
April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical

Multilabel Classification with Graph and Latent Features

Andre Melo

University of Mannheim
B6 26 C1.06, 68168 Mannheim, Germany

andre@informatik.uni-mannheim.de

Johanna Völker

University of Mannheim

B6 26 C1.09, 68168 Mannheim, Germany

johanna@informatik.uni-mannheim.de

Heiko Paulheim

University of Mannheim

B6 26 C1.09, 68168 Mannheim, Germany
heiko@informatik.uni-mannheim.de

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Semantic Web knowledge bases, in particular large cross-domain data, are often noisy,

incorrect, and incomplete with respect to type information. This incompleteness can be

reduced, as previous work shows, with automatic type prediction methods. Most knowl-
edge bases contain an ontology defining a type hierarchy, and, in general, entities are

allowed to have multiple types (classes of an instance assigned with the rdf:type rela-

tion). In this paper, we exploit these characteristics and formulate the type prediction
problem as hierarchical multi classification, where the labels are types. We evaluate dif-

ferent sets of features, including entity embeddings, which can be extracted from the

knowledge graph exclusively. We propose SLCN, a modification of the local classifier per
node approach, which performs feature selection, instance sampling, and class balancing

for each local classifier with the objective of improving scalability. Furthermore, we ex-

plore different variants of creating features for the classifier, including both graph and
latent features. We compare the performance of our proposed method with the state-

of-the-art type prediction approach and popular hierarchical multilabel classifiers, and
report on experiments with large-scale cross-domain RDF datasets.

Keywords: Knowledge Base, Type Prediction, Hierarchical Multilabel Classification

1. Introduction

Type information plays an important role in Semantic Web (SW) knowledge bases,

with type assertion axioms, defined by the rdf:type relation, being one of the

atomic building blocks of knowledge bases. Many datasets suffer from type assertion

1

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

2 Andre Melo and Johanna Völker and Heiko Paulheim

incompleteness. For example, for DBpedia1, the upper bounds for completeness of

DBpedia 3.8 types are estimated to be at most 63.7%, with at least 2.7 million

missing type statements, while YAGO types in DBpedia 3.8 are estimated to be

at most 53.3% complete2. For example, Arnold Schwarzenegger in DBpedia is

assigned only the type OfficeHolder and none of the many other suitable types,

such as Actor and BodyBuilder.

A possible way to automatically infer type information on the Semantic Web is

the use of reasoning, e.g., standard RDFS reasoning via entailment rules. However,

reasoning methods are sensitive to noisy data, and since open knowledge bases

created by crowdsourcing and/or heuristics are often noisy, logic-based reasoning

approaches are likely to multiply errors. Statistical approaches, on the other hand,

are more robust to noise, since they do not rely on the quality of the T-box axioms

and are less influenced by single wrong A-box axioms. Therefore, they are considered

to be more suitable for the type prediction task3.

One example that illustrates this problem is that in DBpedia the Album en-

tity Abbey Road from the Beatles, is confused with the Musical Studio entity

Abbey Road Studios in some triples. The assertion No Reply (song) recordedIn

Abbey Road would lead to the inference that Abbey Road is not only an Album but

also a Populated Place, which is the range of the property recordedIn. In 3, we

have shown that RDFS reasoning is prone to propagate noise, whereas heuristic in-

ference is suitable to limit the influence of noise. Therefore, in this paper, we pursue

the use of heuristic inference methods.

Since most Semantic Web knowledge bases organize the possible types as hi-

erarchies (defined in ontologies), we propose to model the type inference problem

in noisy and incomplete knowledge bases as a hierarchical multilabel classification

problem. It is hierarchical because we assume the types to be structured in a hierar-

chy, and it is multilabel because instances are allowed to have more than one type.

For example, in a knowledge base with the type hierarchy depicted in Figure 1, the

instance Arnold Schwarzenegger should be typed as OfficeHolder, Actor, and

BodyBuilder, as well as their generalizations Artist, Athlete, and Person, which

can be inferred from type hierarchy.

As SW knowledge bases, especially cross-domain ones, can have a large num-

ber of types, the high dimensionality of the label space may challenge a multilabel

classification algorithm in many ways. First, the number of training examples an-

notated with each type, in particular those in the lower levels of the hierarchy and

in the long tail of an uneven distribution, will be significantly smaller than the total

number of examples. This is similar to the class imbalance problem in single-label

classification4. Second, the computational cost of training a multilabel classifier may

be strongly affected by the number of labels5.

Due to the presence of ontologies and their type hierarchies on the Semantic

Web, viewing type prediction as a hierarchical machine learning problem is the most

natural translation of the type prediction problem to a machine learning problem.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 3

However, it has never been viewed like that – to the best of our knowledge, all ma-

chine learning based methods for type prediction in SW knowledge bases proposed

so far flatten the problem to non-hierarchical classification6. One possible reason

that hierarchical multilabel classification has not been applied in the field may be

scalability issues when applying those methods to large-scale SW knowledge bases.

In this paper, we propose SLCN (for Scalable Local Classifier Per Node), a

modification of the local classifier per node approach, which improves the scalability

by performing local sampling, feature selection, and class balancing. We show that

the approach outperforms the current state of the art approaches for type prediction

in SW knowledge bases, and does so in a more scalable way than existing algorithms

for hierarchical multi-label classification.

The rest of this paper is structured as follows. First, we briefly introduce the

foundations of hierarchical multilabel classification in section 2, followed by a prob-

lem statement in section 3. We outline the proposed approach in section 4, and

report the outcome of experiments on various SW knowledge bases in section 5. We

conclude with a review of related work in section 6, and conclusions and an outlook

future work in section 7.

This paper is an extended version of a conference paper presented at the 6th

International Conference on Web Intelligence, Mining and Semantics (WIMS 2016)7.

It extends the conference paper by exploring the influence of local and global feature

selection in the classification on both the result quality and the performance, and

by comparing the predictive performance of graph-based and latent features.

Person

Artist

Actor

AdultActor VoiceActor

Painter

OfficeHolder Athlete

MotorSportsRacer

MotorcycleRider RacingDriver

BodyBuilder

Fig. 1: A subset of the DBpedia type hierarchy

2. Preliminaries

In this section, we lay out the foundations of hierarchical multilabel classification

used in this paper.

2.1. Multilabel Classification Approaches

In the multilabel classification problem, there are multiple classes and, contrary to

the single-label multiclass classification problem, instances are allowed to belong

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

4 Andre Melo and Johanna Völker and Heiko Paulheim

to more than one class. We define the set of classes as C = {c1, ..., c|C|}, and we

represent the multilabel of an instance x with a binary vector y = (y1, ..., y|C|) ∈
{0, 1}|C|.

Some of the existing multilabel classification approaches are standard binary

classification algorithms which have been adapted to the multilabel task, without

requiring problem transformations. This includes, e.g., AdaboostMH 8, MLkNN 9 and

BPMLL10. Other approaches, such as Binary Relevance (BR),Classifier Chains4

(CC), Label Powerset (LP), and Random k-Labelsets (RAKeL)11, transform the

multilabel problem into a set of binary classification problems.

Binary Relevance (BR) is the simplest transformation approach, where a binary

classifier is trained for each class assuming the classes are mutually independent.

More complex transformation methods, such as Classifier Chains4 (CC) and La-

bel Powerset (LP), can model dependencies between the classes. There are also

ensemble methods, such as Ensembles of Classifier Chains (ECC)4 and Random k-

Labelsets (RAKeL)11, where several classifiers are trained on different subsamples

and combined into a single model.

These approaches are agnostic with respect to a hierarchy relations among the

labels, and hence, they do not necessarily guarantee the predicted classes to be

consistent with the hierarchy.

2.2. Hierarchical Multilabel Classification Approaches

The hierarchical multilabel classification problem is similar to the multilabel clas-

sification problem, but the classes C are structured in a hierarchy G. The labels of

an instance should be consistent with G, i.e., if an instance belongs to a non-root

class then it must also belong to its ancestors (i.e., ci v cj ∧ yi = 1→ yj = 1). The

class hierarchy can be of two types: a tree, which allows nodes to have a single par-

ent only, and a directed acyclic graph (DAG) which allows nodes to have multiple

parents.

As pointed out by Silla et al.12, most of the current literature focuses on working

with trees as it is a simpler problem. There are mainly two types of hierarchical

multilabel classification approaches: local and global classifiers. The main difference

is that the former breaks down the classification problem into smaller and simpler

problems exploiting the class hierarchy, while the latter considers the problem as

a whole, learning a single more complex model. In the next subsections we present

these approaches in more details.

2.2.1. Local Classifier Approach

The hierarchy is taken into account by using a local information perspective to

transform a multilabel classification problem into a set of simpler subproblems.

This is a kind of transformation approach, since for every subproblem works the

local classifier is trained on a different transformed dataset. According to12, there

are mainly three approaches of using local information: local classifier per node, local

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 5

A

B

D

H I

E

C

F

J K L

G

(a) LCN

A

B

D

H I

E

C

F

J K L

G

(b) LCPN

A

B

D

H I

E

C

F

J K L

G

(c) LCL

Fig. 2: Hierarchical multilabel classification local classifier approaches

classifier per parent node, and local classifier per level. The local hierarchical clas-

sification algorithms share a similar top-down approach in their prediction phase,

where the classifier first predicts its first-level (most generic) class of an instance,

then it uses that predicted class to reduce the choices of classes to be predicted at

the second level (the children of the classes predicted at the first level), and so on,

recursively, until the most specific prediction is made.

Local Classifier Per Node (LCN): The local classifier per node approach consists

of training one binary classifier for each node of the class hierarchy. Each local

binary classifier predicts whether an instance belongs to the class associated with

the node or not. There are two main ways to define the training set of the local

binary classifiers, which are called negative examples selection policies. One is the

all approach, which uses all instances to train all local classifiers, and siblings, which

uses the instances belonging to a node’s class and its siblings’ classes to train the

local classifiers. A comparison of different negative example selection approaches is

made in13 and14. The results indicate that both approaches have roughly similar

performances, however, siblings is more scalable than all.

