surveillance

(ADS) systems based on GPS.21 Usually the segmenting algorithm is provided this

information by a covariance matrix under Gaussian assumptions, not requiring it

to know or apply special noise considerations depending on the measuring device.

The additional important source of information involves the minimum and maxi-

mum length of the maneuvers the aircraft may take (which is specially delimited

when handling commercial air traffic). This data can provide us with configuration

parameters for our algorithms, in order to adjust them to the kind of traffic they

will be dealing with.

According to the analysis presented in this section, PLR segmentation tech-

niques will have to deal in the ATC domain time series with three difficulties: the

noise introduced by the measurement device, the large number of measurements

which compose each trajectory performed by an aircraft and the proper segmenta-

tion of the long uniform segments which these aircraft exhibit.

3. Time Series Segmentation Techniques

The objective of a segmentation process is to divide a data sequence into a series

of segments and approximate these segments with a simple function. In the case of
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study in this work, PLR, those segments are approximated with piecewise linear

models.

The segmentation process can be seen as a search over the time series mea-

surements trying to obtain the structure of segments that minimize (or maximize)

a certain quality function. Considering each measurement represented as ~xk for a

time series T , the segmentation process is formalized in (1)

T = {~xk}, S(T ) = {Bm}, Bm = ~xj , j ∈ [kmin, . . . , kmax]

→ min
fquality({Bm})max

(1)

where S(T ) is the result of segmentation according to the criteria in the given

function fquality, which is minimized or maximized according to the given require-

ments, and Bm is a concrete segment from the solution (which covers the points

between kmin and kmax boundaries). The best possible solution for this process

could be obtained by considering every possible segment obtained from the differ-

ent ~xk measurements of the time series and deciding the output value according to

the summation of the function error values for those segments. Equivalently, this

can be seen as a search over the different possible measurements which divide the

trajectory into different segments. Unfortunately, these search processes are com-

putationally unaffordable, leading to different segmentation techniques which apply

different heuristics.

The traditional criteria to determine the quality of a segmentation process10,11

are the following:

(1) Minimizing the overall representation error (total error)

(2) Minimizing the number of segments such that the representation error is less

than a certain value (max segment error)

(3) Minimizing the number of segments so that the total representation error does

not exceed total error

where total error and max segment error are user defined parameters for the al-

gorithm.

The previous criteria highlight the fact that, instead of a single quality function,

these processes usually have to minimize (or maximize) a set of different error func-

tions jointly (typically an error function measuring the distance to the original time

series, for example an Euclidean distance, and a different one measuring the cost of

that error, for example the number of segments used for the segmentation), chang-

ing this approach into a multi-objective optimization problem (MOOP),22 formally

represented by (2). Additionally, sets of restrictions over the quality functions may

be set.

T = {~xk}, S(T ) = {Bm}, Bm = ~xj , j ∈ [kmin, . . . , kmax]

→ min {fq1({Bm}), . . . , fq1({Bm})}
.

max
(2)
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Following the formalization in (2), we may introduce the three quality criteria

presented for the PLR problem obtaining Eq. (3).

Bm = ~xj , j ∈ [kmin, . . . , kmax], m ∈ [1, . . . , segnum]→ min{d(S(T )), T ), segnum}

such that

{
d(S(T ), T ) ≤ total error

∀m, d(fap(Bm), Bm) ≤ max segment error
(3)

where d(P,Q) is a distance error function between series P and Q, fap(B) is the

approximation function result over series B (in PLR the resulting line which ap-

proximates the data in series B), and segnum is the number of segments obtained

by the applied segmentation algorithm.

The reader may notice that minimizing the number of segments seems to be a

key factor in the quality of the segmentation process (as it appears in two out of the

three criteria). Even so, most capital references on this topic10 (even though they

state the three previous criteria) base their quality comparisons on only one factor:

total error. Only recently11 the number of segments is beginning to be compared

as a performance metric over the quality of a segmentation process.

The lack of attention to a performance metric which is, at the same time, stated

to be a very important one, can be explained by looking at the design of tradi-

tional algorithms (which will be covered in the next subsections) and the absence

in them of mechanisms to actually control that the number of segments is kept to

an allowable minimum. Their approach is based on Eq. (1), using a leading quality

function based only on the approach error compared to the original time series.

The segmentation approach proposed in this work will take into account that value

not only as a quality comparison value, but also as a design consideration. This is

especially important for noisy domains, since considering only the representation

error leads to oversegmentation in the trajectories, due to the algorithm’s excessive

focus on the position changes caused by the noise.

An obvious determinant factor not yet commented is the computational com-

plexity of the segmentation process. In general, segmentation processes are required

to have low computational complexity (or at least a scalable one), either in online

(due to the real-time requirements) or offline (due to the huge amounts of data

required) processing.

Along with the differentiation between online and offline algorithms, the linear

segmentation process can be divided, as well, into two different approaches: linear

interpolation and linear regression. The former uses the equation of a straight line

given two points which belong to it (using the initial and end points of the segments)

to obtain the approximation segment. This produces a segmentation of the time

series with continuous piecewise lines. On the other hand, linear regression, as its

own name indicates, uses a regression line to approximate all the points belonging

to the segment with a criterion of minimum residual error, producing a set of

disjointed lines. The overall error obtained by a linear regression is always less

than or equal to the one obtained with a linear approximation, which, along with
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the low computational complexity it involves, are some of the reasons for its usual

choice.10,11 There are additional difficulties faced by linear interpolation approaches

in noisy domains, due to their high sensitiveness to the position of the initial and

final measurements of the segment, which can redefine the interpolated segment

completely. According to this analysis, we will introduce linear regression into the

applied techniques presented in this work.

