
DOI: 10.1142/S0218213012400131

May 31, 2012 16:52 WSPC/INSTRUCTION FILE S0218213012400131

International Journal on Artificial Intelligence Tools
Vol. 21, No. 3 (2012) 1240013 (25 pages)
c© World Scientific Publishing Company

SWARM DIRECTIONS EMBEDDED DIFFERENTIAL

EVOLUTION FOR FASTER CONVERGENCE OF GLOBAL

OPTIMIZATION PROBLEMS

MUSRRAT ALI

Department of Computer Science, Sungkyunkwan University

Suwon 440-746, Republic of Korea

musrrat.iitr@gmail.com

MILLIE PANT

Department of Paper Technology, Indian Institute of Technology Roorkee

Roorkee, Uttarakhand 247667, India

millifpt@iitr.ernet.in

AJITH ABRAHAM

Center of Excellence for Quantifiable Quality of Service

Norwegian University of Science and Technology, Norway

ajith.abraham@ieee.org

CHANG WOOK AHN

Department of Computer Science, Sungkyunkwan University

Suwon 440-746, Republic of Korea

cwan@skku.edu

1240013-1

In the present study we propose a new hybrid version of Differential Evolution (DE) and Particle

Swarm Optimization (PSO) algorithms called Hybrid DE or HDE for solving continuous global

optimization problems. In the proposed HDE algorithm, information sharing mechanism of PSO is

embedded in the contracted search space obtained by the basic DE algorithm. This is done to

maintain a balance between the two antagonist factors; exploration and exploitation thereby

obtaining a faster convergence. The embedding of swarm directions to the basic DE algorithm is

done with the help of a “switchover constant ” called α which keeps a record of the contraction of

search space. The proposed HDE algorithm is tested on a set of 10 unconstrained benchmark

problems and four constrained real life, mechanical design problems. Empirical studies show that the

proposed scheme helps in improving the convergence rate of the basic DE algorithm without

compromising with the quality of solution.

Keywords: Differential evolution; particle swarm optimization; hybridization; global optimization.

1. Introduction

Optimization problems arise in various disciplines such as engineering designs,

agricultural sciences, manufacturing systems, economics, physical sciences, pattern

recognition etc. in fact optimization techniques are being extensively used in various

http://dx.doi.org/10.1142/S0218213012400131

M. Ali et al.

1240013-2

spheres of human activities, where decisions have to be taken in some complex situation
which can be represented by mathematical models. Optimization can thus be viewed as a
kind of decision making, or more specifically, as one of the major quantitative tools in
network of decision making, in which decisions have to be taken to optimize one or more
objectives under some prescribed set of circumstances. Significant amount of work has
been done in the field optimization which mainly revolves around developing efficient
methods for solving mathematical models of optimization problems. Some of the
classical optimization techniques include Methods Linear Programming (LP) and
traditional nonlinear (NL) techniques like Bellman’s principle, Lagrange’s multiplier
method, quadratic programming approach etc. A detailed study of classical optimization
methods can be found in Refs. 28, 8 and 43. While LP approaches are restricted to linear
models, the problem with most of the traditional NL techniques is that they are gradient
based and hence cannot be applied for finding out the solution to the problems which
have a rough or discontinuous surface. Consequently, researchers working in the field of
optimization have laid much attention on a class of derivative free techniques that can be
applied for solving complex optimization models.

One class of derivative free techniques consists of nature inspired evolutionary search
algorithms. These techniques have gained a lot of popularity in the recent years because
of their ability to deal with complex optimization problems which are otherwise difficult
to solve using traditional methods. Some well known evolutionary/nature inspired
algorithms are Genetic Algorithms,25 Evolutionary Programming,24 Evolutionary
Strategies7 Particle Swarm optimization43 and Differential Evolution51 etc. The working
of all these algorithms is based on some biological or social metaphor.

Out of these, PSO and DE are comparatively newer than others. These are stochastic,
population based search techniques and have been applied successfully to a wide range of
problems occurring in various disciplines.2–4,10,16–18,22,23,26,35,36,41,44,45,52,54,55,58,60 A number
of variants of these algorithms have been developed in the past decade to improve their
performance.5,9,29,42,46,49,50,57

One class of modification consists of integrating DE and PSO algorithms where the
advantages of both the algorithms are blended together to form a new algorithm. DE has
the advantage of not being biased towards any prior defined distribution for sampling
mutational step sizes and its selection operator follows a hill-climbing process. According
to the literature, the DE algorithm performs very well in the initial stages however as the
search proceeds, the convergence rate of DE slows down gradually.

On the basis of practical experience, researchers have shown that DE may
sometimes stop proceeding toward the global optimum even though the population has
not converged to a local optimum or any other point.34 There is a possibility that the
new points may enter the population but the algorithm does not show any progress
in finding any better solutions. This situation is termed as stagnation. DE also suffers
from the problem of premature convergence, where the population converges to some
local optima of a multimodal objective function, losing its diversity. The probability
of stagnation depends on how many different potential trial solutions are available and
also on their capability to enter into the population of the subsequent generations.34

Swarm Directions Embedded Differential Evolution

1240013-3

Further, like other evolutionary computing algorithms, the performance of DE
deteriorates with the growth of the dimensionality of the search space as well. A good
volume of work is devoted in the direction of improvement of DE algorithm. These
modifications may be differentiated as variation in the probabilities of crossover and
mutation, development of new mutation or crossover operators, development of adaptive
parameters1,5,9,12,19,29,34,37,39,40,42,46,57,59 etc. Hybridization of DE with some local search
technique or with some stochastic technique can be found in Refs. 11, 14, 27, 30–32, 38,
53, 56, 61 and 62.

The idea behind hybridization is to merge the positive features of two (or more than
two) algorithms in order to obtain a new algorithm which is better than the two parent
algorithms which are used for hybridization. In the present study we propose a hybrid
version of DE and PSO called hybridized DE or HDE. The proposed HDE algorithm
works in two phases; the DE phase (or the first phase) and the PSO phase (or the second
phase). The change of phases is decided according to a switchover constant α. By
embedding the information sharing mechanism of PSO in the later stages of the search
we try to push the particles towards a local attractor which is hopefully near the global
optimum.

The remaining paper is organized as follows: In Sec. 2, we give a brief overview
of the hybridized DE-PSO algorithms. In Sec. 3, basic DE and PSO algorithms are
described. The proposed HDE algorithm is given in Sec. 4. Benchmark problems and
experimental settings are given in Sec. 5 and numerical results are given in Sec. 6.
Finally, the conclusions based on the present study are drawn in Sec. 7.

2. A Brief Literature Review on Earlier Work Done

As mentioned in the previous section, both DE and PSO have undergone a plethora of
changes since their development in 1995. However, not much instances are available in
literature which combines the features of DE and PSO together in a single algorithm. In
this section we give a brief review of some earlier work in which the two algorithms are
merged together.

Hendtlass47 used the DE perturbation approach to adapt particle positions. In his
algorithm, named SDEA, particles’ positions are updated only if their offspring have
better fitness. The DE reproduction process is applied to the particles in swarm at
specified intervals. At the specified intervals, the PSO swarm serves as the population for
DE algorithm, and the DE is executed for a number of generations. After execution of
DE, the evolved population is further optimized using PSO. Hendtlass applied his
algorithm SDEA on four unconstrained benchmark problems for different dimensions
and for different population sizes.

