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In the present study we propose a new hybrid version of Differential Evolution (DE) and Particle 

Swarm Optimization (PSO) algorithms called Hybrid DE or HDE for solving continuous global 

optimization problems. In the proposed HDE algorithm, information sharing mechanism of PSO is 

embedded in the contracted search space obtained by the basic DE algorithm. This is done to 

maintain a balance between the two antagonist factors; exploration and exploitation thereby 

obtaining a faster convergence. The embedding of swarm directions to the basic DE algorithm is 

done with the help of a “switchover constant ” called α which keeps a record of the contraction of 

search space. The proposed HDE algorithm is tested on a set of 10 unconstrained benchmark 

problems and four constrained real life, mechanical design problems. Empirical studies show that the 

proposed scheme helps in improving the convergence rate of the basic DE algorithm without 

compromising with the quality of solution. 

Keywords:  Differential evolution; particle swarm optimization; hybridization; global optimization. 

1.   Introduction 

Optimization problems arise in various disciplines such as engineering designs, 

agricultural sciences, manufacturing systems, economics, physical sciences, pattern 

recognition etc. in fact optimization techniques are being extensively used in various 
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spheres of human activities, where decisions have to be taken in some complex situation 
which can be represented by mathematical models. Optimization can thus be viewed as a 
kind of decision making, or more specifically, as one of the major quantitative tools in 
network of decision making, in which decisions have to be taken to optimize one or more 
objectives under some prescribed set of circumstances. Significant amount of work has 
been done in the field optimization which mainly revolves around developing efficient 
methods for solving mathematical models of optimization problems. Some of the 
classical optimization techniques include Methods Linear Programming (LP) and 
traditional nonlinear (NL) techniques like Bellman’s principle, Lagrange’s multiplier 
method, quadratic programming approach etc. A detailed study of classical optimization 
methods can be found in Refs. 28, 8 and 43. While LP approaches are restricted to linear 
models, the problem with most of the traditional NL techniques is that they are gradient 
based and hence cannot be applied for finding out the solution to the problems which 
have a rough or discontinuous surface. Consequently, researchers working in the field of 
optimization have laid much attention on a class of derivative free techniques that can be 
applied for solving complex optimization models. 

One class of derivative free techniques consists of nature inspired evolutionary search 
algorithms. These techniques have gained a lot of popularity in the recent years because 
of their ability to deal with complex optimization problems which are otherwise difficult 
to solve using traditional methods. Some well known evolutionary/nature inspired 
algorithms are Genetic Algorithms,25 Evolutionary Programming,24 Evolutionary 
Strategies7 Particle Swarm optimization43 and Differential Evolution51 etc. The working 
of all these algorithms is based on some biological or social metaphor. 

Out of these, PSO and DE are comparatively newer than others. These are stochastic, 
population based search techniques and have been applied successfully to a wide range of 
problems occurring in various disciplines.2–4,10,16–18,22,23,26,35,36,41,44,45,52,54,55,58,60 A number 
of variants of these algorithms have been developed in the past decade to improve their 
performance.5,9,29,42,46,49,50,57  

One class of modification consists of integrating DE and PSO algorithms where the 
advantages of both the algorithms are blended together to form a new algorithm. DE has 
the advantage of not being biased towards any prior defined distribution for sampling 
mutational step sizes and its selection operator follows a hill-climbing process. According 
to the literature, the DE algorithm performs very well in the initial stages however as the 
search proceeds, the convergence rate of DE slows down gradually.  

On the basis of practical experience, researchers have shown that DE may              
sometimes stop proceeding toward the global optimum even though the population has 
not converged to a local optimum or any other point.34 There is a possibility that the              
new points may enter the population but the algorithm does not show any progress                      
in finding any better solutions. This situation is termed as stagnation. DE also suffers 
from the problem of premature convergence, where the population converges to some 
local optima of a multimodal objective function, losing its diversity. The probability                 
of stagnation depends on how many different potential trial solutions are available and 
also on their capability to enter into the population of the subsequent generations.34 
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Further, like other evolutionary computing algorithms, the performance of DE 
deteriorates with the growth of the dimensionality of the search space as well. A good 
volume of work is devoted in the direction of improvement of DE algorithm. These 
modifications may be differentiated as variation in the probabilities of crossover and 
mutation, development of new mutation or crossover operators, development of adaptive 
parameters1,5,9,12,19,29,34,37,39,40,42,46,57,59 etc. Hybridization of DE with some local search 
technique or with some stochastic technique can be found in Refs. 11, 14, 27, 30–32, 38, 
53, 56, 61 and 62. 

The idea behind hybridization is to merge the positive features of two (or more than 
two) algorithms in order to obtain a new algorithm which is better than the two parent 
algorithms which are used for hybridization. In the present study we propose a hybrid 
version of DE and PSO called hybridized DE or HDE. The proposed HDE algorithm 
works in two phases; the DE phase (or the first phase) and the PSO phase (or the second 
phase). The change of phases is decided according to a switchover constant α. By 
embedding the information sharing mechanism of PSO in the later stages of the search 
we try to push the particles towards a local attractor which is hopefully near the global 
optimum. 

