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A conversational recommender system iteratively shows a small set of options for
its user to choose between. In order to select these options, the system may analyze
the queries tried by the user to derive whether one option is dominated by others with
respect to the user’s preferences. The system can then suggest that the user try one
of the undominated options, as they represent the best options in the light of the user
preferences elicited so far. This paper describes a framework for preference dominance.
Two instances of the framework are developed for query suggestion in a conversational
recommender system. The first instance of the framework is based on a basic quantitative
preferences formalism, where options are compared using sums of weights of their fea-
tures. The second is a qualitative preference formalism, using a language that generalises
CP-nets, where models are a kind of generalised lexicographic order. A key feature of
both methods is that deductions of preference dominance can be made efficiently, since
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this procedure needs to be applied for many pairs of options. We show that, by allowing
the recommender to focus on undominated options, which are ones that the user is likely
to be contemplating, both approaches can dramatically reduce the amount of advice
the recommender needs to give to a user compared to what would be given by systems
without this kind of reasoning.

1. Introduction

In an era of overwhelming choice, recommender systems are a new source of assis-
tance, helping their users to decide which goods, services or information to purchase
or consume.1,2,3,4 These systems infer user preferences from data gathered either
explicitly, e.g., in the form of product ratings, or implicitly by observing user be-
haviour. They have been successfully used to recommend travel services, books,
CDs, financial services, insurance plans and news. From a technical point of view,
recommender systems have made use of various forms of supervised learning from
data sets of numerical ratings on products (e.g. from 1 = bad to 5 = excellent),
expressed by a collection of users on a catalogue of products, to make predictions
for products not yet rated by the user. The prediction algorithms used within rec-
ommender systems include collaborative filtering, content-based filtering and case-
based reasoning, and various hybrid approaches that combine these.1,2,3 However,
these classical approaches have typically supported only a simple ‘single-shot’ form
of human-computer interaction, where a user who has previously supplied a set of
ratings, identifies herself to the system and is then given a set of product recom-
mendations.

No matter how good recommender systems become, they are unlikely ever to be
sufficiently prescient that their first set of recommendations always satisfies the user.
Indeed, users are rarely satisfied with the first set of recommendations; they usually
want to see more options and they exploit the initial recommendations to refine their
preferences and articulate new requests. Conversational recommender systems allow
for this, and recognise that their users may be willing and able to reveal more of
their constraints and preferences, over a short dialogue, thereby moving away from
‘single-shot’ interaction. This is also an opportunity for the recommender system
to guide the user by asking questions, giving advice, displaying candidate products,
and giving explanations.5,6,3,7,8,9,10

Conversational recommender systems typically involve iteratively showing the
user a small set of options (e.g., products) for them to choose between. To select an
appropriate set to display at each stage, from a much larger collection of options, the
recommender needs information regarding which options are likely to be preferred to
others by the user, based on previous responses the user has given in the dialogue;
if one assumes that the user has some kind of preference relation over products,
this amounts to determining if certain products are dominated according to this
preference relation.

In 2007, Bridge & Ricci introduced a new kind of conversational recommenda-
tion, which they call Information Recommendation.11 Information Recommendation
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has a role to play in systems in which the user repeatedly edits and resubmits a
query until she finds a product that she wants.7,6 The user is unlikely to know
much about which queries are satisfiable by products in the product catalogue and
which are not. The recommender system can advise the user about which of the
edits to her current query will be satisfiable and which will not, to dissuade the
user from fruitlessly trying queries that are not satisfiable. However, in general the
list of all satisfiable (or unsatisfiable) next possible queries will be too long to be of
much help to the user. The recommender must put in place methods to minimise
the quantity of advice, while maximising its usefulness. The recommender system,
described in more detail in Section 2, does this by inferring constraints on the user’s
preference relation from her previous contribution to the dialogue, i.e. her earlier
queries. For instance, the system might infer that the features mentioned in the
user’s query are more important, for the user, than features not yet mentioned in
the query. The recommender reasons with the constraints to determine whether
certain queries dominate others, to rank the next possible queries, and to suggest
to the user those that are compatible with her preferences and compatible with the
available products.

Information Recommendation hence requires a framework for this kind of rea-
soning, where a set of models of the user is assumed, each with an associated
preference ordering, along with a satisfaction relation between models and state-
ments of constraints on preferences expressed in an appropriate language. Within
this framework, given a set of constraints, we infer that one product is preferred
to another if this preference holds for all models satisfying the constraints. As the
dialogue proceeds, the user’s new actions reveal more constraints on her preference
ordering. This can narrow the set of models of the user. We describe this framework
in more detail in Section 3.

Two instances of this framework are developed and presented in this paper. The
first, described in Section 4, is based on a simple quantitative preferences formalism,
involving a sum of weights (one for each feature of the recommended products),
with an associated language of linear inequalities. This is a very commonly used
model for preference representation, specifically, in Multi-Attribute Utility Theory
(MAUT).12 It is widely used in recommender systems, e.g. (Ref. 9). And it is the
approach to preference dominance taken in Bridge & Ricci’s original Information
Recommendation paper.

The second instance of the framework (Section 5) is a qualitative preference
formalism, where models are a kind of generalised lexicographic order, and con-
straints are expressed as comparative preference statements in a language gener-
alising CP-nets.13 This has not been used in Information Recommendation or any
other recommender system before.

Section 6 explains how the two instances of the framework can be used within
Information Recommendation. Then, Section 7 describes how the implementations
of the approaches have been experimentally tested.

Sections 8 and 9 look at other preference formalisms that could be used, and
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draw conclusions about our work so far.
The contributions of this paper include the following. It shows how a compara-

tive preferences approach can be used in a conversational recommender. Approaches
of this kind, as we mentioned above, have not been used in recommender systems
before. Using them is significant because of their expressiveness. This manifests
in two ways. The first, as we show in Section 6, is that there are nuances about
user preferences that the recommender can capture in the constraints when using
comparative preferences that cannot be captured when using the sum of weights
approach. The second, as we discuss in Section 9, is that the comparative prefer-
ences approach allows a recommender to express a wider range of constraints than
those envisaged by the original Information Recommendation work, including, e.g.,
statements about conditional preferences. Furthermore, through our experiments,
we reveal the viability of the comparative preferences approach. It is sufficiently
efficient in a practical (rather than theoretical) sense and it allows inferences to
be drawn that are strong enough on the one hand to give useful advice but not
so strong on the other hand to incorrectly eliminate options that the user prefers.
Indeed, its inferences can be stronger than those drawn in the sum of weights ap-
proach, resulting in giving the user shorter advice but still without compromising
success in directing the user to the best product. We find that these experimental
results are robust in the sense that they pertain irrespective of how the user’s true
preferences are represented.