Zhang and Xie62 used different techniques in random, rather than combining them, in
their Differential Evolution (DE) PSO (DEPSO). In this case the DE and canonical PSO
operators were used on alternate generations; when DE was in use, the trial mutation
replaced the individual best at a rate controlled by a crossover constant and a random
dimension selector that ensured at least one mutation occurred each time.

M. Ali et al.

1240013-4

Kannan et al.20 applied DE to each particle for a finite number of iterations, and
replaced the particle with the best individual obtained from the DE process.

Talbi and Batauche53 proposed an algorithm named DEPSO. It differs from the
DEPSO algorithm proposed by Zhang and Xie as the DE operators are applied only to the
best particle obtained by PSO. They applied their algorithm on medical image processing
problem.

In Hao et al.’s63 hybrid version, which is also named as DEPSO, the candidate
solution is generated either by DE or by PSO according to some fixed probability
distribution. They applied their algorithm for solving unconstrained global optimization
problems.

Das et al.18 proposed a scheme of adjusting velocities of the particles in PSO with a
vector differential operator borrowed from the DE family. In their proposed PSO-DV
algorithm, they omitted the cognitive term of the canonical PSO and updated the particle
velocities by a new term containing the weighted difference (inspired by DE mutation
scheme) of the position vectors of any two distinct particles randomly chosen from the
swarm. They also applied their algorithm on a test suite of selected unconstrained
benchmark problems.

Omran et al.38 proposed a hybrid version of Bare Bones PSO and DE called it BBDE.
In their approach, they combined the concept of barebones PSO with self adaptive DE
strategies. The mutation operator of DE is used to explore around the current attractor by
adding a difference vector to the attractor. Crossover is done with randomly selected
personal best as these personal bests represent a memory of the best solution found by
individuals since the start of the search process. They validated their algorithm on a set of
unconstrained benchmark problems and also applied to image classification problem.

The work of Jose et al.64 evaluated a Particle Swarm Optimizer hybridized with
Differential Evolution and applied it to the Black-Box Optimization Benchmarking for
noisy functions. Their algorithm was once named as DEPSO algorithm. In this version of
DEPSO, the differential variation schemes of DE are used for updating the velocities of
the swarm particles.

Zhang et al.61 developed a hybrid of DE and PSO called DE-PSO, where three
alternative updating strategies are used. The DE updating strategy is executed once in
every l generations and if a particle's best encountered position and the position of its
current best neighbor are equal then random updating strategy is executed otherwise PSO
updating strategy is used.

Liu et al.65 proposed a novel hybrid algorithm named PSO-DE, in which DE is
incorporated to update the previous best positions of PSO particles to force them to jump
out of local attractor in order to prevent stagnation of population.

Copanio et al.66 developed a Superfit Memetic Differential Evolution (SFMDE)
by hybridizing DE and PSO with two other local search methods; Nelder Mead
algorithm and Rosenbrock algorithm. In SFMDE, PSO assists DE in the beginning of
the optimization process to generate a “super-fit individual”, the local searches are then
applied adaptively by means of a parameter which measures the quality of super-fit

Swarm Directions Embedded Differential Evolution

1240013-5

Table 1. A summary of hybridized PSO + DE algorithms.

individual. SFMDE was applied for solving unconstrained standard benchmark problems
and two engineering problems.

Xu and Gu67 proposed Particle Swarm Optimization with prior crossover differential
evolution (PSOPDE). Their version is distinct from other PSO-DE hybrids in three ways;
(1) the particles in the swarm are not just led towards global and personal best positions
but also depend on the average position and velocity of the particles (2) DE is integrated
with PSO for local search and (3) a new crossover operation between the target and an
extra population is implemented before the DE component. They applied their algorithm
for solving five unconstrained benchmark problems.

Khamsawang et al.69 proposed an improved hybrid algorithm based on conventional
particle swarm optimization and differential evolution (called PSO-DE) for solving an
economic dispatch(ED) problem with the generator constraints. In PSO-DE, the mutation
operators of the differential evolution are used for improving diversity exploration of
PSO and are activated if velocity values of PSO are near to zero or violate the boundary
conditions.

The DE-PSO algorithm suggested by Pant et al.68 starts like the usual DE algorithm.
it enters the PSO phase if the optimality criteria are not met by the DE algorithm. They
tested their algorithm on a set of unconstrained benchmark problems. A brief summary of
hybrid PSO and DE algorithms is given in Table 1.

3. Differential Evolution (DE) and Particle Swarm Optimization (PSO)

DE was proposed by Storn and Price51 in 1995. It soon became a popular tool for solving
global optimization problems because of several attractive features like having fewer

Author/s Year Name of the
Algorithm

Application/s

Hentdlass47 2001 SDEA Unconstrained global optimization

Zhang and Xie62 2003 DEPSO Unconstrained global optimization

Kannan et al.20 2004 Generation Expansion planning

Talabi and Batouche53 2004 DEPSO Medical Image Processing

Hao et al.63 2007 DEPSO Unconstrained global optimization

Das et al.18 2008 PSO-DV Engineering Design

Omran et al.38 2008 BBDE Unconstrained Optimization Problems and Image
Processing

Jose et al.64 2009 DEPSO Noisy functions

Zhang et al.61 2009 DE-PSO Unconstrained Optimization

Liu et al.65 2009 PSO-DE Constrained optimization and engineering problems

Caponio et al.66 2009 SFMDE Unconstrained global optimization and engineering
design problems

Xu and Gu67 2009 PSOPDE Unconstrained global optimization

Pant et al.68 2009 DE-PSO Unconstrained global optimization

Khamsawang et al.69 2010 PSO-DE Power Systems

M. Ali et al.

1240013-6

control parameters, ease in programming, efficiency etc. DE is similar to GAs in the
sense that it uses same evolutionary operators like mutation, crossover and selection for
guiding the population towards the optimum solution. Nevertheless, it’s the application
of these operators that makes DE different from GA. The main difference between GAs
and DE is that; in GAs, mutation is the result of small perturbations to the genes of an
individual while in DE mutation is the result of arithmetic combinations of individuals.
Also in DE, mutation plays a prominent role whereas, in GA, crossover is the major
operator. At the beginning of the evolution process, the mutation operator of DE favors
exploration. As evolution progresses, the mutation operator favors exploitation. Hence,
DE automatically adapts the mutation increments (i.e. search step) to the best value based
on the stage of the evolutionary process. Mutation in DE is therefore not based on a
predefined probability density function. Moreover, GA may work even without the
presence of a mutation operator as crossover is the prime operator of GA but the main
component of DE is the generation of mutant vector. Also in DE mutation is applied
before crossover whereas in GA, mutation is always applied after crossover. Throughout
the study we shall consider the mutation strategy DE/rand/1/bin also known as the
classical version of DE. The three main equations used in DE are given as follows:

 , 1 3, 1, 2,*() i G r G r G r GU X F X X+ = + − (1)

, . 1

, . 1
, .

j i G r

j i G
j i G

u if r and j C j k
t

x otherwise

+

+

≤ ∨ =
= 


 (2)

 . 1 . 1 .
. 1

.