The remaining paper is organized as follows: In Sec. 2, we give a brief overview                
of the hybridized DE-PSO algorithms. In Sec. 3, basic DE and PSO algorithms are 
described. The proposed HDE algorithm is given in Sec. 4. Benchmark problems and 
experimental settings are given in Sec. 5 and numerical results are given in Sec. 6. 
Finally, the conclusions based on the present study are drawn in Sec. 7.    

2.   A Brief Literature Review on Earlier Work Done  

As mentioned in the previous section, both DE and PSO have undergone a plethora of 
changes since their development in 1995. However, not much instances are available in 
literature which combines the features of DE and PSO together in a single algorithm. In 
this section we give a brief review of some earlier work in which the two algorithms are 
merged together. 

Hendtlass47 used the DE perturbation approach to adapt particle positions. In his 
algorithm, named SDEA, particles’ positions are updated only if their offspring have 
better fitness. The DE reproduction process is applied to the particles in swarm at 
specified intervals. At the specified intervals, the PSO swarm serves as the population for 
DE algorithm, and the DE is executed for a number of generations. After execution of 
DE, the evolved population is further optimized using PSO. Hendtlass applied his 
algorithm SDEA on four unconstrained benchmark problems for different dimensions 
and for different population sizes. 

Zhang and Xie62 used different techniques in random, rather than combining them, in 
their Differential Evolution (DE) PSO (DEPSO). In this case the DE and canonical PSO 
operators were used on alternate generations; when DE was in use, the trial mutation 
replaced the individual best at a rate controlled by a crossover constant and a random 
dimension selector that ensured at least one mutation occurred each time.  
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Kannan et al.20 applied DE to each particle for a finite number of iterations, and 
replaced the particle with the best individual obtained from the DE process.  

Talbi and Batauche53 proposed an algorithm named DEPSO. It differs from the 
DEPSO algorithm proposed by Zhang and Xie as the DE operators are applied only to the 
best particle obtained by PSO. They applied their algorithm on medical image processing 
problem. 

In Hao et al.’s63 hybrid version, which is also named as DEPSO, the candidate 
solution is generated either by DE or by PSO according to some fixed probability 
distribution. They applied their algorithm for solving unconstrained global optimization 
problems.  

Das et al.18 proposed a scheme of adjusting velocities of the particles in PSO with a 
vector differential operator borrowed from the DE family. In their proposed PSO-DV 
algorithm, they omitted the cognitive term of the canonical PSO and updated the particle 
velocities by a new term containing the weighted difference (inspired by DE mutation 
scheme) of the position vectors of any two distinct particles randomly chosen from the 
swarm. They also applied their algorithm on a test suite of selected unconstrained 
benchmark problems. 

Omran et al.38 proposed a hybrid version of Bare Bones PSO and DE called it BBDE. 
In their approach, they combined the concept of barebones PSO with self adaptive DE 
strategies. The mutation operator of DE is used to explore around the current attractor by 
adding a difference vector to the attractor. Crossover is done with randomly selected 
personal best as these personal bests represent a memory of the best solution found by 
individuals since the start of the search process. They validated their algorithm on a set of 
unconstrained benchmark problems and also applied to image classification problem. 

The work of Jose et al.64 evaluated a Particle Swarm Optimizer hybridized with 
Differential Evolution and applied it to the Black-Box Optimization Benchmarking for 
noisy functions. Their algorithm was once named as DEPSO algorithm. In this version of 
DEPSO, the differential variation schemes of DE are used for updating the velocities of 
the swarm particles. 

Zhang et al.61 developed a hybrid of DE and PSO called DE-PSO, where three 
alternative updating strategies are used. The DE updating strategy is executed once in 
every l generations and if a particle's best encountered position and the position of its 
current best neighbor are equal then random updating strategy is executed otherwise PSO 
updating strategy is used.  

Liu et al.65 proposed a novel hybrid algorithm named PSO-DE, in which DE is 
incorporated to update the previous best positions of PSO particles to force them to jump 
out of local attractor in order to prevent stagnation of population. 

Copanio et al.66 developed a Superfit Memetic Differential Evolution (SFMDE)                     
by hybridizing DE and PSO with two other local search methods; Nelder Mead         
algorithm and Rosenbrock algorithm. In SFMDE, PSO assists DE in the beginning of                
the optimization process to generate a “super-fit individual”, the local searches are then 
applied adaptively by means of a parameter which measures the quality of super-fit  
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Table 1.  A summary of hybridized PSO + DE algorithms. 

 
individual. SFMDE was applied for solving unconstrained standard benchmark problems 
and two engineering problems. 

Xu and Gu67 proposed Particle Swarm Optimization with prior crossover differential 
evolution (PSOPDE). Their version is distinct from other PSO-DE hybrids in three ways; 
(1) the particles in the swarm are not just led towards global and personal best positions 
but also depend on the average position and velocity of the particles (2) DE is integrated 
with PSO for local search and (3) a new crossover operation between the target and an 
extra population is implemented before the DE component. They applied their algorithm 
for solving five unconstrained benchmark problems. 

Khamsawang et al.69 proposed an improved hybrid algorithm based on conventional 
particle swarm optimization and differential evolution (called PSO-DE) for solving an 
economic dispatch(ED) problem with the generator constraints. In PSO-DE, the mutation 
operators of the differential evolution are used for improving diversity exploration of 
PSO and are activated if velocity values of PSO are near to zero or violate the boundary 
conditions. 