Local Classifier Per Parent Node (LCPN): In this approach, a local multilabel

classifier is learned for every non-leaf node in the hierarchy. The labels are the

direct child nodes and the training instances are those which belong to the parent

node class. If each multilabel problem is transformed into a set of binary problems

with the binary relevance method, this is equivalent to local classifier per node.

Depending on the choice of the local multilabel classifier, it is possible to model

dependencies between sibling nodes.

Local Classifier Per Level (LCL): This is the type of classifier approach least

used so far on the literature. The local classifier per level approach consists of

training one multilabel classifier for each level of the class hierarchy. That means it

is prone to class-membership inconsistency and therefore requires a post-processing

step to prevent it. In the literature this approach was only mentioned as a possible

approach by15, and used as a baseline comparison method in16 and17. Moreover,

there is no publicly available implementation of this kind of approach.

Figure 2 illustrates the difference between the three local classifier approaches.

The dashed closed curves indicate the set labels of each local classifier. In the

case of LCN (2a), each of the eleven local binary classifiers predicts whether an

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

6 Andre Melo and Johanna Völker and Heiko Paulheim

instance belongs to its correspondent class or not. For LCPN (2b), there are five

local multilabel classifiers, whose labels are sibling nodes. For LCL (2c), there are

three local multilabel classifiers, whose labels are the nodes of each level of the

hierarchy.

2.2.2. Global Classifier Approach

In contrast to local classifier approaches, the global classifier approach (also known

as big bang approach), learns one single classification model built from the training

set, taking into account the class hierarchy as a whole during a single run of the

classification algorithm. When used during the prediction phase, each instance is

classified by the induced model, a process that can assign classes at potentially

every level of the hierarchy to the instance. Global classifier approaches lack the

kind of modularity for local training of the classifier that is a core characteristic of

the local classifier approaches.

An example of global classifier approach is MLC4.518, which is a decision tree

algorithm adapted to handle multilabel data. A single decision tree is created for the

classifier, where each leaf node contains a vector with the class distributions. This

method guarantees consistency with the hierarchy, as the probability of a class in

the class distribution cannot be smaller than that of its children. Therefore, for any

probability threshold, the generated prediction will be consistent with the hierarchy.

2.3. Evaluation Measures

Silla Jr. et al. 12 recommend the use of hierarchical loss (h-loss), and the hierarchical

precision (hP), recall (hR), and F-measure (hP) to evaluate hierarchical multilabel

classifiers. In this paper, we also use the hamming loss (hamm), which is commonly

used in (non-hierarchical) multilabel classification and serves as basis for the h-loss.

The hP, hR, and hF 19 are the micro-averaged measures of precision, recall and

F-measure per class. By using the micro average, each class is weighted according

to the label frequencies. Equations 1, 2 and 3 show the definition of these measures,

where tpi, fpi and fni denote respectively the number of true positives, false posi-

tives and false negatives of the class ci. Similarly to their binary class versions, hP,

hR and hF values range is in the interval [0, 1].

hP =

|C|∑
i=1

tpi

|C|∑
i=1

(tpi + fpi)

(1)

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 7

hR =

|C|∑
i=1

tpi

|C|∑
i=1

(tpi + fni)

(2)

hFβ =
(β2 + 1) · hP · hR
β2 · hP + hR

(3)

Equation 4 shows the Hamming loss (hamm) for one instance. We denote the

true label vector of an instance as y, and the predicted vector as ŷ, with yi = 1 if

the instance is of class ci, yi = 0 otherwise. Hamming loss reports how many times

on average, a class label is incorrectly predicted, i.e., the number of false positives

and false negatives, normalized over total number of classes and total number of

examples.

lh(ŷ, y) =

|C|∑
i=1

1ŷi 6=yi (4)

hlH(ŷ, y) =

|C|∑
i=1

1ŷi 6=yi max
{j|civcj}

1ŷj=yj (5)

Equation 5 shows the hierarchical loss (h-loss)20 for one instance, which extends

hamming loss to account for any existing underlying hierarchical structure of the

labels. The idea of hierarchical loss is based on the notion that, whenever a classifier

makes a mistake at any node in a given hierarchy, no further loss should be counted

for any mistake in the subtree rooted at that particular node ignoring any subtree

which is rooted at a wrong prediction node.

3. Problem Definition

In a knowledge graph, not every instance may come with proper type informa-

tion. Untyped instances and instances with incomplete set of types are a common

problem in Semantic Web knowledge bases6, therefore, we need methods which can

automatically predict types of instances. Thus, the task of type inference is to assign

types to untyped instances, as well as adding types to instances with incomplete

type information. To that end, available information about the instance, such as its

relation to other instances, is used to train an inference model.

At the same time, not all information in the RDF data set may be correct; there

can be various types of errors21, including wrong relations between instances2,22,

wrong interlinks between datasets23, and wrong literal values24,25, among others.

Thus, when training a classifier for predicting missing types, those errors will shine

up as noise in the respective training set, and require a noise-tolerant learning

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

8 Andre Melo and Johanna Völker and Heiko Paulheim

approach. In this paper, we assume that the type hierarchy is correct, and we

restrict the hierarchical structure to trees for simplicity and because DAGS are not

supported by multilabel classification libraries.

In particular, types in RDF knowledge bases come are organized in hierarchies.

Hence, we model the type prediction task as a hierarchical multilabel classification

problem, which we define according to the categorization proposed in12. The classifi-

cation problem is defined as < T,MPL,PD >, which means that the type of graph

representing the class hierarchy is a tree (T), instances are allowed to have multiple

paths of labels (MPL), and that instances are allowed to have partial depth (PD)

labeling (i.e., non-mandatory leaf node prediction).

The partial depth labeling is important in our problem because in many cases

the class hierarchy is incomplete, requiring an instance which cannot be typed with

any leaf node to be assigned a more general type. In Fig. 1, Arnold Schwarzen-

egger is neither an AdultActor nor a VoiceActor, i.e., none of the specializing

classes of Actor is appropriate. Thus, the instance should be typed as an Actor,

which is a non-leaf node. Supporting multipath labels is also relevant because many

instances might have multiple labels which are not in the same path in the hierar-

chy. In the same example, Arnold Schwarzenegger is labeled with OfficeHolder,

BodyBuilder, Actor, and their generalizations, and thus has three paths in the

hierarchy.

Although our problem definition does not support DAGs, they can be trans-

formed into trees by selecting (e.g., at random, or by leveraging a priori distribu-

tions) a single parent for nodes with multiple parents. This simplifies the hierarchy,

but leads to an information loss, which could in theory result in a drop in the quality

of the predictions.

The extraction of features for the classifier is also an important part of the

problem addressed in this paper. Different datasets might have domain specific

features highly valuable for the type prediction. The extraction of features from

knowledge bases is a problem which deserves an exclusive study. Therefore we focus

on graph and latent features which can be extracted from any RDF knowledge

graph.

4. Approach

The problem of type prediction in RDF data requires highly scalable approaches

which can handle a high number of labels, features, and instances inherent to many

Semantic Web datasets. In this paper, we propose a more scalable version of a local

classifier per node approach which we call SLCN.

In our approach, we assume that the knowledge base has a type hierarchy which

is materialized in the dataset, i.e., if an instance is assigned a given type, it must

also be assigned all its superclasses. If the hierarchy is not materialized, we perform

simple reasoning to infer the assertions of all superclasses absent in the dataset by

exploiting the subClassOf relations.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 9

4.1. Algorithm

SLCN is based on the local classifier per node (LCN) with top-down prediction

approach and siblings negative examples selection policy. This means that we train

one binary classifier for every class ci ∈ C, and each of those classifiers is trained on

a local transformed dataset with a binary class label (belongs to the type: yc = 1,

or not: yc = 0). The top-down prediction approach means that when predicting the

types of a given instance, we first classify the instance for the types in the highest

level.

When considering a non-mandatory leaf-node prediction problem, the class-

prediction top-down approach has to use a stopping criterion that allows an example

to be classified just up to a non-leaf class node. We follow the approach proposed by

Wu et al. 26, where for all the types which the instance is predicted to belong to, the

local classifiers of its subtypes predict if the instance belongs to any of its children,

and so forth. Whenever the instance is predicted not to belong to a given type, then

it is assumed that it does not belong to any of its subtypes either, therefore there

is no need to run the local classifiers of the children nodes.

Assuming that a hierarchical multilabel classifier is perfect and correctly pre-

dicts all classes and we want to, for example, predict the types of the instance

Arnold Schwarzenegger. The classifier would first predict it is a Person. Then it

would predict that it also belongs to its three subtypes Artist, OfficeHolder and

Athlete. Following the Artist branch, it would then predict that it belongs to

Actor and does not belong to Painter, and finally that it does not belong to ei-

ther AdultActor or VoiceActor. Following the Athlete branch, the classifier would

predict it belongs to BodyBuilder, and does not belong to MotorsportRacer. The

local classifiers for the subtypes MortorcycleRider and RacingDriver would not

need to make any prediction since the instance does not belong to their super-

type MotorsportRacer, and therefore, in order to be consistent with the hierarchy,

cannot belong to any of its children.

The top-down approach ensures that the outcome of the multilabel classifier is

consistent with the type hierarchy. However, it can cause the blocking problem27,

which may occur during the top-down process of classifying a test example. The

classifier at a certain level in the class hierarchy predicts that the example in question

does not have the class associated with that classifier. In this case the classification of

the example will be blocked, i.e., the example will not be passed to the descendants

of that classifier. Sun et at. 27 propose methods for addressing this this problem

(e.g., such as threshold reduction, restricted voting, and extended multiplicative

thresholds). However, the results show that, although the proposed methods can

reduce the blocking problem, they also cause a degradation in precision. Therefore,

in our approach we decide not to use any of these approaches.

