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In this paper, we propose sparse coding-based approaches for segmentation of tumor
regions from MR images. Sparse coding with data-adapted dictionaries has been success-
fully employed in several image recovery and vision problems. The proposed approaches
obtain sparse codes for each pixel in brain magnetic resonance images considering their
intensity values and location information. Since it is trivial to obtain pixel-wise sparse
codes, and combining multiple features in the sparse coding setup is not straightforward,
we propose to perform sparse coding in a high-dimensional feature space where non-linear
similarities can be effectively modeled. We use the training data from expert-segmented
images to obtain kernel dictionaries with the kernel K-lines clustering procedure. For a
test image, sparse codes are computed with these kernel dictionaries, and they are used
to identify the tumor regions. This approach is completely automated, and does not re-

quire user intervention to initialize the tumor regions in a test image. Furthermore, a low
complexity segmentation approach based on kernel sparse codes, which allows the user
to initialize the tumor region, is also presented. Results obtained with both the proposed
approaches are validated against manual segmentation by an expert radiologist, and the
proposed methods lead to accurate tumor identification.

Keywords: MRI, tumor segmentation, sparse representations, kernel methods, dictionary
learning

1. Introduction

A robust method to automatically segment a medical image into its constituent

heterogeneous regions can be an extremely valuable tool for clinical diagnosis and

disease modeling. Given a reasonably large data set, performing manual segmenta-

tion is not a practical approach. Brain tumor detection and segmentation have been

of interest to researchers recently, however, to this day there exists no comprehen-

sive algorithm built and adopted in the clinical setting 1. Although patient scans

can be obtained using different imaging modalities, Magnetic Resonance Imaging
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(MRI) has been commonly preferred for brain imaging over other modalities be-

cause of its non-invasive and non-ionizing nature, and also because it allows for

direct multi-plane imaging.

Tumors may be malignant or benign as determined by a biopsy, and are known

to affect brain symmetry and cause damage to the surrounding brain tissues. Au-

tomated tumor segmentation approaches are often challenged by the variability in

size, shape and location of the tumor, the high degree of similarity in the pixel

intensities between normal and abnormal brain tissue regions, and the intensity

variations among identical tissues across volumes. As a result, unsupervised thresh-

olding techniques have not been very successful in accurate tumor segmentation 2.

Furthermore, approaches that incorporate prior knowledge of the normal brain from

atlases require accurate non-rigid registration 3 4, and hence generating adequate

segmentation results potentially calls for user-intervention and/or a patient specific

training system. In addition, these methods require elaborate pre-processing and

they tend to over-estimate the tumor volume.

Approaches for tumor segmentation can be either region-based or pixel-based.

The active contours method 5 is a widely adopted region-based approach that is

usually combined with a level-set evolution for convergence to a region of interest 6.

However, it is sensitive to the contour initialization, and has a high computational

cost due to its iterative nature. Model-based approaches 7 employ geometric priors

to extend the expectation maximization (EM) algorithm to augment statistical

classification. In relatively homogeneous cases such as low grade gliomas, the outlier

detection framework proposed by Prastawa et al. 2 8 was shown to perform well.

Pixel-based approaches such as fuzzy C-Means (FCM) using neighborhood la-

bels 9, conditional random fields 10, Bayesian model-aware affinities extending the

SWA algorithm 1, and the more recent graph-based techniques combined with the

cellular-automata (CA) algorithm 11 have also achieved some success in tumor seg-

mentation. However, processing issues with respect to contour initialization, noise

reduction, intensity standardization, cluster selection, spatial registration, and the

need for accurate manual seed-selection leaves substantial room for improvement.

In addition, building a robust automated approach that does not require user in-

tervention is very important, particularly for processing large datasets.

1.1. Sparsity in Tumor Segmentation

Sparse models form an important component in image understanding since they

emulate the activity of neural receptors in the primary visual cortex of the hu-

man brain. Olshausen and Field demonstrated that learning sparse linear codes for

natural images results in a family of localized, oriented, and bandpass features, sim-

ilar to those found in the primary visual cortex 12. Sparsity of the coefficients has

been exploited in a variety of signal, and image processing applications including

compression 13, denoising 14, compressed sensing 15, source separation 16, face

classification 17, and object recognition 18.
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Despite its great applicability, the use of sparse models in complex visual recog-

nition applications presents three major challenges: (i) linear generative model of

sparse coding can be insufficient for modeling the non-linear relationship between