The DE-PSO algorithm suggested by Pant et al.68 starts like the usual DE algorithm. 
it enters the PSO phase if the optimality criteria are not met by the DE algorithm. They 
tested their algorithm on a set of unconstrained benchmark problems. A brief summary of 
hybrid PSO and DE algorithms is given in Table 1. 

3.   Differential Evolution (DE) and Particle Swarm Optimization (PSO) 

DE was proposed by Storn and Price51 in 1995. It soon became a popular tool for solving 
global optimization problems because of several attractive features like having fewer 

Author/s  Year Name of the 
Algorithm 

Application/s 

Hentdlass47 2001 SDEA Unconstrained global optimization 

Zhang and Xie62 2003 DEPSO Unconstrained global optimization 

Kannan et al.20 2004  Generation Expansion planning 

Talabi and Batouche53 2004 DEPSO Medical Image Processing 

Hao et al.63 2007 DEPSO Unconstrained global optimization 

Das et al.18 2008 PSO-DV Engineering Design 

Omran et al.38  2008 BBDE Unconstrained Optimization Problems and Image 
Processing 

Jose et al.64 2009 DEPSO Noisy functions 

Zhang et al.61 2009 DE-PSO Unconstrained Optimization 

Liu et al.65 2009 PSO-DE Constrained optimization and engineering problems 

Caponio et al.66 2009 SFMDE Unconstrained global optimization and engineering  
design problems 

Xu and Gu67 2009 PSOPDE Unconstrained global optimization 

Pant et al.68 2009 DE-PSO Unconstrained global optimization 

Khamsawang et al.69 2010 PSO-DE Power Systems 
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control parameters, ease in programming, efficiency etc. DE is similar to GAs in the 
sense that it uses same evolutionary operators like mutation, crossover and selection for 
guiding the population towards the optimum solution. Nevertheless, it’s the application       
of these operators that makes DE different from GA. The main difference between GAs 
and DE is that; in GAs, mutation is the result of small perturbations to the genes of an 
individual while in DE mutation is the result of arithmetic combinations of individuals. 
Also in DE, mutation plays a prominent role whereas, in GA, crossover is the major 
operator. At the beginning of the evolution process, the mutation operator of DE favors 
exploration. As evolution progresses, the mutation operator favors exploitation. Hence, 
DE automatically adapts the mutation increments (i.e. search step) to the best value based 
on the stage of the evolutionary process. Mutation in DE is therefore not based on a 
predefined probability density function. Moreover, GA may work even without the 
presence of a mutation operator as crossover is the prime operator of GA but the main 
component of DE is the generation of mutant vector. Also in DE mutation is applied 
before crossover whereas in GA, mutation is always applied after crossover. Throughout 
the study we shall consider the mutation strategy DE/rand/1/bin also known as the 
classical version of DE. The three main equations used in DE are given as follows: 
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Equations (1), (2) and (3) represent the mutation, crossover and selection operations 
respectively, for DE. F is the scaling factor and Cr is the probability of crossover. 

PSO is a multi-agent parallel search technique developed by Kennedy and Eberhart in 
1995,33 inspired by social behavior of bird flocking or fish schooling. The particles or 
members of the swarm fly through a multidimensional search space looking for a 
potential solution. Each particle adjusts its position in the search space from time to time 
according to the flying experience of its own and of its neighbors (or colleagues). Each 
particle maintains a memory of its previous best position and also the best position 
among all the particles. During each generation each particle is accelerated toward the 
particles previous best position and the global best position. At each iteration a new 
velocity value for each particle is calculated based on its current velocity, the distance 
from the global best position. The new velocity value is then used to calculate the next 
position of the particle in the search space. This process is then iterated a number of times 
or until a minimum error is achieved. 

 1
1 1 2 2 best( ) ( )G G G G G G G

i i i i iV w V c r P X c r P X+ = + − + −  (4) 

 1 1G G G
i i iX X V+ += +  (5) 
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 max min min
(maxiteration-Iteration)

( )
Iteration

Gw w w w= − × +  (6) 

Equations (4) and (5) represent the velocity and position equations of the swarm particles. 
Equation (6) gives the inertia weight taken for the present study. Pi

G represents the 
personal best position of the particle and best

GP represents the global best particle. c1, c2 
represents the acceleration constants and r1, r2 are uniformly distributed random numbers 
in the range (0, 1). 

4.   Proposed Hybrid Differential Evolution (HDE) 

In hybridized algorithms it is very crucial to decide how the algorithms should be merged 
in order to get the maximum benefit. In the proposed HDE algorithm, the initial search 
space is contracted using the DE algorithm and then PSO is applied to further refine the 
search space with the hope of finding the global optimal solution. The change of DE 
phase to PSO phase is decided with the help of a switchover constant denoted by α. The 
final contracted population obtained by DE is arranged in ascending order of fitness 
function values and upper half of the population undergoes the PSO operation i.e. to say 
that PSO is applied on only half of the population consisting of elite solutions. The 
working of HDE can be explained with the help of the following steps. 

Step 1. Generate randomly NP vectors, each of n dimensions: 
Xi,j = Xmin,j + rand(0, 1)(Xmax,j – Xmin,j), where Xmin,j and Xmax,j are lower and 
upper bounds for jth component respectively, rand(0, 1) is a uniformly 
distributed random number between 0 and 1. 