2. Information Recommendation

Information Recommendation is concerned with helping a user to find a product to
purchase or consume. Throughout this paper, we use hotels as the example product.
The user repeatedly edits and resubmits a query until she finds a product that she
wants. For example, she might submit a query that asks for a hotel that has air-con
and golf. If she is advised that hotels that satisfy her query do exist, she might be
encouraged to edit her query and see whether there are hotels that additionally are
in the city centre. Perhaps if there are not, she might edit her original query to one
that sacrifices the golf in favour of the city centre location. This is a hit-and-miss
process that can be improved by the intervention of a recommender system. The
recommender system: observes the user’s actions (her queries); infers constraints on
the user’s preferred products; uses these inferences to deduce which queries a user
is likely to try next; and advises the user to avoid those that cannot be satisfied.

Imagine for instance a user whose current query requests hotels that have air-
con and golf, and the recommender knows that, while the user’s query is satisfiable,
there are no such hotels located in the city centre but there are some that also have
swimming pools. In this situation the system could help the user in the search pro-
cess by supplying exactly this information: this will dissuade the user from fruitlessly
trying to add to her query a request for a city centre location, and it will enable
her to realise that she can satisfy a desire for a pool. Moreover, if it is satisfiable
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to have air-con, golf and a sauna but the recommender has inferred from earlier
actions that a sauna is less preferable than a pool, then it is better to tell the user
that there are no hotels with air-con and golf in the centre but there are some that
have a pool rather than to tell her that there are no hotels with air-con and golf in
the centre but there are some that have a sauna.

Obviously the recommender could tell the user the satisfiability of all the pos-
sible edits to her query, but such a list would typically not be of much use, as it
could potentially be very long. Hence the recommender must put in place methods
to minimise the quantity of information that is passed to the user during their in-
teraction. In other words, the recommender must pass to the user the information
that has the greatest value for the user.

The information that has the greatest value is here considered to be that which
minimises the total quantity of information exchanged and the interaction length,
while still finding the ‘best’ product(s) for the user. A more general approach,
which we have not investigated yet, would take a broader view of cognitive load: in
this case, we would seek not just to minimise the quantity of information and the
interaction length, but also the user memory and deduction costs.

The minimisation of the quantity of information transmitted by the advisor
to the user is particularly important in mobile applications, which are among the
targets of our research, where the physical constraints of the device impose a narrow
communication channel (small screen size and limited input capability), and the
context of usage further imposes that the interaction be as quick and simple as
possible.14

In this paragraph and the next, we take the opportunity to compare the use that
Information Recommendation makes of what it learns about its user with the use
that classical product recommendation makes. In the Adaptive Place Advisor, for
example, the user preference information is used for product selection.9 The advisor
infers feature weights and defaults, and uses them in product retrieval. Similarly,
in the work of Pu et al., the system uses its knowledge of users and of the product
space to select sets of products, albeit sets that it hopes will provoke the user into
volunteering further preferences.10 In collaborative filters also, the user model (the
ratings profile) is for product retrieval and ranking.

But in Information Recommendation, the user preference information is used to
guide the user’s search rather than to retrieve or rank products. So, while the ulti-
mate end is still that of helping the user find the best products, the primary goal of
our proposed techniques is to support the user in finding them autonomously rather
than in finding them for the user. Work on question selection in dynamic dialogues
can be seen as an example of Information Recommendation. The system dynami-
cally selects questions to elicit user preferences. Its goal is to choose a sequence of
questions that most effectively homes in on desirable products. In most such work,
questions are selected based on the user’s partial query and the product distribu-
tion. But, Schmitt’s simVar system also builds and uses simple user models.8 Reilly
et al.’s use of the query history to dynamically recommend compound critiques can
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also be regarded as Information Recommendation.5 In their work, the system shows
the user some products which the user can critique, but it also advises the user by
displaying dynamically-computed critiques that are known to be satisfiable, which
the user can select.15

Below we describe Information Recommendation in more detail.

2.1. The products

In this paper, we assume that the products are modeled with a collection of Boolean-
valued features V = {F1, . . . , Fn}. The features are intended to relate to a set of
products that the user is interested in choosing between; for example, in choosing
a hotel room, one feature might be whether the hotel has a swimming pool.

Define a configuration α to be a mapping from {1, . . . , n} to {1, 0}. A config-
uration α can also be thought of as a selection of features: all features Fi such
that α(i) = 1. For convenience we will write a configuration such as (1, 0, 1) =(
α(1), α(2), α(3)

)
as f1f̄2f3.

In Information Recommendation, configurations can be thought of as queries
over the set of features. If a user issues query q and if fi ∈ q, this means that the
user is interested in products that have the ith feature. In accordance with most
Web-based product search systems, fi 6∈ q means only that the user has not (yet)
declared any interest in feature Fi; it does not mean that the user wants products
that lack the ith feature. So, for example, if q is f1f̄2f3, the user wants a product
that has features f1 and f3 and has said nothing yet about f2.

A subset of the configurations correspond to products that are available to the
user. A query is satisfiable if and only if there exists a product which has all the
features in the query; otherwise, it is unsatisfiable. Users cannot be expected to
know in advance which queries are satisfiable and which are not, although they
may have incomplete knowledge of this.

2.2. The dialogue

In the kind of system envisaged in (Ref. 11), the user submits an initial query,
typically one that is quite under-specified: ‘to test the water’. In our experiments
(Section 7) we use an empty initial query. Let this query be known as the current
query, q.

The recommender system does not know the user’s preferences and does not
ask about them. It may only infer them from the sequence of queries that the user
submits. As the dialogue proceeds, the recommender system will infer constraints
on the user’s preferences and express them as statements in a language L. We will
denote the current set of statements by Φ. Initially Φ may contain a set of ‘back-
ground’ assumptions. In particular, we will want to express the idea that including
a feature in a query is at least as good as not including it. Statements will be added
to Φ as the dialogue proceeds. For example, if the user’s query requests a certain
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feature, we may plausibly infer that this feature is more important than the ones
not included in the query.

The interaction between the user and the recommender system proceeds as fol-
lows:

(i) The recommender system analyzes current query q, with particular regard to
differences between q and the queries the user might alternatively have submit-
ted. The system induces some additional constraint on the user’s preferences
and adds corresponding statements to Φ.

(ii) The recommender system generates a set of candidate next possible queries
and prunes this set to those that are satisfiable and undominated (see below).
It advises the user to confine her next query to this set.

(iii) The user chooses and submits her next query. This becomes the new current
query q. In the experiments reported in Section 7, we arrange that the user
always chooses one of the queries that the system advises (although this might
not be so in practice).

Steps (i)–(iii) are repeated until the user is satisfied with q or the set of un-
dominated, satisfiable candidates is empty, in which case as far as the recommender
system is concerned q cannot be bettered. At this point, the user can request to see
the products that satisfy q.

The goal of the recommender system is to give the advice that has the greatest
value. We consider this to be that which minimises the total quantity of advice
given and the dialogue length, while guiding the user to the best product.

During step (ii) above, the recommender system computes the following three
sets of queries:

• Candidates: Candidate queries are ones which are close, in a particular sense,
to the current query. Each is a low-cost edit to the current query. For example,
if fi 6∈ q, the set of candidates will include the query that results from adding
just feature fi to q.