() ()i G i G i G
i G

i G

T if f T f X
X

X otherwise

+ +
+

≤
= 


 (3)

Equations (1), (2) and (3) represent the mutation, crossover and selection operations
respectively, for DE. F is the scaling factor and Cr is the probability of crossover.

PSO is a multi-agent parallel search technique developed by Kennedy and Eberhart in
1995,33 inspired by social behavior of bird flocking or fish schooling. The particles or
members of the swarm fly through a multidimensional search space looking for a
potential solution. Each particle adjusts its position in the search space from time to time
according to the flying experience of its own and of its neighbors (or colleagues). Each
particle maintains a memory of its previous best position and also the best position
among all the particles. During each generation each particle is accelerated toward the
particles previous best position and the global best position. At each iteration a new
velocity value for each particle is calculated based on its current velocity, the distance
from the global best position. The new velocity value is then used to calculate the next
position of the particle in the search space. This process is then iterated a number of times
or until a minimum error is achieved.

 1
1 1 2 2 best() ()G G G G G G G

i i i i iV w V c r P X c r P X+ = + − + − (4)

 1 1G G G
i i iX X V+ += + (5)

Swarm Directions Embedded Differential Evolution

1240013-7

 max min min
(maxiteration-Iteration)

()
Iteration

Gw w w w= − × + (6)

Equations (4) and (5) represent the velocity and position equations of the swarm particles.
Equation (6) gives the inertia weight taken for the present study. Pi

G represents the
personal best position of the particle and best

GP represents the global best particle. c1, c2
represents the acceleration constants and r1, r2 are uniformly distributed random numbers
in the range (0, 1).

4. Proposed Hybrid Differential Evolution (HDE)

In hybridized algorithms it is very crucial to decide how the algorithms should be merged
in order to get the maximum benefit. In the proposed HDE algorithm, the initial search
space is contracted using the DE algorithm and then PSO is applied to further refine the
search space with the hope of finding the global optimal solution. The change of DE
phase to PSO phase is decided with the help of a switchover constant denoted by α. The
final contracted population obtained by DE is arranged in ascending order of fitness
function values and upper half of the population undergoes the PSO operation i.e. to say
that PSO is applied on only half of the population consisting of elite solutions. The
working of HDE can be explained with the help of the following steps.

Step 1. Generate randomly NP vectors, each of n dimensions:
Xi,j = Xmin,j + rand(0, 1)(Xmax,j – Xmin,j), where Xmin,j and Xmax,j are lower and
upper bounds for jth component respectively, rand(0, 1) is a uniformly
distributed random number between 0 and 1.

Step 2. Calculate the objective function value f(Xi) for all Xi.
Step 3. Corresponding to target vector Xi select three distinct points from population

and generate perturbed individual Ui using equation (1).
Step 4. Recombine the each target vector Xi with perturbed individual generated in

step 3 to generate a trial vector Ti using equation (2).
Step 5. Check whether each variable of the trial vector is within range. If not keep it

within range using Ti,j = 2* Xmin,j – Ti,j, if Ti,j < Xmin,j and Ti,j = 2* Xmax,j – Ti,j, if
Ti,j > Xmax,j, otherwise go to Step 6.

Step 6. Calculate the objective function value for vector Ti.
Step 7. Choose better of the two (function value at target and trial point) using

equation (3) for next generation.
Step 8. Check whether max minf f− < α (given threshold) value. If yes then switch-

over to PSO (Step 10); otherwise go to Step 9.
Step 9. Check whether maximum number of function evaluation has been completed.

If yes, stop; otherwise go to Step 3.
Step 10. Sort the final population obtained by DE algorithm in ascending order. Take

first NP/2 individuals as initial swarm; assign initial velocity zero, personal
best position same as particle position and global best position particle
position having minimum function value.

M. Ali et al.

1240013-8

Step 11. Update velocity Vi
G+1 and position Xi

G+1, according to equations (4) and (5) of
all NP/2 particles.

Step 12. Evaluate objective function value f(Xi
G+1) for all Xi

G+1.
Step 13. Update particle best position: if f(Xi

G+1) < f(Pi) then f(Pi) = f(Xi
G+1) and Pi =

Xi
G+1.

Step 14. Find global best Pbest position of particle and update inertia weight.
Step 15. Check whether convergence criterion is met. If yes, stop: otherwise go to

Step 16.
Step 16. Check whether maximum number of function evaluation has been completed.

If yes, then stop; otherwise go to Step 11.

The parameter α defined in Step 8, plays an important role in HDE. It keeps a track of the
contraction of the search space in order to initiate the PSO algorithm.

5. Benchmark Problems and Experimental Settings

5.1. Benchmark and real life problems

To analyze the performance of the proposed HDE algorithm we tested it on 10
unconstrained standard bench mark problems taken from literature. All these problems
are scalable in nature i.e. their dimension can be varied in order to increase their
complexity. We have tested these problems for dimensions 10 and 30. The mathematical
model of the problems along with the true global minimum is given the Appendix A.

To further analyze the efficiency of HDE we used it for solving four real life
mechanical design problems. All the four problems are constrained in nature. The
constraints are dealt with by using the tournament based approach proposed by Deb21 for
solving constrained optimization problems. According to this rule:

• Between two feasible solutions, the one with the highest fitness value wins.
• If one solution is feasible and the other one is infeasible, the feasible solution wins.
• If both solutions are infeasible, the one with the lowest sum of constraint violation is

preferred.

This method does not require a penalty factor as the selection procedure only
performs pair wise comparisons. The feasible solutions therefore have fitness equal to
their objective function value, and the use of constraint violation in the comparisons aims
to push the infeasible solutions towards the feasible region.

5.1.1. Experimental settings

As discussed in Sec. 4, HDE starts with the usual DE algorithm for which, the lower limit
for population size, NP, is 4 since the mutation process requires at least three other
chromosomes for each parent. While testing the algorithms, we began by using the
optimized control settings of DE. Population size, NP can always be increased to help
maintain population diversity. As a general rule, an effective NP is between 3 * n and

Swarm Directions Embedded Differential Evolution

1240013-9

10 * n, but can often be modified depending on the complexity of the problem. For the
present study we performed several experiments with the population size as well as with
the crossover rate and mutation probability rate and observed that for problems up to
dimension 30 a population size of 10 * n is sufficient. Values of scale F, outside the range
of 0.4 to 1.2 are rarely effective and F = 0.5 can be considered to be a good initial choice.
In general higher value of Cr help in speeding up the convergence rate therefore in the
present study we have taken Cr = 0.5.

HDE also contains an additional parameter α, which keeps a track of the contraction
of search space and decides the initiation of PSO algorithm. We observed the
preformance of the proposed HDE algorithm for three values of α; 0.5, 0.05 and 0.005.