A final decision regarding a general segmentation algorithm is whether the final

segments will be continuous (meaning that the end measurement of segment i is

the beginning measurement of segment i+ 1) or discontinuous (each measurement

belongs only to one segment). Some algorithms are more sensitive to this choice than

others, being bottom up approaches the most affected by it (since a discontinuous

approach introduces limitations in the possible sizes of the output segments). The

algorithms presented in this work will use a continuous approach, in order to prevent

possible limitations introduced by discontinuous segments.

Three different traditional approaches will be used as comparison tools for the

proposed technique, each of them using different heuristics to solve the segmentation

issue. Their implementation will be based in the pseudocodes provided in Ref. 10,

considering the choices explained in this section. Sliding window23 is an online

algorithm based on building growing windows from the beginning of the time series

until a certain user boundary is exceeded by the result of an error function, leading

to the creation of a new segment at that measurement and the restart of the process.

Several improvements have been performed over this basic version, such as the

Incremental Sliding Window,11 or the different complementary approaches.24 It

is also important to notice that the sliding window algorithm is reported to give

pathological results under certain circumstances25 and also to obtain a best relative

performance on noisy data,10 being this last statement specially important, since

the ATC domain presents such noisy data.

Top Down algorithm10 is an offline process based on finding the best splitting

point (understanding by this that measurement which divides the trajectory into

the two segments with the lowest added errors) recursively, until all the result-

ing segments have an error value bellow a user defined boundary. The Top Down

algorithm is applied in a wide variety of domains and fields, being also known

by different names.26,27 As in the case of the sliding window, there are numerous

improvements to the basic top down algorithm. Alternative approaches28 perform

different initializations based on valleys and peaks, which is reported to perform

poorly on noisy datasets, and thus would be inapplicable in our domain.

Bottom up algorithm10 is an offline process complementary to Top Down, where

the time series is initially divided into every possible segment (composed of two mea-

surements) and finds the best possible segment fusion afterwards (understanding

by this the fusion which obtains the segment with the lowest error) until any pos-

sible fusion obtains a segment having an error above a user defined boundary. The

bottom up algorithm, as well, has spread to different fields and research areas using

different names, such as the computer graphics domain and decimation methods.29
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4. The Hybrid Local Residue Analysis Technique

In the presentation of traditional segmentation techniques, the multi-objective na-

ture of segmentation algorithms and the importance of the number of segments was

introduced. Even so, these techniques do not provide any explicit mechanism to deal

with this performance metric, which explains the lack of coverage this parameter

has in most of the available literature. This fact, which is important in any general

domain, is even more so in the ATC domain. The reason for this importance is

that, as was explained in the second section of this work, typical ATC time series

consist of very long uniform segments causing that, if our segmentation technique

outputs a large number of segments, it probably means that we are oversegmenting,

using that information to cover the position changes introduced by the noise in the

measurements (which, in terms of storage, is a waste of capacity, and difficulties

the processing of the output for a different range of processes, such as reconstruc-

tion15). This introduces a different quality factor to our domain: we do not only

want a number of segments as small as possible, but we also want to concentrate

those segments on the maneuver sections of our time series.

The general idea of our proposed approach, the Hybrid Local Residue Analysis

(HLRA) technique, is to analyze each measurement of the trajectory according to

a surrounding window and assign a classification value to it (local classification

according to a residue value). This classification determines if the measurement is

considered to belong to a uniform MM or non-uniform MM. Adjacent measurements

sharing the same classification are considered to belong to the same segment. Once

the whole time series has been classified following this approach, those segments

which were classified as belonging to a non-uniform MM are segmentated according

to the bottom up algorithm (hybrid segmentation schema). The segmentation posi-

tions obtained this way are relative to the beginning of the non-uniform segments,

which require to be corrected to their respective positions in the complete time se-

ries in order to be added to the final solution. Figures 1 and 2 present an overview

of the two phases of this process, while figure 3 shows an example over a turn

trajectory. This example shows that the first phase of the algorithm, by the use of

the local classification information, is able to accurately segmentate the time series

data where the aircraft was performing a uniform MM, while those sections where

a non-uniform MM was being performed are handled afterwards and segmentated

by the general bottom-up algorithm.

This idea of using individual classification of the measurements in order to

perform the segmentation process has been previously explored in the works,17,15

where each point is classified according to a set of possible MM’s in order to launch

a reconstruction process over that classification. Also, in Ref. 17, a comparison

showed that classification results were substantially better if measurements were

classified individually instead of as part of whole segments (which would be an

approach comparable to a sliding window algorithm without its usual left anchor

where, instead of growing to the right, it would move the whole window). These
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Fig. 1. Hybrid local residue analysis first phase overview.

ideas will be adapted to our current PLR context. This means that, according to the

previously explained needs, our algorithm will be centered in finding the uniform

segments of our time series.

The offline processing allows us to use information both from our past and

our future. Introducing this fact into a local representation, we will restrict that

information to a certain local segment around the measurement which we would like

to classify. These intervals are centered on that measurement, but the boundaries

for them can be expressed either in number of measurements (4) or timestamp

values (5).