Step 2. Calculate the objective function value f(Xi) for all Xi. 
Step 3. Corresponding to target vector Xi select three distinct points from population 

and generate perturbed individual Ui using equation (1). 
Step 4. Recombine the each target vector Xi with perturbed individual generated in 

step 3 to generate a trial vector Ti using equation (2). 
Step 5. Check whether each variable of the trial vector is within range. If not keep it 

within range using Ti,j = 2* Xmin,j – Ti,j, if Ti,j < Xmin,j and Ti,j = 2* Xmax,j – Ti,j, if 
Ti,j > Xmax,j, otherwise go to Step 6. 

Step 6. Calculate the objective function value for vector Ti. 
Step 7. Choose better of the two (function value at target and trial point) using 

equation (3) for next generation. 
Step 8. Check whether max minf f− < α (given threshold) value. If yes then switch-

over to PSO (Step 10); otherwise go to Step 9. 
Step 9. Check whether maximum number of function evaluation has been completed. 

If yes, stop; otherwise go to Step 3. 
Step 10. Sort the final population obtained by DE algorithm in ascending order. Take 

first NP/2 individuals as initial swarm; assign initial velocity zero, personal 
best position same as particle position and global best position particle 
position having minimum function value.  
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Step 11. Update velocity Vi
G+1 and position Xi

G+1, according to equations (4) and (5) of 
all NP/2 particles.  

Step 12. Evaluate objective function value f(Xi
G+1) for all Xi

G+1. 
Step 13. Update particle best position: if f(Xi

G+1) < f(Pi) then f(Pi) = f(Xi
G+1) and Pi = 

Xi
G+1. 

Step 14. Find global best Pbest position of particle and update inertia weight. 
Step 15. Check whether convergence criterion is met. If yes, stop: otherwise go to               

Step 16. 
Step 16. Check whether maximum number of function evaluation has been completed. 

If yes, then stop; otherwise go to Step 11. 

The parameter α defined in Step 8, plays an important role in HDE. It keeps a track of the 
contraction of the search space in order to initiate the PSO algorithm.  

5.   Benchmark Problems and Experimental Settings 

5.1.   Benchmark and real life problems 

To analyze the performance of the proposed HDE algorithm we tested it on 10 
unconstrained standard bench mark problems taken from literature. All these problems 
are scalable in nature i.e. their dimension can be varied in order to increase their 
complexity. We have tested these problems for dimensions 10 and 30. The mathematical 
model of the problems along with the true global minimum is given the Appendix A.  

To further analyze the efficiency of HDE we used it for solving four real life 
mechanical design problems. All the four problems are constrained in nature. The 
constraints are dealt with by using the tournament based approach proposed by Deb21 for 
solving constrained optimization problems. According to this rule: 

• Between two feasible solutions, the one with the highest fitness value wins. 
• If one solution is feasible and the other one is infeasible, the feasible solution wins. 
• If both solutions are infeasible, the one with the lowest sum of constraint violation is 

preferred. 

This method does not require a penalty factor as the selection procedure only 
performs pair wise comparisons. The feasible solutions therefore have fitness equal to 
their objective function value, and the use of constraint violation in the comparisons aims 
to push the infeasible solutions towards the feasible region. 

5.1.1.   Experimental settings 

As discussed in Sec. 4, HDE starts with the usual DE algorithm for which, the lower limit 
for population size, NP, is 4 since the mutation process requires at least three other 
chromosomes for each parent. While testing the algorithms, we began by using the 
optimized control settings of DE. Population size, NP can always be increased to help 
maintain population diversity. As a general rule, an effective NP is between 3 * n and 
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10 * n, but can often be modified depending on the complexity of the problem. For the 
present study we performed several experiments with the population size as well as with 
the crossover rate and mutation probability rate and observed that for problems up to 
dimension 30 a population size of 10 * n is sufficient. Values of scale F, outside the range 
of 0.4 to 1.2 are rarely effective and F = 0.5 can be considered to be a good initial choice. 
In general higher value of Cr help in speeding up the convergence rate therefore in the 
present study we have taken Cr = 0.5.  

HDE also contains an additional parameter α, which keeps a track of the contraction 
of search space and decides the initiation of PSO algorithm. We observed the 
preformance of the proposed HDE algorithm for three values of α; 0.5, 0.05 and 0.005.  

The PSO algorithm in HDE is applied to a region which has already contrcted i.e. to 
say the PSO algorithm is applied to a small search space (hopefully) near the global 
minima. Therefore, we have taken the inertia weight w which decrease uniformly from 
0.4 to 0.2. Also in order to give more weight to the global best position, the acceleration 
coeffient C1 and C2 are taken as 0.5 and 2.0 respectively. All the algorithms are executed 
on a PIV PC, using DEV C++, thirty times for each problem. Random numbers are 
generated using the inbuilt random number generator rand ( ) function available in 
DEVC++.  

In every case, a run was terminated when the best function value obtained is less than 
a threshold (10–4) for the given function or when the maximum number of function 
evaluation (NFE = 106) was reached. In order to have a fair comparison, these settings are 
kept the same for all algorithms over all benchmark functions during the simulations.  