the complex image features, (ii) in several visual recognition tasks, no single descrip-

tor can efficiently model the whole data set, i.e., there is a need to integrate multiple

image features into the sparse coding paradigm, and (iii) sparse models require data

samples to be represented in the form of feature vectors, and it is not straightfor-

ward to extend them to the case of other forms such as pixel values, matrices or

higher order tensors. In order to circumvent the aforementioned challenges, kernel

learning methods can be incorporated in sparse coding 19. Kernel methods map the

data samples into a high-dimensional feature space, using a non-linear transforma-

tion, in which the relationship between the features can be represented using linear

models. Since the resulting feature space is a Hilbert space, kernel methods simplify

computations by considering similarities between the features, and not the features

themselves. By developing approaches for sparse coding and dictionary learning in

the feature space, novel frameworks can be designed for computer vision tasks such

as recognition and segmentation.

In this paper, we develop a novel approach to automatically segment active (en-

hancing) and necrotic tumor components from T1-weighted contrast-enhanced MR

images. We propose to compute kernel sparse codes for the pixels in the image and

perform pixel-based segmentation using those codes. Furthermore, we develop the

kernel K-lines clustering algorithm to learn kernel dictionaries for coding the pixels.

The proposed algorithm for localizing the active tumor regions uses an ensemble

kernel constructed using pixel intensities and their spatial locations. Each pixel is

classified as belonging to a tumor or a non-tumor region using a linear SVM on the

kernel sparse codes. Finally, we propose a semi-automated segmentation technique

for improved computational efficiency, wherein the user can initialize the tumor

region. This approach eliminates the need to incorporate the spatial location infor-

mation and also reduces the number of pixels to be processed. In addition, we show

that the linear SVM classifier can be replaced by a simple error-based classifier with-

out compromising the segmentation quality. We evaluate the proposed algorithm

on a set of T1-weighted contrast-enhanced MR images and compare the results

with manual segmentation performed by an expert radiologist. We also show that

the proposed algorithms provide accurate segmentation results that outperform the

widely used Chan-Vese active contour method 5.

2. Sparse Coding and Dictionary Learning

Sparse models have been successful in image understanding because many natu-

rally occurring images can be efficiently modeled as a sparse linear combination

of elementary features 20. The elementary features, also referred to as atoms, are

normalized to unit ℓ2 norm and stacked together to form the dictionary matrix.

Given a sample y ∈ R
M , and a dictionary D ∈ R

M×K , the generative model for
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sparse coding is given as y = Dx+n, where x ∈ R
K is the sparse code with a small

number of non-zero coefficients and n is the noise component. The sparse code can

be computed by solving the convex problem

min
x

‖y −Dx‖2
2
+ β‖x‖1, (1)

where ‖.‖1 indicates the ℓ1 norm, and is a convex surrogate for the ℓ0 norm which

counts the number of non-zero elements in a vector 22. Some of the algorithms

used to solve (1) include the basis pursuit 21, feature-sign search 23 and the least

angle regression algorithm with the LASSO modification (LARS-LASSO) 24. When

presented with a sufficiently large set of training data samples, Y = [yi]
T
i=1

, the

dictionary can be learned, and the corresponding sparse codes can be obtained by

solving

min
D,X

‖Y −DX‖2F + β

T
∑

i=1

‖xi‖1, (2)

where X = [xi]
T
i=1

, and ‖.‖F denotes the Frobenius norm of the matrix. Eqn.

(2) can be solved as an alternating minimization problem, where the dictionary is

learned by fixing the sparse codes, and the sparse codes are obtained by fixing the

dictionary. Dictionaries adapted to the data have been shown to provide superior

performance when compared to predefined dictionaries in several applications 25

20. In addition to being useful in data representation problems, there has been a

recent surge of interest in using sparse models in several supervised, semi-supervised

and unsupervised learning tasks such as clustering 26 and classification 17.

3. Kernel Sparse Coding for Tumor Segmentation

Sparse coding algorithms are typically employed for vectorized patches or feature

vectors extracted from the images, using an overcomplete dictionary. However, the

proposed tumor identification algorithm aims to obtain sparse codes for the pixel

values directly. This is trivial if we use the approach specified in (1), since M = 1

in this case. Furthermore, in order to discriminate between the pixels belonging

to multiple segments, we may need to consider the non-linear similarity between

them. Though the linear generative model of sparse coding has been effective in sev-

eral image understanding problems, it does not consider the non-linear similarities

between the training samples.