The PSO algorithm in HDE is applied to a region which has already contrcted i.e. to
say the PSO algorithm is applied to a small search space (hopefully) near the global
minima. Therefore, we have taken the inertia weight w which decrease uniformly from
0.4 to 0.2. Also in order to give more weight to the global best position, the acceleration
coeffient C1 and C2 are taken as 0.5 and 2.0 respectively. All the algorithms are executed
on a PIV PC, using DEV C++, thirty times for each problem. Random numbers are
generated using the inbuilt random number generator rand () function available in
DEVC++.

In every case, a run was terminated when the best function value obtained is less than
a threshold (10–4) for the given function or when the maximum number of function
evaluation (NFE = 106) was reached. In order to have a fair comparison, these settings are
kept the same for all algorithms over all benchmark functions during the simulations.

6. Numerical Results

6.1. Numerical results for unconstrained benchmark problems

The performance of the proposed HDE algorithm, for different values of α, is analyzed
on a set of ten unconstrained benchmark problems and the numerical results are
compared with the traditional DE algorithm. The performance measures used for
comparison include average fitness function value, standard deviation (Std), average
numbers of functions evaluations and average CPU time taken. The corresponding results
are given in Tables 2–5.

Under the given parameter settings, it can be seen that the traditional DE was not able
to achieve the desired accuracy of 10–4 in case of fRB (Rosenbrock function) whereas, for
fGW (Griewanks function) HDE was not able to achieve the desired accuracy for α = 0.5.
For the remaining values of α (= 0.05 and 0.005) HDE was able to achieve the desired
accuracy for all the test cases.

From the numerical results it can be seen that although in terms of average fitness
function value, the proposed HDE algorithm does not show much improvement in
comparison to the basic DE, but in terms of NFE and CPU time taken, the proposed HDE
algorithm performs much better than the basic DE algorithm. If discuss the sensitivity of

M. Ali et al.

1240013-10

Table 2. DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average fitness function value and
standard deviation (Std) for unconstrained benchmark problems of dimension 10.

Fun
DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005)

Fitness (Std) Fitness (Std) Fitness (Std) Fitness (Std)

fSP
1.40711e-05

(5.17314e-06)
5.62630e-06

(3.91721e-06)
1.22108e-05

(7.65373e-06)
8.8269e-06

(5.16438e-06)

fACK
5.94765e-05
(1.0848e-05)

3.56962e-05
(1.30165e-05)

5.44005e-05
(2.94382e-05)

3.43113e-05

(1.11886e-05)

fRG

1.13561e-05
(3.38399e-06)

9.00661e-06
(5.72322e-06)

1.16375e-05
(7.7549e-06)

6.83095e-06

(5.40267e-06)

fRB –
9.02526e-14

(0.00340)
0.00096

(0.00205)
0.00063

(0.00064)

fGW

1.46893e-05
(3.77339e-06)

–
2.74695e-06

(8.24084e-06)
1.03926e-05

(5.69282e-06)

fLM2

1.60214e-05
(4.07044e-06)

9.83868e-006
(8.48897e-06)

7.96413e-06

(5.48033e-06)
8.12357e-06

(5.08711e-06)

fpp

–45.77850
(4.25827e-06)

–45.77850
(4.24994e-06)

–45.77850
(6.03048e-06)

–45.77850
(2.57806e-06)

fsis

–3.49998
(4.62082e-06)

–3.49999
(9.00903e-06)

–3.49999
(7.38833e-06)

–3.49999
(4.48909e-06)

fst

0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

fSWF

0.00024
(4.14499e-06)

0.00023
(4.76434e-06)

0.00023
(1.35658e-05)

0.00023
(5.46631e-06)

Table 3. DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average fitness function value and
standard deviation (Std.) for unconstrained benchmark problems of dimension 30.

Fun
DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005)

Fitness (Std) Fitness (Std) Fitness (Std) Fitness (Std)

fSP
4.96717e-05
7.77918e-06

2.38679e-05

3.29303e-05
9.01265e-05
4.05859e-05

6.02874e-05
1.67625e-05

fACK
0.00014

1.66159e-05
0.00047
0.00061

0.00024
0.00011

0.00018
8.38164e-05

fRG

105.858
6.16943

104.131
6.20312

87.8904

 6.01522
89.1484
5.22234

fRB

15.1913
 1.70576

2.65097e-15

1.55107e-10
13.6827
1.00897

13.8989
1.63056

fGW

5.07342e-05
5.83072e-06

0.00744
0.00084

4.43105e-05

4.57603e-05
5.31735e-05
1.42185e-05

fLM2

4.73725e-05

 9.83696e-06
0.00031
0.00041

6.89487e-05
2.48868e-05

5.45789e-05
2.62944e-05

fpp

–997867.0
2.45355e-06

–997867.0
3.341784e-05

–997867.0
3.22517e-05

–997867.0
1.31195e-05

fsis

–3.49995
6.58779e-06

–2.33863
.00785

–2.45923
0.00067

–3.49985
3.20262e-05

fst

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

fSWF

0.00072
7.56772e-06

0.00081
9.5201e-05

0.00075
6.24289e-05

0.00073
2.61436e-05

Swarm Directions Embedded Differential Evolution

1240013-11

Table 4. DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average number of functions evaluations (NFE)
and average CPU time taken (in seconds) to obtain an accuracy of 10–4 for unconstrained benchmark problems
of dimension 10.

Fun
DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005)

NFE Time NFE Time NFE Time NFE Time

fSP 14300 0.30 8415 0.20 8835 0.20 10740 0.20

fACK 26680 0.60 13690 0.30 16595 0.40 19885 0.50

fRG 96400 2.20 89345 2.10 92090 2.20 95120 2.20

fRB 106 – 106 – 208190 10.60 316155 17.90

fGW 94690 2.40 106 – 88400 2.30 87290 2.20

fLM2 17540 0.90 10172 0.44 13185 0.70 14325 0.70

fpp 14290 0.70 7760 0.40 9400 0.40 11545 0.60

fsis 30940 0.20 31300 0.20 24395 0.20 27695 0.20

fst 10980 0.50 11030 0.30 11300 0.30 10690 0.30

fSWF 25850 0.20 19480 0.10 21440 0.20 22570 0.10

Table 5. DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average number of functions
evaluations (NFE) taken to obtain accuracy of 10–4 for unconstrained benchmark problems of
dimension 30.

the parameter α, then once again from the average fitness function value we cannot
conclude anything concrete because the numerical results are more or less similar for all
values of α, which are similar to the basic DE results, which in turn are in the vicinity of
the true minima. However, from Table 3, we can see that when the value of α is 0.5, we
get the best results in terms of NFE and CPU time with an average improvement of
around 23% in case of NFE and CPU time. However, for other values of α also the results
are better than the basic DE algorithm. Performance graphs of few selected functions for
different values of α are given in Fig. 1(a) and 1(b).

Fun
NFE

DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005)

fSP 146400 90195 90270 111465

fACK 256710 122610 152310 187530

fRG 106 106 106 106

fRB 106 106 106 106

fGW 222540 90150 140583 186255

fLM2 182970 104950 131325 149370

fpp 225900 149550 171150 190350

fsis 549675 443250 421650 429000

fst 126060 125610 121950 125580

fSWF 369450 283395 305325 324120

M. Ali et al.

1240013-12

(a)

(b)

Fig. 1. Performance graph of (a) Ackley’s function and (b) Sphere function.