6.   Numerical Results  

6.1.   Numerical results for unconstrained benchmark problems 

The performance of the proposed HDE algorithm, for different values of α, is analyzed 
on a set of ten unconstrained benchmark problems and the numerical results are 
compared with the traditional DE algorithm. The performance measures used for 
comparison include average fitness function value, standard deviation (Std), average 
numbers of functions evaluations and average CPU time taken. The corresponding results 
are given in Tables 2–5. 

Under the given parameter settings, it can be seen that the traditional DE was not able 
to achieve the desired accuracy of 10–4 in case of fRB (Rosenbrock function) whereas, for 
fGW (Griewanks function) HDE was not able to achieve the desired accuracy for α = 0.5. 
For the remaining values of α (= 0.05 and 0.005) HDE was able to achieve the desired 
accuracy for all the test cases. 

From the numerical results it can be seen that although in terms of average fitness 
function value, the proposed HDE algorithm does not show much improvement in 
comparison to the basic DE, but in terms of NFE and CPU time taken, the proposed HDE 
algorithm performs much better than the basic DE algorithm. If discuss the sensitivity of 
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Table 2.  DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average fitness function value and 
standard deviation (Std) for unconstrained benchmark problems of dimension 10. 

Fun 
DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005) 

Fitness (Std) Fitness (Std) Fitness (Std) Fitness (Std) 

fSP 
1.40711e-05 

(5.17314e-06) 
5.62630e-06 

(3.91721e-06) 
1.22108e-05 

(7.65373e-06) 
8.8269e-06 

(5.16438e-06) 

fACK 
5.94765e-05 
(1.0848e-05) 

3.56962e-05 
(1.30165e-05) 

5.44005e-05 
(2.94382e-05) 

3.43113e-05 

(1.11886e-05) 

fRG 

1.13561e-05 
(3.38399e-06) 

9.00661e-06 
(5.72322e-06) 

1.16375e-05 
(7.7549e-06) 

6.83095e-06 

(5.40267e-06) 

fRB – 
9.02526e-14 

(0.00340) 
0.00096 

(0.00205) 
0.00063 

(0.00064) 

fGW 

1.46893e-05 
(3.77339e-06) 

– 
2.74695e-06 

(8.24084e-06) 
1.03926e-05 

(5.69282e-06) 

fLM2 

1.60214e-05 
(4.07044e-06) 

9.83868e-006 
(8.48897e-06) 

7.96413e-06 

(5.48033e-06) 
8.12357e-06 

(5.08711e-06) 

fpp 

–45.77850 
(4.25827e-06) 

–45.77850 
(4.24994e-06) 

–45.77850 
(6.03048e-06) 

–45.77850 
(2.57806e-06) 

fsis 

–3.49998 
(4.62082e-06) 

–3.49999 
(9.00903e-06) 

–3.49999 
(7.38833e-06) 

–3.49999 
(4.48909e-06) 

fst 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

0.00000 
(0.00000) 

fSWF 

0.00024 
(4.14499e-06) 

0.00023 
(4.76434e-06) 

0.00023 
(1.35658e-05) 

0.00023 
(5.46631e-06) 

Table 3.  DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average fitness function value and 
standard deviation (Std.) for unconstrained benchmark problems of dimension 30. 

Fun 
DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005) 

Fitness (Std) Fitness (Std) Fitness (Std) Fitness (Std) 

fSP 
4.96717e-05 
7.77918e-06 

2.38679e-05 

3.29303e-05 
9.01265e-05 
4.05859e-05 

6.02874e-05 
1.67625e-05 

fACK 
0.00014 

1.66159e-05 
0.00047 
0.00061 

0.00024 
0.00011 

0.00018 
8.38164e-05 

fRG 

105.858 
6.16943 

104.131  
6.20312 

87.8904 

 6.01522 
89.1484 
5.22234 

fRB 

15.1913 
 1.70576 

2.65097e-15 

1.55107e-10 
13.6827 
1.00897 

13.8989 
1.63056 

fGW 

5.07342e-05 
5.83072e-06 

0.00744 
0.00084 

4.43105e-05 

4.57603e-05 
5.31735e-05 
1.42185e-05 

fLM2 

4.73725e-05 

  9.83696e-06 
0.00031 
0.00041 

6.89487e-05 
2.48868e-05 

5.45789e-05 
2.62944e-05 

fpp 

–997867.0 
2.45355e-06 

–997867.0 
3.341784e-05 

–997867.0 
3.22517e-05 

–997867.0 
1.31195e-05 

fsis 

–3.49995 
6.58779e-06 

–2.33863 
.00785 

–2.45923 
0.00067 

–3.49985 
3.20262e-05 

fst 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

fSWF 

0.00072 
7.56772e-06 

0.00081 
9.5201e-05 

0.00075 
6.24289e-05 

0.00073 
2.61436e-05 
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Table 4.  DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average number of functions evaluations (NFE) 
and average CPU time taken (in seconds) to obtain an accuracy of 10–4 for unconstrained benchmark problems 
of dimension 10. 