Si
j = {~xik}, k ∈ [j − p, j + p], p ∈ [j − 1, N − j] , (4)

Si
j = {~xik}, tik ∈ [tij −m, tij +m], m ∈ [tij − ti1, tiN − tij ] (5)

where Si
j is a given segment from the trajectory centered on measurement j, N is the

number of measurements contained in the time series, p is the sample window size

and determines the possible boundaries for a given segment according to its number

of measurements (from measurement 1 to measurement N) and m is the time
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window size, which determines those same possible boundaries according to their

timestamp. Once we have chosen a window around our current measurement, we will

have to apply a function to that segment in order to obtain its classification. This

general classification function F (~xij) , using measurement boundaries, is represented

in (6)

F (~xij) = F (~xij |T i)→ F (~xij |Si
j) = Fp(~xij−p, . . . , ~x

i
j , . . . , ~x

i
j+p) . (6)

From this formulation of the problem we can already see some of the choices

available: how to choose the segments (according to (4) or (5)), which classification

function to apply in (6) and how to perform the final segment synthesis. An ex-

ample of the segmentation issue according to the local classification formulation is

presented in figure 4.

The segment boundaries are defined by the domain knowledge. As exposed in

the domain section, this knowledge is usually in the form of average duration (in

time) of typical maneuvers, so we will use (5), setting a value for m adjusted to

1/2 of the longest possible maneuver. Once the analysis window has been fixed, the

classification function will be based on a Best Linear Unbiased Estimator (BLUE)

residue value (domain transformation), in order to introduce noise information in

the uniform segment detection, and an automatic threshold choosing technique to

determine the final classification over that value.

4.1. Introducing noise information: The BLUE residue

The first phase of our algorithm covers the process where we must synthesize an

attribute from our input data to represent each of the trajectory’s measurements
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in a transformed domain and choose the appropriate thresholds in that domain to

effectively differentiate those which belong to our model from those which do not

do so.

The transformation function decision is crucial. In Ref. 17 the discussion of

whether introducing noise information in the domain transformation function allows

us to improve our results was presented. The results proved that, as expected,

that noise information improves the overall results. Therefore we will use a BLUE

residue value, where we will be able to introduce the noise information by means

of a covariance matrix Rk. The assumed linear model is presented in (7)

~xm(k) =

[
xm(k)

ym(k)

]
=

[
1 tk 0 0

0 0 1 tk

]
x0

vx0

y0

vy0

+

[
nx(k)

ny(k)

]
= H(tk)~θ + ~n(k) . (7)

The first component H(tk)~θ represents the ideal estimated parameters for a uni-

form segment (initial position and velocity). The best estimator of these parameters

with minimum squared weighted residual is introduced in Eq. (8). The noise infor-

mation is introduced in (8) in the form of its covariance matrix, Rk. Then, with

estimator ~θ the interpolated positions for the x and y components of the points

can be calculated with (9). Finally, with the previous values, the normalized BLUE

residue can be obtained with (10).

〈
~θ
〉

=


〈x0〉
〈vx0〉
〈y0〉
〈vy0〉

 =

(∑
k

H(tk)TR−1
k H(tk)

)−1∑
k

H(tk)TR−1
k ~xm(k) , (8)

xint(k) = 〈x0〉+ 〈vx0〉 k , yint(k) = 〈y0〉+ 〈vu0〉 k , (9)

res =
1

kmax− kmin+ 1

kmax∑
k=kmin

(
x(k)− xint(k) y(k)− yint(k)

)

×R−1
k

(
x(k)− xint(k)

y(k)− yint(k)

)
(10)

where x(k), y(k) are the sensor measurements values, Rk is the covariance matrix

(associated to the sensor) and xint(k), yint(k) are interpolated values using (9).

The threshold choosing technique is closely related to the domain transforma-

tion, involving how we determine if a measurement belongs to the model or not.

The choice for this parameter will be detailed in the next section.
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4.2. Threshold choosing technique

The threshold choice18 involves determining the boundary above which transformed

measurements will be considered as unknown. Figure 5 shows an example of a

possible choice over the presented transformed domain.
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Fig. 5. Threshold choosing example.

According to previous considerations, the objective is to classify the measure-

ments belonging to a uniform MM correctly, with a special attention regarding the

limits where the aircraft’s MM changes to a different one. Graphically over figure 5,

that implies getting the red line as low as possible, leaving only the central section

over it (where the maneuver takes place, making its residue value high enough to

get over our threshold).

The presented residue value in (10) follows a Chi-squared probability dis-

tribution function (pdf) normalized by its degrees of freedom, n. n is given

by twice the number of 2D measurements contained in the interval minus the

dimension of P (P=4 in our uniform segments, as we are imposing four lin-

ear restrictions). For a valid segment residual, res behaves with distribution
1

kmax−kmin+1χ
2
2(kmax−kmin+1)−P , which has the mean and variance detailed in (11).

µ = 2− P

kmax− kmin+ 1
,

σ2 =
4

kmax− kmin+ 1
− 2P

(kmax− kmin+ 1)2
.

(11)
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The residue distribution allows us to establish our criterion based on the per-

centage of measurements belonging to uniform MM. We may use the Chevychev’s

inequality30 to determine a threshold which should leave the 90% of the measure-

ments belonging to our linear model above it, with µ+ 3σ value. Using the values

from (11), Eq. (12) presents the obtained threshold value.

thres = 2− 4

N
+ 3

√
4

N
− 8

N2
. (12)

This threshold depends on the resolution of the segment, which also influences

the residue value in (10). It is interesting to notice that the highest threshold value

is reached with the lowest resolution. This is a logical result, since to be able to

keep our percentage of uniform measurements correctly classified (usually called

True Positives Rate or TPR), which has been fixed with the inequality at 90%,

with short segments, we need to have a high threshold, in order to counteract the

noise effects (while longer segments are more resistant to that noise and thus the

threshold value may be lower).