6.2. Numerical results for constrained real life problems

In case of real life problems also, the proposed HDE performed better than the basic DE
algorithm and the results available in literature,6,13,15,20,48 for all the four test cases. Once
again the superior performance of HDE algorithm is more evident from the NFE it takes
to reach the optimum solution. In terms of other performance measures also like average
fitness function value and average CPU time, the proposed HDE outperformed the other
algorithms. The corresponding results of real life problems are given in Tables 6 and 7.
Performance curves of real life problems are given in Figs. 2–5.

0

2

4

6

8

10

12

14

16

18

20

0 20000 40000 60000 80000 100000 120000

F
it
n
e
s
s

NFE

DE

HDE α=.5

HDE α=.05

HDE α=.005

0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000

F
it
n
e
s
s

NFE

DE

HDE α=.5

HDE α=.05

HDE α=.005

Swarm Directions Embedded Differential Evolution

1240013-13

Table 6. A comparison of numerical results of PVD and T/CSD problems using DE, HDE (α = 0.05) and other
algorithms available in literature in terms of Average Fitness function value, Number of function evaluations
(NFE) Standard Deviation (std) and Time (in sec).

Pressure vessel design (PVD)

Item DE HDE (α = 0.05) SiC-PSO13 iGSO48 Coello15 GeneAS20
x1 0.778169 0.778169 0.812500 0.812500 0.812500 0.9375
x2 0.384649 0.384649 0.437500 0.437500 0.437500 0.5000
x3 40.3196 40.3197 42.098445 42.098446 40.3239 48.3290
x4 200 200 176.636595 176.636596 200 112.6790

g1(X) –5.59078e-10 –3.73187e-010 –4.500e-15 –3.40e-10 –0.034324 –0.004750
g2(X) –3.0915e-009 –7.13005e-011 –0.035880 –0.035881 –0.052847 –0.038941
g3(X) –0.0022058 –7.34673e-005 –1.164e-10 –0.000029 –27.105845 –3652.8738
g4(X) –40 –40.0005 –63.363404 –63.363404 –40.0000 –127.321000
f (X) 5885.3301 5885.3300 6059.714335 6059.71400 6288.7445 6410.3811
NFE 40740 31915 NA 26000 NA NA
Std 1.25551e-05 2.57304e-4 NA NA NA NA

Time (sec) 0.5 0.3 NA 12.34 NA NA
Spring design (T/CSD)

Item DE HDE (α = 0.05) SiC-PSO13 iGSO48 Coello15 Arora6
x1 0.0514312 0.0518374 0.051583 0.051691 0.051480 0.053396
x2 0.350492 0.360296 0.354190 0.356765 0.351661 0.399180
x3 11.6701 11.0822 11.438675 11.286172 11.632201 9.185400

g1(X) –0.00038971 –1.11544e-007 –2.000e-16 –2.0950e-11 –0.002080 0.000019
g2(X) –0.00012457 –3.36314e-010 –1.000e-16 –1.3020e-11 –0.000110 –0.000018
g3(X) –4.03868 –4.06079 –4.048765 –4.053880 –4.026318 –4.123842
g4(X) –0.732051 –0.725244 –0.729483 –0.727696 –0.731239 –0.698283
f (X) 0.0126737 0.0126656 0.012665 0.012665 0.0127048 0.127302737
NFE 9370 4945 NA 8000 NA NA
Std 4.05487e-005 1.77850e-04 NA NA NA NA

Time (sec) 0.2 0.1 NA 8.17 NA NA

Table 7. A comparison of numerical results of SRD and WBD problems using DE, HDE
(α = 0.05) and other algorithms available in literature in terms of Average Fitness function
value, Number of function evaluations (NFE) Standard Deviation (std) and Time (in sec).

Speed Reducer (SRD)
Item DE HDE (α = 0.05) SiC-PSO13

x1 3.5 3.5 3.500000
x2 0.7 0.7 0.700000
x3 17 17 17.00000
x4 7.3 7.30012 7.30000
x5 7.8 7.8 7.80000
x6 3.35021 3.35021 3.350214
x7 5.28668 5.28668 5.286683

g1(X) –0.0739153 –0.0739153 –0.073915
g2(X) –0.197999 –0.197999 –0.197998
g3(X) –0.499172 –0.499148 –0.499172
g4(X) –0.901472 –0.901472 –0.901471
g5(X) –2.381e-008 –1.64302e-009 0.000000
g6(X) –1.66315e-009 –2.97741e-010 –5.000e-16
g7(X) –0.7025 –0.7025 –0.702500
g8(X) –3.07603e-010 –4.98685e-011 –1.000e-16
g9(X) –0.583333 –0.583333 –0.583333
g10(X) –0.0513257 –0.0513413 0.051325
g11(X) –0.0108524 –0.0108524 –0.010852
f (X) 2996.35 2996.347101 2996.348165
NFE 8925 7867.5 NA
Std 9.02658e-06 1.35461e-03 NA

Time (sec) 0.4 0.3 NA

M. Ali et al.

1240013-14

Table 7. (Continued)

Welded Beam Design(WBD)
Item DE HDE (α = 0.05) SiC-PSO13

x1 0.205727 0.182634 0.205729
x2 3.47055 3.81039 3.470488
x3 9.03667 9.58501 9.036624
x4 0.20573 0.182863 0.205729

g1(X) –0.0681061 –0.00693705 –1.819e-12
g2(X) –0.458633 –0.14485 –0.003721
g3(X) –3.57774e-06 –0.000228855 0.00000
g4(X) –3.43296 –3.49465 –3.432983
g5(X) –0.0807269 –0.0576342 –0.080729
g6(X) –0.235541 –0.236368 –0.235540
g7(X) –2055.41 –0.0348941 0.000000
f (X) 1.72487 1.64226 1.724852
NFE 17425 11790 NA
Std 7.27403e-05 1.31468e-05 NA

Time (sec) 0.4 sec 0.3 NA

Fig. 2. Convergence graph of DE and HDE for pressure vessel design problem.

Fig. 3. Convergence graph of DE and HDE for spring design problem.

5500

6500

7500

8500

9500

10500

11500

12500

500 5500 10500 15500 20500 25500 30500 35500

Fi
tn

es
s

Number of function evaluation

DE

HDE

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

500 1500 2500 3500 4500

Fi
tn

es
s

Number of function evaluation

DE

HDE

Swarm Directions Embedded Differential Evolution

1240013-15

Fig. 4. Convergence graph of DE and HDE for Speed reducer design problem.

Fig. 5. Convergence graph of DE and HDE for welded beam design problem.