As scalability is an important factor in the problem studied in this paper, we

choose to use the siblings negative examples policy, which reduces the sizes of local

training datasets for classes in the lower levels of the hierarchy. The local train-

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

10 Andre Melo and Johanna Völker and Heiko Paulheim

ing sets are created including the instances belonging to the target class as posi-

tive examples and the instances belonging to its sibling classes as negative exam-

ples. For instance, the transformed dataset with siblings for the type BodyBuilder

would contain as negative examples the instances belonging to its sibling class

MotorsportRacer and, because we allow partial-depth prediction, the instances

which belong to its superclass Athlete but none of its children.

Typically, the number of labels in the lower levels of the hierarchy is higher, and

the lower the level of the label node, the smaller the subset is. Assuming that the

label hierarchy has a fanout b, and the instances have a single path only, the average

transformed dataset size would be |D|∗(b∗logb(|C|))/|C| instead of |D|. The average

size of the transformed datasets also increases with the number of different paths

instances have. However, for simplicity and because the average number of different

paths per instance is low in most real datasets (c.f. average number of paths per

instance (ANP) in Table 1), we ignore this factor when calculating the average size.

In the proposed approach, local feature selection, sampling, and class balancing

are performed for every local classifier. The intuition is that in each binary sub-

problem, where for the instances of a given class we predict whether they belong

to a subclass, not all the features might be relevant. Especially in cross-domain

datasets, such as DBpedia, YAGO, and Wikidata, the set of features required to

predict, for instance, if an Athlete is a MotorsportRacer is completely different

from those required to predict if an Infrastructure is an Airport. This allows the

local classifier to handle a smaller set of locally relevant features instead of a larger

set with features relevant to all classes.

Moreover, we choose to use the filter instead of the wrapper feature selection

method, where we calculate the information gain of each feature and select the

top-k most relevant features ranked by information gain. Since the idea of local

feature selection is to reduce the training time of the local classifiers, it makes more

sense to perform the feature selection if its complexity is lower than that of the

classifier training. Hence, we decide to use a simple feature selection method, whose

complexity grows linearly with the number of features.

The benefit of local feature selection cannot be achieved using global multilabel

classification methods, since a single model is learned on a single set of selected

features, which has to be relevant for all the classes. Selecting features globally might

lead to preferring features relevant to the most frequent classes, and potentially

leaving out features which are relevant to less frequent classes. In Section 5.3 we

conduct experiments which show that SLCN performs better with local feature

selection than with global feature selection.

For the local sampling, we set a maximum local training sample size n. The idea

is that if a local classifier has a number of instances smaller than the maximum

training sample size, no sampling is performed, so that the training set does not

lose any valuable instances. On the other hand, local classifiers with a high number

of instances, such as those for the classes in higher level of the hierarchy, will be

trained on a smaller sample of size n, reducing the time required for training the

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 11

local classifier. When sampling the data, potential class imbalance can be addressed

individually for each class in its transformed dataset. For that, we define a bias to

uniform class distribution u ∈ [0, 1], where u = 0 means that the class distribution

is left as it is, and u = 1 means that class weights are assigned values that result

in an uniform class distribution. With that, the classifier settings can be defined by

the triple < k, n, u >. In the experiments discussed in section 5.2, we evaluate the

influence of each of these parameters on the performance of SLCN.

Algorithm 1 shows the pseudo code of SLCN indicating the main characteris-

tics of the approach. The sampling and feature selection (sample instances and

select features) is performed for every class c ∈ C and incorporated into the

training of SLCN. In the algorithm X is the features matrix, where instances are

represented by rows, and columns are features, Y is the labels matrix, also with

instances represented as rows, a |C| columns represent the types, h is a map con-

taining all the nodes of the type hierarchy, local feats is map containing the sets of

selected features for each class, and local clfs a map of the local binary classifiers

of each class.

The function predict recursion illustrate how the top-down prediction ap-

proach stopping criterion works, which we implement by keeping a set of indices i

to the instances to which the local classifiers should be applied.

One limitation of SLCN is that it does not support disjointness between classes,

since it assumes independence between sibling nodes. However, at the moment,

most knowledge bases do not contain class disjointness axioms. Approaches which

can model dependencies between classes, such as MLC4.5 and LCPN with ECC or

LPW, should be able to handle such disjointness even if not explicitly defined in the

ontology. When training the classifier, since we use the siblings negative examples

selection policy, we implicitly use the closed world assumption in order to generate

negative labels for the local classifiers. This can be a problem on datasets where the

type assertions are highly incomplete28.

4.2. Features

It is not possible to directly apply hierarchical multilabel classification methods on

knowledge bases. In order to be able to work with classifiers, we need to represent

every typed instance x ∈ X in the knowledge base as a feature vector, and the types

of the given instance as labels. In this paper we focus on general features which can

be extracted from the relations between entities represented in a knowledge graph.

Therefore, we do not investigate features extracted from external sources and text.

According to Nickel et al.29, two kinds of features can be obtained from knowledge

graphs: latent features and graph features. The former consists of features which

cannot be directly observed in the graph, often these are lower-dimensional repre-

sentations (also known as embeddings) of entities. The latter consists of features

that can be directly observed from the edges in the graph.

Latent features are dense lower dimensional representations of entities in an

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

12 Andre Melo and Johanna Völker and Heiko Paulheim

Algorithm 1 SLCN pseudocode

1: local clfs ← ∅
2: local feats ← ∅
3:

4: function train(X,Y, h)
5: for c ∈ C do
6: n ← number of instances in X
7: if has parent(h[c]) then
8: i ← {i|Y [i, h[c].parent] = 1} . Select instances that belong to parent
9: else

10: i ← {1, ..., n}
11: end if
12: Xlocal ← X[i]
13: Ylocal ← Y [i, c]
14: Xlocal, Ylocal ← sample instances(Xlocal, Ylocal, n)
15: local feats[c] ← select features(Xlocal, Ylocal, k)
16: Xlocal ← Xlocal[:, local feats[c]]
17: local clfs[c] ← train local classifier(Xlocal, Ylocal)
18: end for
19: end function
20:

21: function predict recursion(X,Y, h, n, i)
22: Xlocal ← X[:, local feats[n]]
23: Y [i, n] ← predict local classifier(local clfs[n], Xlocal)
24: i ← {i|Y [:, n] = 1}
25: for c ∈ h[n].children do
26: Y ← predict recursion(X,Y, h, c, i)
27: end for
28: return Y
29: end function
30:

31: function predict(X,h)
32: n ← number of instances in X
33: Y ← zeros(n, |C|) . Initialize the matrix Y with zeros (empty predictions)
34: for r ∈get roots(h) do
35: Y ← predict recursion(X,Y, h, r, {1, ..., n})
36: end for
37: return Y
38: end function

embedding space. The existent latent multirelational learning models, often used

for the link prediction problem, generate this kind of entity representation. Since

in these models every entity on the knowledge graph is represented by embeddings,

we can use these embeddings as features and types as labels and train a multilabel

classifier for type prediction. Assuming that in the latent feature representations,

entities of same type are located close to each other in the embeddings space, these

features should in principle be useful for the type prediction task.

Some of the state-of-the-art latent feature models include TransE30, TransR31,

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 13

RESCAL32, multiway neural networks (mwNN)33 and Holographic Embeddings

(HolE)34. In this paper we choose to use Holographic Embeddings (HolE)34, which

learns compositional vector space representations of entire knowledge graphs. The

proposed method is related to holographic models of associative memory in that

it employs circular correlation to create compositional representations. HolE is effi-

cient to compute, easy to train, and highly scalable, but at the same time it is highly

expressive and can model complex relations. This achieved by using circular corre-

lation as the compositional operator (c.f. Equation 6), which is illustrated by the

3-dimensional example for c in Equation 7. It is shown that holographic embeddings

are able to outperform state-of-the-art methods, such as TransE and RESCAL, for

link prediction in knowledge graphs and relational learning benchmark datasets.

Circular correlation, also known as compressed tensor product, enables relations

to be modeled as d-dimensional vectors instead of d× d matrices like in RESCAL.

With that the amount of memory for representing relations is reduced from O(d2) to

O(d) and the runtime for learning the model is reduced from O(d2) to O(d log d)34.

c = a ? b =

d−1∑
0

aib(k+1)modd (6)

c0 = a0b0 + a1b1 + a2b2
c1 = a0b2 + a1b0 + a2b1
c2 = a0b1 + a1b2 + a2b0

(7)

An important characteristic of the circular correlation as an operator to model

relations is that it is noncommutative, i.e., a ? b 6= b ? a, which enables it to model

asymmetric relations. In HolE, the probability of a triple (s, p, o) is modeled as

shown in Equation 8, where es and eo are the embedding representations of the

subject s and object o, and rp is a vector that represents the relation p, and σ is

the logistic function, that converts the triple score to a probability.

σ(r>p (es ? eo)) (8)

In this paper, we will call the set of entity embedding features E, where E has

d dimensions. In general, d is small (in this paper we use d ∈ 5, 10, 25, 50, 150), but

the feature vectors are dense, i.e. they have few zeros.

Graph features can be directly extracted from the triples in the graph, and there-

fore are simpler to be obtained. In this paper, we propose the extraction of binary

features, following35, which are not specific to a dataset at hand, but applicable on

any general SW knowledge base. Rout is the set of outgoing relations, Rin is the

set of ingoing relations, Qout is the set of qualified relations, i.e., pairs of outgoing

relations and object types, and Qin is the set of ingoing qualified relations, i.e., pairs

of ingoing relations and subject types. For convenience, we define the set of ingoing

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

14 Andre Melo and Johanna Völker and Heiko Paulheim

and outgoing relations as R = Rin ∪ Rout and the set of all qualified relations as

Q = Qin ∪Qout.

