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Decision-making on uncertain and dynamic domains is still a challenging research area.  This paper 

explores a solution to handle such complex decision making based on a combined logic system.  We 

provide an explanation of our reasoning system focused on the algorithms and their implementations.  

The reasoning system is based on a multi-valued temporal propositional logic which we use as the 

foundation for the implementation of simulation/prediction and query answering tools.  This system 

is available for users to represent knowledge and to refine these systems to debug them and to try 

different problem solving strategies. We provide examples to illustrate how the system can be used 

including a problem based on a real smart environment.  
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1.   Introduction 

Decision-making under uncertainty and temporality is an important open problem in the 

field of decision making. This problem has two main dimensions: uncertainty and 

temporality. By focusing on different aspects of the problem (to suit different types of 

applications), we can identify different approaches to this problem: decision making with 

uncertain temporality, decision making with uncertain information in a certain temporal 

environment, and decision making with uncertain information in uncertain temporal 

environment.  

The approaches may be probabilistic or logical or a mixture of both. Logic-based 

formalisms play a very important role in artificial intelligence and have made significant 

contributions to both the theory and application of artificial intelligence. A logically 

consistent theoretical structure can provide a rational foundation and support tool to 

explain and justify empirical observations and rational decision making. Only through an 

exploration of the underlying logic can we ascertain the consistency and completeness of 

our analyses. For analysing uncertain information, multi-valued logic 
1, 2, 3, 4

, fuzzy logic 
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and lattice-valued logic 
5, 6, 7, 8, 9

, were introduced and investigated in the literature. To 

handle temporal information, temporal logic was introduced in early 20th century. 

Temporal logic has different branches, two of which are interval temporal logic (ITL) and 

linear temporal logic (LTL) 
10, 11, 12, 13, 14

. However, in real world applications, uncertainty 

and temporality may not appear separately; actually, they co-exist in most of real cases. 

To handle uncertainty and temporality at the same time in decision making, researchers 

have tried to combine different logics, such as fuzzy logic and interval temporal logic 
15, 

16, 17,18
, fuzzy logic and linear logic 

19, 20
.  

Our research focuses on the logical approach aiming at handling uncertainty and 

temporality in an integrated way. Accordingly, we extended a temporal reasoning 

framework introduced by Galton and Augusto 
21, 22

 so that the representation and 

reasoning with uncertainty is allowed within the system. Uncertainty is introduced in the 

form of a multi-valued logic and reasoning framework, by means of the Łukasiewicz 

logic 
5, 9, 23

. This new combined logic system, called Multi-Valued Temporal 

Propositional Logic (MTPL) system 
24, 25, 26

 has been proved to be a sound and complete 

logic system. MTPL also allows uncertain information to be represented with either a 

numerical truth value in the [0, 1] interval or a linguistic truth value in a qualitative 

nature. Based on this sound and complete formal logical framework MTPL, this paper 

provides a detailed explanation of its reasoning system focused on the algorithms and 

their implementations. In the following sections, we will provide a review of related work 

in combined logic based reasoning systems in handling both uncertainty and temporality 

(Section 2). We then briefly introduce MTPL in Section 3. This is followed by the 

reasoning forward and backward algorithms along with illustrative examples (Section 4). 

Then we discuss aspects of the implementation of the proposed reasoning system and we 

explain its functionality through examples (Section 5). We then illustrate some of the 

potential of the system by explaining one of its applications on assisting the improvement 

of a Knowledge Base (KB) that is used for decision-making on an Intelligent 

Environment (Section 6). This is followed by our conclusions. 

 

2. Related work 

 

The technical literature reports on a number of conceptual frameworks which aim at 

handling both temporality and uncertainty in complicated decision-making problems.  

We focus here on logic-based approaches. 

 

2.1 Logic Systems for Temporality with Uncertainty 

Temporality with uncertainty as a research area mainly focuses on how to handle an 

‘approximate’ time description in decision-making problems. For example, a message 

might say, “It takes Fred about 20 minutes to get to work” 
17

, where the time description 

for his journey is not exact, and may be shorter or longer than 20 minutes. The length 

may depend on many reasons such as traffic jams or delays in public transport. This type 

of uncertainty of temporality is important in real-world decision-making.  
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2.1.1 ITL with Uncertainty 

The most widely cited and well-known approach to embed temporality in a logic system 

was the one proposed by Allen following on work published first in philosophy.  Allen’s 

temporal reasoning framework provided an interval-based temporal logic (ITL) 
10

. In his 

work, Allen considered 13 possible simple relations between two different time intervals 

using starting and ending points of the time interval. This seminal work suffered however 

of serious implementation problems (computational complexity and absolute knowledge 

requirements).  While working to solve the problem of uncertainty in ITL, researchers 

have taken various approaches: some of them focused on the uncertainty of the time 

interval and some on the uncertainty of different time relations. 

Manaf and Beikzadeh 
17

 introduced a combination of fuzzy logic and interval 

temporal logic, which focuses on time interval with uncertainty. Fuzzy temporal 

membership function was introduced to handle this kind of case. This combined logic 

implements a fuzzy set concept in interval temporal logic. This new combined system 

could be used to analyze a decision-making problem between two imprecise time 

descriptions, for example: “It takes Fred about 20 minutes to get to work. John leaves for 

work 5 minutes later than Fred and arrives a few minutes earlier than Fred. Is it possible 

for Fred to arrive at work earlier than John?”. A similar idea was also discussed by 

Schockaert and Cock 
16

 who suggested introducing fuzzy intervals into temporal 

reasoning through ‘fuzzy time intervals’ which is used to handle uncertainty at the 

starting and ending points of a time interval (including the 13 relations from Allen). Raha 

and Ray 
29

 also provided an approximate temporal reasoning approach which 

incorporated the fuzzy set concept into temporal reasoning. They provided different 

algorithms for the combined reasoning and used probability theory to construct the 

calculation of the uncertainty of time.  

Rather than handling the uncertainty of the time interval, some researchers focused 

on the uncertainty of relations between time intervals in ITL. Aboelela and Douligeris 
15

 

suggested a new reasoning model for fuzzy temporal reasoning that redefined the relation 

between time intervals based on Allen’s work. In their work, they pointed out that there 

was uncertainty among different relations. For example, the ‘precede’ relation by Allen’s 

definition could be expressed as a ‘fuzzy before’ relation, based on the description of the 

problem and the level of fuzziness. The authors also assume there might be a fuzzy range 

between time points and relations between time intervals might not be always constant. 

Godo and Vila 
28

 introduced possibilistic temporal reasoning, based on fuzzy 

temporal constraints. They provided a medical example to illustrate the suggested 

reasoning, which defined a tuple FUZZDIST(BEGIN(OFP), END(OFP), П) to indicate 

the fuzzy time interval.  

Ryabov and Trudel 
34

 suggested combining ITL with probabilistic representations. 

Under their definitions, the uncertainty of time interval could be expressed by probability 

which allow to calculate the probability of different ranges of time intervals and the 

probability of their relations, a probabilistic temporal interval network (PTIN). 
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Tawfik and Neufeld 
36 

combined ITL with a Bayesian network. This model was 

used in order to analyze the probability of something happening within a given time 

under certain conditions. To handle the probability of independent elements, the authors 

introduced events and effects to indicate all other sources and provided probability to 

construct the conditional probability table for a Bayesian network.  

2.1.2 TL with Uncertainty 

The interval-based approach described in the previous section is part of only one trend to 

represent and reason with time which refers to time more explicitly.  Other authors and 

technical fields favour more implicit ways to represent temporality.  Temporal Logics 

(TL) which are based on this style typically include operators like G for ‘it is always true 

that …’, F for ‘it is eventually true that …’, and U for ‘… is true until … becomes true’.  

Notice that whilst in Allen’s proposal on may indicate an interval of time passing in more 

absolute  terms, for example, ‘Friday 11
th

 of November, 2011’ with the U operator an 

interval is relative to other events which may not necessarily have absolute time attached. 

Operators-based temporal logical frameworks are also important and popular in computer 

science.  See Ref. 16 for a comparison on these two approaches to temporality.  

A combination of operator based temporal logics with uncertainty has been applied 

in many areas 
19, 20, 37, 38

. Zhang et al. 
20

 introduced a combined logic called fuzzy 

propositional modal logic (FPML), in which semantics are associated by fuzzy Kripke 

semantics. This work introduced the concept that there is a probability for each event in 

FPML, which is written as n,ϕ ; for example, <□φ, 0.7>, which means there is a 

hypothesis that the probability that □φ will happen is equal to or greater than 0.7. The 

theory provided fuzzy reasoning based on FPML, which was used to handle the 

uncertainty of constraints, where n is called believable degrees and the constraint is called 

a fuzzy constraint. 

Similarly, Viedma et al. 
38

 proposed another combined logic to analyze TL with 

uncertainty, which they called fuzzy temporal constraint logic. This is a first-order logic 

based on temporal constraint logic and a fuzzy constraint network.  