It is typical in machine learning methods to employ the kernel function to learn

linear models in a feature space that captures the non-linear similarities. Kernel

functions map the non-linear separable features into a feature space F using a

transformation Φ(.), in which similar features are grouped together. By performing

sparse coding in the feature space F , we can obtain highly discriminative codes for

samples from different classes 27. Note that the choice of the non-linear transforma-

tion is crucial to ensure discrimination. The transformation Φ(.) is chosen such that

F is a Hilbert space with the reproducing kernel K(., .) and hence the non-linear
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(a) (b)

Fig. 1. Similarity between grayscale pixel intensities (0 to 255): (a) linear similarity (yiyj) and
(b) non-linear similarity (K(yi, yj)) using an RBF kernel.

similarity between two samples in F can be measured as K(yi,yj) = Φ(yi)
TΦ(yj).

Note that the feature space is usually high-dimensional (sometimes infinite) and the

closed form expression for the transformation Φ(.) may be intractable or unknown.

Therefore, the kernel trick is used to simplify the computations by expressing them

in terms of inner products Φ(yi)
TΦ(yj), which can then be replaced using K(yi,yj),

the value of which is always known. Note that in order for a kernel to be valid, the

kernel function or the kernel matrix should be symmetric positive semidefinite ac-

cording to Mercer’s theorem 28.

In this paper, we use the Radial Basis Function (RBF) kernel of the form

K(yi, yj) = exp(−γ(yi − yj)
2), which leads to discriminative sparse codes. As a

simple demonstration, the difference between linear similarity of grayscale pixel in-

tensities (0 to 255) and the non-linear similarities obtained using the RBF kernel

(γ = 0.3) is illustrated in Figure 1(a) and (b). The linear similarities depend pre-

dominantly on the individual intensities of the pixels and not on the closeness of

intensities. Whereas, when the RBF kernel is used, the pixel intensities that are

close to each other have high non-linear similarity irrespective of the intensities.

Pixels with intensities that are far apart have zero non-linear similarity. Therefore,

the pixelwise sparse codes that we obtain using such a kernel will behave similarly.

3.1. Kernel Sparse Coding

Given the feature mapping function Φ : RM 7→ F , the generative model in F for

kernel sparse coding is given by Φ(y) = Φ(D)x+n. We denote the data sample y in

the feature space as Φ(y) and the dictionary by Φ(D) = [Φ(d1),Φ(d2), ...,Φ(dK)].

The kernel similarities K(yi,yj) = Φ(yi)
TΦ(yj), K(dk,y) = Φ(dk)

TΦ(y) and

K(dk,dl) = Φ(dk)
TΦ(dl) can be computed using pre-defined kernel functions (RBF

in our case). All further computations in the feature space will be performed exclu-

sively using kernel similarities. The problem of sparse coding in (1) can be posed in
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the feature space as

min
x

‖Φ(y)− Φ(D)x‖22 + λ‖x‖1. (3)

Expanding the objective in (3) we obtain

Φ(y)TΦ(y) − 2xTΦ(D)TΦ(y) + xTΦ(D)TΦ(D)x+ λ‖x‖1,

= Kyy − 2xTKDy + xTKDDx+ λ‖x‖1. (4)

Here, Kyy is the element K(y,y), KDy is a K × 1 vector containing the elements

K(dk,y), ∀k = {1, . . . ,K} and KDD is a K × K matrix containing the kernel

similarities between the dictionary atoms. Clearly, the modified objective function

is similar to the sparse coding problem, except for the use of the kernel similarities in

place of linear similarities. Hence, the kernel sparse coding problem can be efficiently

solved using the feature-sign search algorithm or LARS. However, it is important

to note that the computation of kernel matrices incurs additional complexity. Since

the dictionary is fixed in (4), KDD is computed only once and the complexity of

computing KDy grows as O(MK).

4. Kernel Dictionary Design

Optimization of dictionaries in the feature space can be carried out by reposing the

dictionary learning procedures using only the kernel similarities. Such non-linear

dictionaries can be effective in yielding compact representations, when compared to

approaches such as the kernel PCA, and in modeling the non-linearity present in

the training samples. In this section, we will describe the formulation of a kernel

dictionary learning procedure, and demonstrate its effectiveness in representation

and discrimination.