The feature sets for the classification problem are extracted with the following

SPARQL queries, where the keyword a is used as a shorthand notation for rdf:type:

Rout : select distinct ?p where {?x ?p ?z, ?x a ?c}
Rin : select distinct ?p where {?z ?p ?x, ?x a ?c}
Qout : select distinct ?p ?t where {?x ?p ?z, ?z a ?t, ?x a ?c}
Qin : select distinct ?p ?t where {?z ?p ?x, ?z a ?t, ?x a ?c}

In theory, on a knowledge base containing relations pi ∈ P , and ci ∈ C types,

Rout and Rin can have up to |P | dimensions, and Qout and Qin up to |P | × |C| di-

mensions. In practice, however, Rin is often smaller than Rout because, for example,

data properties, which have literals as objects, appear always as outgoing relations

of entities and never as ingoing. Also, because of domains and range restrictions of

relations, many combinations of outgoing relation and object type, as well as ingoing

relation and subject type never occur, therefore the sizes of Qout and Qin often are

significantly smaller than |P | × |C|. It is important to note that, in contrast to the

dense entity embeddings feature set E, the feature vectors Q and R are in practice

highly sparse with few non-zero entries. These characteristics can be observed in

Table 1, which give the size of these feature sets on the datasets used in this paper.

In our experiments, we define the set of features used in a type prediction task

as F , which may consist of any combination of the features sets Rout, Rin, Qout,

Qin or E. While in SLCN it is possible to include dataset specific features, such

as DBpedia categories or text features extracted from Wikipedia abstracts, in this

paper, we concentrate on general features which can be extracted from any SW

knowledge base. It is worth mentioning that, in contrast to SDType3 and other

existing methods, which usually rely on a certain kind of features, the proposed

hierarchical multilabel classification approaches can handle any kind of features

which could be extracted from knowledge bases, and is thus more versatile.

In the future we plan to perform experiments with different kinds of features

and propositionalization strategies36, and evaluate how they affect the predictive

performance. However, since in this paper we focus on the prediction methods and

not the feature extraction, we restrict ourselves to the features described previously.

In summary, the contributions of this paper are the formulation of the type

prediction as a hierarchical multilabel classification problem and the proposal of

SLCN, a scalable hierarchical multilabel classifier based on the local classifier per

node approach which exploits local feature selection and sampling in order to im-

prove scalability and facilitate the use of such approach on large cross-domain LOD

datasets. Moreover, we investigate how the use of different feature sets affect the

performance of SLCN and other methods. We consider embedding features obtained

with HolE, as well as ingoing and outgoing relations and qualified relations.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 15

5. Experiments

The experiments are divided into five main parts. First, we evaluate the performance

of different local classifiers for SLCN, and different parameter values for < k, n, u >.

The second part compares local and global feature selection, showing that local

feature selection performs better. Therefore, in the following, local feature selection

is used throughout all the experiments. Third, we compare the influence of graph

and latent features, showing that the latter only lead to a marginal performance

improvement. In the fourth part, we compare SLCN to SDType and different state-

of-the-art multilabel classifiers, analyzing performance and scalability with respect

to the number of instances, features, and labels. We do not compare the proposed

approach to RDFS reasoning, because it has already been shown to outperform

reasoning in the case of real-world SW knowledge bases3. Finally, in the last part,

we make a comparison on different large-scale RDF datasets.

For our experiments, we use MULAN 1.5, which is an open-source Java library

for learning from multilabel datasets based on WEKA37. It includes a variety of

state-of-the-art multilabel classification algorithms, and offers multilabel feature

selection and evaluation. Apart from SDType, we compare SLCN to the local ap-

proaches HMC, HOMER, and the global approach MLC4.518. HMC is an imple-

mentation of the LCPN approach. HOMER5 is similar to HMC, but it uses balanced

clustering to generate a hierarchy for flat labels, where the non-leaf nodes are meta-

labels identifying label clusters. MLC4.5 and SDType were re-implemented in the

MULAN framework. The performance of SDType is very sensitive to the chosen

confidence threshold, and the optimal threshold may vary with the used dataset.

Therefore, for our experiments, we added an extra step to the training phase of SD-

Type in order to find the confidence threshold which maximizes the hF measure.

Apart from that, all methods were used with their standard settings in MULAN.

5.1. Datasets

In our experiments, we use four different large scale cross-domain datasets: DB-

pedia, DBpedia with YAGO types, NELL, and Wikidataa. We also use AIFB and

Mutagenesis datasets, which are two smaller and simpler domain-specific datasets.

They are especially needed for the latent features experiments, since the compu-

tation of entity embeddings for the large scale datasets can be expensive. Because

MULAN can only handle trees, not arbitrary DAGs, we convert all DAG type hi-

erarchies to trees by retaining only the subsumption relation of the most frequent

parent node. Table 1 shows some statistics about the different datasets, including

number of instances, percentage of instances with partial-depth (PD) and multi-

path (MPL) labels, average number of paths per instance (ANP),number of labels

(|C|), and size of the different feature sets (|Rout|, |Rin|, |Qout|, |Qin|). In the next

aThe datasets used are available for download at
http://dws.informatik.uni-mannheim.de/en/research/hmctp

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

16 Andre Melo and Johanna Völker and Heiko Paulheim

paragraphs we briefly discuss relevant characteristic of each dataset used.

Dataset Instances MPL ANP PD |C| |Rout| |Rin| |Qout| |Qin|

DBpedia 4 218 125 0.02% 1.02 32.6% 476 1390 659 30 423 10 427
DBp(YAGO) 2 886 305 81.4% 3.16 86.2% 454 1308 638 61 595 45 484
NELL 29 317 38.9% 1.10 32.2% 264 248 248 2721 3056
Wikidata 19 254 100 63.4% 1.64 18.4% 474 1324 474 53 175 119 207
AIFB 27 100 48.3% 1.48 10.8% 58 81 81 287 538
Mutagenesis 14 157 0% 1.00 0% 87 4 4 118 14

Table 1: Statistics about the datasets used

DBpedia: We use DBpedia 2014b with mapping-based properties. There are

two main issues with existing DBpedia type assignments. The first is that DBpedia

only contains single path labels, although it is clear that several instances, such as

Arnold Schwarzenegger, should belong to multiple paths. This happens because

of its extraction framework, which maps infoboxes to types and assigns an instance

to the type of the first infobox of its Wikipedia page. That makes it an exception

amongst other main RDF datasets which, as Table 2 illustrates, have a signifi-

cant portion of its instances with multipath labels. The second problem is that the

correct type can be trivially predicted from outgoing properties, as reported in2,

which happens because the DBpedia outgoing properties and types are generated

in one step from the same original information. Therefore, in our experiments, we

use only the feature sets Rin and Qin for DBpedia. DBpedia 2014 has a class hier-

archy which is not a tree only because of the class Library, which is a subclass of

EducationalInstitution and Building. All the other classes have a single parent

class. In order to convert it to a tree, we choose EducationalInstitution to be

the only superclass, following the tree depicted by the DBpedia Ontology browser.c

Since DBpedia types were originally materialized with the DAG hierarchy, after

the transformation to a tree all, the 816 instances of Library (0.02% of the total)

appear to have two paths in the tree.

DBpedia with YAGO types: Unlike DBpedia, YAGOd extracts its type hierarchy

from Wikipedia categories. Because of that, it has a staggering 384 174 different

types and a complex DAG type hierarchy. Moreover, YAGO has a very limited

number of relations (|Rout| = 37) with most relations on the people and location

domain), which results into a small number of features which are biased to specific

classes. With the number of labels much greater than the number of features, the

YAGO dataset as it is, is not well suited for the type prediction problem. Most of

the DBpedia instances are linked to the YAGO types. Therefore it makes sense to

bhttp://wiki.dbpedia.org/Downloads2014
chttp://mappings.dbpedia.org/server/ontology/classes/
dhttp://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/

yago-naga/yago/downloads/

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 17

combine both datasets by using DBpedia features and YAGO types as labels. With

that, the problem of DBpedia’s exclusively single-path labels, which are extracted

together with the outgoing properties, can be ruled out. The problem of the high

number of YAGO labels can be solved by simply choosing the top-k most frequent

types. In our experiments, arbitrarily select the 474 most frequent YAGO labels.

Wikidata: Similarly to what was done to the YAGO types, in Wikidata, which

also has a large original |C| = 29099, we arbitrarily select the 454 most frequent

types. In contrary to the other knowledge bases used in the experiments, Wiki-

data does not rely on information extraction methods to generate its RDF graph.

Wikidata is part of the Wikimedia community and its pages contain structured

data, which can be exported to RDF format38. Its type hierarchy is a DAG, and

in order to transform it into a tree, for all types with multiple parents we keep

the rdfs:subClassOf relation with parent with greatest number of instances and

delete the rest.

NELL: We use the NELL dataset (version 08m.690), which has originally

1 168 998 instances. However, the NELL’s graph is highly sparse with only around

2% of instances being both typed and having at least one ingoing or outgoing rela-

tion. Therefore for the datasets used in our type prediction experiments we remove

the other 98% of instances and use only the remaining 29317.

AIFB: The AIFB datasete describes the AIFB research institute in terms of its

staff, research group, and publications. The data is an export of the AIFB website

and contains around 270 thousand triples. The type hierarchy is originally a wide

and shallow tree with average fanout 14.25 and average depth 2.04.

Mutagenesis: The MUTAG dataset is distributed as an example dataset for the

DL-Learner toolkitf . It contains information about 340 complex molecules that are

potentially carcinogenic, which is given by the isMutagenic property. The molecules

can be classified as ”mutagenic” or ”not mutagenic”, and the main entity types

atoms bonds and compounds which define the molecules. The type hierarchy is also

originally a tree with average fanout 7.17 and average depth 2.49.