Palshikar 
39

 suggested another combination of fuzzy logic and TL that mainly 

focused on the relations between atoms. It extended fuzzy proposition logic (FPL) into 

fuzzy propositional linear temporal logic (FzPLTL). This combination assumed that the 

underlying model of time is a timeline consisting of a finite number of linearly ordered 

time instants. Palshikar also introduced a finite fuzzy temporal interpretation, a total 

function associating a fuzzy truth value from the set [0, 1]. The fuzzy truth-value set was 

used in the computation of fuzzy logical connectives.  

Fuzzy temporal logic could be used in robot control systems, as presented by 

Lamine and Kabanza 
19

. In this application, they combined linear temporal logic, which 

mainly focused on four TL connectives—next, always, eventually and until—and the 

fuzzy logical connective negative. It introduced a weight concept to indicate the 

uncertainty in the system, which was formed in π,p , where p is an infinite sequence of 

world states and π is a real-valued function that evaluates propositions in states.  
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2.2 Logic Systems for Handling Uncertain Information in Dynamic Environments  

Another type of combination of uncertainty and temporality in logic based approaches is 

handling decision-making problems with uncertain information in a dynamic 

environment. Different from temporality with uncertainty, this focuses on dealing with 

uncertain information with a determined temporal property. Probabilistic logic and fuzzy 

logic are two well-known logics used to deal with uncertain information analysis; these 

can be combined with different styles of temporal logics to deal with temporality.  

In the case of robot control, Mora and Sanchez 
40

 introduced a real-time fuzzy logic-

based navigation controller for mobile robot control which was used to represent 

uncertain information from sensors collecting data in real time. This controller allowed 

the decision-making system in the robot to analyze uncertain information at every instant 

while collecting information in real time. 

Mucientes et al. 
41

 used the same method of combining fuzzy logic and temporal 

logic for a robot system, but they proposed a different decision-making model for the 

robot velocity controller, called fuzzy temporal rule-based velocity controller. The core 

of the controller implemented an explicit decision model for knowledge representation 

and reasoning called fuzzy temporal rules.  Based on the research above, Mucientes and 

Bugarin 
42

 introduced a new system called the quantified fuzzy temporal rules model, 

which was set up to analyze a human leg pattern recognition task using data from the 

robot’s sensors. This model was applied to a robot system to detect leg movements.  

For another real-time control system, Escalada-Imaz 
18

 suggested a many-valued 

temporal reasoning method that extended the truth value of a state to indicate the 

uncertainty of an element for real-time control systems. This system implemented a valid 

area (only the interaction area of the condition states) of the conclusion part of the rule, 

which is an interval temporal logic application. The paper defined a literal (T, V, s), 

which means that the truth value of state s in time interval T is V, and there are two 

inference rules to the combined logic, Intervals Rule (IR) and Temporal Multivalued 

Modus Ponens (TMMP). Escalada-Imaz also pointed out that the truth value could be 

numeric or linguistic.   

Compared with the above reviewed logic systems, the logic system MTPL presented 

in this paper aims to be generic (not application dependent) and also simple and efficient. 

For example, several of the proposals above are tailored to a specific field (e.g., robotics), 

or target rich temporal knowledge representations (e.g., time intervals related in various 

forms), or assume that rules always have the same level of credibility.  Our approach is 

bottom up. We are developing a theory which starts with simple but essential ingredients 

and we are building more complex concepts on top guided by efficiency concerns.  Many 

of the systems above starts with very complex languages and never reach 

implementation. Our system is more modest in expressiveness but has a formal theory 
24,25,26

 which naturally leads to algorithms facilitating simulation and explanatory query 

answering. These algorithms are implemented and provide system designers and 

developers a tool which has restricted but well defined expressiveness and a reasonably 

efficient implementation which is useful in practical cases, as we illustrate later on.   
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3.   Some Basic Concepts and Notations about MTPL 

The sound and complete formal logic framework of MTPL has been detailed in 
24, 25, 26

, 

this paper will be focused on the detailed explanation of the reasoning system, so this 

section reviews some basic concepts and notations considered in our reasoning system, 

for more details about MTPL the reader is referred to 
24, 25, 26

.  

In MTPL, it defined a atomic state set S, a rule set R, a truth value set V, a discrete 

set T of atomic intervals (called time slots), and an event set E. Each element s∈S comes 

in pairs. Each state has two statuses: positive (s) and negative ( s¬ ), we will use ±s as a 

simplifying notation to denote both s and s¬ . Given that S is the set of all atomic states 

(both positive and negative), these states can be partitioned into two classes, independent 

and dependent. MTPL uses SI and SD to refer to the set of independent and dependent 

states respectively, where ∅=∩ DI SS  and SSS DI =∪ . An independent state does not 

depend causally on other states’ holding at the same time, whereas a dependent state can 

do so 
21

. Moreover, the status of independent states can only be changed or initiated by 

the initial setting or events (from E). We call dependent state s co-independent if s¬ is 

independent. 

Aside from atomic states, the logic system also introduces the following non-atomic 

state: 21 ss ∧ , where Sss ∈21, ; this state holds if and only if both s1 and s2 hold. We say 

a state s holds means the status of state s is true and state s¬  holds means the status of 

state s is false. To represent that state s holds at time t in MTPL, a predicate is introduced: 

HoldsAt(s, t), or (s, t). The rule for negative states is defined as: 

¬ HoldsAt(s, t) ↔  HoldsAt( ¬ s, t) is shortened as ¬ (s, t) ↔  ( ¬ s, t) 

As mentioned above, an independent state can only be affected by the initial setting 

and events. An event is used to model all the impingements on the system from external 

resources. All such events are modelled as ingression of state s and notated as ingr(s). In 

MTPL, an event can only appear in the instant between two vicinal time slots, such as t-1 

and t, and this instant is denoted as (t-1)*. To represent an event’s occurrence, the 

predicate Occurs is introduced; for example, if an event occurs that makes state s hold at 

the instant between time t-1 and time t, then it can be represented as occurs(ingr(s), (t-

1)*). This predicate can thus be defined as follows: 

( ¬ s, t-1) ∧ (s, t) is shortened as occurs(ingr(s), (t-1)*), where ISs ∈ . 

The rule set R defines two subsets of rules to represent the temporal environment, 

same-time rules (Rs) and next-time rules (Rn), where RRR ns =∪ , which are defined as 

follows: 

Same-time rules: s1∧ s2∧…∧ sn → s; 

Next-time rules: s1∧ s2∧…∧ sn → Os, 

where si∈S (i=1,…, n) is an atomic state and s∈SD; s1∧ s2∧…∧ sn → s represents the 

influence of s1∧ s2∧…∧ sn over s, and s1∧ s2∧…∧ sn→ Os represents delayed (next time) 

influence of s1∧ s2∧…∧ sn over s. 
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Same-time rules must be stratified, i.e., they are ordered in such a way that the 

states in the body of a rule are either independent or dependent on states that are heads of 

rules in previous levels of the stratification 
21

. This is explained as follows: 

(1) A Stage k rule is a rule s1∧ s2∧…∧ sn → s, where each si is at most (k-1)-

dependent, and at least one si is (k-1)-dependent. In this case s is said to be k-

dependent. 

(2) All independent states are considered 0-dependent. 

Since all rules in Rs are stratified, every rule in Rs has a number k, which is used to 

indicate the stage of rules. 

Compared with the exiting combined logic systems, in MTPL system, the truth 

value can be represented in both numerical and linguistic values, i.e., the truth value set V 

can be in [0, 1] interval or a finite ordered linguistic truth value set. In addition, MTPL 

allows the truth value not only existing in states, but also in rules, such that, while 

represented a status of state, it provided a tuple (s, t, v), which means the truth value of 

state s is v at time t, where Ss ∈ , Tt ∈ , Vv ∈ ; and a tuple (r, v) is used to represent the 

truth value of rule r is v, where Rr ∈ , Vv ∈ .  

Many-valued logic within MTPL is based on Łukasiewicz logic. Łukasiewicz logic 

is a well-known many-valued logic studied in numerous papers on fuzzy and many-

valued logic. More importantly, Pavelka 
5
 showed that the only natural way of 

formalising fuzzy logic (or the only axiomatizable fuzzy logics) for truth values in the 

unit interval [0, 1] or on a finite chain is by using the Łukasiewicz implication operator or 

some isomorphic forms of it. Moreover, Liu et al. 
23

 introduced the linguistic truth-valued 

Łukasiewicz algebras in order to model linguistic values set and their operations using 

the Łukasiewicz algebra and logic system, about linguistic truth valued algebra and the 

corresponding logic system can be further referred to 
43

.  

The truth-valued field of MTPL was defined as a Łukasiewicz implication algebra. 

In the following, Lukasiezicz algebra defined on the interval [0, 1], on a finite truth-value 

set, and on the linguistic truth-value set are given respectively. 