We would like to determine how precisely the chosen χ2 distribution represents

the normalized BLUE residue in non-uniform trajectories with estimated covariance

matrix. In the following figures we compare the results obtained with Eq. (12)

with the optimal result of the threshold choice (dotted lines), manually chosen to

obtain the highest possible TPR while FPR (False Positives Rate, measurements

not belonging to the uniform model missclassified) remains in a zero value. Figure 6

shows the used trajectories for this comparison, whereas figure 7 shows the actual

comparison for the proposed trajectories between the optimal TPR and the one

obtained with (12) for increasing threshold values.

In the two trajectories in figure 7 we may appreciate two distortion effects

introduced by the presented approximation. The turn trajectory shows an under-

estimation of the TPR value due to the inexactitude in the covariance matrix Rk.
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Fig. 6. Considered trajectories for the threshold choice effects analysis.
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Fig. 7. χ2 approximation comparison.

This inexactitude assumes a higher noise than the one which is present in the tra-

jectory, and thus will require the choice of a higher threshold than necessary in

order to obtain the desired TPR margin.

In the racetrack trajectory we perceive the same underestimation at the lower

values of the threshold, but then the approximation result crosses the optimal re-

sults and reaches a value over it. This is caused by the second distortion effect, the

maneuver’s edge measurements. The measurements close to a maneuver beginning

or end tend to have a higher residue value than the theoretical one for a uniform

trajectory (due to their proximity to the non-uniform segments), making us increase

the threshold value to classify them correctly (which causes the optimal result to

show a lower TPR in the figure).

These two effects show that we may need a heuristic tuning in our χ2 distribution

in order to adapt it to these distortion effects. For our PLR approach, it is enough

to higher the threshold value to µ + 5σ, knowing that we may misclassify some

non-uniform measurements close to the points where the MM changes (considering

that this does not have an important penalization impact).

4.3. Algorithm definition

After the theoretical considerations behind our proposed segmentation technique

have been covered, we would like to specify the pseudocode for it. The functions

required for this pseudocode are programmed with the proposed equations in the

two previous sections. Algorithm 1 presents the first phase of our technique.

The second phase of the algorithm applies the bottom-up technique (as de-

scribed in its section) and corrects the segmenting points obtained to their positions

in the original trajectory, providing the final output of the algorithm as a series of

segmenting points.

16



Algorithm 1 Hybrid Local Residue Analysis Algorithm, first phase

Input: time sequence (a1, . . . , ak), time length window

Output: uniform segments (s1, . . . , sk), non uniform segments (sn1, . . . , snm)

classifications = uniform segments = non uniform segments = empty set

initial point = 1

current point = 1

sequence length = length (time sequence)

while current point <= sequence length do

current segment = obtain segment (time sequence, current point,

time length window)

current length = length(current segment)

current threshold = obtain threshold (current length)

current residue = obtain residue(current segment)

if current residue > current threshold then

add(classifications, non uniform class)

else

add(classifications, uniform class)

end if

if current point > 1 && (classifications (current point) != classifications (cur-

rent point-1) || current point == sequence length) then

if current point == sequence length then

if classifications(current point) == uniform class then

add (uniform segments, current point)

else

add (non uniform segments, current point)

end if

else

if classifications(current point) == uniform class then

add (non uniform segments, current point)

else

add (uniform segments, current point)

end if

initial point = current point-1

end if

end if

current point++

end while

5. Computational Complexity Analysis

The complete complexity analysis for the three different traditional techniques can

be found in Ref. 10. The results presented are the following:
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• Sliding-Window = O(Ln)

• Top-Down = O(n2K)

• Bottom-Up = O(Ln)

where n is the number of measurements in the time series, K is the number of

segments and L is the mean length of the obtained segments. It is important to

notice that, for each complexity order, there is at least one parameter not known

a priori, (either K or L) which makes this complexity orders harder to be accurately

established.

5.1. Hybrid local residue analysis algorithm

The proposed algorithm involves two different phases, each of them based on differ-

ent approaches. We will present them separately in order to obtain the complexity

order. There are, as well, two different main steps involved in the first phase of the

algorithm:

• Threshold value: for a fixed window size, this parameter can be computed only

once, with a constant order complexity. If the window is not fixed (or established

with time boundaries, which result in windows with different sizes at every mea-

surement) this involves computing the threshold n times, where n is the number

of measurements, thus adding an O(n) term.

• Residue value obtaining : The residue has to be calculated, with a certain window

size, at every value of the time series. Calculating each residue involves a cost

of O(wl), where wl represents the window length involved, and applied to each

value of the time series, involves a cost of O(wln).

The second phase shows the computational complexity of the bottom up algorithm,

which is, as presented in the previous section, O(Pq2), applied t times, where t is

the number of non-uniform segments in the trajectory, P is the mean length of the

sub-segments in those segments and q their number of measurements, giving us a

complexity order for this second phase of O(tPq2).

The final complexity order of the trajectory is, adding the terms from the pre-

vious two phases, O(wln)+O(tPq2). Considering that P is a small value (as the

secondary segmentation is applied to non-uniform sections of the time series, which

cannot be well approximated by long uniform segments), q <<< n and t <<< wl

(with the possible exception of extremely long time series, where the value of n

compensates for the possible increase in the value of t), we can determine that

the dominating order term is O(wln) , being this the complexity of our proposed

approach.