The joint problem of dictionary learning and sparse coding in (2) is a general-

ization of 1-D subspace clustering 29. In order to design the dictionary Φ(D), we

will adapt (2) to the feature space, with the constraint that only one element in the

sparse code can be non-zero. This is a special case of the kernel dictionary learning

proposed by Nguyen et. al. 30. This procedure is equivalent to the kernel version of

K-lines clustering, which attempts to fit K 1-D subspaces to the training data in F
29. Though sophisticated kernel dictionaries can be designed, employing dictionar-

ies obtained using this simple clustering procedure results in good performance for

our tumor segmentation problem. The clustering problem can therefore be posed as

min
A,X

‖Φ(Y)− Φ(Y)AX‖2F such that ‖xi‖0 ≤ 1, ∀i. (5)

Each dictionary atom Φ(di) corresponds to a cluster center and each coefficient

vector xi encodes the cluster association as well as the weight corresponding to the

ith pixel. Let us define K membership sets {Ck}Kk=1
, where Ck contains the indices

of all training vectors that belong to the cluster k. The alternating optimization for

solving (5) consists of two steps: (a) cluster assignment, which involves finding the

association and weight of each training vector and hence updating the sets {Ck}Kk=1
,
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and (b) cluster update, which involves updating the cluster center by finding the

centroid of training vectors corresponding to each set Ck.

In the cluster assignment step, we compute the correlations of a training sample,

with the dictionary atoms as Φ(yi)
TΦ(D) = KyiYA. If the kth dictionary atom

results in maximum absolute correlation, the index i is placed in set Ck, and the

corresponding non-zero coefficient is the correlation value itself. For the cluster k, let

Φ(Yk) = Φ(Y)Ek be the set of member vectors and xR
k be the row of corresponding

non-zero weights. The cluster update involves solving

min
ak

‖Φ(Y)akx
R
k − Φ(Y)Ek‖

2

F . (6)

Denoting the singular value decomposition of

Φ(Yk) = UkΣkV
T
k , (7)

the rank-1 approximation, which also results in the optimal solution for (6), is given

by

Φ(Y)akx
R
k = uk1

σk1
vT
k1
, (8)

where σk1
is the largest singular value, and uk1

and vk1
are the columns of Uk and

Vk corresponding to that singular value. Eqn. (8) implies that Φ(Y)ak = uk1
and

xR
k = σk1

vT
k1
. Let the eigen decomposition of KYkYk

be Vk∆kV
T
k and hence we

have σk1
=

√

∆k(1, 1), assuming the eigen values are in descending order. From

(7), we also have Φ(Yk)vk1
= σk1

uk1
. Substituting for Φ(Yk) and uk1

, we obtain

Φ(Y)Ekvk1
= σk1

Φ(Y)ak, which results in

ak = σ−1

k1
Ekvk1

. (9)

Note that ak completely defines dk. The cluster assignment and update steps are

repeated until convergence, i.e., when {Ck}Kk=1
does not change over iterations.

4.1. Representation

Kernel sparse coding can be used as an alternative to approaches such as kernel PCA

for efficient data representation. Though complete reconstruction of the underlying

data from the kernel sparse codes requires computation of pre-images 31, novel

test samples can be well approximated using the learned kernel dictionaries. As a

demonstration, we consider the class of digit 2 from the USPS dataset 32 and use a

subset of images for training a kernel dictionary using kernel K-lines clustering. For

a novel test sample z, different from the training set, we compute sparse code using

(3) and compute the reconstruction error as ‖Φ(z) − Φ(D)a‖2
2
. Figure 2(a) shows

the reconstruction error obtained for a test sample for different number of non-zero

coefficients, {1, . . . , 20}.
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Fig. 2. (a) Reconstruction error for a novel test sample using kernel sparse coding, for different
values of sparsity. (b) Similarity between the kernel sparse codes of samples drawn from 3 different
classes in the USPS dataset. Since the kernel codes of samples belonging to the same class are
highly similar, we observe a block-wise structure in the normalized correlation plot.

4.2. Discrimination

In addition to efficiently modeling data samples, kernel sparse coding is well suited

for supervised learning tasks. Since the non-linear similarities between the training

samples are considered while learning the dictionary, the resulting codes are highly

discriminative. As a demonstration, we consider 100 training samples each from 3

different classes in the USPS dataset (Digits 3, 4 and 7). We obtain the kernel sparse

codes for all the samples and compute the normalized cross correlation between the

sparse features. Since kernel sparse codes promote discrimination, we expect the

features belonging to a class to be highly similar to each other compared to samples

from other classes. The block-wise structure in the normalized correlation plot in

Figure 2(b) evidences this.