5.2. SLCN Base Classifier and Parameter Settings

We conduct a first experiment to evaluate the performance of different types of

local classifiers on our approach. Four different popular binary classifiers available

in WEKA are evaluated. Table 2 reports the results of the comparison, which was

performed on a random sample of the DBpedia data with YAGO types containing

28 863 instances (1% of the total) and features F = R. The results indicate that

J48 (an implementation of the C4.5 decision tree algorithm) and LibSVM perform

equally well in terms of prediction quality, with J48 being about eight times faster

than SVM. Thus, we use J48 as a base classifier in the subsequent experiments.

ehttp://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
fhttp://dl-learner.org

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

18 Andre Melo and Johanna Völker and Heiko Paulheim

classifier rt(ms) h-loss hamm hP hR hF

J48 111 711 2.51±0.20 0.01±0.00 0.51±0.04 0.50±0.02 0.50±0.01
NaiveBayes 56692 2.85±0.11 0.01±0.00 0.45±0.01 0.42±0.02 0.43±0.01
AdaboostM1 104 238 2.62±0.14 0.01±0.00 0.48±0.02 0.43±0.02 0.45±0.00
LibSVM 880 441 2.51±0.24 0.01±0.00 0.52±0.05 0.47±0.03 0.49±0.01

Table 2: Comparison of different local classifiers on SLCN

In the experiments, we evaluate how the three parameters k, n and u (i.e., the

number of features, the local training sample sizes, and the bias to uniform class

distribution) affect the performance of SLCN. The evaluation is performed on the

same sample described before, using J48 as local classifier and the default setting

k = 100, n = 500. We then vary k and n measuring the runtime as well as hP , hR,

hF , h-loss and hamm.

The plots in Figure 3 show hF and runtime for different parameter values. It is

notable that for both the number of features k and maximum train set size n, the

hF curves flatten after a certain point, while the runtime curves continue to grow.

The optimal values for n and k depend on characteristics of the data, and may vary

from dataset to dataset.

As the local classification problems can be rather skewed, we have also performed

experiments with different sampling biases towards a more uniform class distribution

0 1 2

·104

0.5

0.6

0.7

n

h
F

0 1,000 2,000

0.62

0.64

0.66

0.68

k

0 0.5 1

0.71

0.71

u

0 1 2

·104

0

1

2

3
·105

n

ru
n
ti
m
e
(m

s)

0 1,000 2,000
0

0.5

1

1.5

·105

k

0 0.5 1

1.6

1.8

2

2.2

·105

u

Fig. 3: Evaluation of the impact of the parameters n and k on hF and runtime.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 19

in the local sampling. Since SLCN is based on LCN with siblings negative example

selection, the classes are not as imbalanced in the local training sets as they are in

the whole dataset. Moreover, we select the most frequent classes from Wikidata and

YAGO, which excludes the smallest classes, and hence avoids the most skewed local

classification problems. Therefore, the sampling bias to uniform class distribution

does not significantly affect the performance of SLCN, i.e., we stick to stratified

sampling in our experiments.

5.3. Local vs. Global Feature Selection

Transformation-based multilabel classifiers learn different models for each trans-

formed dataset. In the case of SLCN, there’s one transformed dataset and one

learned model for every type. This characteristic allows the feature selection to be

performed either globally or locally.

In the global feature selection, the selection is performed on the original dataset,

which means all the transformed datasets share the same set of selected features,

and the features selected are those most relevant to all the classes. In the local

feature selection, the selection is performed on each transformed dataset, which

allows the sets of selected features to be specialized for each transformed dataset

class.

In this experiment we compare the local and global feature selection approaches

on the LCN approach with siblings negative examples selection policy, which is the

base of our proposed approach SLCN. As described in Section 4, we used the filter

method for the feature selection, which selects the top-k most relevant features

without considering dependencies between features, but is highly scalable. In our

experiments we use information gain as relevance measure.

Figure 4 shows a comparison of hF and runtime between the local and global

strategies with SLCN. The local approach shown in red performs consistently better

than the global approach on all datasets in terms of hF . Moreover, the runtime is

also lower than the global approach. The feature selection has to be performed only

once in the global approach, while on the local approach it has to be performed

|C| times. However, on the global approach the relevance measures require the

computation of |C|-dimensional distributions over all the classes, while on the local

approach it is computed for a single class. The local approach is faster because

in the feature selection is performed on the transformed datasets, and, because

of the siblings negative examples selection policy, the relevance of the features is

calculated on datasets which on average are smaller.

The drop in runtime at the last data point for the experiments on AIFB and

Mutagenesis happens because the time we report includes the training time and the

feature selection. Since in the last data point the number of features is the same as

the original number of features in the dataset, no feature selection is required. For

smaller datasets, the time required for performing the feature selection is not paid

off by the reduction in training time.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

20 Andre Melo and Johanna Völker and Heiko Paulheim

n
el
l

101 102

0.54

0.56

0.58

0.6

0.62

h
F

101 102
0

0.5

1

1.5
·105

ru
n
ti
m
e
(m

s)

d
b
p
ed

ia

102 103

0.64

0.66

0.68

0.7

0.72

h
F

102 103
0

0.5

1

1.5
·106

ru
n
ti
m
e
(m

s)

w
ik
id
a
ta

102 103

0.82

0.84

0.86

h
F

102 103

2

4

6

·105

ru
n
ti
m
e
(m

s)

a
if
b

101 102

0.85

0.9

0.95

h
F

101 102

0.8

1

1.2

1.4

·104

ru
n
ti
m
e
(m

s)

m
u
ta
g
en

es
is

101 102

0.6

0.8

h
F

101 102

0.5

1

·104

ru
n
ti
m
e
(m

s)

Global Local

Fig. 4: Global vs local feature selection comparison with SLCN.

5.4. Graph Features vs. Latent Features

In this section, we perform a comparison between latent features and graph features

for type prediction. In these experiments we use HolE features, which were learned

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 21

SDType SLCN HMC HOMER MLC4.5

101 102

0.2

0.3

0.4

0.5

dimensions

h
F

(a) Mutagenesis

101 102

0.6

0.65

0.7

0.75

dimensions

(b) AIFB

101 102

0.4

0.45

0.5

dimensions

(c) NELL

Fig. 5: Type prediction results for different number of HolE embeddings dimensions

on the whole datasets excluding the rdf:type relations. HolE provides state-of-the-

art performance with an expressive, yet simple and scalable model, which enables us

to learn the model on larger datasets34. We use the HolE implementation from the

python library Scikit-KGEg. We learn holographic embeddings with the parameter

settings recommended by the authors, and we vary the number of dimensions in

order to find the optimal value on the smaller datasets AIFB and Mutagenesis.

Firstly, for the smaller datasets AIFB and Mutagenesis as well as NELL we make

learn HolE embeddings with different number of dimensions d ∈ 5, 10, 25, 50, 150,

and evaluate how good the learned embeddings are as features for the type pre-

diction task. Figure 5 shows how the hF is affected by the dimensionality of the

embeddings, for the Mutagenesis dataset 10 was the optimal value, for AIFB it was

25, and for NELL it was 5. Since both datasets are fairly simple, we can observe

that for the higher number of dimensions, the model overfits. This, however, should

not be a problem for the other datasets, which are much more complex and contain

more relations.

We evaluate the performance of hierarchical multilabel classifiers for type pre-

diction with five different feature sets: qualified ingoing and outgoing relations (Q),

ingoing and outgoing relations (R), HolE embeddings only (E), combination of R

and HolE embeddings (R∪E), and combination of Q and HolE embeddings (Q∪E).

The objective is to evaluate the relevance of entity embeddings to the type

prediction task, and how they compare to other traditional graph features, as well

as to examine if any improvement can be obtained by combining these two kinds of

features. Since SDType cannot handle the real valued numerical features from E,

for this type prediction method we discretize the numerical attributes into 25 bins

using the equal frequencies approach, resulting in 25d binary features.

The results indicate that the best set of features is the qualified relations Q,

which over all classifiers significantly improves the performance over the set of in-

ghttps://github.com/mnick/scikit-kge

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

22 Andre Melo and Johanna Völker and Heiko Paulheim

Dataset Method Q R E R ∪ E Q ∪ E

AIFB

HMC 0.987±0.001 0.950±0.001 0.742±0.001 0.944±0.002 0.987±0.001
MLC4.5 0.988±0.001 0.950±0.001 0.636±0.003 0.915±0.002 0.977±0.002
SLCN 0.976±0.004 0.938±0.003 0.721±0.006 0.922±0.002 0.976±0.004
HOMER 0.987±0.001 0.949±0.000 0.729±0.002 0.937±0.002 0.987±0.001
SDType 0.803±0.004 0.737±0.004 0.751±0.001 0.771±0.001 0.784±0.001

Mutagenesis

HMC 0.934±0.002 0.761±0.003 0.465±0.004 0.761±0.003 0.934±0.002
MLC4.5 0.905±0.003 0.680±0.002 0.417±0.006 0.600±0.003 0.890±0.003
SLCN 0.926±0.005 0.762±0.008 0.415±0.032 0.758±0.008 0.926±0.005
HOMER 0.934±0.002 0.778±0.004 0.495±0.004 0.778±0.004 0.934±0.002
SDType 0.737±0.002 0.726±0.006 0.451±0.003 0.461±0.003 0.527±0.002

NELL

HMC 0.870±0.002 0.917±0.004 0.487±0.002 0.919±0.002 0.870±0.002
MLC4.5 0.912±0.002 0.955±0.001 0.401±0.004 0.868±0.002 0.778±0.004
SLCN 0.761±0.004 0.896±0.004 0.479±0.007 0.884±0.003 0.737±0.008
HOMER 0.868±0.016 0.925±0.004 0.501±0.003 0.925±0.001 0.867±0.016
SDType 0.892±0.003 0.903±0.003 0.527±0.002 0.559±0.004 0.609±0.003

Table 3: Comparison of hF for type prediction on different feature sets

going and outgoing relations R. The exception for that is NELL, where Q performs

worse than R. This happens because the knowledge graph is highly incomplete,

where several entities have no types or no ingoing or outgoing properties. For the

classification dataset we select only the entities which have at least one type and

at least one ingoing or outgoing relation, however, when extracting the features

Q some of the objects of outgoing and subjects of ingoing relations are not typed

entities, therefore we cannot use them as features in Q.

The latent features E, when used alone perform significantly worse than all

other feature sets, indicating that this kind of features is not very relevant for

the type prediction task. We also combine the embeddings E with R, in order to

evaluate if the embeddings can add relevant information and improve performance.

However, the experiments indicate that in some cases it does not significantly affect

the hF measure, while in others it actually acts as noisy, reducing the quality of

the predictions.