Definition 3.1 Suppose a truth value set V=[0, 1], and let L = < V, ∧ , ∨ , ¬ , →, 

⊗ >; Vvv ∈βα , . If the operations are defined as follows:  

αv ∧ βv  = Min( βα vv , ), 

αv ∨ βv  = Max( βα vv , ), 

αα vv −=¬ 1 , 

)1,0( βαβα vvMinvv +−=→ , 

)1,0( −+=⊗ βαβα vvMaxvv . 

Then L is called the Łukasiewicz implication algebra on [0, 1], where → is called the 

Łukasiewicz implication and ⊗  is called the Łukasiewicz product. 

Definition 3.2 Suppose an ordered finite truth value set },...,,{ 10 mvvvV = , and let 

L=<V, ∧ , ∨ , ¬ , →, ⊗ >; Vvv ∈βα , . If the operations are defined as follows:  

αv ∧ βv  = Min( βα vv , ), 

αv ∨ βv  = Max( βα vv , ), 
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αα −=¬ mvv , 

),0( βαβα +−=→ mvMinvv , 

),( 0 mvvMaxvv −+=⊗ βαβα . 

Then L is called the Łukasiewicz implication algebra on a finite chain V. Suppose 

V={v0=false, v1=almost false, v2=probably false, v3=unknown, v4=probably true, 

v5=almost true, v6=true}, in short for },,,,,,{ 6543210 vvvvvvvV = . Then L=<V, ∧ , ∨ , ¬ , 

→, ⊗ > is called a Łukasiewicz linguistic truth-valued algebra on an ordered linguistic 

truth value set V. 

A many-valued logic with truth-values defined in a Łukasiewicz linguistic truth-valued 

algebra on an ordered linguistic truth value set is called a linguistic truth-valued logic.  A 

key insight of linguistic-valued based approaches reflects the use of “words” as 

computational variables, i.e., the symbolic approach acts by the direct computation, 

manipulation and reasoning on the available linguistic terms in natural languages 
43

. Its 

application is beneficial because it introduces a more flexible qualitative framework for 

representing the information in a more direct and suitable way when it is not possible to 

express it accurately. Thus, the burden of quantifying a qualitative concept is eliminated 

and the systems can be simplified. MTPL reasoning framework has a distinct advantage 

of handling both quantitative (truth-values in [0, 1]) and qualitative (linguistic truth-

values) in quantitative and qualitative decision making.   

The propositional calculus definition of MTPL follows a universal algebraic point of 

view 
5, 6

. For more detailed definitions and introductions about language, syntax and 

semantic of MTPL the reader is referred to 
24, 25, 26

  

Definition 3.3 Let X be a set of propositional variables, L is a truth-valued algebra in 

Definition 3.1 or Definition 3.2, TY=L∪{ ¬ , →} be a type with ar( ¬ ) =1, ar(→)=2 and 

ar(a)=0 for every a∈L. The propositional algebra of the many-valued propositional 

calculus of MTPL on the set of propositional variables is the free T algebra on X and is 

denoted by LP(X). 

Note that L and LP(X) are the algebras with the same type TY. Moreover, note that ∨, 

∧, ⊗ can all be expressed by – and →, so p∨q, p∧q, p⊗q∈LP(X) if p, q∈LP(X). In 

addition, Q=S∪R⊆LP(X). 

Definition 3.4 Let T be the time set. If a mapping γ : LP(X) × T→ L satisfies the 

following properties:  

(1) For any α∈L, t∈T, γ (α, t)=α; 

(2) γ is a propositional algebra homomorphism with respect to the first argument; 

(3) For any t1, t2∈T, if t1≠t2, then )(*,)(*, 21 tt γγ ≡/ , where * means any state belong 

to S. 

Then γ  is called a temporal valuation of LP(X). 
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Definition 3.5 Let p ∈ LP(X), α ∈ L. If there exists a temporal valuation γ such that           

γ (p) ≥α at time t, then p is said to be α-satisfiable at time t. If γ (p) ≥α for every temporal 

valuation γ of LP(X) at time t, then p is said to be valid with the truth-value level α at 

time t. If α = 1 at time t, then p is valid in time t. 

One improvement of MTPL comparing with other combined logics is the inference 

rules systems of MTPL not only provide forward calculus, but also a backward calculus, 

i.e., we implemented two reasoning strategies, forward and backward inference. Such 

systems were supported by the soundness and completeness theorems 
25 

in MTPL. It 

means that, while implementing MTPL into a reasoning system to handle decision-

making problems with uncertain information in certain temporal environment, it is able to 

provide both forward and backward calculation. So, the proposed reasoning system can 

provide simulation/prediction function based on forward calculation, and query 

answering function based on backward calculation, all supported by the MTPL system.  

4.   Reasoning Algorithms 

Section 3 introduced the basic concepts that are considered in our system. This system 

has been implemented and tried in a variety of scenarios. This section will explain the 

algorithms we used to transform our theory into a useful tool and the next section will 

show how the system can be used in some of those scenarios.  Our multi-valued temporal 

propositional logic is used to represent knowledge over domains which are dynamic and 

uncertain.  This knowledge representation is declarative, a collection of rules and facts 

which embeds the relation between different concepts in the domain represented as well 

as the temporal relation between them and the degree of confidence on the knowledge 

over these relationships. We implemented two reasoning strategies, forward and 

backward inference.  This section will explain how the forward and backward reasoning 

algorithms work and how they can be used.  To explain the basic concepts associated 

with these algorithms we will use the following example: 

 

Scenario 1: 

Independent state: ±s1, ¬ s2, ¬ s3, ¬ s4 

Dependent State: s2, s3, s4 

Same-time Rule: ( 21 ss → , 1), ( 32 ss → , 1) 

Next-time Rule: ( 43 ss Ο→ , 1) 

Initial Setting: Ic={( s1, 0, 0), ( s2, 0, 0), ( s3, 0, 0), ( s4, 0, 0)} 

Event: occurs(ingr(s1), 3*, 1) 

4.1.   Forward Reasoning Algorithm 

This feature of our system allows users to simulate the behaviour of the system and 

explore the effect of different assumptions.  This is an important aid to support decision-

making by informing the decision makers of the possible consequences of the possible 

courses of action available.  
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This algorithm is an extension of a previous forward reasoning algorithm for 

stratified causal theory 
21, 22

 which only allowed reasoning based on two truth values: true 

or false and it assumed all the rules to have the same strength.   This algorithm takes into 

consideration a more flexible and general representation of the world which includes time 

and also uncertainty associated with both, states and rules. 

 

Input: 

• a stratified set of same-time rules (Rs), 

• a set of next-time rules (Rn), 

• a set of truth value V with m+1 level },...,,{ 10 mvvvV = , or V=[0,1]. 

• an initial setting (Ic), which are specified by determining ),0,( ii vs  with Ssi ∈ , 

Vvi ∈  and ),( jj vr  with rrj ∈ , Vv j ∈ , 

• an event occurrence list (E), which is a set of formulae in the form 

)*,),(( vtsingroccurs . 

Output: A history of the truth values of all states up to time t. 

Notice: A threshold λ  is assumed and used to determine if a state has supportive 

evidence of holding (when its degree of truth is in ],[ mvλ ) or not (when its degree of 

truth is in ),[ 0 λv ). We compute the resulting history as follows: 

• At t=0, set all the truth value of states as stated in the Initial Setting declaration. 

Apply any live same-time rule on increasing level of stratification. Once all 

possible same-time rules were applied, then apply next-time rules. 

• For t=1, 2, .3,… 

(i) For each ))*,1(),(( ivtsingroccurs − , if ),1,( jvts −  holds then assert ),,( ivts , 

where Vvv ji ∈, . 

(ii) For each independent state s, if ),1,( jvts −  holds and ),,( ivts  was not 

asserted, then assert ),,( jvts . This is called ‘applying persistence’ to the state 

s, where Vvv ji ∈, . 

(iii) For k=1, 2, 3, …,  

(1) Apply any live same-time rule of stage k 

(2) Apply persistence: For any co-k-dependent state s, if ),,( ivts  has not 

been asserted, and ),1,( jvts − , then assert ),,( jvts , where Vvv ji ∈, . 

(iv) Apply any live next-time rule. 

Running the forward reasoning algorithm over Scenario 1 to explore the evolution of the 

system up to time=5 provides the results shown in Figure 1. 

 
Fig. 1.  Forward reasoning algorithm applied to Scenario 1 for time=5 
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This figure shows the evolution of the truth values of all the states defined in scenario 1.  

The simulation shows the values for all states from the initial time 0 until time 5.  The 

ingression to state s1 after time=3, the change of value in s1 affects triggers two same-time 

rules causing immediate effect in s2 and s3. Nothing affects s4 at time-4.  States s2, s2 and 

s3 remain unchanged at time=5 whilst s4 is affected by the delayed effect of the next-time 

rule which was activated at time=4 by s3.    

4.2.   Backward Reasoning Algorithm 

Whilst a forward reasoning strategy provides the foundation for a simulation tool there 

are situations where we need to explore a system in a different way, for example we may 

need to focus on a specific state and time during the evolution of the system.  In these 

situations the enquiring process is more goal-directed and it explores the evolution of the 

system only in that part of the process that contributes to a specific output.   This enquiry 

in our system takes the form of answering a query and this section explains the strategy 

and associated concepts followed to answer those queries.  