7. Conclusions

In the present study, we proposed a simple and easy to implement hybrid version of
DE and PSO algorithm called HDE. The proposed HDE algorithm works in two stages.
In the first stage DE is activated to contract the search space and when the search space
has contracted enough, PSO is activated to further refine the search. The swap from DE
to PSO is decided with the help of a switchover constant named α. We tested the
proposed algorithm for scalable problems of dimensions 10 and 30 and observed that
although it does not make much improvement in the fitness function value but in terms of
NFE and CPU time there is an improvement of more than 20%. The superior
performance of HDE is also evident from the four cases of real life problems, where it
outperformed the other algorithms in terms of all the performance measures taken for the
present study. We would also like to point out that we have used the basic versions of DE

2980

3000

3020

3040

3060

3080

3100

3120

3140

3160

500 2000 3500 5000 6500 8000

Fi
tn

es
s

Number of function evaluation

DE

HDE

1.5

2

2.5

3

3.5

500 2500 4500 6500 8500 10500

Fi
tn

es
s

Number of function evaluation

DE

HDE

M. Ali et al.

1240013-16

and PSO. It would be interesting to note the performance of the proposed scheme while
using some more advanced versions of DE and PSO algorithms.

References

1. H. Abbass, The self-adaptive pareto differential evolution algorithm, Proceedings of the 2002

Congress on Evolutionary Computation, pp. 831–836, 2002.
2. M. A. Abido, Optimal design of power system stabilizers using particle swarm optimization,

IEEE Transactions on Energy Conversion 17(3), 406–413, 2002.
3. A. Abraham, S. Das, and A. Konar, Kernel based automatic clustering using modified particle

swarm optimization algorithm, 2007 Genetic and Evolutionary Computation Conference,
GECCO 2007, ACM Press, Dirk Thierens et al. (Eds.), ISBN 978-1-59593-698-1, pp. 2–9,
2007.

4. A. Abraham, H. Liu, and T. G. Chang, Variable neighborhood particle swarm optimization
algorithm, Genetic and Evolutionary Computation Conference (GECCO-2006), Seattle, USA,
Late Breaking Papers, CD Proceedings, Jörn Grahl (Ed.), 2006.

5. M. M. Ali, Differential evolution with preferential crossover, European Journal of Operation

Research 181, pp. 1137–1147, 2007.
6. J. S. Arora, Introduction to Optimum Design, New York, McGrow-Hill, 1989.
7. T. Back, F. Hoffmeister, and H. Schwefel, A survey of evolution strategies. In: Proceedings of

the Fourth International Conference on Genetic Algorithms and their Applications, pp. 2–9,
1991.

8. C. S. Beightler, D. Phillips, and D. Wilde, Foundations of Optimization (Prentice-Hall,
Englewood Cliffs, NJ: 1979), 2nd edn.

9. K. Bergey Paul and Cliff Ragsdale, Modified differential evolution: A greedy random strategy
for genetic recombination, Omega The International Journal of Management Science 33,
255–265, 2005.

10. V. D. F. Bergh, Particle swarm weight initialization in multi-layer perceptron artificial neural
networks, Development and Practice of Artificial Intelligence Techniques (Durban, South
Africa, 1999), pp. 41–45.

11. T. R. Bhat, D. Venkataramani, V. Ravi, and C. V. S. Murty, An improved differential
evolution method for efficient parameter estimation in biofilter modeling, Biochemical

Engineering Journal 28, 167–176, 2006.
12. J. Brest, S. Greiner, B. Boškovic, M. Mernik, and V. Žumer, Self-adapting control parameters

in differential evolution: A comparative study on numerical benchmark problems, IEEE

Transactions on Evolutionary Computation, Vol. 10, Issue 6, pp. 646–657, 2006.
13. L. C. Cagnina, S. C. Esquivel, and C. A. Coello Coello, Solving engineering optimization

problems with the simple constrained particle optimizer, Informatica 32, 319–326, 2008.
14. Ji-Pyng, Chiou Chung-Fu Chang, and Ching-Tzong Su, Ant direction hybrid differential

evolution for solving large capacitor placement problems, IEEE Transactions on power

systems, 19(4), 1794–1800, 2004.
15. C. A. Coello Coello, Use of a self adaptive penalty approach for engineering optimization

problems, Computer in Industry 41(2), 113–127, 2000.
16. S. Das and A. Konar, Two-dimensional IIR filter design with modern search heuristics: A

comparative study, International Journal of Computational Intelligence and Applications
6(3), Imperial College Press, 2006.

17. S. Das and A. Konar, A swarm intelligence approach to the synthesis of two-dimensional IIR
filters, Engineering Applications of Artificial Intelligence 20(8), 1086–1096, http://dx.doi.org/
10.1016/j.engappai.2007.02.004, 2007.

Swarm Directions Embedded Differential Evolution

1240013-17

18. S. Das, A. Abraham, and A. Konar, Adaptive clustering using improved differential evolution
algorithm, IEEE Transactions on Systems, Man and Cybernetics – Part A, IEEE Press, New
York, USA, 2007.

19. S. Das, A. Konar, and U. K. Chakraborty, Two improved differential evolution schemes for
faster global search, ACM-SIGEVO Proceedings of GECCO, Washington D.C., pp. 991–998,
2005.

20. K. Deb, GeneAS: A robust optimal design technique for mechanical component design,
in D. Dasgupta and Z. Michalewicz (Eds.), Evolutionary Algorithms in Engineering

Applications (Berlin, Springer-Verlage, 1997), pp. 497–514.
21. K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in

Applied Mechanics and Engineering 186(2/4):311–338, 2000.
22. S. Doyle, D. Corcoran, and J. Connell, Automated mirror design using an evolution strategy,

Optical Engineering 38(2), 323–333, 1999.
23. R. C. Eberhart and X. Hu, Human tremor analysis using particle swarm optimization. In:

Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), Washington
D.C., pp. 1927–1930, 1999.

24. L. Fogel, Evolutionary programming in perspective: The top-down view. In: J. M. Zurada,
R. Marks, Jr., and C. Robinson (Eds.), Computational Intelligence: Imitating Life (IEEE Press,
Piscataway, NJ, USA, 1994).

25. D. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning (Addison-
Wesley, 1989).

26. Z. He, C. Wei, L. Yang, X. Gao, S. Yao, R. C. Eberhart, and Y. Shi, Extracting rules from
fuzzy neural network by particle swarm optimization. In: Proceedings of IEEE Congress on

Evolutionary Computation (CEC 1998), Anchorage, Alaska, USA, 1998.
27. T. Hendtlass, A combined swarm differential evolution algorithm for optimization problems.

In: Proceedings of the Fourteenth International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems. Lecture Notes in Computer
Science, Vol. 2070. Springer-Verlag, pp. 11–18, 2001.

28. E. Himmelblau and Lasdon, Optimization of Chemical Processes (McGraw Hill, 1972), 2nd
edn.

29. Hui-Yuan Fan and Jouni Lampinen, A trigonometric mutation operation to differential
evolution, Journal of Global Optimization 27:105–129, 2003.

30. T, Jayabarathi Sandeep Chalasani, Zameer Ahmed Shaik, and Nishchal Deep Kodali, Hybrid
differential evolution and particle swarm optimization based solutions to short term hydro
thermal scheduling, WSEAS Transactions on Power Systems 11(2), 245–254, 2007.