Although the HolE embeddings have been shown to be useful in the link predic-

tion problem, in the type prediction problem they do not seem to be of significant

relevance when comparing to the graph features evaluated in this paper. This can be

attributed to the fact that these entity embeddings are learned with the objective

of modeling links between entities, and not to separate them by types.

On the other hand, with R it is possible to exploit distributions of object and

subject types for each relation, and based on these links predict the type, and

with Q a more detailed version with conditional distributions of object types given

subject type as well as subject types given object type for each relation. These

kinds of features provide more sophisticated information about the domain and

ranges of relations than those normally expressed by RDF Schema. The conditional

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 23

distributions of object and subject types are obtained from the A-box and do not

rely on the quality of domain and range axioms provided by the T-box, which is a

crucial problem of reasoning methods.

5.5. Scalability Experiments

In this section, we compare the scalability of the methods in terms of the number of

instances, number of features, and number of labels of a dataset. The experiments

were conducted on the same sample of DBpedia with YAGO types described in the

previous section. To vary the number of instances, we randomly sample instances as

training set and progressively increase the sample size, for the number of features

we select features with highest information gain first, and for the number of labels

we select the most frequent labels first.

1 2 3

·104

0.65

0.7

0.75

instances

h
F

100 200 300 400
0.5

0.55

0.6

0.65

0.7

features

100 200
0.7

0.8

0.9

labels

1 2 3

·104

0

0.5

1

1.5

2
·108

instances

ru
n
ti
m
e
(m

s)

100 200 300 400

0

0.5

1

1.5

2
·106

features

100 200

0

1

2

3
·107

labels

SDType SLCN HMC HOMER MLC4.5

Fig. 6: Scalability in terms of number of instances, features and labels

Figure 6 shows the runtime and hF of each method for different number of

instances, number of features and number of labels. SDType is the most scalable of

the compared methods, however, its hF was significantly lower than all the other

compared methods. The runtime of SLCN is close to that of SDType, improving the

runtime in comparison to the other hierarchical multilabel classifiers, and improving

hF in comparison to SDType. MLC4.5 has the best overall hF , however, in terms of

runtime, it does not scale as well as SDType and SLCN. It is particularly noteworthy

that the runtime of SDType and SLCN is significantly more scalable than the other

approaches in terms of number of instances, features, and labels.

Although in the plots SDType and SLCN seems not to change its runtime with

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

24 Andre Melo and Johanna Völker and Heiko Paulheim

the number of instances, features and labels, their runtime is of course also affected.

However, in comparison with the other methods, the increase in runtime is much

smaller and cannot be visualized in the plot. The runtime of SLCN would grow sim-

ilarly to its local classifier for number features smaller than k and instances smaller

than n. For larger values, the number of instances and features of the local datasets

the would remain constant, and the increase in runtime would be determined by

the instance sampling and feature selection methods used.

5.6. Large-Scale Experiments on SW Datasets

In this section, we perform large-scale experiments on whole RDF datasets. Table

4 shows the results of 5-fold cross validation on the RDF datasets presented earlier.

Because of time limitation, we do not report the results for classifiers which require

more than a week for training. HMC, HOMER and MLC4.5 were able to finish

only on NELL, therefore for the other datasets in Table 4 we report the results

only for SDType and SLCN, which were able to finish for all datasets, showing the

effectiveness of the proposed approach in improving scalability.

Dataset Method hF h-loss hamm rt(ms)

DBpedia
F = Rin

SDType 0.765±0.002 0.773±0.008 0.003±0.000 16 080 553
SLCN 0.847±0.001 0.463±0.005 0.002±0.000 7024255

DBpedia
F = Rin ∪ Qin

SDType 0.770±0.000 0.750±0.001 0.003±0.000 54 511 659
SLCN 0.846±0.001 0.461±0.005 0.002±0.000 10154987

DBp(YAGO)
F = Rout ∪ Rin

SDType 0.666±0.000 2.672±0.002 0.016±0.000 6 744 282
SLCN 0.703±0.007 2.097±0.089 0.013±0.001 7635499

DBp(YAGO)
F = Rout ∪ Rin ∪ Qout ∪ Qin

SDType 0.671±0.000 2.648±0.002 0.016±0.000 213 904 335
SLCN 0.702±0.006 2.106±0.090 0.013±0.001 48374257

Wikidata
F = Rout ∪ Rin

SDType 0.753±0.000 0.575±0.000 0.002±0.000 208 957 224
SLCN 0.812±0.011 0.375±0.009 0.001±0.000 44807901

Wikidata
F = Rout ∪ Rin ∪ Qout ∪ Qin

SDType 0.776±0.000 0.519±0.000 0.002±0.000 272 206 437
SLCN 0.868±0.003 0.271±0.006 0.001±0.000 64413619

NELL
F = Rout ∪ Rin

SDType 0.903±0.003 0.484±0.013 0.004±0.000 1917946
SLCN 0.896±0.004 0.585±0.015 0.005±0.000 2 547 871
HMC 0.917±0.004 0.501±0.013 0.004±0.000 6 336 452
HOMER 0.925±0.004 0.480±0.014 0.003±0.000 10 957 195
MLC4.5 0.955±0.001 0.331±0.009 0.002±0.000 16 991 440

NELL
F = Qout ∪ Qin

SDType 0.892±0.003 0.445±0.009 0.005±0.000 9289373
SLCN 0.761±0.004 1.081±0.018 0.010±0.000 18 252 489
HMC 0.870±0.002 0.686±0.077 0.006±0.000 102 815 535
HOMER 0.868±0.016 0.687±0.117 0.006±0.001 156 444 313
MLC4.5 0.912±0.002 0.484±0.004 0.004±0.000 166 477 106

Table 4: Evaluation of different classification methods on large cross-domain SW

datasets

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 25

Dataset Method hF h-loss hamm rt(ms)

AIFB
F = R

SDType 0.737±0.004 0.884±0.006 0.016±0.000 80892
SLCN 0.938±0.003 0.230±0.006 0.005±0.000 88 997
HMC 0.950±0.001 0.198±0.004 0.004±0.000 442 235
HOMER 0.949±0.000 0.198±0.003 0.004±0.000 387 434
MLC4.5 0.950±0.001 0.199±0.006 0.004±0.000 389 573

AIFB
F = Q

SDType 0.803±0.004 0.690±0.007 0.013±0.000 207402
SLCN 0.976±0.004 0.068±0.008 0.002±0.000 399 530
HMC 0.987±0.001 0.036±0.003 0.001±0.000 1 609 020
HOMER 0.987±0.001 0.036±0.003 0.001±0.000 3 739 919
MLC4.5 0.988±0.001 0.034±0.003 0.001±0.000 1 484 945

Mutagenesis
F = R

SDType 0.726±0.006 1.277±0.032 0.016±0.001 56511
SLCN 0.762±0.008 0.865±0.006 0.012±0.000 1679
HMC 0.761±0.003 0.854±0.006 0.012±0.000 3505
HOMER 0.778±0.004 0.881±0.012 0.012±0.000 29 643
MLC4.5 0.673±0.002 1.327±0.008 0.018±0.000 55 289

Mutagenesis
F = Q

SDType 0.737±0.002 0.936±0.004 0.014±0.000 71213
SLCN 0.926±0.005 0.284±0.012 0.004±0.000 10 304
HMC 0.934±0.002 0.254±0.003 0.004±0.000 29 171
HOMER 0.934±0.002 0.256±0.003 0.004±0.000 109 943
MLC4.5 0.899±0.004 0.373±0.014 0.006±0.000 67 920

Table 5: Evaluation of different classification methods on smaller SW datasets

On the NELL dataset, the HMC, HOMER and MLC4.5 perform better than SD-

Type and SLCN. However, the runtime of the first three methods are notably longer

than the others. When comparing SLCN against SDType, the former performs con-

sistently better with respect to all evaluation measures, but longer runtime. Note

that the results of SDType differ from those reported in3 because the latter in-

cludes owl:Thing and classes in other ontologies, such as FOAF and schema.org,

in the evaluation, while we exclude them. On all the other datasets, which are sig-

nificantly larger than NELL (c.f. Table 1), SLCN is the best overall performer as

HMC, HOMER and MLC4.5 were not able to finish in less than one week.

The use of qualified relation features (Qout and Qin) substantially increases the

dimensionality of the feature space, as it can observed in Table 1, and therefore the

runtime is also increased. SDType is able to improve its results when considering

the greater set of features for DBpedia and DBpedia with YAGO types, but SLCN

actually yield slightly worse results. This may be because of a possibly higher level of

dependency between the features in Qout and Qin. Since the filter feature selection

method does not take dependencies between features into account, the selected

feature set could contain several redundant features.

The results in Table 5 can illustrate the importance of the high scalability of

SLCN. Training SLCN on AIFB with F = Q is faster than training HOMER or

HMC on F = R, and the prediction quality is significantly higher. On Mutagenesis,

the training time is a bit slower, but again, the prediction quality is significantly

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

26 Andre Melo and Johanna Völker and Heiko Paulheim

higher. That shows that, when time and computing resources are limited, using

SLCN allows you to work on a higher number of features in comparison to less

scalable methods, and ultimately achieve better results.

6. Related Work

The problems of inference on noisy data in the Semantic Web have been identified,

e.g., in39 and40. There have been solutions proposed for the specific problem of

type inference in (general or particular) RDF datasets in the recent past, using

strategies such as machine learning, statistical methods, and exploitation of external

knowledge such as links to other data sources or textual information. One of the first

approaches to type classification in relational data is discussed in41. The authors

train a machine learning model on instances that already have a type, and apply it

to the untyped instances in an iterative manner.

Some works address slightly different inference problems. Instead of predicting

instance types, 42 predict possible predicates for resources based on co-occurrence of

properties. The approach discussed in43 addresses the problem of mapping DBpedia

entities to the category system of OpenCyc. They use DBpedia specific information

– infoboxes, textual descriptions, Wikipedia categories and instance-level links to

OpenCyc – and apply an a posteriori consistency check using Cyc’s own consistency

checking mechanism.