Compared to the presented complexities of the traditional techniques, the pro-

posed solution shows the advantage of having parameters that can be either fixed

by the user or accurately approximated, opposed to some of the terms presented

by traditional techniques not known a priori, such as the mean length of the final

segments or the number of these segments.
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6. Experiments

6.1. Quality measurements and algorithm configuration

In the previous sections of this work the importance of the number of segments has

been repeatedly stated, along with the absence of its value which is usually found

in available references. But, for our presented domain, there are additional consid-

erations which must be included in the quality indicators to perform an accurate

comparison.

Evidently, as was introduced, the objective of any segmentation process is, usu-

ally, reducing the amount of information while keeping a record as similar as possi-

ble, compared to the original data (even though additional processes with different

objectives can be performed over the transformed data). This means that, in a

noisy domain such as the one presented, we would like to reduce the effect of the

noise as much as possible (whenever it can be different from the actual data of

our aircraft). Considering the MM’s presented, if we divide uniform segments into

several different sub-segments, that division is performed due to the noise position

changes, and thus, we are including additional segments which are a waste of data

(along with the additional problems for any processing which might be performed

afterwards).

That fact can lead to misleading values in the total error metric, which contains

the deviation of the regression line with respect to the noisy samples. Oversegmen-

tation would reduce the residual, with an evident effect of over-fitting to the noise

contained in the series. Figure 8 presents an example of a uniform time series to

which Gaussian noise has been added, with µ = 0, σ2 = 1 along with its ideal

segmentation (based on the original time series previous to the noise addition) and

a segmentation result based on interpolation using segments with length = three

measurements.

The ideal segmentation in figure 8 identifies correctly the time series as a single

segment, presenting a total error value of 14.91, while the interpolation segmen-

tation, which oversegmentates the trajectory into different segments, presents a

total error value of 10.69. This simple example shows that the quality of a segmen-

tation on noisy time series should not be measured by means of a total error metric

(at least over uniform segments). According to this, we will introduce two differ-

ent metrics, one related to the segmentation quality over non-uniform segments

and a different one for those who were performing a uniform MM in the original

trajectory.

For non-uniform segments, we will include the total non uniform error, which

is the total error metric but only applied to those measurements where the aircraft

was performing a non-uniform MM (lacking a better quality metric for those non-

uniform segments). This metric assesses the behavior of segmentation algorithm

under a situation in which the series should be divided to avoid the deviation

produced by a linear model in situations in which it is not applicable.
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Fig. 8. Two example segmentations for a completely uniform noisy time series.

On the other hand, for the quality assessment of uniform segments, we will

introduce the USR (uniform segmentation ratio), which, dividing the ideal number

of uniform segments (those performed by the aircraft) by the number of segments

obtained by the technique, tries to measure the level of over-segmentation obtained

during uniform MMs. This quality metric is defined in (13).

USR =
number of original uniform segments

resultant segments during uniform MMs
. (13)

The ideal value for this indicator is 1. Lower values indicate oversegmentation

on those uniform MM’s, while a higher value is only possible if segments exhibiting

a non-uniform MM are approximated in a single segment, with a severe increase in

the approximation error. The segments taken into account to be computed in the

previous ratio are those which have any measurement recorded while the aircraft

was performing a uniform MM. It is interesting to realize the complementary nature

of the two previous figures of merit. An algorithm prone to oversegmentation will

have a very low uniform segmentation ratio and, conversely, an algorithm prone

to keep long segments through the whole series will have an unfeasible error value

during maneuver sections of the time series.

The final value included for this comparison is the running time of the tech-

nique. Obviously, the actual value of this metric depends on different factors, such

as the programming language chosen, and cannot be interpreted as an absolute

value, but it can be used as a comparative value between different techniques or

different configurations over the same technique.
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Four different quality metrics will be used to measure the performance of a

given algorithm: total non uniform error (accuracy in the representation of those

segments which lack a uniform model), number of segments (overall cost of the

segmentation results), USR (accuracy during uniform segments), and running time

(computational cost of the segmentation results, an indicator of the feasibility of

the application to long time series).

There are configuration issues to be faced which will involve the quality of the re-

sults. During the presentation of the traditional techniques, the only shared configu-

ration value was max segment error (sliding window cannot provide a total error

boundary due to its online nature), so we will choose the value for this parameter

for the three techniques. An approach could be to determine different values for

the different trajectories, in order to optimize the performance of the algorithms in

each particular case. This can be achieved by means of the knowledge we have, for

simulated trajectories, of the typical durations of maneuvers performed by aircraft

following different trajectories.

If we took such an approach each trajectory and algorithm would require their

own configuration values, meaning that they would be inapplicable to real trajec-

tories afterwards (where we would have no a priori knowledge). To prevent this, a

single max segment error value will be determined to be applied to any trajectory

or algorithm, in order to test their performance as a whole.

Once that decision has been taken, the choice of that threshold is not trivial

either. We have different techniques, different trajectories and, most importantly,

different metrics which have to be optimized jointly. There is also an additional con-

sideration. Choosing a fixed max segment error tends to set a threshold on the

maximum length the obtained segments (considering that every measurement of the

time series carries an error), leading the algorithm to obtain shorter segments. To

prevent this behavior, we will use the max mean segment error value instead. The

idea for this parameter is to allow segments to be as long as possible, by setting a

threshold over the mean value of the different errors of the measurements belonging

to a segment, eliminating the implicit length boundary which max segment error

exhibits. According to this, the three traditional segmentation techniques will be

provided with only one parameter, the max mean segment error, and different

values will be tested regarding this parameter, in order to compare their applica-

bility.