31. P. Kaelo and M. M. Ali, Differential evolution algorithm with hybrid mutation, Compt. Optim.

Appl. 37, 231–246, 2007.
32. S. Kannan, S. Slochanal, P. Subbaraj, and N. Padhy, Application of particle swarm

optimization technique and its variants to generation expansion planning, Electric Power

Systems Research 70(3), 203–210, 2004.
33. J. Kennedy and R. C. Eberhart, Particle swarm optimization, IEEE Int. Conf. on Neural

Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, pp. 1942–1948, 1995.
34. J. Lampinen and I. Zelinka, On stagnation of the differential evolution algorithm, in: Pavel

Ošmera (Ed.), Proceedings of MENDEL 2000, 6th International Mendel Conference on Soft

Computing, pp. 76–83, Brno, Czech Republic, 2000.
35. T. Masters and W. Land, A new training algorithm for the general regression neural network,

Proceedings of Computational Cybernetics and Simulation, organized by IEEE Systems, Man,
and Cybernetics Society 3, 1990–1994, 1997.

M. Ali et al.

1240013-18

36. L. Messerschmidt and A. P. Engelbrecht, Learning to play games using a PSO-based
competitive learning approach, IEEE Transactions on Evolutionary Computation 8(3), 280–
288, 2004.

37. M. Omran, A. Salman, and A. P. Engelbrecht, Self-adaptive differential evolution,
computational intelligence and security, PT 1, Proceedings Lecture Notes in Artificial

Intelligence 3801: 192-199, 2005.
38. M. G. H. Omran, A. P. Engelbrecht, and A. Salman, Bare bones differential evolution,

European Journal of Operational Research, doi:10.1016/j.ejor.2008.02.035, 2008.
39. M. Pant, M. Ali, and V. P. Singh, Differential evolution with parent centric crossover, Second

UKSIM European Symposium on Computer Modeling and Simulation, 141–146, 2008.
40. M. Pant, M. Ali, and V. P. Singh, Parent centric differential evolution algorithm for global

optimization, OPSEARCH 46(2), 153–168, 2009.
41. S. Paterlini and T. Krink, Differential evolution and particle swarm optimization in partitional

clustering, Computational Statistics and Data Analysis, Vol. 50, 1220–1247, 2006.
42. S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, A novel population initialization

method for accelerating evolutionary algorithms, Computer and Applied Mathematics with

Application (53), 1605–1614, 2007.
43. S. S. Rao, Engineering Optimization: Theory and Practice (Wiley Eastern Ltd., 1996), 3rd

edn.
44. T. Rogalsky, S. Kocabiyik, and R. Derksen, Differential evolution in aerodynamic

optimization, Canadian Aeronautics and Space Journal 46(4), 183–190, 2000.
45. J. Salerno, Using the particle swarm optimization technique to train a recurrent neural model,

IEEE International Conference on Tools with Artificial Intelligence, pp. 45–49, 1997.
46. A. Salman, A. P. Engelbrecht, and M. G. H. Omran, Empirical analysis of self adaptive

differential evolution, European Journal of Operational Research 183, pp. 785–804, 2007.
47. E. Sandgren, Nonlinear integer and discrete programming in mechanical design optimization,

J. Mech. Des.-T. ASME 112(2):223–229, 1990.
48. H. Shen, Y. Zhu, B. Niu, and Q. H. Wu, An improved group search optimizer for mechanical

design optimization problems, Progress in Natural Science 19, 91–97, 2009.
49. Y. Shi and R. C. Eberhart, A modified particle swarm optimiser, IEEE International

Conference on Evolutionary Computation, Anchorage, Alaska, May 4–9, 1998.
50. Y. Shi and R. C. Eberhart, Fuzzy adaptive particle swarm optimization, In: Proceedings of the

Congress on Evolutionary Computation 2001, Seoul, Korea, IEEE Service Center, IEEE
(2001), pp. 101–106, 2001.

51. R. Storn and K. Price, Differential evolution – A simple and efficient adaptive scheme for
global optimization over continuous spaces, Technical Report TR-95-012, Berkeley, CA,
1995.

52. G. Stumberger, D. Dolinar, U. Pahner, and K. Hameyer, Optimization of radial active
magnetic bearings using the finite element technique and differential evolution algorithm,
IEEE Transactions on Magnetics 36(4), 1009–1013, 2000.

53. H. Talbi and M. Batouche, Hybrid particle swarm with differential evolution for multimodal
image registration. In: Proceedings of the IEEE International Conference on Industrial

Technology, Vol. 3, pp. 1567–1573, 2004.
54. M. P. Wachowiak, R. Smolıkova, Y. Zheng, M. J. Zurada, and A. S. Elmaghraby, An

approach to multimodal biomedical image registration utilizing particle swarm optimization,
IEEE Transactions on Evolutionary Computation, 8(3), 289–301, 2004.

55. F. S. Wang and J. W. Sheu, Multi-objective parameter estimation problems of fermentation
processes using high ethanol tolerance yeast, Chemical Engineering Science 55(18), 3685–
3695, 2000.

Swarm Directions Embedded Differential Evolution

1240013-19

56. W. Xu and X. Gu, A hybrid particle swarm optimization approach with prior crossover
differential evolution. In: Proceedings of GEC09 pp. 671–677, 2009.

57. Z. Yang, J. He, and X. Yao, Making a difference to differential evolution, in Z. Michalewicz
and P. Siarry (Eds.), Advances in Metaheuristics for Hard Optimization (Springer, 2007),
pp. 415–432.

58. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, A particle swarm
optimization for reactive power and voltage control considering voltage security assessment,
IEEE Transactions on Power Systems 15(4), 1232–1239, 2000.

59. D. Zaharie, Control of population diversity and adaptation in differential evolution algorithms,
In D. Matousek and P. Osmera (Eds.), Proc. of MENDEL 2003, 9th International Conference

on Soft Computing, Brno, Czech Republic, pp. 41–46, 2003.
60. I. Zelinka and J. Lampinen, An evolutionary learning algorithms for neural networks. In:

Proceedings of Fifth International Conference on Soft Computing, MENDEL’99, pp. 410–414,
1999.

61. C. Zhang, J. Ning, S. Lu, D. Ouyang, and T. Ding, A novel hybrid differential evolution and
particle swarm optimization algorithm for unconstrained optimization, Operations Research

Letters, Vol. 37, 117–122, 2009.
62. W. J. Zhang and X. F. Xie, DEPSO: Hybrid particle swarm with differential evolution

operator. In: IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4,
pp. 3816–3821, 2003.

63. Z.-F. Hao, G.-H. Gua, and H. Huang, A particle swarm optimization algorithm with
differential evolution, Proceedings of Sixth Int. Conf. on Machine Learning and Cybernetics,
pp. 1031–1035, 2007.

64. G.-N. Jose, E. Alba, and J. Apolloni, Particle swarm hybridized with differential
evolution: black box optimization benchmarking for noisy functions, Proceedings of Int. Conf.

Genetic and Evolutionary Computation, pp. 2343–2350, 2009.
65. H. Liu, Z. Cai, and Y. Wang, Hybridizing particle swarm optimization with differential

evolution for constrained numerical and engineering optimization, Applied Soft Computing,
10:629–640 (2009).

66. Caponio, F. Neri, and V. Tirronen, Superfit control adaption in memetic differential evolution
frameworks, Soft Computing, 13:811–831(2009).