HYENA44 is a multi-label classifier for named entity types based on hierarchical

taxonomies derived from YAGO. Textual features extracted from the mentions of

the named entity Wikipedia articles are used by the classifier, which consists of

the SCN approach with siblings negative examples selection. Thus, it can only be

applied to Semantic Web knowledge bases that are linked to Wikipedia.

There are several works on type prediction which exploit specific aspects of

DBpedia. Aprosio et al.45 introduced an approach which first exploits cross-language

links between DBpedia in different languages to increase coverage. They use nearest

neighbor classification based on different features, such as templates, categories, and

bag of words of the corresponding Wikipedia article. The Tipalo system46 leverages

the natural language descriptions of DBpedia entities to infer types, exploiting the

fact that most abstracts in Wikipedia follow similar patterns. Those descriptions

are parsed and mapped to the WordNet and DOLCE ontologies in order to find

appropriate types. Giovanni et al.47 exploit types of resources derived from linked

resources, where links between Wikipedia pages are used to find linked resources

(which are potentially more than the resources actually linked in DBpedia). For each

resource, they use the classes of related resources as features, and use k-nearest

neighbors for predicting types based on those features. However, none of those

approaches can be trivially applied to datasets other than DBpedia.

SDType3 uses links between resources as indicators for types, namely the ingoing

and outgoing properties of instances. The method requires the prior distribution of

types, as well as, for every property, a conditional probability distribution of object

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 27

and subject types. Every property is assigned a weight, where maximum weight is

given to properties that appear with a single type only, while the minimum weight

is given to properties which are equally present in all types. Based on that, when

predicting the types of an instance, SDType computes a confidence value for every

type possible. Those types whose confidence value satisfies an arbitrarily defined

minimum confidence threshold are assigned to the instance’s prediction.

SDType is a simple and highly scalable method, whose complexity grows linearly

with the number of statements in the knowledge base. According to the algorithm

categorization by Silla Jr. et al. 12, SDType can be considered a global hierarchical

multilabel classifier with multipath, non-mandatory leaf-nodes. SDType also gener-

ates predictions consistent with the type hierarchy. That is because the confidence

of any non-root class will be always smaller or equal to that of its superclass.

The SLCN approach proposed in this paper relies on the idea of class specific

features for local classifiers on multilabel classification, which has been also been

exploited by LIFT48. However, in their setting, instead of performing local feature

selection, the authors propose a method for generation of class specific features

based on the distance of instances to the centroid of clusters computed for the

positive and negative examples. Since this approach requires a clustering algorithm

to be executed twice for each class, its application to large-scale knowledge graphs

would lead to massive scalability issues.

Amongst the approaches discussed above and in3, SDType is reportedly the best

performing approach for the problem addressed in this paper3,2, also outperforming

RDFS reasoning. Therefore, in our experiments, we have restricted ourselves to

comparing hierarchical classification methods against SDType. The evaluations in

the previous section have shown that SLCN, as proposed in this paper, clearly

outperforms SDType (and thereby also many other approaches, including RDFS

reasoning, which are themselves outperformed by SDType).

Statistical relation learning is an area which has a lot in common with type

prediction. In fact, type prediction can be considered a special case of the link

prediction problem where instances are linked with types. According to29, statistical

relational learning models can be divided into latent feature and graph feature

models or a combination of both.

Graph feature models extract features from the directly observed edges in the

knowledge graph. These include ILP based methods, such as ALEPH49 and AMIE50,

similarity based methods, such as Katz Index51, Local Random Walks52, and Path

Ranking Algorithm53. The main disadvantage of these methods is that they can use

exclusively graph features, therefore leaving relevant text features and numerical

properties unexploited. Our proposed approach, on the other hand, is able to use

any kind of features.

Latent feature models derive the relationships between features from the inter-

actions between their latent features. These models can be divided into translation

models, which include TransE30, TransR31, tensor factorization models, such as

RESCAL32, and other models such as multiway neural networks (mwNN)33 and

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

28 Andre Melo and Johanna Völker and Heiko Paulheim

Holographic Embeddings (HolE)34.

One interesting aspect of latent feature models is the general low-dimensional

representations of entities, which could also be used as features in our proposed ap-

proach. Employing instance embeddings as features would probably reduce training

time because of their low dimensionality, however, computing these embeddings is

expensive. However, as embeddings become increasingly popular, initiatives such

as Resource2Vech or RDF2Vec54, which publish embeddings for konwlede graphs

such as DBpedia, YAGO, Wikidata, WordNet, and Freebase, enable the use of such

embeddings on various applications. It is conceivable that in a near future, the main

knowledge bases will have available for download the embeddings representations

of its entities in different latent multirelational models.

Further efforts have been made in order to mitigate some of the latent multirela-

tional models weaknesses. TRESCAL55 proposes a tensor decomposition approach

for knowledge base embedding based on RESCAL which is especially suitable for

relation extraction. By leveraging relational domain knowledge about entity type

information, their algorithm improves scalability and is better able to discover new

relations missing from the database. Krompass et al. 56 applies type constraints of

relations, which are often available in the knowledge base ontologies, in order to

improve the performance of TransE, RESCAL and mwNN in the link prediction

task. The authors report improvements of up to 77% in AUPRC and AUROC.
? address the problem of translation-based models (such as TransR and TransE),

which do not represent transitive and symmetric relations precisely. They introduce

a role-specific projection which maps an entity to distinct vectors according to its

role in a triple. That is, a head entity is projected onto an embedding space by a

head projection operator, and a tail entity is projected by a tail projection operator

There are no reported results for type prediction using link prediction approaches

in the literature, therefore we cannot directly compare the results presented in the

respective papers with our method. However, we believe that tackling the type

prediction problem as link prediction is not the best approach. As out latent features

experiment showed, the entity embeddings learned with HolE are significantly worse

features than qualified relations, and simple ingoing and outgoing relations.

7. Conclusion and Future Work

In this paper, we have modeled the type prediction problem in Semantic Web knowl-

edge bases as a hierarchical multilabel classification problem. We propose SLCN,

and compare it both to popular hierarchical multilabel classifiers and the state-of-

the-art type prediction approach SDType (which is currently one of the strongest

and best scalable algorithms for the task at hand) for SW knowledge bases. The

experiments indicate that the local feature selection and local sampling can signifi-

cantly improve scalability without sacrificing the quality of the prediction, and they

hhttp://resource2vec.aksw.org/

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 29

also show that SLCN can perform better than SDType, and scales better than the

other multilabel classifiers evaluated in this paper. Given a smaller datasets and

enough computing power available, state-of-the-art hierarchical multilabel classi-

fiers, such as HOMER, HMC and MLC4.5, are the best choice. However, on larger

datasets with high number of features, and where training time is an important

factor, SLCN is the best option.

We also evaluated the use of entity embeddings as features for type prediction

and the results indicate that they are not of great relevance to the problem. Simple

graph-features such as ingoing and outgoing relations and qualified relations yield

significantly better results, and combining entity embeddings with them does not

provide any significant improvement.

In the future, as our approach assumes independence between sibling classes,

we plan to consider a post processing to take disjointness axioms into account.

Combining our approach with specific feature selection methods for Semantic Web

datasets57 would be a promising refinement. We also plan to evaluate the perfor-

mance of our approach when exploiting dataset specific features, such as DBpedia

categories and NLP features from abstracts. Furthermore, we want to adapt our

approach to support arbitrary DAGs as type hierarchies and investigate the impact

it has on the quality of the predictions and runtime. Finally, we plan to exploit the

parallelism potential of the SLCN in order to further improve the scalability and

develop a Spark implementation of the studied approaches in MULAN. We expect

that a distributed implementation could allow us to perform type prediction on

Linked Data.

Acknowledgements

The work presented in this paper has been partly supported by the Ministry of

Science, Research and the Arts Baden-Württemberg in the project SyKo2W2 (Syn-

thesis of Completion and Correction of Knowledge Graphs on the Web).

References

1. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak and S. Hellmann,
DBpedia - A crystallization point for the Web of Data, Web Semantics 7(3) (2009)
154–165.

2. H. Paulheim and C. Bizer, Improving the quality of linked data using statistical dis-
tributions, Int. J. Semant. Web Inf. Syst. 10 (April 2014) 63–86.

3. H. Paulheim and C. Bizer, Type inference on noisy rdf data., in International Semantic
Web Conference (1), eds. H. Alani, L. Kagal, A. Fokoue, P. T. Groth, C. Biemann,
J. X. Parreira, L. Aroyo, N. F. Noy, C. Welty and K. Janowicz Lecture Notes in
Computer Science 8218, (Springer, 2013), pp. 510–525.

4. J. Read, B. Pfahringer, G. Holmes and E. Frank, Classifier chains for multi-label classi-
fication, in Proceedings of the European Conference on Machine Learning and Knowl-
edge Discovery in Databases: Part II ECML PKDD’09, (Springer-Verlag, Berlin, Hei-
delberg, 2009), pp. 254–269.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

30 Andre Melo and Johanna Völker and Heiko Paulheim

5. G. Tsoumakas, I. Katakis and I. Vlahavas, Effective and efficient multilabel classifica-
tion in domains with large number of labels, in Proc. ECML/PKDD 2008 Workshop
on Mining Multidimensional Data (MMD’08)2008.

6. H. Paulheim, Knowlegde Graph Refinement: A Survey of Approaches and Evaluation
Methods, Semantic Web Journal (2016) to appear.

7. A. Melo, H. Paulheim and J. Völker, Type prediction in rdf knowledge bases using hi-
erarchical multilabel classification, in Proceedings of the 6th International Conference
on Web Intelligence, Mining and Semantics (WIMS)2016, pp. 14:1–14:10.

8. R. E. Schapire and Y. Singer, Boostexter: A boosting-based system for text catego-
rization, Machine Learning 39(2/3) (2000) 135–168.

9. M.-L. Zhang and Z.-H. Zhou, ML-KNN: A lazy learning approach to multi-label learn-
ing, Pattern Recogn. 40(7) (2007) 2038–2048.