For the proposed technique, the time length of the window (according to Eq. (5)

has to be set. As introduced in the domain section, this value is chosen based on

the non-uniform MM characteristics. The value chosen for the data set proposed

is 60 seconds. The bottom-up technique also requires a max mean segment error

value which, in this case, is set to 300 meters.

Finally, statistical tests are required to determine the quality of the different

compared techniques. This introduces the difficulty of quantitatively determining

the quality of different multi-objective solutions and their comparison for quality

assessment purposes.31 Basically, this issue can be approached by the use of a
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quality indicator, which can reduce the different objectives to a single value and

performing a statistical test to determine whether the different result sets can be

considered to belong to the same distribution. Since this approach is not the focus

of this work, but a tool to determine the significance of the results obtained, we

will not analyze in-depth the different tools available for this purpose, but rather

choose among them to present the results.

Quality indicators were designed for the comparison of different Pareto Fronts,

but, in our case, we will have only one solution for each trajectory in the data

set, which simplifies the difficulties of the comparison. Also, we will use three ob-

jective functions (USR, number of segments and total non uniform error quality

measurements). Considering these simplifications we will stick to a unary hypervol-

ume quality indicator32 for the individual estimation of the quality of the obtained

solutions. This estimator requires the choice of a nadir point, which is the worst

possible solution for the problem. The choice of these points is itself an issue. The

total non uniform error value of our chosen nadir points will be a theoretical

maximum error obtained by joining the first and last points of the current time

series with a segment and calculating the error of the different points in the time

series as the distance to that segment. The highest number of segments considered

will be the number of points in the time series minus one (representing the worst

oversegmentation situation possible, where a segment joins every pair of adjacent

points).

The USR value for the nadir points is a little harder to obtain since we may

degrade its value oversegmenting segments with uniform MM or introducing into

them segments with a non-uniform MM. Considering only the oversegmentation,

the nadir point value for its USR component would be zero, but there is not such

a boundary for the possible values of this indicator considering the possible errors

in the segmentation of non-uniform MMs. In the results for the dataset presented

(tables 1–3) the worst possible result obtained regarding this error source is 2, so

these values will be converted to the [0, 1] interval considering a worst value of 2.01

(Eq. (14)). This means that a USR value of 2 is treated in a similar way in the

results as an oversegmentation value of 0.01, and the nadir point value for USR is

0. In order to normalize the hypervolume values, the total non uniform error and

number of segments values for the different techniques will be normalize according

to the worst possible results presented, so that the nadir point values for both of

them will be 1 (Eq. (15)).

normalized USR =

USR if USR ≤ 1

2.01− USR if USR > 1
, (14)

nadir point→


USR = 0

t n u e = 1

number of segments = 1

. (15)
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Considering the normalized values presented, the hypervolume indicator (which,

in this case, is a three dimensional volume) can be calculated with (16). Over the

hypervolume values for the dataset, the Wilcoxon test33 test will be applied to

determine their statistical significance.

hypervolume = (t n u enadir − norm.t n u e) ∗ (norm. USR− USRnadir)

∗ (n o snadir − norm.n o s) . (16)

6.2. Data set used

The data set used is based on eight trajectories covering the different MM described

in the segmentation issues section. The complete dataset used is shown in figure 9.

These simulations cover the casuistry of the domain, with the specified charac-

teristics presented, and allow us to determine the validity of the different included

techniques. For the computation of the proposed ratio, completely uniform tra-

jectories (trajectories 3 and 4) show a difficulty, as all their measurements belong

to a uniform MM, so that the total non uniform error value, regardless of the

segmentation performed, will always be 0.

6.3. Traditional techniques results

Tables 1 and 2 show the results of the presented classical segmentation techniques

applied to the proposed data set. The tray column shows the trajectory number

(according to figure 9), m.m.e.s stands for max mean segment error.

There are some interesting observations to be made regarding the results ex-

posed in tables 1 and 2. First of all, the effect of the max mean segment error

is opposite in the two introduced quality indicators: choosing higher values allows

the technique to improve the segmentation results in the uniform segments (re-

flected in the USR values) but introduces poorer results in the segmentation of

non uniform segments. This introduces irresolvable configuration issues, due to

the lack of mechanisms in these techniques to differentiate uniform and non uniform

segments.

Regarding the previous configuration issue, it is also noticeable that these algo-

rithms are not able to correctly segmentate the uniform trajectories (trajectories 3

and 4) with any of the tested max mean segment error values. The highest value

for this parameter, 800, lead to a segmentation of completely uniform trajectories

into two segments (probably an acceptable result) but made the techniques obtain

very inaccurate results in accelerated trajectories (7 and 8), obtaining only one final

segment in them.

Offline algorithms, reported to be the most accurate ones due to their global

knowledge of the time series, reach inadmissible running time levels in some tra-

jectories when faced with values which affect greatly their complexity. The top

down algorithm has difficulties dealing with low max mean segment error values
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Fig. 9. ATC trajectory dataset used for evaluation purposes.
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Table 1. Sliding window and Bottom-up segmentation techniques results for different
max mean segment error values.