67. W. Xu and X. Gu, A hybrid particle swarm optimization approach with prior crossover
differential evolution, Proceedings of ACM/SIGEVO summit on Genetic and Evolutionary

Computation, pp. 671–678, 2009.
68. M. Pant, R. Thangaraj, and A. Abraham, DE-PSO: A new hybrid meta-heuristic for solving

global optimization problems, New Mathematics and Natural Computation, accepted for
publication (2009).

69. S. Khamsawang, P. Wannakarn, and S. Jiriwibhakorn Hybrid PSO-DE for solving the
economic dispatch problem with generator constraints, Proceedings of the IEEE Int. Conf. on

Computer and Automation Engineering, Vol. 5, pp. 135–139, 2010.

M. Ali et al.

1240013-20

Appendix A. Unconstrained Benchmark Problems

1. Sphere function (SP):

2

1

()
n

SP i

i

f x x
=

=∑ with –5.12 ≤ xi ≤ 5.12, min fsp (0,….,0) = 0

2. Acley’s function (ACK):

()2

1 1

() 20*exp .2 1/ exp 1/ cos 2 20 ,
n n

ACK i i

i i

f X n x n x eπ
= =

     =− − − + +       
∑ ∑

with –30 ≤ xi ≤ 30, min fACK(0,….,0) = 0.

3. Rastrigin’s function (RG):

2

1

() 10 (10cos(2)),
n

RG i i

i

f x n x xπ
=

= + −∑ with–5.12 ≤ xi ≤ 5.12, min fRG(0,….,0) = 0.

4. Rosenbrock Problem (RB):

()
1

2 2 2
1

1

[100() (1)],
n

RB i i i

i

f x x x x
−

+

=

= − + −∑ with –30 ≤ xi ≤ 30, min fRB (1,….,1) = 0.

5. Griewenk function (GW):

2

11

1
() cos 1,

4000

n n
i

GW i

ii

x
f x x

i==

 
= − +  ∑ ∏ with –600 ≤ xi ≤ 600, min fGW (0,….,0) = 0.

6. Levy and Montalvo 2 Problem (LM2):
1

2 2 2
2 1 1

1

() sin (3) (1)(1 sin (3)) (1)(1 sin (2)),
n

LM i i n n

i

f x x x x x xπ π π
−

+

=

= + − + + − +∑

with –5 ≤ xi ≤ 5, min fLM2 (1,….,1) = 0.
7. Paviani problem (PP):

0.2
2 2

11

() [(ln(2)) (ln(10))] ,
n n

PP i i i

ii

f x x x x
==

  = − + − −   
∑ ∏ with 2 ≤ xi ≤ 10.

8. Sinusoid function (SIN):

1 1

() sin() sin(()) ,
n n

SIN i i

i i

f x A x z B x z
= =

 
= − − + − 

 
∏ ∏ with 0 ≤ xi ≤ 180,

min fSIN(x*) = – (A + 1) where * (90), 2.5, 5, 30.ix z A B z= + = = =

9. Step function (ST):

()
2

1

() 0.5 ,
n

ST i

i

f x x
=

= +  ∑ with –100 ≤ xi ≤ 100, min fST (–0.5 ≤ xi ≤ 0.5) = 0.

10. Schwefel’s problem (SWF):

()
1

() 418.9829 sin ,
n

SWF i i

i

f x n x x
=

= × −∑ –500 ≤ xi ≤ 500, min fSWF (s,….,s) = 0

where s = 420.97.

Swarm Directions Embedded Differential Evolution

1240013-21

Appendix B. Real Life Problems

B.1. Welded beam design optimization problem (WBD)

The problem is to design a welded beam for minimum cost, subject to some constraints.13
Figure 6 shows the welded beam structure which consists of a beam A and the weld
required to hold it to member B. The objective is to find the minimum fabrication
cost, considering four design variables: x1, x2, x3, x4 and constraints. The optimization
model is summarized below:

Minimize:   1.10471
  0.0481114.0  

Subject to:

    13,6000  0

    30,000  0

      0

  0.10471
  0.0481114.0    5.0  0

  0.125    0

    0.25  0

  6,000    0

with:

   ′  2 ′ ′′ 
2   ′′

 ′  6,000
√2

 ′′  


  6,000 14  
2 

   
2    

2 


  2 √2 


12    
2 




  504,000




M. Ali et al.

1240013-22

  65,856,000
30  10



 
4.01330  10




36
196







1.0 
 30  10

412  10
28







with 0.1  ,   2.0 and 0.1  ,   10.0.

Fig. 6. Welded beam.

B.2. Pressure vessel design optimization problem (PVD)

As shown in Fig. 7, pressure vessel introduced by Sandgren47 was designed aimed at
minimizing the total cost of materials, forming and welding of the pressure vessel. There
are four design variables: The shell thickness x1, the thickness of the head x2, the inner
radius x3 and the length of the cylindrical section x4, x1 and x2 are discrete values which
are integer multiples of 0.0625in, x3 and x4 are continuous. The pressure vessel problem
is stated as follows:

Minimize:   0.6224  1.7781
  3.1661

  19.84


Subject to:

  0.0193    0

  0.00954    0

  1,296,000  
  4

3 
  0

    240  0

with 0.0625  ,   99  0.0625 and 10.0  ,   200.0.

Swarm Directions Embedded Differential Evolution

1240013-23

Fig. 7. Pressure vessel.

B.3. Speed reducer design optimization problem (SRD)

The design of the speed reducer13 shown in Fig. 8, is considered with the face width x1,
module of teeth x2, number of teeth on pinion x3, length of the first shaft between
bearings x4, length of the second shaft between bearings x5, diameter of the first shaft x6,
and diameter of the first shaft x7 (all variables continuous except x3 that is integer). The
weight of the speed reducer is to be minimized subject to constraints on bending stress of
the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shaft.
The problem is:

Minimize:   0.7854
3.3333

  14.9334  43.0934

1.508
    7.4777

  

0.7854
  

Subject to:

  27



 1.0  0

  397.5



  1.0  0

  1.93



  1.0  0

  1.93



  1.0  0

  1.0
110

 745.0





 16.9  10  1.0  0

  1.0
85

 745.0





 157.5  10  1.0  0

  
40.0  1.0  0

M. Ali et al.

1240013-24

  5


 1.0  0

  
12

 1.0  0

  1.5  1.9


 1.0  0

  1.1  1.9


 1.0  0

with 2.6    3.6, 0. 7    0.8 , 17   28, 7.3    8.3 , 7.8    8.3,
2.9    3.9 and 5.0    5.5.

Fig. 8. Speed reducer.

B.4. Tension/compression spring design optimization problem (T/CSD)

As shown in Fig. 9, spring was designed aiming at minimizing the weight of a tension/
compression spring.13 There are three design variables: the wire diameter x1, the mean
coil diameter x2 and the number of active coils x3. All design variables are continuous.
The spring problem is stated as follows:

Minimize:   
2.0  

Subject to:

  1.0  


7,178
  0

  4
  

12,566
  

  1
5,108

  1.0  0

Swarm Directions Embedded Differential Evolution

1240013-25

  1.0  140.45



 0

    
1.5  1.0  0

with 0.05    2.0 , 0.25    1.3 and 2.0    15.0.

Fig. 9. Tension/compression spring.