The backward reasoning algorithm takes a query as a starting point and then reason 

backwards in time from the goal to the facts that sustain a specific conclusion directly 

related to the query. The advantage of this strategy is that it only explores part of the 

Knowledge Base which is necessary to answer the query instead of the more 

comprehensive coverage of states time by time as it is needed in the forward reasoning 

approach.   

We explain the whole backward reasoning strategy in three stages by introducing two 

auxiliary concepts: Supporting Tree (ST), and Activation time list of ST (AcTimes), before 

explaining the search process. 

4.2.1.    Supporting Trees 

Definition 4.1: A supporting tree of state s (STs) is a structure such that: 

• The head of the tree is (s). 

• All the states in the leaves are independent states. 

• The states in the same level are in an ‘AND’ relationship. 

• The link between two different levels is a rule, and the ‘parent’ node is the head of 

the rule, whereas the states in the body of the rule are the ‘children’. 

For example, a tree with the structure shown in Figure 2 represents a rule Rr ∈ , such 

that, ssss n →∧∧∧ ...21 .  

s 

s1 s2 … sn 
 

Fig. 2.  A Supporting Tree Structure 
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A tree with the structure shown in Figure 3 represents two rules: s'1∧ s'2∧…∧ s'n → sn and 

s1∧ s2∧…∧ sn → s. 

 

s 

s1 s2 … sn 

1's  … ns '  

 
Fig. 3.  A Multiple Supporting Tree Structure 

 

We use the concept of supporting tree within our search strategy, each ),,( vtsQuery  with 

DSs ∈  can have associated one or more STs, where all non-leaf nodes belong to SD and 

all leaf nodes belong to SI: 

 

Example 4.1: Same-time Rule Tree Structure. Suppose Sssssss ∈654321 ,,,,, , and we  

have a truth value set V. Assume that we have the following rules: ( 321 sss →∧ , αv ), 

( 543 sss →∧ , βv ), and ( 65 ss → , θv ), then we can express it as the supporting tree 

structure:   

T={( 321 sss →∧ , αv ), ( 543 sss →∧ , βv ),( 65 ss → , θv )} with vα, vβ, vθ∈V. 

 

Example 4.2: Next-time Rule Tree Structure. Suppose Sssssss ∈654321 ,,,,, , and we 

have a truth value set V. Assume that we have the following rules, ( 321 sss Ο→∧ , αv ), 

( 543 sss Ο→∧ , βv ), and ( 65 ss Ο→ , θv ), then we can express it as the following 

supporting tree structure:  

T={( 321 sss Ο→∧ , αv ), ( 543 sss Ο→∧ , βv ), ( 65 ss Ο→ , θv )} with vα, vβ, vθ∈V. 

Example 4.3: Same-time Rule and Next-time Rule Tree Structure. Suppose 

Sssssss ∈654321 ,,,,, , and a truth value set V⊇ { 1βv , 2βv , 3βv }. Assume that we have 

the following rules, ( 321 sss →∧ , αv ), ( 543 sss →∧ , βv ), and ( 65 ss Ο→ , θv ), then 

we can express it as the following supporting tree structure: 

T={( 321 sss →∧ , αv ), ( 543 sss →∧ , βv ),( 65 ss Ο→ , θv )} with vα, vβ, vθ∈V. 

4.2.2.   Activation Time List 

The list of activation times holds the times where meaningful event occurred. This 

focuses the search only on meaningful stages of the evolution of the system out of a 

potentially long list of times where something occurred.  To create the AcTimes list, two 

parts of the Knowledge Base are used: the list of the independent states in ST and the 

event list E. The independent states in ST are called activation points of a given ST 

because the rules that form the ST can be triggered or ‘activated’ by those independent 
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states.  Once we know which independent states are part of an ST we can collect from the 

KB the times where they are activated (restricted to the time of the query).   

By ‘Obtain list AcTimes of Activation Times’ we will mean AcTimes is defined as the 

decreasing order list of times in a tree.  This can be generalized in the case of two trees by 

obtaining  a list AcTimes that results of merging the two activation times lists for sST  

and sST¬ , denoted as AcTimess and sAcTimes¬ respectively. For example if the rules in 

sST  are triggered by events occurring at times 1, 3 and 5, then this forms a list [5, 3, 1]; 

and if the rules in sST¬  are triggered by events occurring at times 2, 2 and 5 then this 

forms a list [5, 2, 2]. The result of the combined AcTimes list is [5, 5, 3, 2, 2, 1]. Notice 

that 0 is always included in AcTimes because implicitly or explicitly values for all states 

are set at the intended beginning of the system, hence for this example, AcTimes=[5, 3, 2, 

2, 1, 0]. 

By ‘t becomes the next available time closest to time in AcTimes’ we will mean t is 

made Max(AcTimes) and that time is extracted from the AcTimes list. In the previous 

example t=5 and the remaining AcTimes list is [5, 3, 2, 2, 1, 0].  

4.2.3.   Backward Reasoning Algorithm 

The general idea is as follows. Suppose there is a query about state s given as 

),,( αvtsQuery , then: 

Step 1: 

(i) Form all relevant trees (an independent state is a minimal tree), 

(ii) Find those trees supporting that s is above threshold and those trees supporting that 

s is below threshold, 

Step 2: Choose a tree and 

(iii) Collect the list IS of independent states of ST; 

(iv) Create the list AcTimes of ST by using the list IS and events from the Knowledge 

Base; 

(v) Use s as start, and search ST backwards until it reaches activation points 

(independent states) of ST;  for each dependent state run this process recursively 

Step 3: 

(vi) According on whether the winner ST has same sign (i.e., above/below threshold)  

  as the query, or not, then returns ‘true’ or ‘false’, respectively 

(vii) If there is more than one ST winner, then choose one according to a domain 

dependent or domain independent heuristic. 

(viii)  Return the answer of the query. 

 

Before explaining the most detailed version we need to introduce some notation.  

Suppose that we want to know whether ),,]([ αvtsQuery ¬  is true or not (i.e., whether 

),,]([ βvts¬ : αβ vv ≥  or not). Here we use s][¬  as an abbreviation for s or s¬ .  We 

represent the threshold by λ ∈V, one of many possible linguistic values or a truth value 

in interval [0,1], which is considered as the minimum level of credibility for a proposition 

(a ‘credibility threshold’). For a tree to be activated each rule (s1 ∧ s2 ∧ … ∧ sn → s, βv ) 

or (s1 ∧  s2 ∧ … ∧ sn → Os, τv ) in the tree should be such that for all si:  
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(1) ),,( ii vts , Vvi ∈ , λβαθ ≥≥= −+mii vvMinv )( , or 

λταθ ≥≥= −+mii vvMinv )( , where, i=1,…, n, and },...,,{ 10 mvvvV = ; 

 or 

(2) ),,( ii vts , Vvi ∈ , λβαθ ≥−+≥= vvvMinv ii 1)( , or 

      λταθ ≥−+≥= vvvMinv ii 1)( , where, i=1, …, n, and V=[0, 1]. 

 

Inferences in our system are performed based on a set of inference rules which are 

then used to guide the implementation of our algorithms.   The structure of those rules 

dictate the way the final value of credibility attached to an inference.  We cannot describe 

the whole theory here so we will list the different ways of computing the values and refer 

the reader to 
26

 for a more detailed explanation of the logical machinery used by our 

system.   

Same-time rules are requested to be cycle free and ‘stratified’. Each cycle generated 

by a query at time t will have a finite number of iterations until they are evaluated at 0. 

Also to be noticed is that if the supporting tree is only made of one independent state, say 

s, then the ST should only be the state itself, i.e., }{sSTs = . The full backward reasoning 

algorithm is provided below: 

 

Input: 

• the sets of independent and dependent states: SI, SD. 

• a set of non-cyclic Same-Time Rules, Rs. 

• a set of Next-Time Rules, Rn. 

• a set of truth value degree V, where },...,,{ 10 mvvvV =  or V=[0,1]. 

• a set of facts called initial conditions Ic provides the truth values of states in 

DI SSS ∪=  at time=0 

• a set of known events, E, describing state ingressions. 

• a credibility threshold λ ∈V. 

• ),,]([ αvtsQuery ¬ . 

 

Output: whether ),,]([ αvtsQuery ¬  is true or not and an explanation for the answer. 

 

1. IF cIvts ∈¬ ),,]([ µ  or Evtsingroccurs ∈−¬ ))*,1(),]([( µ  

THEN IF αµ vv ≥  

                 THEN answer ‘true’ and give fact as explanation. 

                 ELSE answer ‘false’ and give fact as explanation. 

2. ELSE ( ),,]([ αvtsQuery ¬  must be inferred by deduction, or by persistency rule) 

      Obtain the sets of trees sST  and sST¬ . 

      Obtain list IS of Independent States for the sets of sST  or sST¬ . 

      Obtain list AcTimes of Activation Times for the sets of sST  or sST¬ . 