5. Proposed Automated Tumor Segmentation Algorithm

Adaptive thresholding and unsupervised segmentation approaches are basic pixel-

based approaches for obtaining tumor regions from MR images. However, building

more sophisticated tools, by incorporating expert knowledge, can improve segmenta-

tion performance. In this section, we describe the proposed algorithm for automated

tumor segmentation based on kernel sparse codes.

To perform tumor segmentation, we need to identify pixels that can possibly

constitute a tumor region based on intensity. Though segmentation is as an unsu-

pervised learning problem, we can pose it is as a supervised learning problem since

we can easily obtain a at least a few training images with tumor regions marked

by an expert. Hence, we propose to obtain kernel dictionaries using the training

samples and learn a 2-class classifier (Tumor vs Non-tumor). Furthermore, in order

to localize the tumor regions in the image, we need to incorporate additional con-

straints to ensure connectedness among pixels in a segment. This can be addressed
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by building a spatial location kernel and fusing it with the intensity kernel.

5.1. Combining Multiple Features

When compared to using a single feature, using multiple features to characterize

images has been a very successful approach for several classification tasks. Though

this method provides the flexibility of choosing features to describe different aspects

of the underlying data, the resulting representations are high-dimensional and the

descriptors can be very diverse. Hence, there is a need to transform the features to

a unified space that facilitates the recognition tasks, and construct low dimensional

compact representations for the images in the unified space.

Let us assume that a set of R diverse descriptors are extracted from a given

image. Since the kernel similarities can be used to fuse the multiple descriptors, we

need to build the base kernel matrix for each descriptor. Given a suitable distance

function dr, which measures the distance between two samples for the feature r, we

can construct the kernel matrix as

Kr(i, j) = Kr(yi,yj) = exp(−γd2r(yi,yj)), (10)

where γ is a positive constant. Given the R base kernel matrices, {Kr}Rr=1
, we can

construct the ensemble kernel matrix as

K =

R
∑

r=1

βrKr, ∀βr ≥ 0. (11)

A useful alternate approach to fuse the descriptors is to obtain the ensemble kernel

matrix as

K = K1 ⊙K2 ⊙ . . .⊙KR, (12)

where ⊙ denotes the Hadamard product between two matrices. Sparse codes com-

puted with the ensemble kernel matrices will take all the R features into account.

Note that when combining kernel matrices we need to ensure that the resulting

kernel matrix also satisfies the Mercer’s conditions.

5.2. Algorithm

The proposed algorithm for automated tumor segmentation is illustrated in Figure

3. In the rest of this paper, we refer to this as the Kernel Sparse Coding-based

Automated (KSCA) segmentation algorithm. In the training stage, it is assumed

that the location of the tumor pixels are known in the ground truth training images.

For a subset of T pixels (both positive and negative examples) obtained from the

training images, we compute the intensity kernel matrix, KI ∈ R
T×T , by employing

an RBF kernel on the pixel intensity values. In addition, the spatial location kernel

matrix KL is constructed as

KL(i, j) = KL(yi, yj) =

{

exp‖li−lj‖
2

2 , if j ∈ N (i),

0, otherwise.
(13)
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Fig. 3. Illustration of the proposed algorithm for automated tumor segmentation. For a set of
training samples, the ensemble kernel dictionary is obtained using Kernel K-lines clustering pro-
cedure, and a 2-class linear SVM is used to classify the pixels.

Here, N (i) denotes the neighborhood of the pixel yi, and li and lj are the respective

location vectors for the pixels yi and yj . We fuse the intensity and spatial location

kernel matrices to obtain the ensemble kernel matrix, K = KI ⊙KL.

The sparse codes obtained with a dictionary learned in the ensemble feature

space model the similarities of pixels with respect to both intensity and location of

pixels. A set of training images, with active tumor regions, are used to learn a kernel

dictionary with the kernel K-lines clustering procedure. Using the kernel sparse

codes belonging to tumor and non-tumor regions, we learn a two-class linear SVM to

classify the pixel. For a test image, we obtain the required ensemble kernel matrices

and compute the kernel sparse codes using the learned dictionary. Finally, the SVM

classifier can be used to identify the pixels belonging to an active tumor region. The

impact of combining diverse features using kernel sparse coding is evidenced by the

accurate segmentation results.