• Satisfiables: The recommender system should never include unsatisfiable queries
in its advice: they make interaction length longer without leading the user to
the best product. Hence, the system eliminates from Candidates those queries
which are unsatisfiable; the remaining queries are called the Satisfiables.

• Undominated : The system could advise the user to confine her query to Sat-
isfiables. However, this set can be large. Hence, the system eliminates from
Satisfiables each query which is dominated by (i.e., worse than) some other
member of Satisfiables; the remaining set of queries is called Undominated. The
dominance relation is based on what is induced in step (i) above. The rationale
is to exclude from the system’s advice queries that, on the basis of what the
system has induced about the user’s preferences, it thinks the user would regard
as inferior.

In effect, the system’s advice to the user is to confine her next query to a set which
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the system knows are satisfiable and believes the user is likely to try next (since,
according to what the system has inferred about the user’s preferences, they are
ones that are not dominated by other satisfiable queries).

We will now explain how to obtain the three sets of queries.

Generating the candidates

Real user behaviour in query editing tends to proceed with modifications of limited
‘reach’. Hence, following (Ref. 11), we define Candidates as the set of queries which
we obtain by applying three editing operations, Add, Switch and Trade, to the
current query. These operations are defined as follows. Given current query q and
fi 6∈ q, operation Add(q, fi) adds just feature fi to q, giving the new query q∪{fi},
which we sometimes write as qi. Switch(q, fi, fj) where fi ∈ q, fj 6∈ q, i 6= j discards
feature fi in favour of feature fj , giving the new query (q \ {fi}) ∪ {fj}. Finally,
Trade(q, fi, fj , fk) where fi ∈ q, fj 6∈ q, fk 6∈ q, i 6= j, i 6= k, j 6= k discards feature fi

and introduces features fj and fk.
There are, of course, other edits that could be in this set of candidates, such

as trading two features in q for three not in q. It is possible that such an edit
would turn out to be satisfiable and not dominated by any other edit. It is
helpful, however, in a practical system to confine the recommender’s advice to
a set of readily-understandable edits, particularly ones that the user herself is
likely to contemplate. Other edits, such as deletion of a feature from q, are ex-
cluded because they would produce a new query which, although satisfiable if
q is satisfiable, would be dominated by q itself. Finally, we note that, although
Trade(q, fi, fj , fk) = Add(Switch(q, fi, fj), fk), the Trade operation is not redun-
dant in Information Recommendation. There are scenarios in which the recom-
mender could advise the user to try the Trade operator (if it results in a satisfiable
query that is not dominated by any other edits to q) but could not advise the user
to first try the Switch operator, as a precursor to then doing an Add ; the latter
advice would not be suitable in scenarios where the Switch results in a query that,
while satisfiable, is dominated by one of the other edits.

Checking satisfiability

As defined earlier, a query is satisfiable if and only if there exists a product which has
all the features present in the query. If products are stored explicitly in a database,
satisfiability of a candidate query can be checked by a scan of the database. For
configurable products, where the set of products is represented as a set of solutions
to a Constraint Satisfaction Problem, satisfiability of a candidate query can be
checked by determining if the CSP has solutions containing all the features in the
query (which can be checked by checking satisfiability of an augmented CSP).



April 12, 2011 20:45 WSPC/INSTRUCTION FILE ijait2011-twbr

9

Checking for dominance

The final pruning of the satisfiable candidate queries is performed using one of the
two instances of the framework for dominance of preferences that we will explain
in Sections 3, 4 and 5. In either case, q ∈ Satisfiables is pruned if it is strictly
dominated, i.e., dominated according to relation ÂΦ, by q′ ∈ Satisfiables.

3. A Framework for Dominance of Preferences

We assume a set Ω of possible configurations (as defined in Section 2). We would like
to generate some kind of (partially ordered) preference relation < on Ω, based on
previous information we have received regarding the user’s preferences. This section
describes a framework for generating such a relation. We define two instances of the
framework in Sections 4 and 5.

In order to make non-trivial inferences regarding the user’s relative preferences
over configurations, we will have to make some assumptions. We assume:

• A set of models M, each of which is intended to represent a possible user (or
way the user could be). Associated with each M ∈ M is a total pre-order <M

on configurations, i.e., a reflexive, transitive and complete relation (so for all
configurations α and β, we have either α <M β or β <M α or both).

• A formal language L whose statements express constraints on the user’s pref-
erences.

• A relation |= between M and L. For M ∈ M and ϕ ∈ L, we interpret M |= ϕ

to mean that ϕ holds for the preferences of M .

Given a particular set Φ ⊆ L of statements, we consider the orderings on con-
figurations which hold for every model satisfying statements Φ. Formally, we define
relation <Φ on configurations as follows: α <Φ β if and only if α <M β for all
M satisfying (every member of) Φ. It follows that <Φ is a pre-order (a reflexive
and transitive relation) on configurations. Now, α <Φ β means that every user who
agrees with Φ considers that configuration α is at least as desirable as configuration
β (assuming this particular model of users). It is possible that we also have β <Φ α,
in which case every user considers that α and β are equally desirable. We define
the relation ÂΦ to be the strict part of <, so that α ÂΦ β if and only if α <Φ β

and β 6<Φ α. Relation ÂΦ is irreflexive and transitive. We say that Given Φ, α

strictly dominates β, if α ÂΦ β, that is, if all users (represented by models M in
M) agreeing with Φ regard α as at least as preferable as β (i.e., α <M β), and at
least one such user regards α as strictly preferable to β (i.e., β 6<M α).

4. Sum of Weights Model of the User

In this section we consider our first kind of model of the user’s preferences, where
it is assumed that a user assigns a weight to each feature, and configurations are
compared on the sum of weights of the associated set of features.
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4.1. Models

The set of models is the set of all vectors of weights w = (w1, . . . , wn), where wi

is a non-negative real number. wi is the weight assigned to feature Fi. Given a
weights vector w, the overall value w(α) of a configuration α is the sum of weights
of the features included in α, i.e., w(α) =

∑
i:α(i)=1 wi, which also can be written

as
∑

i wiα(i). This is used to define the ordering on configurations. We define the
preference relation <w for model w by α <w β if and only if w(α) ≥ w(β), i.e., if
and only if

∑
i wi

(
α(i)− β(i)

) ≥ 0. Thus <w is a total pre-order on configurations.

4.2. Constraint language

The language consists of statements of the form α ≥ β, where α and β are configu-
rations.

4.3. Dominance relation

Weight vector w is defined to satisfy α ≥ β if α <w β. Let Φ be a set of statements.
The definitions in Section 3 lead to the following definition of <Φ, the induced
preference relation given constraint statements Φ:

For configurations α and β, α <Φ β if and only if α <w β for all weight vectors
w satisfying Φ. Dominance relation ÂΦ is then the strict part of <Φ. When we want
to make explicit comparisons with the second instance of the framework (Section 5),
we will use the notation <sw

Φ for <Φ when the Sum of Weights model is considered.