      Set time=Max(AcTimes) and ttime ≤ . 
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      REPEAT 

(a) IF ∅≠∪ ¬ss STST , THEN Select the first tree from sST  or sST¬ . 

          (i) find a main rule r in the tree 

(A) IF r: (s1 ∧ s2 ∧ … ∧ sn → s, βv ) sR∈ and αβ vv ≥  THEN 

* For each Ii Ss ∈ : ),,( θvtimesQuery i  where βαθ −+≥ mvv  if 

},...,,{ 10 mvvvV =  or βαθ vvv −+≥1  if V=[0,1], or 

** For each Dd Ss ∈ : ),,( θvtsQuery d  where βαθ −+≥ mvv  if 

},...,,{ 10 mvvvV =  or βαθ vvv −+≥1  if V=[0,1].                                                

       (B) IF r: (s1 ∧  s2 ∧ … ∧ sn → Os, τv ) nR∈  and ατ vv ≥  THEN 

* For each Ii Ss ∈ : ),',( θvtsQuery i  where )1(' −≤= tAcTimesMaxt  

and ταθ −+≥ mvv  if },...,,{ 10 mvvvV =  or ταθ vvv −+≥1 if V=[0,1], 

or 

** For each Dd Ss ∈ : ),1,( θvtsQuery d −  where ταθ −+≥ mvv  if 

},...,,{ 10 mvvvV =  or ταθ vvv −+≥1  if V=[0,1] 

(ii) IF s][¬  can be proved true from a tree 

              THEN answer ‘true’ [‘false’] and use the tree as the explanation 

              ELSE select next tree from the sets of trees sST  or sST¬ . 

(b) ELSE ),'',( αvtsQuery i , where )('' timeAcTimesMaxt <=  

UNTIL ( s][¬  can be proved) 

 

Given same time rules cannot be cyclic and next time rules decrease time until an answer 

is reached (worst case at t=0), then we have the following result. 

 

Theorem 4.1 Termination of all queries to the backward reasoning algorithm is 

guaranteed. 

Proof:  Basic Case: ),0,]([ αvsQuery ¬  is answered by the Ic.  Hypothesis (1): assume the 

thesis is valid for t > 0, it always finishes (t is a finite number). Then for time=t+1 (time is 

finite): assume a ),,]([ αvtsQuery ¬ , then the algorithm can proceed only as in any of the 

following cases (2): 

(a) There is an event from E, which is Evtsingroccurs ∈−¬ ))*,1(),]([( µ , if αµ vv ≥ , 

 then answer ‘true’, otherwise, answer ‘false’ and the algorithm terminates. 

 (b) There is a same-time rule (s1 ∧ s2 ∧ … ∧ sn → s, βv ), because same-time rules are 

cycle-free and stratified, then there are no loops, therefore, each ST will be finite and 

the leaves of that tree can be checked for satisfaction through (1) or (2b). 

 (c) There is a next-time rule (s1 ∧  s2 ∧ … ∧ sn → Os, τv ), the answer will depend on 

queries, ),',( θvtsQuery i  if Ii Ss ∈  where )1(' −≤= tAcTimesMaxt  or 

),1,( θvtsQuery d −  if Dd Ss ∈ , where nd ,...,1=  and ταθ −+≥ mvv  if 

},...,,{ 10 mvvvV =  or ταθ vvv −+≥1  if V=[0,1], and by the induction hypothesis they 

all finish. 

 (d) Neither (2a), (2b), or (2c) applies, then assumes that the last occurrence of an event 

changed s occurred in the past, the value of ),'',(),,( αα vtsQueryvtsQuery i= , where 

)('' AcTimesMaxt = . 
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Notice both (c) and (d) always change the truth value of states at an earlier time. Hence, 

if there is no explicit data, then the algorithm eventually reaches 0 where the query 

answer is provided by Ic. Reaching 0 cannot be jumped over as time in our system is 

discrete and always jumped to a legal decreasing time, where 

Evtimesingroccurs i ∈)*,),(( µ  until time eventually reaches 0 and stops decreasing. 

 

Figure 6 shows the result of running the backward reasoning algorithm with a simple 

example: the query “holds(s4, 5, 1)?”, where we ask if the truth value of s4 at time=5 is 

equal or exceeds 1 (which in this case represents a value v1 ∈V) 

5.   System Implementation 

The previous section provided algorithms for both forward and backward reasoning 

strategies.  These algorithms are implemented in Prolog and as such they can be run stand 

alone or be integrated to other programs, e.g. in Java, which can call our program as a 

reasoning module through a call to one of the main predicates.  This section provides a 

deeper insight in the implementation and use of the system.   

 

5.1 Implementation of Key Concepts 

First we would like to provide some details of the implementation of some core concepts 

of the system.   The program itself, without any knowledge base added, is several pages 

long so we focus on a few predicates which implement some key concepts we mentioned 

above.  We omit secondary predicates.  The full program code is available under request 

to the authors. 

 

Stratify is a predicate to stratify all the rules from stage 0 to stage n. stage_0 is used to 

gather independent states, stage_1 is used to gather rules in the knowledge base which 

depend on stage_0 states, stage_n is used to gather rules in the knowledge base which 

depend on states belonging to previous levels and achieves that through a recursive call. 

 

% stratify(-ISL, -SER_SSRL, +SL).  

% Given the Independent States List, ISL, and a Next-time  

% Rules plus Same-Time Rules List, SER_SSRL, the procedure  

% find the Stratified Same-Time Rules List, SL.   

 

 

Fig. 6.  The result of simple example running with backward reasoning algorithm 
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stratify(ISL, [], SL). 

stratify(ISL, SER_SSRL, SL) :- 

        stage_0(ISL, S0L), 

        stage_1(ISL, SER_SSRL, SER_SSRL2, S1L), 

        appendL(S0L,S1L, S01L),  
        stage_n(SER_SSRL2, S01L, 2, SL). 

stage_0([], []). 

stage_0([IS|T], [[[true => IS, _], 0]|S0T]):-  stage_0(T, S0T).  

stage_1(ISL, [], [], []). 

stage_1(ISL, [[R, RV]|RT], SER_SSRL2, [[[R, RV] ,1]|S1T]):-   

        bodyIRInISL(R, ISL),  

        stage_1(ISL, RT, SER_SSRL2, S1T).  

stage_1(ISL, [R|RT], [R|R2T], S1L):-  

        stage_1(ISL,RT,R2T,S1L).  

stage_n([], Labeled, _, Labeled). 

stage_n(ToBeLabeled, SoFarLabeled, Stage, Labeled):-  

        s_n(ToBeLabeled, SoFarLabeled, Stage, NewToBeLabeled, 

         NewLabeled), 

        appendL(SoFarLabeled, NewLabeled, Last), 

        NewStage is Stage+1, 
        stage_n(NewToBeLabeled, Last, NewStage, Labeled). 
 

The predicate getTrees generate a list of supporting trees for a particular state. In this 

predicate, getRulesForState is used to collect all the rules in knowledge base containing 

State as head and place them in a list ‘Rules’; getDependentsList is used to find out all  

dependent states in the body of rules in ‘Rules’ and list them in ‘DL’; getNextLevelTrees 

is used to find out all the supporting trees of dependent states in ‘DL’ and list them in 

‘AllTrees’. mergeTrees will complete the final step, to merge all the supporting trees in 

‘AllTrees’ and list them in ‘Trees’ which collects all supporting trees of State. 

 

% getTrees(+State, +IS, +SERLSL, -Trees) find all the trees that  

% support State and add to each rule of the tree the set of  

% independent states used in that rule.   

getTrees(State, IS, [], []). 

getTrees(State, IS, SERLSL, Trees):- 

   getRulesForState(State, SERLSL, Rules), 

   getDependentsList(Rules, IS, DL), 

   getNextLevelTrees(DL, IS, SERLSL, AllTrees),  

   mergeTrees(AllTrees, Rules, IS, Trees). 

The Predicate addTimetoTrees is a predicate to search all the activation times of all 

supporting trees from getTrees. addTime is used to find out all the event occurring time 

slots of independent states in ‘NewTrees’ and list them in ‘SomeTreesWithTimes’; 
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getOnlySupportedTrees is used to pick up all the supporting trees containing activation 

time list and list them into ‘TreesWithTimes’. 

 

% addTimetoTrees(+TreesWithISDS, +IS, +Time, -LT) 

% Add a list of times to each 3-upla  

% [Tree, ListofISforTree, ListOFDSForTree] giving a 4-upla      

% [Tree, ListofISforTree, ListofDSforTree, ListofTimesforISinTree] 

% The process is done from 0 up to Time, both inclusive and the  

% resulting list expanded of updated trees is LT.  All trees which 

% do not have attached at least one time greater or equal to 0 

% where all IS are true, must be eliminated.   

addTimetoTrees([], IS, Time, []). 

addTimetoTrees(Trees, IS, Time, TreesWithTimes):- 

   addTimePlace(Trees, NewTrees),  

   addTime(NewTrees, IS, -1, Time, [], SomeTreesWithTimes), 

   getOnlySupportedTrees(SomeTreesWithTimes, TreesWithTimes), !. 