Fun 
DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005) 

NFE Time NFE Time NFE Time NFE Time 

fSP 14300 0.30 8415 0.20 8835 0.20 10740 0.20 

fACK 26680 0.60 13690 0.30 16595 0.40 19885 0.50 

fRG 96400 2.20 89345 2.10 92090 2.20 95120 2.20 

fRB 106 – 106 – 208190 10.60 316155 17.90 

fGW 94690 2.40 106 – 88400 2.30 87290 2.20 

fLM2 17540 0.90   10172 0.44 13185 0.70 14325 0.70 

fpp 14290 0.70 7760 0.40 9400 0.40 11545 0.60 

fsis 30940 0.20 31300 0.20 24395 0.20 27695 0.20 

fst 10980 0.50 11030 0.30 11300 0.30 10690 0.30 

fSWF 25850 0.20 19480 0.10 21440 0.20 22570 0.10 

Table 5.  DE versus HDE (for α = 0.5, 0.05, 0.005) in terms of average number of functions 
evaluations (NFE) taken to obtain accuracy of 10–4 for unconstrained benchmark problems of 
dimension 30. 

the parameter α, then once again from the average fitness function value we cannot 
conclude anything concrete because the numerical results are more or less similar for all 
values of α, which are similar to the basic DE results, which in turn are in the vicinity of 
the true minima. However, from Table 3, we can see that when the value of α is 0.5, we 
get the best results in terms of NFE and CPU time with an average improvement of 
around 23% in case of NFE and CPU time. However, for other values of α also the results 
are better than the basic DE algorithm. Performance graphs of few selected functions for 
different values of α are given in Fig. 1(a) and 1(b). 

Fun 
NFE 

DE HDE (α = 0.5) HDE (α = 0.05) HDE (α = 0.005) 

fSP 146400 90195 90270 111465 

fACK 256710 122610 152310 187530 

fRG 106 106 106 106 

fRB 106 106 106 106 

fGW 222540 90150 140583 186255 

fLM2 182970 104950 131325 149370 

fpp 225900 149550 171150 190350 

fsis 549675 443250 421650 429000 

fst 126060 125610 121950 125580 

fSWF 369450 283395 305325 324120 
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(a) 

 
(b) 

Fig. 1.  Performance graph of (a) Ackley’s function and (b) Sphere function.  

6.2.   Numerical results for constrained real life problems 

In case of real life problems also, the proposed HDE performed better than the basic DE 
algorithm and the results available in literature,6,13,15,20,48 for all the four test cases. Once 
again the superior performance of HDE algorithm is more evident from the NFE it takes 
to reach the optimum solution. In terms of other performance measures also like average 
fitness function value and average CPU time, the proposed HDE outperformed the other 
algorithms. The corresponding results of real life problems are given in Tables 6 and 7. 
Performance curves of real life problems are given in Figs. 2–5.  
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Table 6.  A comparison of numerical results of PVD and T/CSD problems using DE, HDE (α = 0.05) and other 
algorithms available in literature in terms of Average Fitness function value, Number of function evaluations 
(NFE) Standard Deviation (std) and Time (in sec).  

Pressure vessel design (PVD) 

Item DE HDE (α = 0.05) SiC-PSO13 iGSO48 Coello15 GeneAS20 
x1 0.778169 0.778169 0.812500 0.812500 0.812500 0.9375 
x2 0.384649 0.384649 0.437500 0.437500 0.437500 0.5000 
x3 40.3196 40.3197 42.098445 42.098446 40.3239 48.3290 
x4 200 200 176.636595 176.636596 200 112.6790 

g1(X) –5.59078e-10 –3.73187e-010 –4.500e-15 –3.40e-10 –0.034324 –0.004750 
g2(X) –3.0915e-009 –7.13005e-011 –0.035880 –0.035881 –0.052847 –0.038941 
g3(X) –0.0022058 –7.34673e-005 –1.164e-10 –0.000029 –27.105845 –3652.8738 
g4(X) –40 –40.0005 –63.363404 –63.363404 –40.0000 –127.321000 
f (X) 5885.3301 5885.3300 6059.714335 6059.71400 6288.7445 6410.3811 
NFE 40740 31915 NA 26000 NA NA 
Std 1.25551e-05 2.57304e-4 NA NA NA NA 

Time (sec) 0.5 0.3 NA 12.34 NA NA 
Spring design (T/CSD) 

Item DE HDE (α = 0.05) SiC-PSO13 iGSO48 Coello15 Arora6 
x1 0.0514312 0.0518374 0.051583 0.051691 0.051480 0.053396 
x2 0.350492 0.360296 0.354190 0.356765 0.351661 0.399180 
x3 11.6701 11.0822 11.438675 11.286172 11.632201 9.185400 

g1(X) –0.00038971 –1.11544e-007 –2.000e-16 –2.0950e-11 –0.002080 0.000019 
g2(X) –0.00012457 –3.36314e-010 –1.000e-16 –1.3020e-11 –0.000110 –0.000018 
g3(X) –4.03868 –4.06079 –4.048765 –4.053880 –4.026318 –4.123842 
g4(X) –0.732051 –0.725244 –0.729483 –0.727696 –0.731239 –0.698283 
f (X) 0.0126737 0.0126656 0.012665 0.012665 0.0127048 0.127302737 
NFE 9370 4945 NA 8000 NA NA 
Std 4.05487e-005 1.77850e-04 NA NA NA NA 

Time (sec) 0.2 0.1 NA 8.17 NA NA 

Table 7.  A comparison of numerical results of SRD and WBD problems using DE, HDE 
(α = 0.05) and other algorithms available in literature in terms of Average Fitness function 
value, Number of function evaluations (NFE) Standard Deviation (std) and Time (in sec). 