Example 1. Let Φ be the pair of statements: f1f̄2f3 ≥ f̄1f2f3, and f1f2f̄3 ≥
f̄1f2f3. Let α be the configuration f1f̄2f̄3, and let β be the configuration f̄1f2f3.
Weights vector w satisfies the constraint f1f̄2f3 ≥ f̄1f2f3 if and only if w(f1f̄2f3) ≥
w(f̄1f2f3), i.e., w1 + w3 ≥ w2 + w3, which holds if and only w1 ≥ w2. By similar
reasoning, w satisfies Φ if and only if w1 ≥ w2 and w1 ≥ w3. Also, w satisfies α ≥ β

if and only if w1 ≥ w2 + w3. Thus Φ does not entail α ≥ β, so we do not have
α <sw

Φ β, since, for example, weights vector w with w1 = 4, w2 = 2 and w3 = 3
satisfies Φ but does not satisfy α ≥ β. ¤

Example 2. Suppose now that there are four features, and let Ψ be the pair
of statements f1f̄2f3f4 ≥ f̄1f2f3f4 and f1f2f̄3f̄4 ≥ f1f̄2f3f̄4. With the sum of
weights semantics this implies f1f2f̄3f4 ≥ f̄1f2f3f4, since the first statement implies
w1 ≥ w2, and the second statement implies w2 ≥ w3, implying w1 ≥ w3, which im-
plies that the third statement is satisfied. We therefore have f1f2f̄3f4 <sw

Ψ f̄1f2f3f4.
In fact, we have strict dominance: f1f2f̄3f4 Âsw

Ψ f̄1f2f3f4 since we do not have
f̄1f2f3f4 <sw

Ψ f1f2f̄3f4. ¤
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4.4. Computation of preference

We wish to determine if α <Φ β, for given configurations α and β. Let Pos be the
set of constraints wi ≥ 0, for i = 1, . . . , n, representing the non-negativity of the
weights (and corresponding to the assumption that including a feature is always at
least as good as not including it). The definition implies that α <Φ β if and only if
the linear constraints Φ ∪ Pos (over real-valued variables wi) entail the constraint∑

i

(
α(i)− β(i)

)
wi ≥ 0.

For implementation of this using a Linear Programming solver, it can be conve-
nient to express it as a linear optimisation problem. Define Amin to be the minimum
value of

∑(
α(i)−β(i)

)
wi subject to constraints Φ∪Pos. It can be easily shown that

α <Φ β if and only Φ ∪ Pos entails
∑

i

(
α(i)− β(i)

)
wi ≥ 0 if and only if Amin ≥ 0.

5. Comparative Preferences Model of the User

5.1. Models

In our second approach, models are a kind of generalised lexicographic order, called
cp-trees,16,17 which are similar to search trees used for solving constraint satisfaction
problems. Figure 1 gives an example of a cp-tree. Each node is labeled with a variable
(i.e., a feature, in the current context). The root is labeled by the most important
variable, F2 in this example. Each node is associated also with a preference ordering
of the values of the variable. This local ordering in the case of the nodes in the
example is fi ≥ f̄i, where fi means Fi is included (Fi = 1) and f̄i means that Fi

is not included (Fi = 0). This ordering captures the requirement that including a
feature is never worse than not including it.
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Fig. 1. A cp-tree σ, along with its associated ordering <σ on configurations.
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Two configurations α and β are compared first on the most important variable.
If they do not agree on this variable then the comparison is settled: in the example,
if α contains feature F2 and β does not, then α is better than β. This happens, for
example, if α is f1f2f3 and β is f1f2f3. Otherwise, α and β agree on the most im-
portant variable. The user may then have a next most important variable (labeling
a child node); this can depend on the value assigned to the most important variable
(signified by the value on the edge from parent to child). For this reason, this model
allows conditional preferences. If there is no such next important variable, then α

and β are considered equally preferable according to this cp-tree. Thus the cp-tree
σ generates a total pre-order <σ on configurations.

Note that each node in the cp-tree in Figure 1 is associated with a single variable.
In fact, we can allow a more general representation, where at most γ variables
(where, in this paper, γ = 1, 2 or 3) are associated with a node, along with a total
pre-order over the assignments to that set of at most γ variables. For example, if a
node is associated with the pair of variables Y = {F2, F3} then the local ordering
is over assignments to Y , and might be e.g., f2f3 ≥ f2f̄3 ≡ f̄2f3 ≥ f̄2f̄3 (so that
f2f̄3 and f̄2f3 are equivalent in the local total pre-order ≥, i.e., both f2f̄3 ≥ f̄2f3

and f2f̄3 ≤ f̄2f3). Let M(γ) be the set of cp-trees over Ω, where the set of variables
associated to a node involves at most γ variables. A 1-cp-tree over Ω is defined to
be an element of M(1), i.e., a cp-tree with a single variable being associated with
each node (as in Figure 1). The local ordering associated with a node associated
with feature Fi, must then be fi ≥ f̄i, since including a feature is always at least as
good as not including it. For full definitions of cp-trees and their associated total
pre-orders see (Ref. 16).

5.2. Constraint language

The language will include statements that compactly express comparative (and
sometimes conditional) preferences among configurations. There is a substantial
and fast growing literature on this topic in the AI and Philosophy of Science
communities.18,19,13,20,21,22,16

The language includes comparative preference statements ϕ of the form p ≥ q

‖ T , where P , Q and T are subsets of the set of features V , and p is an assignment
to P (i.e., a function from P to {0, 1}), and q is an assignment to Q. Informally,
the statement p ≥ q ‖ T represents the following: p is preferred to q if T is held
constant. More formally, the preference relation < satisfies the statement p ≥ q ‖ T

if and only if α < β for all configurations α and β such that (i) α extends p (i.e., α

restricted to the subset of the features in P equals p), (ii) β extends q, and (iii) α

and β agree on T : α(Fi) = β(Fi) for all Fi ∈ T .
A very important kind of statement is one expressing the constraint that one

configuration, α, is preferred over another, β. This can be written as α ≥ β ‖ ∅; we
also write such a preference statement as α ≥ β.

Since including a feature is at least as good as not including it, we always include,
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in the set Φ, the statement fi ≥ fi ‖ V \{Fi} for each feature Fi. Hence our language
is strongly related to Conditional Importance Networks.22

5.3. Dominance relation

We define the set of models of users to be the M(γ) for some γ = 1, 2, or 3. Each
cp-tree σ generates a total pre-order <σ on configurations. Let σ be a cp-tree and let
ϕ be a statement in the constraint language. σ satisfies ϕ if and only if <σ satisfies
ϕ. In the same way as in Section 4, we define, for a given set of statements Φ, <Φ

(or more precisely, <cpγ

Φ ), in the following way: α <Φ β holds if and only if α <σ β

holds for all cp-trees σ in M(γ) satisfying Φ. The definitions immediately imply
that relations <cpγ

Φ are monotonic in both Φ and γ (increasing in Φ and decreasing
in γ): if γ ≥ γ′ and Φ ⊆ Ψ then α <cpγ

Φ β implies α <cpγ′
Ψ β.