6. Complexity Reduction using a Semi-Automated Approach

The amount of training required and the computational complexity are two im-

portant factors that can determine the efficiency of an automated segmentation

algorithm. Since the dictionary training is performed using pixels, the number of

training images required is quite limited. Though the computational complexity of

the automated segmentation algorithm described earlier is comparable to several

existing methods, its efficiency can be further improved by allowing the user to

initialize the tumor region. Computing the kernel sparse codes for all pixels in a

test image incurs the maximum complexity and hence initializing the tumor regions

drastically reduces the number of pixels to be processed. Furthermore, there is no

need to explicitly include the location information in the algorithm, since the tu-

mor region has already been localized by the user. Hence, the classification can be

carried out by using a simple error-based classifier on the kernel sparse codes. We

refer to this as the Kernel Sparse Coding-based Semi-Automated (KSCSA) segmen-
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Fig. 4. Illustration of the semi-automated approach for complexity reduction in the proposed
algorithm. By allowing the user to initialize the tumor region in a test image, the need for incor-
porating locality information is eliminated. Furthermore, the SVM classifier can be replaced by a
simple reconstruction error-based classifier.

tation approach. We observed from our experiments that for an average sized tumor

region, we achieve significant speedup by using the semi-automated approach. Fur-

thermore, the segmentations obtained using the two methods are quite comparable,

though the automated approach can potentially generate more false positives when

compared to the semi-automated approach.

Given a set of training images containing active tumor regions, we use the tumor

and non-tumor pixels to train two separate kernel dictionaries. We construct two

RBF kernel matrices on the pixel intensities and employ the kernel K-lines cluster-

ing algorithm to learn the tumor and non-tumor dictionaries, Φ(DT ) and Φ(DN ),

respectively. Note that dictionary learning is performed only once, and as we will

show in our experimental results, the dictionaries generalize well to reasonably large

datasets.

For a test image, we obtain kernel sparse codes for each pixel yi using Φ(DT ) and

Φ(DN ), and denote the respective sparse codes as xT
i and xN

i . Since the dictionaries

are optimized for two different classes of pixel intensities, we expect the tumor

pixels to be better modeled by the tumor dictionary. Hence we classify a pixel as

belonging to an active tumor region if the approximation error obtained with the

tumor dictionary is less than that obtained with the non-tumor dictionary:

J (yi) =

{

Tumor, if EN − ET ≥ ǫ,

Non-tumor, otherwise.
(14)

Here the approximation errors with respect to the two dictionaries are EN =

‖Φ(yi) − Φ(DN )xN
i ‖2 and ET = ‖Φ(yi)− Φ(DT )x

T
i ‖2, respectively. Note that the

threshold for the error difference, ǫ, can be tuned using a validation dataset before

applying the algorithm to the test data.
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7. Experiments

In this section, we provide details about the datasets used to evaluate our algorithm

and present the segmentation results. The results are compared to manual segmen-

tations performed by a radio-oncology specialist, based on both the subjective visual

quality and quantitative standards such as Accuracy (Acc) and Correspondence Ra-

tio (CR).

7.1. Dataset

The algorithm was tested on a set of T1-weighted (spin echo) contrast-enhanced, 2-

D Dicom format images acquired with a 1.5T GE Genesis Signa MR scanner. Each

axial slice was 5 mm thick with a 7.5 mm gap between slices, and the size of the

image matrix was 256×256. Patients were administered a 20cc Bolus of Gadolinum

contrast agent, and were already diagnosed with Glioblastoma Multiforme (GBM),

the most common form of dangerous and malignant primary brain tumor. These

tumors are characterized by jagged boundaries with a ring enhancement, possibly

a dark core necrotic component, and are accompanied by edema (swelling). The

ground truth (GT) images were obtained from the manual segmentation carried

out by an expert radiologist at the St. Joseph’s Hospital and Medical Center in

Phoenix, AZ, USA. We tested our algorithm on the pre- and post-treatment images

for 9 patients where all the slices (approximately 175) showed the presence of GBM.

7.2. Benchmark Algorithm - Active Contour Method

We compare the segmentation results of our proposed algorithms to the widely

used Chan-Vese active contour method (ACM) 5. The main goal of this region

based method is to minimize the energy function defined by the means of the pixel

intensities inside and outside the initial level set curve. Note that this algorithm

is not completely automated. The initial level set formulation is conveyed to the

algorithm by enabling the user to draw a binary mask over the region of interest

in the image. The binary mask is converted to a Signed Distance Function (SDF),

such that the region within the curve is assigned positive values, increasing with

distance, and the region outside the curve is given increasing negative values, with

the distance from the curve. The SDF enables interaction with the energy function

as it associates the modification and movement of the initial level set formulation

with the change in energy statistics in the two regions. An update occurs with

every iteration, wherein the curve evolves and a new SDF is generated based on the

previous iteration. The algorithm stops updating the initial level set formulation

when the energy is minimized, and further evolution of the curve leads to an increase

in the energy value achieved in the previous iteration.