Speed Reducer (SRD) 
Item DE HDE (α = 0.05 ) SiC-PSO13 

x1 3.5 3.5 3.500000 
x2 0.7 0.7 0.700000 
x3 17 17 17.00000 
x4 7.3 7.30012 7.30000 
x5 7.8 7.8 7.80000 
x6 3.35021 3.35021 3.350214 
x7 5.28668 5.28668 5.286683 

g1(X) –0.0739153 –0.0739153 –0.073915 
g2(X) –0.197999 –0.197999 –0.197998 
g3(X) –0.499172 –0.499148 –0.499172 
g4(X) –0.901472 –0.901472 –0.901471 
g5(X) –2.381e-008 –1.64302e-009 0.000000 
g6(X) –1.66315e-009 –2.97741e-010 –5.000e-16 
g7(X) –0.7025 –0.7025 –0.702500 
g8(X) –3.07603e-010 –4.98685e-011 –1.000e-16 
g9(X) –0.583333 –0.583333 –0.583333 
g10(X) –0.0513257 –0.0513413 0.051325 
g11(X) –0.0108524 –0.0108524 –0.010852 
f (X) 2996.35 2996.347101 2996.348165 
NFE 8925 7867.5 NA 
Std 9.02658e-06 1.35461e-03 NA 

Time (sec) 0.4 0.3 NA 
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Table 7.  (Continued) 

Welded Beam Design(WBD) 
Item DE HDE (α = 0.05 ) SiC-PSO13 

x1 0.205727 0.182634 0.205729 
x2 3.47055 3.81039 3.470488 
x3 9.03667 9.58501 9.036624 
x4 0.20573 0.182863 0.205729 

g1(X) –0.0681061 –0.00693705 –1.819e-12 
g2(X) –0.458633 –0.14485 –0.003721 
g3(X) –3.57774e-06 –0.000228855 0.00000 
g4(X) –3.43296 –3.49465 –3.432983 
g5(X) –0.0807269 –0.0576342 –0.080729 
g6(X) –0.235541 –0.236368 –0.235540 
g7(X) –2055.41 –0.0348941 0.000000 
f (X) 1.72487 1.64226 1.724852 
NFE 17425 11790 NA 
Std 7.27403e-05 1.31468e-05 NA 

Time (sec) 0.4 sec 0.3 NA 
 

 

Fig. 2.  Convergence graph of DE and HDE for pressure vessel design problem.  

 

 

Fig. 3.  Convergence graph of DE and HDE for spring design problem.  

5500

6500

7500

8500

9500

10500

11500

12500

500 5500 10500 15500 20500 25500 30500 35500

Fi
tn

es
s

Number of function evaluation

DE

HDE

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

500 1500 2500 3500 4500

Fi
tn

es
s

Number of function evaluation

DE

HDE



Swarm Directions Embedded Differential Evolution  

 

1240013-15 

 

Fig. 4.  Convergence graph of DE and HDE for Speed reducer design problem. 

 
 

Fig. 5.  Convergence graph of DE and HDE for welded beam design problem.  

7.   Conclusions 

In the present study, we proposed a simple and easy to implement hybrid version of               
DE and PSO algorithm called HDE. The proposed HDE algorithm works in two stages. 
In the first stage DE is activated to contract the search space and when the search space 
has contracted enough, PSO is activated to further refine the search. The swap from DE 
to PSO is decided with the help of a switchover constant named α. We tested the 
proposed algorithm for scalable problems of dimensions 10 and 30 and observed that 
although it does not make much improvement in the fitness function value but in terms of 
NFE and CPU time there is an improvement of more than 20%. The superior 
performance of HDE is also evident from the four cases of real life problems, where it 
outperformed the other algorithms in terms of all the performance measures taken for the 
present study. We would also like to point out that we have used the basic versions of DE 
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and PSO. It would be interesting to note the performance of the proposed scheme while 
using some more advanced versions of DE and PSO algorithms.  
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Appendix A.  Unconstrained Benchmark Problems 

1. Sphere  function (SP):  
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( )  
n

SP i

i

f x x
=

=∑ with –5.12 ≤ xi ≤ 5.12, min fsp (0,….,0) = 0 

2. Acley’s function (ACK): 
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with –30 ≤ xi ≤ 30, min fACK(0,….,0) = 0. 

 
3. Rastrigin’s function (RG): 
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( ) 10 ( 10cos(2 )),
n

RG i i

i

f x n x xπ
=

= + −∑ with–5.12 ≤ xi ≤ 5.12, min fRG(0,….,0) = 0. 

4. Rosenbrock Problem (RB): 

( )
1

2 2 2
1

1

[100( ) (1 )],
n

RB i i i

i

f x x x x
−

+

=

= − + −∑ with –30 ≤ xi ≤ 30, min fRB (1,….,1) = 0. 

5. Griewenk function (GW): 

2

11

1
( ) cos 1,

4000

n n
i

GW i

ii

x
f x x

i==

 
= − +  ∑ ∏ with –600 ≤ xi ≤ 600, min fGW (0,….,0) = 0. 