Example 1 continued. With the cp-tree semantics, when γ = 1, the pair of state-
ments Φ (f1f̄2f3 ≥ f̄1f2f3, and f1f2f̄3 ≥ f̄1f2f3) implies the preference statement
f1f̄2f̄3 ≥ f̄1f2f3, so we have f1f̄2f̄3 <cp1

Φ f̄1f2f3 (and indeed we have f1f̄2f̄3 strictly
dominates f̄1f2f3, i.e., f1f̄2f̄3 Âcp1

Φ f̄1f2f3). The reason is that, for any 1-cp-tree σ

satisfying f1f̄2f3 ≥ f̄1f2f3, the most important feature must be either F1 or F3. (If
F2 were the most important feature, then we would not have f1f̄2f3 <σ f̄1f2f3, be-
cause the local ordering is f2 ≥ f̄2, since the presence of a feature is never worse than
its absence.) Similarly, if 1-cp-tree σ satisfies f1f2f̄3 ≥ f̄1f2f3, then the most impor-
tant feature must be either F1 or F2. Hence for any 1-cp-tree σ satisfying Φ, F1 is
the most important feature. The root node then determines the preference ordering
of the pair of configurations f1f̄2f̄3 and f̄1f2f3: since the local ordering of this node
must be f1 ≥ f̄1, we have f1f̄2f̄3 ºσ f̄1f2f3. Hence we have f1f̄2f̄3 <cp1

Φ f̄1f2f3. The
qualitative and lexicographic nature of the cp-trees semantics ensures this inference,
in contrast with the numerical sum of weights method, which did not. ¤

Example 2 continued. Recall that Ψ is the pair of statements f1f̄2f3f4 ≥
f̄1f2f3f4 and f1f2f̄3f̄4 ≥ f1f̄2f3f̄4. In contrast with the sum of weights semantics,
Ψ does not imply f1f2f̄3f4 ≥ f̄1f2f3f4. To show this we can construct a 1-cp-tree
σ with F4 as the most important (root node) variable, and where, given f4, F3 is
more important than F1 which is more important than F2, and given f̄4, F2 is more
important than F3 which is more important than F1. σ then satisfies Ψ, but not
f1f2f̄3f4 ≥ f̄1f2f3f4.

A key issue here is that cp-trees can represent conditional preferences: the pref-
erences can be different given f4 from those given f̄4. In contrast, the sum of weights
semantics assumes preferential independence, so preferences are not conditional at
all, which is why the inference holds for the sum of weights semantics. ¤

The pair of examples shows that the two preference dominance techniques are
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incomparable: <cp1
Φ can sometimes include preferences not included in <sw

Φ , and
vice versa.

5.4. Computation of preference

Given set of statements Φ and configurations α and β, we can determine in poly-
nomial time whether or not α <Φ β holds, using the algorithm given in (Ref. 16),
as shown by Theorem 1 in (Ref. 16).

6. Inducing Constraints on Preferences in Information
Recommendation

Now that we have explained the two instances of the framework for dominance of
preference, it remains for us to return to Information Recommendation to explain
what the system induces in step (i) above (Section 2.2), when it observes the user’s
queries. We explain this below for each of the two preference models.

6.1. Inducing constraints in the Sum of Weights model

Add(q, fi)
If the user has added feature fi to query q, giving rise to new query qi, then

statements qi ≥ qj are induced for all fj 6∈ q, i 6= j unless Add(q, fj) = qj is
unsatisfiable. This assumes that the new query is preferred to other satisfiable
queries that could have been generated by adding other features. This implies
that the weight vector satisfies the linear inequality wi ≥ wj . However, we do
not infer qi ≥ qj in all cases. In particular, we do not infer it if Add(q, fj)
is unsatisfiable. Users may have (incomplete) knowledge of which queries are
unsatisfiable: if she knows a query is unsatisfiable, then she will not submit it.
We ‘play it safe’: when qj is unsatisfiable, in case the user knows this, we do
not assume that the query that she does submit has higher weight than this
unsatisfiable query.

Switch(q, fi, fj)
If the user switches fi for fj , then we infer that wi ≤ wj ; and for all fk 6∈ q

we can infer wj ≥ wk unless Switch(q, fi, fk) is unsatisfiable.
Trade(q, fi, fj , fk)

If the user trades fi for fj and fk, then we infer that wi ≤ wj + wk; and for
all j′, k′ 6∈ q such that {j, k} 6= {j′, k′} and j′ 6= k′, we infer wj +wk ≥ wj′ +wk′

unless Trade(q, fi, fj′ , fk′) is unsatisfiable.

Note that we have been quite conservative in what we have inferred. In the
event of observing Trade(q, fi, fj , fk) for example, we might also have inferred
that the selected Trade is better than all other satisfiable Trade operations,
Trade(q, fi′ , fj′ , fk′) for {i, j, k} 6= {i′, j′, k′} instead of just other ways of trad-
ing fi. Using the same reasoning, we might have inferred that a Trade is better



April 12, 2011 20:45 WSPC/INSTRUCTION FILE ijait2011-twbr

15

than all satisfiable Add and Switch operations; and that a Switch is better than all
satisfiable Add operations.

We might make these inferences if we attribute ever greater rationality to the
user. In this paper, we are not going to attribute these higher levels of rationality
to the user, and hence we will infer only what we stated earlier. An important
observation is that it is not a problem to our proposed methods if we assume that
users are less rational than they really are. The reason this does not pose a problem
to our proposed methods is that assuming users are less rational than they really
are will result only in us making fewer deductions when observing their moves; it
will not result in us drawing incorrect inferences. In fact, it is more dangerous to
assume a fully rational user, who can really take the best move, since this will cause
us to draw inferences that may be incorrect.

6.2. Inducing constraints in the Comparative Preferences model

Add(q, fi)
Again consider the situation where the user has chosen to add feature fi

rather than feature fj (which is another feature different from fi not present
in q). For this model, there are alternative statements one might induce from
this decision by the user. We consider two, each being a kind of counterpart
for the constraint wi ≥ wj induced for the sum of weights approach. It is an
advantage of the Comparative Preferences model that it can express nuances
that the Sum of Weights model cannot.

• Basic: Let q be equal to the current query, let qi be the current query
q with the feature fi added, and let qj be q with the feature fj added.
A basic, somewhat conservative, approach is to just model the preference
of feature i over feature j by the preference statement: qi ≥ qj ||∅, i.e.,
qi ≥ qj , which just expresses a preference for qi over qj .

• Importance: Alternatively, and less conservatively, we can induce fi ≥
fi||V \ {Fi, Fj}, which says that the presence or not of the feature Fi is
more important than the choice of Fj . Thus, whatever the state of the
feature Fj in the query, the user will prefer Fi to be present in the query
so that (if possible) this feature is included in the best product.