 

 

5.2 Illustration through Scenarios 

 

Now let us introduce a scenario that will be used to illustrate how to use the system and 

to show how the system reacts to different types of queries.  These samples will be later 

complemented in the next section showing how the system can be used with more 

complex engineering problems. 

 

Scenario 2: consider the task is to model a kitchen monitored by sensors in a Smart 

Home system 
44, 45

. Let us assume the cooker is on (cookerOn represents a sensor 

detecting cooker being activated), but the motion sensor is not activated ( ¬ atKitchen, 

atKitchen is a sensor detecting location of a person in the kitchen). If no motion is 

detected after more than a number of n units of time (here to simplify we assume n=3, 

umt3u), then we consider the cooker is unattended (cu). In this case, at the next unit of 

time, the alarm will be on (alarmOn) to notify the occupant. In this scenario, the cooker 

and the occupant are both monitored by sensors, but sensors are not always reliable and 

rules may not always capture reality literally so there are elements of uncertainty that 

have to be taken into account in the representation of the problem.  For example, due to 

the likely malfunction of sensor atKitchen, we can only assume that the house occupant is 

in the kitchen with e.g., 80% certainty, or with ‘high’ (but not full) confidence. What we 

want to know is whether the alarm being ‘on’ or ‘off’ can be automatically inferred under 

such uncertain and dynamic situation.  The set },,,,,,{ 6543210 vvvvvvvV =  identifies the 

truth-valued level of the status of states interpreted as: {v0=false, v1=almost false, 

v2=probably false, v3=unknown, v4=probably true, v5=almost true, v6=true}.   We assume 

the following description for the scenario: 
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Independent States: cookerOn, ±atKitchen, umt3u 

Dependent States: ±cu, ±hazzard, ±alarmOn, ¬ umt3u, ¬ cookerOn 

Same-time Rules: 

Stratification Level 1 Rules: 

( ¬ atKitchen ∧  cookerOn ∧  umt3u → cu, v6) 

( ¬ cookerOn → ¬ alarmOn, v6) 

( ¬ cookerOn → ¬ hazzard, v6) 

( ¬ cookerOn → ¬ umt3u, v6) 

( ¬ cookerOn → ¬ cu, v6) 

Stratification Level 2 Rules: 

(cu → alarmOn, v6) 

(cu → hazzard, v6) 

Next-time Rules: 

(alarmOn → O( ¬ cookerOn), v6) 

Events:  occurs(ingr(atKitchen), 0:1, v5) 

occurs(ingr(cookerOn), 0:1, v5) 

occurs(ingr( ¬ atKitchen), 1:2, v5) 

occurs(ingr(umt3u), 4:5, v5) 

Initial Setting: Ic={(cookerOn, 0, v0), (atKitchen, 0, v0), (umt3u, 0, v1), (cu, 0, v1), 

(hazzard, 0, v1), (alarmOn, 0, v1)} and 3v=λ . 

         This scenario is used to test whether the system is capable to turn on the alarm and 

shut down the cooker automatically when the cooker is unattended for a period of time 

judged to be unsafe. The Forward Reasoning algorithm is run over Scenario 2 as depicted 

in Fig. 7, max and lambda specifies the maximum value and threshold respectively.  

 
Fig. 7.  The Knowledge Base of Scenario 2 Running with Forward Program 
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Invoking the main predicate triggers a prompt requesting the maximum time slot to be 

investigated and that will be enough for the forward program to roll up all the states and 

show the result as shown in Figure 8. 

 
Fig. 8.  The Result of Scenario 2 Running with Forward Program 

 

The Backward Program needs a slightly different procedure as we need to specify a query. 

We also want to illustrate queries which relate to different type of rules that can be used 

in our system.  Figure 9 offers a revised KB, notice the changes in the “holdsAt” 

predicates. 

 
Fig. 9.  The Knowledge Base of Scenario 2 Running with Backward Program 

 

The program will ask the name of the file containing the scenario specification 

(knowledge base, initial setting and event list) as shown in Figure 10. 
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Fig. 10.  Loading Knowledge Base of Scenario 2 Running with Backward Program 

 

The program will then offer the two main options available to the user (see Figure 11).  

Notice the first one is really a way to the same that the forward reasoning option does and 

it is mainly for the development team to check that simulations in the backward program 

produce the same outcome than what we can retrieve with multiple queries in the 

backward reasoning strategy.  The interesting option here is the predicate holds/3 which 

allows making queries. 

 

 
Fig. 11.  The Explanations of Functions in Backward Program 

 

For example, if the user wants to know if the cooker is on or not at the beginning, then 

holds(cookerOn, 0, 3) provides the feedback. as shown in Figure 12. 

 

 
Fig. 12.  The Result and Explanation of Query holds(cookerOn, 0, 3) Running with the Knowledge Base 

of Scenario 2 and Backward Program 

 

Notice the query challenges the system to prove ‘the cooker was on’ has strength of level 

3 at time 0, i.e.  it is unknown whether the cooker was or not on at the beginning. The 

answer of the system is that it is not true that it was unknown, as the system has a fact to 
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offer to support the conclusion that in fact the cooker was off at 0 (i.e., it knows with 

strength v6=true that ¬ cookerOn was the case). 

 

If we wants to know whether we can believe with high confidence that the alarm is on at 

5, then we can use the following query: holds(alarmOn, 5, 5) and the program will 

provide feedback as shown in Figure 13. 

 

 
Fig. 13.  The Result and Explanation of Query holds(alarmOn, 5, 5) Running with the Knowledge Base of 

Scenario 2 and Backward Program 

 

which indicates that the system proved that is the case and offers two rules which define 

the support tree to prove that alarmOn can be believed with confidence level of v5 at 5.   

 

If we want to find out whether we can be highly confident the cooker is off at 6, then we 

can use holds(#cookerOn, 6, 4) to obtain feedback as shown in Figure 14. 

 

 
Fig. 14.  The Result and Explanation of Query holds(#cookerOn, 6, 4) Running with the Knowledge Base 

of Scenario 2 and Backward Program 

 

which indicates the system is capable to prove (even with higher confidence than what 

we requested,  e.g., v4=‘probably true’) that the cooker is not on at 6. 

6.   Engineering a Smart Home 

This section explains how the system can be used to engineer a Smart Home system.  The 

scenario depicts activities of daily living from a real Smart Home 
46

 which can be used to 

monitor activities of daily living: 

(i) Make a phone call. The participant moves to the dining room, looks up a specific 

number in the phone book, dial the number, and listen to the message. The recorded 

message provides cooking directions, which the participant summarises on a 

notepad. 

(ii) Wash hands. The participant moves into the kitchen sink and washes his/her hands in 

the sink, using hand soap and drying their hands with a towel. 
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(iii) Cook. The participant cooks a pot of oatmeal according to the directions obtained. 

To cook the oatmeal the participant must measure water, pour the water into a pot 

and boil it, add oats, then put the oatmeal into a bowl with raisins and brown sugar. 

(iv) Eat. The participant takes the oatmeal and a medicine container to the dining room 

and eats the food. 

(v) Clean. The participant takes all of the dishes to the sink and cleans them with water 

and dish soap in the kitchen. 

Sensors (see Table 1) distributed in the kitchen monitor these activities, through the use 

of cooking materials.   

 

 Table 1: categories of sensors for kitchen usage scenario 

I01- I05: item sensors for oatmeal, raisins, brown sugar, bowl, measuring spoon 

I06: medicine container sensor 

I07: pot sensor 

I08: phone book sensor 

D01: cabinet sensor 

AD1-A/B water sensors 

AD1-C: burner sensor 

asterisk: phone usage 

The following sections illustrate how the system can be used to refine the knowledge 

base that can be used to command the decision making of the monitoring module for 

the smart home described above. 

6.1.   Initial Knowledge Base 

We start with a specification of the problem which includes the use of sensors, e.g., RFID 

tags and readers, which can be used to identify the different objects and elements used in 

the kitchen like oatmeal, raisins, sugar, medicine, pot, spoon, bowl, book, cabinet, water 

tap A, water tap B, burner, and phone. The aim of this case study is to build up a 

knowledge base containing states and rules through the description of the scenario, and 

use the reasoning system to examine such knowledge base with a real dataset with a log 

of sensor activations. The developing team can then improve the knowledge base to make 

it more appropriate as part of the monitoring module of the Smart Home system.  We 

represent the states triggered by the different sensors as follows: 

oatmealS stands for the sensor monitoring the container of oatmeal. 

raisinsS stands for the sensor monitoring the container of raisins. 

sugarS stands for the sensor monitoring the container of sugar. 

medicineS stands for the sensor monitoring the container of medicine. 

potS stands for the sensor monitoring the pot. 

spoon stands for the sensor monitoring spoon. 

bowl stands for the sensor monitoring bowl. 

book stands for the sensor monitoring book. 

cabinet stands for the sensor monitoring cabinet. 

waterA stands for the sensor monitoring water tap A. 