Sliding Window Bottom Up

Tray m.m.s.e. n.u.error n. segm USR Run. time n.u.error n. segm USR Run. time

1 200 55680 93 0.12 0.06 42019 92 0.13 15.68

1 500 152973 27 0.45 0.06 109954 24 0.63 16.20

1 800 263000 13 1.00 0.06 184770 13 0.83 16.10

2 200 55650 255 0.03 0.07 46422 246 0.03 14.47

2 500 158135 58 0.12 0.06 93688 57 0.13 16.68

2 800 257286 20 0.42 0.06 197702 16 0.71 16.85

3 200 0 168 0.01 0.08 0 114 0.01 27.08

3 500 0 15 0.07 0.09 0 2 0.50 27.54

3 800 0 2 0.50 0.09 0 2 0.50 27.52

4 200 0 556 0.00 0.21 0 539 0.00 149.83

4 500 0 54 0.02 0.25 0 36 0.03 159.56

4 800 0 3 0.33 0.32 0 1 1.00 160.77

5 200 1995 148 0.01 0.03 2000 138 0.02 1.70

5 500 9487 114 0.02 0.03 8834 110 0.02 1.96

5 800 23122 93 0.02 0.03 11877 93 0.02 2.09

6 200 54463 328 0.01 0.25 34698 288 0.01 284.44

6 500 203155 19 0.14 0.34 182421 5 1.00 286.63

6 800 335674 4 1.00 0.37 445360 3 1.00 286.33

7 200 32381 49 0.04 0.29 32718 38 0.05 179.64

7 500 33512 1 2.00 0.35 33512 1 2.00 180.18

7 800 33512 1 2.00 0.36 33512 1 2.00 180.53

8 200 38162 62 0.03 0.18 39467 1 2.00 103.50

8 500 39467 1 2.00 0.23 39467 1 2.00 103.54

8 800 39467 1 2.00 0.23 39467 1 2.00 103.42

(trajectories 4 and 6 with MMSE=200), while the bottom up technique increases

its running time noticeably in the presence of a large number of measurements

(trajectories 4, 6, 7 or 8). These high running times may make them inapplicable

to long real trajectories. There are additional issues related to the extremely high

recursion level that the Top Down algorithm has to reach in order to perform its

segmentation in trajectories with a high number of measurements, which may lead

to the algorithm malfunction.

6.4. Hybrid local residue analysis segmentation results

Table 3 presents the results obtained by the proposed algorithm. The main handi-

caps which were detected in the results presentation of traditional techniques have

been properly corrected: those trajectories which were originally completely uni-

form are now correctly segmentated into a single segment (trajectories 3 and 4,

where traditional techniques showed a minimum number of 2 segments), accelerated

trajectories are detected to include non-uniform segments and segmentated accord-

ingly (where certain configurations of the bottom-up and sliding window algorithms
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Table 2. Top down segmentation technique results for different
max mean segment error values.

Top Down

Tray m.m.s.e. n.u.error n. segm USR Run. time

1 200 57788 94 0.12 0.90
1 500 94136 38 0.29 0.77

1 800 151262 15 0.71 0.63

2 200 65193 199 0.04 3.23
2 500 112310 116 0.07 2.86

2 800 160489 43 0.18 2.58
3 200 0 223 0.00 4.97

3 500 0 2 0.50 0.19

3 800 0 2 0.50 0.19
4 200 0 786 0.00 59.08

4 500 0 5 0.20 2.60

4 800 0 2 0.50 0.65
5 200 9419 87 0.02 1.09

5 500 9419 87 0.02 1.09

5 800 26722 78 0.03 1.07
6 200 27816 769 0.00 162.41

6 500 209334 4 1.00 1.83

6 800 209334 4 1.00 1.83
7 200 29359 294 0.01 20.13

7 500 33504 2 1.00 0.71
7 800 33504 2 1.00 0.71

8 200 39467 2 1.00 0.46

8 500 39467 2 1.00 0.46
8 800 39467 2 1.00 0.46

Table 3. HLRA segmentation technique results for the

complete dataset.

HLRA algorithm

Tray n.u.error n.segm U.S.R. Run. time

1 58979 47 0.29 2.20

2 70874 51 0,45 2,27

3 0 1 1,00 1,34

4 0 1 1,00 8,32

5 23471 8 0,67 0,18

6 52488 23 0,25 18,57

7 32282 7 1,00 10,24

8 36748 5 1,00 7,69

obtained a USR value of 2, bypassing the accelerated MM) and the running time

remains at an allowable maximum value (18.57 seconds, while the bottom-up al-

gorithm showed a maximum value of 286.33 seconds and the top-down approach

a maximum value of 162.41). It is also noticeable that the trade-off among the
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different values of the metrics (even though its configuration parameters are fixed,

while traditional techniques have been tested with a different set of values for their

configuration) is consistently better than the one present in traditional techniques.

6.5. Results comparison

Even though the individual analysis of the results has already been presented in

the two previous sections, it is necessary to compare some of the quality indicators

results for the different techniques graphically, in order to complete this results

presentation section. With this approach we want to present a general analysis of

the performance achieved by the different techniques to support the choice made

for the most promising alternative, followed by the complete comparison versus our

presented technique in order to validate its results.

This graphical overview will present firstly the comparison of the different tech-

niques for a concrete trajectory (one of the racetracks, trajectory 2). In figures 10

and 11 it can be observed that the proposed technique achieves much better results

according to the quality metrics, especially regarding (as was commented after the

presentation of the results tables) the trade-off in their different values. To obtain

a better result in terms of total non uniform error or uniform segmentation ra-

tio traditional techniques must degrade the value of the complementary evaluated

metric, obtaining unfeasible solutions. Using intermediate configurations (param-

eter MMSE set to 500), the proposed technique obtains better solutions for the

two metrics, also obtaining a smaller number of segments as its output. Among the
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Fig. 10. Uniform segmentation ratio and total non uniform error values comparison in trajec-

tory 2.
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Fig. 11. Number of segments and total non uniform error values comparison in trajectory 2.

traditional techniques, bottom up segmentation seems to achieve the best results,

so we will choose it with a MMSE value of 500 as the most promising technique.