Note too that in either case we ensure that the recommender system ‘plays
it safe’ when inducing preference statements, in the same way that we explained
for the Sum of Weights model, by not inducing preferences over unsatisfiable
queries.

Switch(q, fi, fj)
If the user switches fi for fj then we can induce statements stating the

superiority of the feature fj over the feature fi, and also over the features fk

that were not chosen instead of fj .

• Basic: Let q be the current query, let qj
−i be the current query q with

the feature fj added and the feature fi removed, i.e., Switch(q, fi, fj).
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We model the preference of feature fj over feature fi by the preference
statement qj

−i ≥ q||∅, i.e., qj
−i ≥ q. Similarly, we model the preference of

feature fj over feature fk for any k such that qk
−i is satisfiable by qj

−i ≥ qk
−i.

• Importance: Here we induce the preference statement fj ≥ fj ||V \
{Fi, Fj}, and the preference statement fj ≥ fj ||V \ {Fk, Fj} for any k

such that qk
−i is satisfiable.

Trade(q, fi, fj , fk)
If the user trades Fi for Fj and Fk then we can induce statements stating

the superiority of the combination of features fj and fk over the feature fi, and
also over the combinations of features fm and fn that were not chosen.

• Basic: Let qjk
−i be the current query q with the features fj and fk added

and the feature fi removed, i.e. Trade(q, fi, fj , fk), and let qmn
−i be q with

the features fm and fn added and the feature fi removed. We model
the preference of the combination of features fj and fk over the feature
fi by the preference statement qjk

−i ≥ q||∅, i.e., qjk
−i ≥ q. We model the

preference of the combination of features fj and fk over the combination of
features fm and fn, with qmn

−i being satisfiable, by the preference statement
qjk
−i ≥ qmn

−i .
• Importance: We induce the preference statement fjfk ≥ fjfk||V \
{Fi, Fj , Fk}, which says that the presence or not of the combination of
features fj and fk is more important than the choice of Fi. We also induce
the statement fjfk ≥ fjfk||V \ {Fj , Fk, Fm, Fn}, for any m,n 6∈ q such
that {j, k} 6= {m, n} and m 6= n.

7. Experiments

In this section, we report experiments with simulated users that demonstrate the
feasibility of using both the Sum of Weights model and the Comparative Preferences
model within the Information Recommendation system. It is a common practice to
use simulated interactions to initially test alternative algorithms for conversational
systems.23,24 Simulations can pinpoint the main deficiencies of the algorithms and
can be used to compare a large number of alternative approaches, as in our case.
Experiments with real users cannot be used to extensively test alternative dialogue
control algorithms, even if it is clear that the ultimate evaluation of the effectiveness
of a conversational system has to be made online.

We use two separate product databases, that we scraped from the Web, each
describing hotels by their amenities expressed as Boolean features such as airport
shuttle, pets permitted, restaurant on-site, etc. The Marriott-NY database records
9 features about 81 hotels; many offer the same amenities, and so there are 36
distinct products in the database. The Trentino-10 database records 10 features for
4056 hotels, of which 133 are distinct.

The simulated users in our experiments behave in the following somewhat ide-
alized way: within a dialogue, they do not try queries that they have tried earlier in
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the dialogue; they are aware of their own preferences and never choose a next query
that would be inferior to the current one; and they take heed of all advice given,
i.e., if the recommender system tells them to confine their next query to a certain
set, then they do so; indeed they choose the best possible query from this set. In
the terminology of (Ref. 11), these are optimizing users.

For a simulated user to make choices about which among the queries in the
recommender’s advice is the best one for it to submit next, the simulated user must
be assigned a set of true preferences. These are generated randomly. We arrange that
they are known to the simulated user and used by that user for query selection, but
they are not known to the recommender system, which knows only what it induces
about user preferences and adds to Φ when observing user query behaviour.

In the same way that the recommender system can represent induced constraints
on users’ preferences in either the Sum of Weights model or the Comparative Pref-
erences model, equally the simulated users’ true preferences can be represented in
either model. If the true preferences are represented in the Sum of Weights model,
then recommenders that induce constraints on preferences in the Sum of Weights
model may have an advantage over recommenders that are using the Comparative
Preferences model, and vice versa. We control for this problem by showing results
below that pair both ways of representing true preferences with recommenders that
use both ways of representing induced preferences.

In (Ref. 11), the initial query in each dialogue was non-empty but small, and
was generated randomly but in such a way as to be compatible with the user’s true
preferences. In the dialogues that we use in our experiments here, the initial query
in each dialogue is empty. While this is less realistic (real users usually make a few
selections in Web search forms before first submitting), we found this to be the best
way of ensuring that our comparisons of the two preference models are done fairly.

In the experiments, one recommender system uses the Sum of Weights model;
six use the Comparative Preferences model, differing first on which of the two alter-
native preference statements they infer (Basic or Importance), and on their value
for γ (1, 2 or 3). For each pairing of a user with a recommender system, we ran
500 simulated dialogues. In total then, we are reporting results for 2 databases × 2
ways of representing true preferences × 7 recommenders × 500 dialogues, which is
14000 runs of the system.

We stress that a recommender that does not remove from its advice those queries
that are dominated would suggest to the user a large number of next possible
queries, i.e., all those that are satisfiable. This has been a common approach in
earlier conversational systems and it is current practice in many conventional Web
applications which allow the user to specify a preferred value for a feature (e.g., using
a checkbox) and then show the number of products that satisfy that condition. The
whole advantage of Information Recommendation rests on being able to prune the
dominated queries, showing only the undominated ones, on the basis that these best
match the user’s preferences. Hence, in the experiments we compare the pruning
rates achieved by using the Sum of Weights model with those achieved by the six
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recommender systems that use the Comparative Preferences model. The pruning
rate is defined as follows:

pruning rate =
|Satisfiables \Undominated |

|Satisfiables| × 100 (1)

“Eq. (1)” shows the extent to which an approach eliminates what it takes to
be inferior satisfiable candidate queries from its advice. In general, the shorter the
advice the better, as this reduces the set of options the user has to look through.

7.1. Representing true preferences in the Sum of Weights model

In our first set of experiments, we set the user’s true preferences by randomly
generating weight vectors over product features. The pruning rates in this case are
shown in Table 1.