Since this algorithm is not based on gradient methods, and deals with balancing

the energy on both sides of the curve, it achieves good results even when the image

is blurred. One of the main advantages of this algorithm is that it relies on global



March 12, 2013 1:12 WSPC/INSTRUCTION FILE Manuscript

Kernel Sparse Models for Automated Tumor Segmentation 13

Fig. 5. Choosing the threshold ǫ for the KSCSA segmentation algorithm. The Accuracy and
Correspondence Ratio are plotted against different values of the error threshold ǫ for two example
images. An appropriate threshold, that results in high Acc and CR, can be chosen using a validation
dataset.

properties rather than just taking into account local properties, such as gradients.

Furthermore, it provides improved robustness in the presence of noise.

7.3. Results

Simulations were carried out independently for both the semi-automated and auto-

mated algorithms for every axial slice. For both of the proposed algorithms, the pa-

rameter γ for the RBF kernel was set to 0.3, and the dictionary size was fixed at 256.

In the automated approach, we computed the ensemble kernel for 15, 000 randomly

chosen pixels from the training set. In the reduced complexity semi-automated case,

the tumor and non-tumor dictionaries were learned using 10, 000 randomly chosen

pixels from tumor and non-tumor regions respectively. The parameter β = 0.1 was

used for sparse coding using the feature sign search algorithm.

The resulting segmented images were compared to the ground truth and perfor-

mance was measured using the metrics Accuracy (Acc) and Correspondence Ratio

(CR) computed as 4

Acc =
TP

Total # tumor pixels in the GT image
, (15)

and

CR =
TP− 0.5FP

Total # tumor pixels in the GT image
, (16)

where TP indicates the number of true positives (the pixels indicated as tumor-

ous by the ground truth and our algorithm), and FP denotes the number of false

positives (pixels indicated as non-tumorous by the ground truth, but tumorous by

our algorithm). The other unknown parameter in the KSCSA approach is the error

threshold ǫ, used for classifying the pixels. Figure 5 shows the relationship between
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Table 1. Comparison of the tumor segmentation performance obtained using (a) Active contour
method (ACM), (b) Kernel sparse coding-based automated segmentation algorithm (KSCA),
and (c) Kernel sparse coding-based semi-automated segmentation algorithm (KSCSA). For each
patient, results for a few sample images (pre- and post-treatment) are shown. In each case, the
accuracy and correspondence ratio of the segmentation in comparison to expert-marked ground
truth are presented.

Image ACM KSCA KSCSA Image ACM KSCA KSCSA

Set Acc CR Acc CR Acc CR Set Acc CR Acc CR Acc CR

Patient 1: Patient 6:

Pre 0.81 0.71 0.87 0.86 0.92 0.91 Pre 0.98 0.97 1 0.96 0.99 0.99
Pre 0.42 0.12 0.66 0.33 0.69 0.41 Pre 0.62 0.43 0.96 0.94 0.95 0.94
Pre 0.48 0.22 0.78 0.57 0.78 0.62 Pre 0.87 0.81 0.92 0.91 0.97 0.96
Pre 0.43 0.15 0.72 0.6 0.71 0.64 Post 0.91 0.87 0.92 0.87 0.93 0.91
Pre 0.42 0.13 0.67 0.48 0.68 0.47 Post 0.93 0.89 0.95 0.88 0.95 0.91

Patient 2: Patient 7:

Pre 0.22 0.16 0.46 0.40 0.49 0.43 Pre 0.44 0.16 0.7 0.62 0.71 0.66
Pre 0.95 0.93 0.96 0.92 0.97 0.93 Pre 0.61 0.41 0.90 0.73 0.90 0.82
Pre 1.00 0.99 1 0.98 0.99 0.99 Pre 0.82 0.73 0.91 0.86 0.90 0.88
Pre 0.87 0.80 0.95 0.81 0.97 0.82 Pre 0.83 0.74 0.90 0.81 0.90 0.79
Pre 0.95 0.93 0.97 0.94 0.98 0.91 Pre 0.94 0.91 0.94 0.92 0.95 0.91