Author’s Names 

 

24

waterB stands for the sensor monitoring water tap B. 

burner stands for the sensor monitoring burner. 

phone stands for the sensor monitoring phone. 

 

Other situations are also represented with states: 

oatmealR is used to represent the occupant has put some oatmeal into the bowl, and 

it is ready to cook. 

raisinsR is used to represent the occupant has put some raisins into the bowl, and it 

is ready to cook. 

sugarR is used to represent the occupant has put some sugar into the bowl, and it is 

ready to cook. 

medicineR is used to represent the occupant has put some pills from the container of 

medicine and it is ready to be taken. 

potFillWithWater means that the occupant has filled the pot full with water and is 

ready to be boiled. 

waterBoiled means the water has been boiled. 

food means the food is ready. 

eat means the occupant starts to have his/her dinner. 

full means the occupant has finished his/her dinner. 

clean means the occupant starts washing bowl, pot, and spoon, and put them back to 

the cabinet. 

processFinished is used to represent that the whole cooking and dining process has 

been finished. 

 

According to the description of the scenario we initially considered the following rules: 

 

Same-Time Rules: 

book →  ¬ processFinished 

oatmealS ∧  cabinet →  oatmealR 

raisinsS  ∧  cabinet →  raisinsR 

sugarS  ∧  cabinet →  sugarR 

medicineS  ∧  cabinet →  medicineR 

potS ∧  waterA →  potFillWithWater 

burner ∧  potFillWithWater →  waterBoiled 

food →  ¬ oatmealR 

food →  ¬ raisinsR 

food →  ¬ sugarR 

food →  ¬ potFillWithWater 

food →  ¬ waterBoiled 

medicineR ∧  food →  eat 

processFinished →  ¬ full 

processFinished → ¬ clean 

Next-Time Rules: 

book →  Ο phone 

¬ phone →  Ο ¬ book 

spoon ∧  bowl ∧  oatmealR ∧  raisinsR ∧  sugarR ∧  waterBoiled → food 
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eat →  Ο ¬ food 

eat →  Ο ¬ medicineR 

eat →  Ο full 

full →  Ο ¬ eat 

full →  Ο clean 

clean ∧ ¬ cabinet ∧ ¬ oatmealS ∧ ¬ raisinsS ∧ ¬ medicineS ∧ ¬ waterA 

∧ ¬ waterB ∧ ¬ burner →  Ο processFinished 

Independent State: 

±oatmealS, ±raisinsS, ±sugarS, ±bowl, ±spoon, ±medicineS, ±potS, ±book, ±waterA 

±waterB, ±phone, ±burner, ±cabinet, full, clean, processFinished, ¬ food, ¬ medicineR 

Dependent State: 

±eat, food, ±potFillWithWater, ±oatmealR, ±raisinsR, ±sugarR, ±waterBoiled, 

medicineR, ¬ full, ¬ clean, ¬ processFinished 

 

The sensor log includes values in the range 0-100 and in our case these values are 

mapped to the truth value interval [0, 1].  We assume the initial truth value of all states is 

0 except processFinished to be 1, and the truth value of all rules is 1, such that, we have 

the following: 

 

Initial Setting: 

Ic={(oatmealS, 0, 0), (raisinsS, 0, 0), (sugarS, 0, 0), (medicineS, 0, 0), (potS, 0, 0), 

(spoon, 0, 0), (bowl, 0, 0), (book, 0, 0), (cabinet, (waterA, 0, 0), (waterB, 0, 0), (burner, 0, 

0), (oatmealR, 0, 0), (raisinsR, 0, 0), (sugarR, 0, 0), (medicineR, 0, 0), (potFillWithWater, 

0, 0), (waterBoiled, 0, 0), (food, 0, 0), (phone, 0, 0), (eat, 0, 0), (full, 0, 0), (clean, 0, 0), 

(processFinished, 0, 1)} 

 

Same-Time Rules: 

(book → ¬ processFinished, 1) 

(oatmealS ∧  cabinet →  oatmealR, 1) 

(raisins ∧  cabinet →  raisinsR, 1) 

(sugars ∧  cabinet →  sugarR, 1) 

(medicines ∧  cabinet →  medicineR, 1) 

(pots ∧  waterA →  potFillWithWater, 1) 

(burner ∧  potFillWithWater →  waterBoiled, 1) 

 (food →  ¬ oatmealR, 1) 

(food →  ¬ raisinsR, 1) 

(food →  ¬ sugarR, 1) 

(food →  ¬ potFillWithWater, 1) 

(food →  ¬ waterBoiled, 1) 

(medicineR ∧  food →  eat, 1) 

(processFinished →  ¬ full, 1) 

(processFinished → ¬ clean, 1) 
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Next-Time Rules: 

(book →  Ο phone, 1) 

( ¬ phone →  Ο ¬ book, 1) 

(spoon ∧  bowl ∧  oatmealR ∧  raisinsR ∧  sugarR ∧ waterBoiled → Ο food, 1) 

(eat →  Ο ¬ food, 1) 

(eat →  Ο ¬ medicineR, 1) 

(eat →  Ο full, 1) 

(full →  Ο ¬ eat, 1) 

(full →  Ο clean, 1) 

(clean ∧ ¬ cabinet ∧ ¬ oatmealS ∧ ¬ raisinsS ∧ ¬ medicineS ∧ ¬ waterA 

∧ ¬ waterB ∧ ¬ burner →  Ο processFinished, 1) 

 

At this stage, the whole knowledge base has been built up, including independent and 

dependent states, same-time rules, next-time rules, and initial setting. Moreover, to test it, 

we need to use real dataset to generate events shown as below, so that we can simulate 

the whole process through our reasoning system and see whether the feedback matches 

what we expect. 

 

Events: 

occurs(ingr(book), 0:1, 1). occurs(ingr( ¬ phone), 2:3, 1). 

occurs(ingr(cabinet),6:7, 1). occurs(ingr(oatmealS), 7:8, 1). 

occurs(ingr(raisinsS), 7:8, 1). occurs(ingr( ¬ oatmealS), 7:8, 1). 

occurs(ingr(spoon), 7:8, 1). occurs(ingr( ¬ cabinet), 8:9, 1). 

occurs(ingr(waterB), 9:10, 1). occurs(ingr( ¬ waterB), 10:11, 1). 

occurs(ingr(potS), 10:11, 1). occurs(ingr(cabinet),11:12, 1). 

occurs(ingr(waterA),11:12, 1). occurs(ingr(oatmealS), 11:12, 1). 

occurs(ingr( ¬ cabinet), 13:14, 1). occurs(ingr(cabinet),19:20, 1). 

occurs(ingr( ¬ cabinet),20:21, 1). occurs(ingr(cabinet),22:23, 1). 

occurs(ingr( ¬ cabinet),22:23, 1). occurs(ingr(cabinet),23:24, 1). 

occurs(ingr(sugarS),24:25, 1). occurs(ingr( ¬ sugarS),25:26, 1). 

occurs(ingr(bowl),26:27, 1). occurs(ingr( ¬ oatmealS), 27:28, 1). 

occurs(ingr( ¬ raisinsS), 27:28, 1). occurs(ingr( ¬ cabinet),28:29, 1). 

occurs(ingr(cabinet),32:33, 1). occurs(ingr( ¬ cabinet),33:34, 1). 

occurs(ingr( ¬ waterA),43:44, 1). occurs(ingr(cabinet), 49:50, 1). 

occurs(ingr(sugarS), 50:51, 1). occurs(ingr(medicineS), 50:51, 1). 

occurs(ingr( ¬ cabinet),52:53, 1). occurs(ingr(burner),55:56, 1). 

occurs(ingr( ¬ burner),57:58, 1). occurs(ingr(cabinet),67:68, 1). 

occurs(ingr( ¬ medicineS), 67:68, 1). occurs(ingr( ¬ cabinet),68:69, 1). 

occurs(ingr(burner),68:69, 1). occurs(ingr( ¬ burner),88:89, 1). 

 

The result in Figure 15 shows that the system considers the whole process is done at 

time=70. However, the sensor caught the burner was on at time 72, and turned off by 

occupant at time=89, so this simulation uncover a problem in our representation of the 

world. Since at time=57 the food was ready, it means there was nothing to cook at 
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time=72.  In fact, the whole process by that portion of the dataset was finished after time 

89, which again highlighted a mismatch.  