Table 1. The pruning rates (true preferences repre-
sented in Sum of Weights model)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 87·50 14·48 12·65
Comp. Prefs. Importance 87·50 87·49 87·42
Sum of Weights 87.38

Trentino-10

Comp. Prefs. Basic 87·49 16·51 13·98
Comp. Prefs. Importance 87·42 87·57 86·72
Sum of Weights 85.72

Table 2. The average number of steps per dia-
logue (true preferences represented in Sum of Weights
model)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 6·004 5·998 6·000
Comp. Prefs. Importance 6·008 6·006 5·998
Sum of Weights 6.001

Trentino-10

Comp. Prefs. Basic 6·726 6·784 6·798
Comp. Prefs. Importance 6·748 6·756 6·790
Sum of Weights 6.790

The table shows that, in most settings, the Comparative Preferences approach
is pruning non-optimal queries very slightly more than the Sum of Weights ap-
proach (the exceptions being Basic with γ = 2 or 3 when the pruning is very much
less). For example, the Comparative Preferences model using Basic preference state-
ments and with γ = 1 eliminates 87.5% of satisfiable candidates in dialogues about
the Marriott-NY database, whereas the Sum of Weights approach prunes 87.38%.
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Table 3. The same final query rate (true preferences
represented in Sum of Weights model)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 98·00 98·80 99·40
Comp. Prefs. Importance 99·00 98·80 99·60

Trentino-10

Comp. Prefs. Basic 92·60 96·20 98·40
Comp. Prefs. Importance 92·00 93·00 97·40

Table 4. The average shortfalls (true preferences repre-
sented in Sum of Weights model)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 0·0005 0·0000 0·0000
Comp. Prefs. Importance 0·0003 0·0001 0·0002
Sum of Weights 0.0000

Trentino-10

Comp. Prefs. Basic 0·0070 0·0010 0·0005
Comp. Prefs. Importance 0·0070 0·0050 0·0020
Sum of Weights 0.0005

Table 5. The computation time (true preferences repre-
sented in Sum of Weights model) in millisecond(ms)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 46·10 1529·11 2937·20
Comp. Prefs. Importance 44·92 205·61 2466·01
Sum of Weights 59.73

Trentino-10

Comp. Prefs. Basic 195·70 6978·69 7493·94
Comp. Prefs. Importance 129·56 726·56 11053·50
Sum of Weights 289.53

The table also shows that, on the whole, with the Comparative Preference model,
the amount of pruning increases as the preference statements induced become less
conservative (from Basic to Importance). For example, in the Trentino-10 part of
Table 1, with γ = 2, pruning goes from 16.51% Basic to 87.57% Importance. (The
very slight exception to this for the Trentino-10 γ = 1 case is probably due to
random variation in tie breaking.)

Furthermore, we see that the parameter γ, (the maximum number of variables
that are associated with a node in a cp-tree), affects the degree of pruning. Specifi-
cally, as γ increases, the number of queries pruned tends to decrease. For example,
in the Marriott-NY part of Table 1, with preference statements Importance, prun-
ing goes from 87.50% (γ = 1) to 87.49% (γ = 2) to 87.42% (γ = 3). This is a
reflection of the monotonicity with respect to γ observed above. (However, pruning
is to do with strict dominance, which is not necessarily monotonic with respect to
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γ, but very often will be, because of the monotonicity of dominance.) The effect
is especially marked in the Basic model where the pruning rate falls from nearly
90% to around 16.5% or less. When γ is increased from 1 to 2, many queries of the
Trade form become undominated in the Basic model, because of the more expres-
sive preference relations which can be represented by cp-trees with γ = 2 (allowing
more than one feature to be assigned at a node). With the stronger Importance
preference form, these Trade queries are still dominated.

What is also of concern from a practical point of view is the average length of the
advice that the system gives, i.e., the number of options the user has to choose from;
this is inversely related to the pruning rate. Except in the cases where pruning is very
low (Basic with γ = 2 or 3), advice from the Sum of Weights recommenders is very
slightly longer than it is in the case of the Comparative Preferences recommenders,
being around 10 for both datasets.

Table 2 shows dialogue lengths are very similar in the case of all recommenders:
around 6 steps on average for Marriott-NY, and around 6.8 steps for Trentino-10.

Of course, it is not enough to know that one approach prunes more than another,
or gives shorter advice, or gives rise to shorter dialogues. If it were doing so to the
detriment of other factors, in particular the ability of the user to reach the best
product, then the extra pruning would be of little value.

We have measured the extent to which the final queries that the user reaches
in a dialogue (and hence the final product that she might choose) agree across the
different recommenders. We find (see Table 3) that the Comparative Preferences
approaches agree with the Sum of Weights approach between 91 and 99% of the
time, and the more an approach prunes, the less this agreement is. For example, for
Trentino-10, Basic γ = 1 agrees with Sum of Weights 92.6% of the time; this rises
to 96.2% for γ = 2; and it falls to 92% for Importance γ = 1.

Since true preferences are represented in the Sum of Weights model, we can also
measure the amount by which the utility of the product that the user ultimately
chooses falls short of the utility of the best product that she could have reached,
normalized by the difference between the products of highest and lowest utility: see
Table 4. Unsurprisingly, these follow a similar pattern to the percentage agreements
reported in the previous paragraph. The values are very close to zero, ranging from
0 to 0.007.

Table 5 shows the computation time taken by the different implementations of
the pruning. When γ = 1, the time taken by the different implementations of the
pruning is roughly similar—for example, around 0.2 seconds for a dialogue with the
basic comparative preferences pruning for the Trentino dataset—with the sum of
weights linear programming algorithm taking a little longer than the two others.
We can see the computation time increasing very strongly with γ, from γ = 1 to
γ = 2. For example, for the Basic-Trentino the time increases by more than 30 times
from 195ms (γ = 1) to 6978ms (γ = 2). This is partly because the complexity of
the dominance algorithm is exponential in γ.
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Overall, for this experimental setup it seems that it is better to use the more
restrictive set of models corresponding to γ = 1, at least for the Basic form, because
it then generates much greater pruning (than the models with γ = 2 or 3), leading to
manageable sets of options for the user, and is computationally cheaper. However,
there may be situations (e.g. other datasets) where the more cautious reasoning
corresponding to γ = 2 or 3 might pay off in terms of the final quality of solutions.

7.2. Representing true preferences in the Comparative Preferences

model

In our second set of experiments, the user’s true preferences are set by randomly
generating cp-trees over product features; more precisely, we use 1-cp-trees, i.e.,
with γ = 1. The pruning rate results in this case are shown in Table 6.