Patient 3: Patient 8:

Pre 0.97 0.96 0.97 0.96 0.98 0.96 Pre 0.77 0.65 0.95 0.79 0.98 0.87
Pre 0.91 0.86 0.95 0.9 0.98 0.96 Pre 0.73 0.60 0.91 0.8 0.95 0.84

Post 1.00 1.00 0.99 0.97 1 0.99 Post 0.53 0.29 0.92 0.79 0.87 0.82
Post 0.76 0.64 0.98 0.81 0.97 0.85 Post 0.97 0.95 0.97 0.95 0.97 0.95
Post 0.81 0.71 0.83 0.73 0.86 0.72 Post 0.99 0.99 0.99 0.99 0.99 0.99

Patient 4: Patient 9:

Pre 0.50 0.25 0.64 0.57 0.7 0.65 Pre 0.94 0.91 0.95 0.93 0.95 0.94
Pre 0.53 0.29 0.98 0.84 0.97 0.88 Pre 0.95 0.93 0.98 0.96 0.99 0.94
Pre 0.93 0.90 0.91 0.88 0.92 0.9 Post 0.47 0.21 0.87 0.75 0.88 0.78
Pre 0.40 0.10 0.91 0.82 0.94 0.9 Post 0.63 0.44 0.85 0.84 0.87 0.82
Post 0.73 0.60 0.79 0.67 0.82 0.72 Post 0.82 0.72 0.91 0.88 0.94 0.86

Patient 5:

Pre 0.94 0.90 0.96 0.88 0.97 0.89
Pre 0.81 0.71 0.91 0.84 0.90 0.83
Pre 0.54 0.31 0.68 0.59 0.70 0.66
Pre 0.92 0.88 0.98 0.96 0.98 0.97
Pre 0.78 0.66 0.94 0.9 0.95 0.91

Acc and CR vs the error threshold (ǫ) for two example images. The ǫ value was fixed

at an appropriate value that resulted in high Acc and CR values on a validation

dataset.

Figure 6 shows the original and segmented images for a few example cases. In

each case, the expert-marked ground truth is shown along with the results obtained

using the ACM and the proposed algorithms. Both the proposed semi-automated

and automated segmentation methods outperformed the benchmark method, and

obtained high Acc and CR values as demonstrated by the extensive results in Ta-
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Fig. 6. Tumor segmentation results. (Left-Right) Original image, Ground Truth (GT) marked
by an expert radiologist, Segmentation obtained using the active contour method, Segmentation
obtained using the KSCA algorithm, and Segmentation obtained using the KSCSA algorithm. In
all cases, the proposed algorithms provide superior quality segmentation when compared to the
benchmark algorithm.

ble 1. We observed that the performance of the automated algorithm (KSCA) is

equivalent to that of the semi-automated algorithm (KSCSA) in many cases and
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very closely comparable in the remaining cases. As expected, the semi-automated

algorithm is significantly faster when compared to the automated approach. On

an average, the proposed semi-automated algorithm takes about 8 seconds (mea-

sured using MATLAB R2012a on a 2.8GHz, Intel i7 desktop) in comparison to 120

seconds taken by the automated algorithm. Note that, the average time reported

for the semi-automated algorithm does not include the time taken by the user to

initialize the tumor region.

8. Conclusions

A novel, automated segmentation technique for detecting brain tumors was pro-

posed in this paper. In the new approach, we constructed ensemble kernel matrices

using the pixel intensities and their spatial locations, and obtained kernel dictio-

naries for sparse coding pixels in a non-linear feature space. The resulting sparse

codes were used to train a linear SVM classifier that determines if a pixel in the

image belongs to an active tumor region. Furthermore, a semi-automated segmen-

tation approach was proposed that uses two kernel dictionaries to model the tumor

and non-tumor pixels respectively and employs a simple error-based classifier. Us-

ing simulations on a real dataset obtained for 9 different patients, we demonstrated

that both of the proposed approaches resulted in accurate tumor identifications in

comparison to the widely used Chan-Vese active contour method. Future work in-

volves extending the proposed approaches to include other types of MR imaging

methods such as T2-weighted, FLAIR, perfusion-weighted, and diffusion-weighted

images. Segmentation along with volumetric registration on different slices can be

used to quantify the volume of the tumor region and model the growth of tumors

over a period of time. The proposed algorithms can also be extended to identify

tumors by computing kernel sparse codes for 3−D volumetric data instead of 2−D

images.
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