6.2.   Revised Knowledge Base 

Thanks to our reasoning system we were able to uncover a problem and to reformulate 

the system.  Our analysis guided by the tool led us to identify that at time 56, the burner 

was only open for 1 time slot, but in fact it was 9 second in the real dataset.  By common 

sense, we know that a pot of water can not be boiled in 9 second. To better match the real 

data we added a new state to indicate more explicitly the burning time of water 

(burningOver30Sec), such that, we have the new rules base: 

 

Same-Time Rules: 

(book → ¬ processFinished, 1) 

(oatmealS ∧  cabinet →  oatmealR, 1) 

(raisins ∧  cabinet →  raisinsR, 1) 

(sugars ∧  cabinet →  sugarR, 1) 

(medicines ∧  cabinet →  medicineR, 1) 

(pots ∧  waterA →  potFillWithWater, 1) 

(potFillWithWater ∧  burningOver30Sec →  waterBoiled, 1) 

(food →  ¬ oatmealR, 1) 

(food →  ¬ raisinsR, 1) 

(food →  ¬ sugarR, 1) 

(food →  ¬ potFillWithWater, 1) 

(food →  ¬ waterBoiled, 1) 

(food →  ¬ burningOver30Sec, 1) 

(medicineR ∧  food →  eat, 1) 

(processFinished →  ¬ full, 1) 

(processFinished → ¬ clean, 1) 

Next-Time Rules: 

(book →  Ο phone, 1) 

( ¬ phone →  Ο ¬ book, 1) 

(spoon ∧  bowl ∧  oatmealR ∧  raisinsR ∧  sugarR ∧ waterBoiled → Ο food, 1) (eat 

→  Ο ¬ food, 1) 

(eat →  Ο ¬ medicineR, 1) 

(eat →  Ο full, 1) 

(full →  Ο ¬ eat, 1) 

(full →  Ο clean, 1) 

 (clean ∧ ¬ cabinet ∧ ¬ oatmealS ∧ ¬ raisinsS ∧ ¬ medicineS ∧ ¬ waterA 

∧ ¬ waterB ∧ ¬ burner →  Ο processFinished, 1) 

 

where burningOver30Sec is an independent state and ¬ burningOver30Sec is a 

dependent state.  Moreover, there is a new event, occurs(ingr(burningOver30Sec),88:89, 

1), added to the event list.  The result of using the new knowledge base is shown in 

Figure 16, and this matched the real case, which completed the whole process at time 93. 
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Fig. 15.  The result of running original knowledge base with real data in forward program 
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Fig. 16.  The result of running improved knowledge base with real data in forward program 
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Fig. 17.  The result of running improved knowledge base with artificial uncertain information data in forward program 
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6.3.   Artificial Data Test 

The real dataset given above only contains Boolean values, and now we want to test the 

improved knowledge base considering uncertain information as well.  In this case study, 

we assume that V=[0, 1] and the meaning of value in [0, 1] is that the closer the value to 

0 the closer to the concept of being ‘false’ and the closer to 1 the closer in meaning to 

being ‘true’.  We used forward and backward reasoning to investigate how these changes 

to the representation affected the outcomes and the decisions associated with the 

environment under investigation.  

 

Initial Setting: 

Ic={(processFinished, 1, 0), ( ¬ oatmealS, 1, 0), ( ¬ raisinsS, 1, 0), (sugarS, 1, 0), 

( ¬ medicineS, 1, 0), ( ¬ potS, 1, 0), ( ¬ spoon, 1, 0), ( ¬ bowl, 1, 0), ( ¬ book, 1, 0), 

( ¬ cabinet, 1, 0), ( ¬ waterA, 1, 0), ( ¬ waterB, 1, 0),( ¬ burner, 1, 0),( ¬ oatmealR, 1, 0), 

( ¬ raisinsR, 1, 0), ( ¬ sugarR, 1, 0), ( ¬ medicineR, 1, 0), ( ¬ potFillWithWater, 1, 0), 

( ¬ waterBoiled, 1, 0), ( ¬ food, 1, 0), ( ¬ phone, 1, 0), ( ¬ eat, 1, 0), ( ¬ full, 1, 0), 

( ¬ clean, 1, 0), ( ¬ burningOver30Sec, 1, 0)} 

 

Events: 

occurs(ingr(book), 0:1, 1). occurs(ingr( ¬ phone), 3:4, 1). 

occurs(ingr(waterA), 2:3, 1). occurs(ingr(cabinet), 2:3, 1). 

occurs(ingr(potS), 3:4, 1). occurs(ingr(burner), 4:5, 0.95). 

occurs(ingr(raisinsS), 6:7, 1). occurs(ingr(spoon), 6:7, 0.9). 

occurs(ingr(oatmealS), 6:7, 0.9). occurs(ingr(sugarS), 6:7, 0.8). 

occurs(ingr(medicineS), 6:7, 0.9). occurs(ingr(bowl), 6:7, 1). 

occurs(ingr( ¬ burner), 8:9, 1). occurs(ingr(burningOver30Sec), 8:9, 1). 

occurs(ingr( ¬ oatmealS), 8:9, 1). occurs(ingr( ¬ raisinsS), 8:9, 1). 

occurs(ingr( ¬ medicineS), 8:9, 1). occurs(ingr( ¬ waterA), 8:9, 1). 

occurs(ingr( ¬ cabinet), 8:9, 1).  

 

and let the rule: 

(clean ∧ ¬ cabinet ∧ ¬ oatmealS ∧ ¬ raisinsS ∧ ¬ medicineS ∧ ¬ waterA 

∧ ¬ waterB ∧ ¬ burner →  Ο processFinished, 1),  

 

changed into: 

             (clean ∧ ¬ cabinet ∧ ¬ oatmealS ∧ ¬ raisinsS ∧ ¬ medicineS ∧ ¬ waterA 

             ∧ ¬ waterB ∧ ¬ burner →  Ο processFinished, 0.9), 

 

The result from the system given in Figure 17 above shows that if the sensors are 

reasonably reliable then the simulation shows the system is still capable to draw the 

expected inferences with high level of confidence.  After building up the improved 

knowledge base, users can use the query answering function from the reasoning system 

to trace the status of a particular state at specific time slot. Such that, while facing a large 
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knowledge base containing huge amount of information, the system does not need to 

explore the whole knowledge base to search the answer of the query. For example, while 

using the knowledge base and event list provided above, we can enquiry the system 

whether food is ready at time 10 with high confidence (over 80%) then they can enter 

holds(food, 10, 0.8), and the system will provide the answer shown in that Figure. 

 

Figure 18 shows the query holds(food, 10, 0.8) is true, since the truth value of food is 0.8 

at time=10 and also explains how it reached that conclusion.   If users want to know if the 

process can be trusted with high confidence (more than 75% for example) to be finished 

at time 15, then they can enter a query holds(processFinished, 15, 0.75) and the system 

will provide the feedback shown in that Figure. 

 

 

The result shown in figure 19 inform us that the truth value of processFinished is only 

0.7 at time=15, which means that the query holds(processFinished, 15, 0.75) is not 

successful and also provides details of how it reached that conclusion.   

 

 

 

Fig. 18.  The result of query holds(food, 10, 0.8) 

 

Fig. 19.  The result of query holds(processFinished, 15, 0.75) 
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Our experimentation with the tool showed that it  provides a valuable contribution on 

examining the possible behaviours of the system being developed.   Both Forward 

and Backward reasoning modalities offer complementary benefits. The explicit 

consideration of a temporal dimension (even if simple to favour efficiency), and 

uncertainty in the facts and the rules allowed us to consider essential features of the 

type of systems we are interested in, for example, intelligent environments as those 

we have considered along this article. 

7.   Conclusions 

A multi-valued temporal propositional logic based reasoning system was presented in this 

paper and several aspects of its implementation and use were explained. The system 

includes two parts, forward and backward reasoning algorithms. The forward reasoning 

algorithm provides simulation/prediction function, and backward reasoning algorithm 

provides query answering function. 

Section 3 illustrated the use of the program. It also provided explanations of the 

implementation of some key predicates for the methods used in forward and backward 

reasoning algorithms, including the concepts of “rule stratification”, “supporting trees” 

and “activation time list”.  

Section 4 provided a scenario to show how to use the reasoning system to build up a 

knowledge base and improve it, moreover, how the system allows users to test their 

assumptions with artificial data in the knowledge base. The simulation/predication and 

query answering functions can help users to understand the final outcomes of particular 

decision-making problems given different assumptions. In this case, the reasoning system 

is able to help users to improve their knowledge bases or other settings of the real 

problems. Hence, users can have a clear and good picture of what may happen given 

different decision makings for a particular problem.  

Overall we have obtained a system which allows representation and reasoning with 

uncertainty and time, important concepts in real world systems. These concepts were 

incorporated to a limited extent to balance expressiveness and efficiency whilst still 

ensuring important meta-theoretical properties were maintained. We understand these 

features are complex and can be still improved in a variety of ways. The many-valued 

logical system in MTPL was focused only on Lukasiewicz logic because of its distinct 

feature in terms of axiomatizablility, the use of other fuzzy logical systems replacing 

Lukasiewicz logical system could be explored in the future work to extend the utility of 

the reasoning algorithms.  The current system does not allow a comfortable handling of 

intervals and only the propositional fragment has been considered at theoretical level.  

Our next steps will aim at building on the capabilities achieved in the current system.  

Still we would like to highlight the versatility of the system which can be used to reason 

over a variety of important scenarios. We have illustrated its use in this article mainly on 

safety and automation areas but it can be applied to a wide range of practical scenarios. 
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