Table 6. The pruning rates (true preferences repre-
sented in Comparative Preferences model)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 85·77 14·28 14·28
Comp. Prefs. Importance 85·78 85·77 85·75
Sum of Weights 85.73

Trentino-10

Comp. Prefs. Basic 86·81 15·03 14·94
Comp. Prefs. Importance 86·81 86·79 85·93
Sum of Weights 85.15

Table 7. The computation time (true preferences rep-
resented in Comparative Preferences model) in millisec-
ond(ms)

γ =1 γ =2 γ =3

Marriott-NY

Comp. Prefs. Basic 29·67 276·20 1076·61
Comp. Prefs. Importance 28·63 134·77 1776·30
Sum of Weights 39.35

Trentino-10

Comp. Prefs. Basic 38·52 1578·89 1780·70
Comp. Prefs. Importance 37·37 184·20 3086·39
Sum of Weights 55.72

The results in Table 6 pattern in a very similar way to the ones in Table 1. For
example, again, in most settings, the Comparative Preferences approach is pruning
non-optimal queries very slightly more than the Sum of Weights approach; also,
with the Comparative Preference model, the amount of pruning increases as the
preference statements induced become less conservative (from Basic to Importance);
and, as γ increases, the number of queries pruned tends to decrease.
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With users’ true preferences represented as cp-trees, the pruning rate (Table 6)
is roughly the same as when they are represented by weight vectors (Table 1), a lit-
tle less for the γ = 1 case. The consequences of this for these experiments is slightly
longer advice (around 13 queries on average for both datasets and in all settings
except Basic with γ = 2 or 3, where pruning is very low) and shorter dialogues
(around 3.7 steps for Marriott-NY and around 3.9 steps for Trentino-10). Table 7
shows that computation time in these settings shows a similar pattern as when the
users’ true preferences are represented by vectors of weights. Furthermore, in every
dialogue, the product that the user ultimately chose was the optimal product for
her true preferences (whereas we saw very small shortfalls in utility in the experi-
ment described in the previous section). The dialogue involves features being added
incrementally to the empty initial query—with the most important (according to
the true cp-tree) first—until the optimal product is reached.

We were interested to see whether mis-matches between the ways in which true
preferences and induced preferences are represented would have any effect. One
might expect if induced preferences are represented in the same model as the true
preferences, then they can more accurately capture the true preferences, resulting in
greater pruning. But we are not seeing this in our experiments. We are seeing that,
for most settings, irrespective of the way in which true preferences are represented,
using the Comparative Preferences approach for induced preferences results in very
slightly greater pruning.

8. Other Kinds of Models of Preferences

In this paper we focus on two kinds of models of user preferences, one based on a
weighted sum, the other based on comparative preferences. In this section we briefly
discuss some other possible sets of models.

8.1. Larger sets of models

One simple idea is to only assume that the user’s preference relation is a total
pre-order, so we consider the set M of models to just be the set of all total pre-
orders on configurations (this is similar to what is done for the standard inference
for CP-nets13, for example). In particular, let Φ be a set of statements of the form
αi ≥ βi, for configurations αi and βi, (i = 1, . . . , k). Then, for configurations α

and β, we have if α <Φ β (α dominates β) if and only if α < β holds for every
total pre-order < satisfying (every member of) Φ. This is very conservative, and
perhaps not appropriate for this kind of application, since the inference from Φ is
very weak. In particular, it can be shown using a standard argument that α <Φ β

if and only if (α, β) is in the transitive closure of Φ (viewing Φ as a set of pairs
of configurations). More explicitly, α <Φ β if and only if there exists a sequence
δ1, . . . , δr of configurations, with δ1 = α, and δr = β, and, for each j = 1, . . . , r− 1,
δj ≥ δj+1 is in Φ.
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The cp-tree model is parameterised by γ, where the lower the value of γ, the more
restricted the models are, and hence the stronger the dominance relation. One could
also consider a parameterised generalisation of the Sum of Weights model, where
the overall weight function is a sum of component weight functions, where each
component function depends on at most γ variables. This is a kind of Generalised
Additive Independence (GAI) representation.25 The Sum of Weights model in the
current paper corresponds to the case when γ = 1. Even for γ = 2, the set of
models is much more expressive, and so will lead to a substantially more conservative
(weaker) dominance relation.

8.2. Strengthening the pruning

In some circumstances, we may find that neither the sum of weights approach nor
the cp-tree approach leads to as strong pruning as we would like, because the set
of undominated configurations is still too large. It is natural to then consider ways
that we can strengthen these dominance relations. One idea is to prune first with
one of the dominance relations (e.g., with <sw

Φ ) and then to prune the remaining
<sw

Φ -undominated configurations with the other (<cp1
Φ ). A less ad hoc approach is

to consider preference orderings that can be generated by both 1-cp-trees and by
weights vectors: these are a form of lexicographic ordering. In the context of these
particular boolean features, such an ordering is generated by a sequence of features,
for instance, F5, F1, F4. The associated ordering has, for example, α dominating β

for any α and β such that α(F5) = f5 and β(F5) = f̄5. We can achieve the same
ordering in the sum of weights system by choosing, e.g., w4 = 1, w1 = 2 and w5 = 4,
and wi = 0 for other features Fi. Alternatively, we can generate the same ordering
on configurations with a 1-cp-tree that has the same ordering, F5, F1, F4, of features
in each branch.

In general, if the set of models is very large then we will tend to get weak
inferences, and the set of undominated elements may well be very large. On the other
hand, if we consider a very restricted set of models then it could happen that none of
these may correspond closely to the user’s preferences. This can lead to equivalences
between items that the user does not regard as equivalent; this also reduces the strict
dominance relation. To give an extreme example, suppose that we assume the Sum
of Weights model, but that in fact the user’s true preferences are the cp-tree depicted
in Figure 1. If we are given all the associated preferences between configurations,
shown at the bottom of Figure 1 (f1f2f3 ≥ f1f2f̄3 ≥ · · ·), then we will infer that
w1 = w3 = 0, which leads to a relatively weak strict dominance relation. The choice
of set of models therefore needs to balance these considerations, so that the set of
models is restricted enough to make the dominance relation sufficiently strong, but
not so restricted that too many equivalences are generated.
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9. Conclusions

There has been a lot of excellent theoretical work produced on comparative prefer-
ence formalisms in recent years including award winning papers13,26; however, de-
velopment towards applications has been lagging somewhat. A major contribution
of this paper is to show how a comparative preferences approach can be adapted for
a conversational recommender system. For this kind of application it is important
that the preference language allows the expression of direct comparisons between
configurations (that one configuration is preferred to another); and also that the
inference technique is both efficient and strong enough in its inferences (or else
the pruning of possibilities is too weak). The language, inference method and al-
gorithm described in (Ref. 16) fit these requirements, as does the Sum of Weights
approach.11 We have shown that it is possible to implement this inference method
so that it is efficient in a practical (rather than theoretical) sense, as part of a form
of conversational recommender system. We have tested our method on datasets in-
volving real hotel data, and shown that it leads to strong pruning of possibilities,
but without eliminating the best options, even when ‘best’ is defined based on a
different semantics, i.e. when the user’s true preferences are represented in a model
that is different from the one in which the recommender system represents them.

An attractive feature of the comparative preferences approach is its expressive-
ness. In the current work, it has allowed us to choose between differently nuanced
induced preferences. In future work, it would also allow general conditional prefer-
ence statements to be expressed by the user, such as If the hotel is not in the city
centre, then I’d like there to be an on-site restaurant. Such statements can further
strengthen the pruning capability, and could potentially be re-used for different
searches.

In future work, we will extend these approaches for other kinds of recommender
systems, including for non-boolean features, for other inference procedures (as dis-
cussed in Section 8), and for configurable products, where the set of possibilities is
expressed implicitly as the solutions of a Constraint Satisfaction Problem.
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