Once the most promising traditional technique has been chosen, we present the

results for the whole set of trajectories comparing the bottom-up technique with

the indicated configuration with HLRA’s results. These comparisons are shown in

figures 12 and 13. The results seem to be conclusive: in all the different trajectories

presented, the proposed technique achieves better results that the bottom up algo-

rithm, being specially remarkable in some cases, such as the uniform trajectories

(HLRA-T3, HLRA-T4, where the degree of oversegmentation with bottom up tech-

nique is very high, while HLRA detects correctly a single segment) or the turn ones

(where the bottom up technique presents extreme values in either the number of

segments, HLRA-T5, or the total non uniform error value, HLRA-T6). It is also

interesting to highlight that the results of the proposed technique are satisfactory

for all the different trajectories, being suitable for any of them.

Finally, the statistical significance of the results must be proved. To do so, as

explained in section 6.1, we will calculate the hypervolume indicator values for

the results over the different trajectories in the data set for the already chosen

most promising technique and HLRA, in order to apply the Wilcoxon test to state

whether the result improvements of HLRA are significant or not. The results of the

normalized values for the chosen quality measurements, along with their associated

hypervolumes are presented in tables 4 and 5.

Running the Wilcoxon test over the hypervolume values in tables 4 and 5, the p-

value obtained is 0.0368 (resorting to Matlab’s ranksum function for this purpose).
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Table 4. Normalized quality measures and associated hypervolume values for bottom up tech-
nique with mmse = 500.

Trajectory Bottom Up mmse = 500

id max. error max. segm. norm. t.n.u.e. norm. n.o.s. norm. USR Hypervolume

1 9,05E+11 651 1,22E-07 0,036866359 0,625 0,601958452

2 1,77E+13 665 5,30E-09 0,085714286 0,131579 0,120300799

3 3,27E+10 851 0 0,002350176 0,5 0,498824912

4 6,38E+09 2056 0 0,017509728 0,0277778 0,027291418

5 6,17E+12 252 1,43E-09 0,436507937 0,0192308 0,010836403

6 1,15E+14 2747 1,58E-09 0,001820167 1 0,998179831

7 3,26E+08 2178 1,03E-04 0,000459137 0,01 0,009994382

8 3,49E+08 1650 1,13E-04 0,000606061 0,01 0,009992808

Table 5. Normalized quality measures and associated hypervolume values for HLRA technique.

Trajectory HLRA

id max. error max. segm. norm. t.n.u.e. norm. n.o.s. norm. USR Hypervolume

1 9,05E+11 651 6,52E-08 0,072196621 0,294118 0,272883657

2 1,77E+13 665 4,01E-09 0,076691729 0,454545 0,419685156

3 3,27E+10 851 0 0,001175088 1 0,998824912

4 6,38E+09 2056 0 0,000486381 1 0,999513619

5 6,17E+12 252 3,80E-09 0,031746032 0,666667 0,645502966

6 1,15E+14 2747 4,55E-10 0,00837277 0,25 0,247906807

7 3,26E+08 2178 9,90E-05 0,003213958 1 0,996687373

8 3,49E+08 1650 1,05E-04 0,003030303 1 0,996864615

This means that with the usual 5% significance level, the null hypothesis that both

datasets came from the same distribution can be rejected. In fact, the significance

level can be lowered down to a 4% value and still reject the null hypothesis. This

result implies that the improvements are statistically significant.

7. Conclusions and Future Work

This work has introduced the difficulties faced by time series segmentation algo-

rithms on domains with long time series exhibiting noisy measurements. Noise

degrades the segmentation performance over uniform sections of the time series

(which should be packed into a single segment), while the large number of mea-

surements prevents the application of techniques based on global approaches (due

to the running time or the recursion level required). These difficulties are faced with

the proposed Hybrid Local Residue Analysis technique, based on two phases: the

first one differentiates uniform and non-uniform segments in the trajectory, while
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the second one segmentates the identified non-uniform segments one by one. Noise

information is introduced in the initial separation into uniform and non-uniform

segments, and the individual approach to each non-uniform segment separately al-

lows the techniques to deal with time series which were not approachable without

this pre-segmentation (due to the huge decrease in the number of measurements

in each of those individual non-uniform segments). A modification of traditional

error indicators is performed in order to deal with the noise in pure traditional

techniques (basically establishing a threshold over the max error in mean over the

window, instead of absolute values), and performance metrics are introduced in

order to measure the quality of the different compared techniques. The results ob-

tained with the Air Traffic Control domain dataset show that the HLRA technique

can take advantage of the noise information in order to perform the initial division

accurately and afterwards apply bottom up segmentation to obtain a fine segmen-

tation over the non-uniform sections, providing considerably better results that

traditional techniques for the different quality indicators presented.

Along with the quantitative objectives of the work, represented by the segmen-

tation results already commented, this work presents the application of artificial

intelligence tools to improve the heuristic guided pattern recognition issue which is

at the core of segmentation problems, along with the use of quality metrics obtained

from the multi-objective evolutionary algorithms domain to determine statistical

significance of the results. Also, the results obtained may be used as a data source

to improve the performance of reconstruction approaches in the air traffic control

domain, and, at the same time, noise handling techniques are introduced to the

general PLR segmentation issue. Future lines include the formulation of hybrid

techniques (traditional techniques guided by residue values similar to the one used

by HLRA) and the study of portability issues to alternative domains.
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