6. Levy and Montalvo 2 Problem (LM2):
1

2 2 2
2 1 1

1

( ) sin (3 ) ( 1)(1 sin (3 )) ( 1)(1 sin (2 )),
n

LM i i n n

i

f x x x x x xπ π π
−

+

=

= + − + + − +∑  

with –5 ≤ xi ≤ 5, min fLM2 (1,….,1) = 0. 
7. Paviani problem (PP): 

0.2
2 2

11

( ) [(ln( 2)) (ln(10 )) ] ,
n n

PP i i i

ii

f x x x x
==

  = − + − −   
∑ ∏ with 2 ≤ xi ≤ 10. 

8. Sinusoid function (SIN):  

1 1

( ) sin( ) sin( ( )) ,
n n

SIN i i

i i

f x A x z B x z
= =

 
= − − + − 

 
∏ ∏  with 0 ≤ xi ≤ 180,  

min fSIN(x*) = – (A + 1) where * (90 ), 2.5, 5, 30.ix z A B z= + = = =  

9. Step function (ST): 

( )
2

1

( ) 0.5 ,
n

ST i

i

f x x
=

= +  ∑ with –100 ≤ xi ≤ 100, min fST (–0.5 ≤ xi ≤ 0.5) = 0. 

10. Schwefel’s problem  (SWF): 

( )
1

( ) 418.9829 sin ,
n

SWF i i

i

f x n x x
=

= × −∑ –500 ≤ xi ≤ 500, min fSWF (s,….,s) = 0 

where  s = 420.97.
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Appendix B.  Real Life Problems 

B.1.  Welded beam design optimization problem (WBD) 

The problem is to design a welded beam for minimum cost, subject to some constraints.13 
Figure 6 shows the welded beam structure which consists of a beam A and the weld 
required to hold it to member B. The objective is to find the minimum fabrication                   
cost, considering four design variables: x1, x2, x3, x4 and constraints. The optimization 
model is summarized below: 

Minimize:      1.10471
  0.0481114.0   

Subject to: 

    13,6000  0 

    30,000  0 

      0 

  0.10471
  0.0481114.0    5.0  0 

  0.125    0 

    0.25  0 

  6,000    0 

with: 

   ′  2 ′ ′′ 
2   ′′   

 ′  6,000
√2

 

 ′′  
  

  6,000 14  
2  

   
2    

2 


   

  2 √2 


12    
2 


 

  504,000


  



M. Ali et al. 

 

1240013-22 

  65,856,000
30  10

 

 
4.01330  10




36
196  







1.0 
 30  10

412  10
28







 

with  0.1  ,   2.0  and  0.1  ,   10.0. 

 
Fig. 6.  Welded beam. 

B.2.  Pressure vessel design optimization problem (PVD) 

As shown in Fig. 7, pressure vessel introduced by Sandgren47 was designed aimed at 
minimizing the total cost of materials, forming and welding of the pressure vessel. There 
are four design variables: The shell thickness x1, the thickness of the head x2, the inner 
radius x3 and the length of the cylindrical section x4, x1 and x2 are discrete values which 
are integer multiples of 0.0625in, x3 and x4 are continuous. The pressure vessel problem 
is stated as follows: 

Minimize:    0.6224  1.7781
  3.1661

  19.84
 

Subject to: 

  0.0193    0 

  0.00954    0 

  1,296,000  
  4

3 
  0 

    240  0 

with  0.0625  ,   99  0.0625  and  10.0  ,   200.0. 
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Fig. 7.  Pressure vessel. 

B.3.  Speed reducer design optimization problem (SRD) 

The design of the speed reducer13 shown in Fig. 8, is considered with the face width x1, 
module of teeth x2, number of teeth on pinion x3, length of the first shaft between 
bearings x4, length of the second shaft between bearings x5, diameter of the first shaft x6, 
and diameter of the first shaft x7 (all variables continuous except x3 that is integer). The 
weight of the speed reducer is to be minimized subject to constraints on bending stress of 
the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shaft. 
The problem is: 

Minimize:   0.7854
3.3333

  14.9334  43.0934 

1.508
    7.4777

   

0.7854
   

Subject to: 

  27



 1.0  0 

  397.5



  1.0  0 

  1.93



  1.0  0 

  1.93



  1.0  0 

  1.0
110

 745.0





 16.9  10  1.0  0 

  1.0
85

 745.0





 157.5  10  1.0  0 

  
40.0  1.0  0 
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  5


 1.0  0 

  
12

 1.0  0 

  1.5  1.9


 1.0  0 

  1.1  1.9


 1.0  0 

with 2.6    3.6, 0. 7    0.8 , 17   28, 7.3    8.3 , 7.8    8.3, 
2.9    3.9  and  5.0    5.5. 

 

 
Fig. 8.  Speed reducer. 

B.4.  Tension/compression spring design optimization problem (T/CSD) 

As shown in Fig. 9, spring was designed aiming at minimizing the weight of a tension/ 
compression spring.13 There are three design variables: the wire diameter x1, the mean 
coil diameter x2 and the number of active coils x3. All design variables are continuous. 
The spring problem is stated as follows: 

Minimize:     
2.0   

Subject to: 

  1.0  


7,178
  0 

  4
  

12,566
  

  1
5,108

  1.0  0 
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  1.0  140.45



 0 

    
1.5  1.0  0 

with  0.05    2.0 , 0.25    1.3  and  2.0    15.0. 
 

 
Fig. 9.  Tension/compression spring. 