10. M. Zhang and Z. Zhou, Multi-label neural networks with applications to functional
genomics and text categorization, IEEE Transactions on Knowledge and Data Engi-
neering 18 (2006) 1338–1351.

11. G. Tsoumakas, I. Katakis and I. Vlahavas, Random k-labelsets for multi-label classi-
fication, IEEE Transactions on Knowledge and Data Engineering 99(1) (2010).

12. C. N. Silla, Jr. and A. A. Freitas, A survey of hierarchical classification across different
application domains, Data Min. Knowl. Discov. 22 (January 2011) 31–72.

13. R. Eisner, B. Poulin, D. Szafron, P. Lu and R. Greiner, Improving protein func-
tion prediction using the hierarchical structure of the gene ontology, in Proc. IEEE
CIBCB2005.

14. T. Fagni and F. Sebastiani, On the selection of negative examples for hierarchical text
categorization, in In Proceedings of The 3rd Language Technology Conference2007,
pp. 24–28.

15. A. Freitas and A. C. de Carvalho, A Tutorial on Hierarchical Classification with Ap-
plications in Bioinformatics. (Idea Group, January 2007), ch. VII, pp. 182–196.

16. A. Clare and R. D. King, Predicting gene function in saccharomyces cerevisiae, Bioin-
formatics 19 (2003) 42–49.

17. E. P. Costa, A. C. Lorena, A. C. P. L. F. Carvalho, A. A. Freitas and N. Holden,
Comparing several approaches for hierarchical classification of proteins with decision
trees, in Proceedings of the 2nd Brazilian Conference on Advances in Bioinformatics
and Computational Biology BSB’07, (Springer-Verlag, Berlin, Heidelberg, 2007), pp.
126–137.

18. A. Clare and R. D. King, Knowledge discovery in multi-label phenotype data, in Pro-
ceedings of the 5th European Conference on Principles of Data Mining and Knowledge
Discovery PKDD’01, (Springer-Verlag, London, UK, 2001), pp. 42–53.

19. S. Kiritchenko, S. Matwin and A. F. Famili, Functional annotation of genes using
hierarchical text categorization, in in Proc. of the BioLINK SIG: Linking Literature,
Information and Knowledge for Biology (held at ISMB-052005.

20. N. Cesa-bianchi, L. Zaniboni and M. Collins, Incremental algorithms for hierarchical
classification, in Journal of Machine Learning Research (MIT Press, 2004), pp. 31–54.

21. A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann, M. Morsey, S. Auer and
J. Lehmann, User-driven quality evaluation of dbpedia, in Proceedings of the 9th In-
ternational Conference on Semantic Systems ACM2013, pp. 97–104.

22. H. Paulheim and A. Gangemi, Serving dbpedia with dolce–more than just adding a
cherry on top, in International Semantic Web Conference Springer2015, pp. 180–196.

23. H. Paulheim, Identifying wrong links between datasets by multi-dimensional outlier
detection., in WoDOOM 2014, pp. 27–38.

24. D. Wienand and H. Paulheim, Detecting incorrect numerical data in dbpedia, in

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

Type Prediction in Noisy RDF Knowledge Bases using Hierarchical Multilabel Classification 31

European Semantic Web Conference Springer2014, pp. 504–518.
25. D. Fleischhacker, H. Paulheim, V. Bryl, J. Völker and C. Bizer, Detecting errors in

numerical linked data using cross-checked outlier detection, in International Semantic
Web Conference Springer2014, pp. 357–372.

26. F. Wu, J. Zhang and V. Honavar, Learning Classifiers Using Hierarchically Struc-
tured Class Taxonomies, in Abstraction, Reformulation and Approximation: 6th In-
ternational Symposium, SARA 2005, Airth Castle, Scotland, UK, July 26-29, 2005.
Proceedings, eds. J.-D. Zucker and L. Saitta. (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2005), Berlin, Heidelberg, pp. 313–320.

27. A. Sun, E.-P. Lim, W. K. Ng and J. Srivastava, Blocking reduction strategies in
hierarchical text classification., IEEE Trans. Knowl. Data Eng. 16(10) (2004) 1305–
1308.

28. H. Paulheim, Exploiting linked open data as background knowledge in data mining.,
in International Workshop on Data Mining on Linked Data (DMoLD2013.

29. M. Nickel, K. Murphy, V. Tresp and E. Gabrilovich, A review of relational machine
learning for knowledge graphs, Proceedings of the IEEE 104(1) (2016) 11–33.

30. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston and O. Yakhnenko, Translating
embeddings for modeling multi-relational data, in Advances in Neural Information
Processing Systems 26 , eds. C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani
and K. Q. Weinberger (Curran Associates, Inc., 2013) pp. 2787–2795.

31. Y. Lin, Z. Liu, M. Sun, Y. Liu and X. Zhu, Learning entity and relation embeddings
for knowledge graph completion, in In Proceedings of AAAI152015.

32. M. Nickel, V. Tresp and H.-P. Kriegel, A three-way model for collective learning on
multi-relational data, in Proceedings of the 28th International Conference on Machine
Learning (ICML-11), eds. L. Getoor and T. Scheffer ICML ’11, (ACM, New York,
NY, USA, June 2011), pp. 809–816.

33. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun and W. Zhang, Knowledge vault: A web-scale approach to probabilistic knowl-
edge fusion, in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining KDD ’14, (ACM, New York, NY, USA, 2014),
pp. 601–610.

34. M. Nickel, L. Rosasco and T. A. Poggio, Holographic embeddings of knowledge graphs,
CoRR abs/1510.04935 (2015).

35. H. Paulheim and J. Fürnkranz, Unsupervised generation of data mining features from
linked open data, in Proceedings of the 2nd international conference on web intelli-
gence, mining and semantics ACM2012, p. 31.

36. P. Ristoski and H. Paulheim, A comparison of propositionalization strategies for cre-
ating features from linked open data, in Linked Data for Knowledge Discovery2014.

37. G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek and I. Vlahavas, Mulan: A java
library for multi-label learning, Journal of Machine Learning Research 12 (2011) 2411–
2414.

38. F. Erxleben, M. Günther, M. Krötzsch, J. Mendez and D. Vrandečić, Introducing
Wikidata to the linked data web, in Proceedings of the 13th International Semantic
Web Conference (ISWC’14), eds. P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. A.
Knoblock, D. Vrandečić, P. T. Groth, N. F. Noy, K. Janowicz and C. A. Goble LNCS
8796, (Springer, 2014), pp. 50–65.

39. Q. Ji, Z. Gao and Z. Huang, Reasoning with noisy semantic data, in The Semanic
Web: Research and Applications (ESWC 2011), Part II 2011, pp. 497–502.

40. A. Polleres, A. Hogan, A. Harth and S. Decker, Can we ever catch up with the web?,
Semantic Web Journal 1(1,2) (2010) 45–52.

April 12, 2017 13:46 WSPC/INSTRUCTION FILE ws-ijait

32 Andre Melo and Johanna Völker and Heiko Paulheim

41. J. Neville and D. Jensen, Iterative classification in relational data, in Proc. AAAI
Workshop on Learning Statistical Models from Relational Data2000, pp. 13–20.

42. E. Oren, S. Gerke and S. Decker, Simple algorithms for predicate suggestions using
similarity and co-occurrence, in European Semantic Web Conference (ESWC 2007)
(Springer, 2007) pp. 160–174.

43. A. Pohl, Classifying the wikipedia articles in the opencyc taxonomy, in Web of Linked
Entities Workshop (WoLE 2012)2012.

44. M. A. Yosef, S. Bauer, J. Hoffart, M. Spaniol and G. Weikum, HYENA: hierarchical
type classification for entity names, in COLING 2012, 24th International Conference
on Computational Linguistics, Proceedings of the Conference: Posters, 8-15 December
2012, Mumbai, India2012, pp. 1361–1370.

45. A. P. Aprosio, C. Giuliano and A. Lavelli, Automatic expansion of DBpedia exploiting
Wikipedia cross-language information, in 10th Extended Semantic Web Conference
(ESWC 2013)2013.

46. A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draicchio, A. Musetti and P. Ciancarini,
Automatic typing of DBpedia entities, in 11th International Semantic Web Conference
(ISWC 2012)2012.

47. A. Giovanni, A. Gangemi, V. Presutti and P. Ciancarini, Type inference through the
analysis of wikipedia links, in Linked Data on the Web (LDOW)2012.

48. M. Zhang and L. Wu, Lift: Multi-label learning with label-specific features, IEEE
Trans. Pattern Anal. Mach. Intell. 37(1) (2015) 107–120.

49. S. Muggleton, Inverse Entailment and Progol, New Generation Computing, Special
issue on Inductive Logic Programming 13(3-4) (1995) 245–286.

50. L. A. Galárraga, C. Teflioudi, K. Hose and F. Suchanek, Amie: Association rule mining
under incomplete evidence in ontological knowledge bases, in Proceedings of the 22Nd
International Conference on World Wide Web WWW ’13, (ACM, New York, NY,
USA, 2013), pp. 413–422.

51. L. Katz, A new status index derived from sociometric analysis, Psychometrika 18
(March 1953) 39–43.

52. W. Liu and L. Lü, Link prediction based on local random walk, EPL (Europhysics
Letters) 89(5) (2010) p. 58007.

53. N. Lao and W. W. Cohen, Relational retrieval using a combination of path-constrained
random walks, Mach. Learn. 81 (October 2010) 53–67.

54. P. Ristoski and H. Paulheim, Rdf2vec: Rdf graph embeddings for data mining, in
International Semantic Web Conference2016. To appear.

55. B. Y. C. M. Kai-Wei Chang, Scott Wen-tau Yih, Typed tensor decomposition of knowl-
edge bases for relation extraction, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (ACL Association for Computational Lin-
guistics, October 2014).

56. D. Krompaß, S. Baier and V. Tresp, Type-constrained representation learning in
knowledge graphs, CoRR abs/1508.02593 (2015).

57. P. Ristoski and H. Paulheim, Feature selection in hierarchical feature spaces, in Dis-
covery Science2014.

