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Voting is a commonly used ensemble method aiming to optimize classification predictions by combining results 
from individual base classifiers. However, the selection of appropriate classifiers to participate in voting 

algorithm is currently an open issue. In this study we developed a novel Dissimilarity-Performance (DP) index 

which incorporates two important criteria for the selection of base classifiers to participate in voting: their 
differential response in classification (dissimilarity) when combined in triads and their individual performance. 

To develop this empirical index we firstly used a range of different datasets to evaluate the relationship between 

voting results and measures of dissimilarity among classifiers of different types (rules, trees, lazy classifiers, 
functions and Bayes). Secondly, we computed the combined effect on voting performance of classifiers with 

different individual performance and/or diverse results in the voting performance. Our DP index was able to 

rank the classifier combinations according to their voting performance and thus to suggest the optimal 
combination. The proposed index is recommended for individual machine learning users as a preliminary tool to 

identify which classifiers to combine in order to achieve more accurate classification predictions avoiding 

computer intensive and time-consuming search.  
 
Keywords: voting ensemble method; classification; classifier dissimilarity; individual performance; classifier 

ensemble index. 
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1. Introduction 

Machine Learning (ML) refers to the construction and study of algorithms that acquire 

information from collected data aiming to the most effective generalization and 

representation of the scientific issue under consideration.1 Classification is one of the 

most common ML applications, whereby an output variable (target class) with discrete 

and unordered values (labels) is predicted from a set of collected samples (instances) that 

consist the training set (dataset).2 This approach spans cutting edge applications over a 

wide variety of scientific fields 3,4 such as bioinformatics,5 medical science,6 computing,7 

astronomy,8 engineering,9 remote sensing10,11 and environmental science.12 

The increased interest in classification resulted in the development of numerous 

classifiers, differentiated in supervised or unsupervised depending on whether the 

training dataset is labeled a priori or not.13 Among the most popular supervised 

classifiers are decision trees, multilayer perceptron, naïve Bayes classifiers, instance 

based learning and support vector machines.14 Despite their wide variety, no optimal 

classifier has been established so far.15 Instead, the classification performance depends on 

the dataset properties (e.g. input variables, number of training samples)11,16 or the method 

used to assess classifier performance.17 

Current research on ML focuses on integrating optimal classification results from 

multiple classifiers using specialized techniques called ensemble methods (EMs).18-20 

These methods provide significantly improved classification performance compared to 

the base classifiers.18,19,21,22 Voting is a particularly useful and comprehensive EM that 

collects votes (i.e. predicted labels of the target class) from multiple classifiers and 

predicts the label of the target class yielding the highest value (expressed as number of 

votes or probability). Voting is the most widely applicable EM method, while other EMs 

(including bagging and boosting) are also based on voting to provide classification.23,24 

Voting is the simplest and easiest way to combine classifiers,25-27 demanding no extra 

training for final prediction except for the pre-existing individual classifier 

classifications.28 Due to its ability to significantly improve predictions, voting spans 

many applications ranging from simple classification tasks29,30 to more complex 

implementations such as clustering,31 pairwise comparison32 and fuzzy systems.33,34 

The challenging step when employing a voting algorithm is the selection of the base 

classifiers to be combined. When the number of potential classifier combinations and the 

size of the dataset are rather small, the optimal classifier combination can be determined 

exhaustively. However, this search becomes increasingly labor intensive and time 

consuming as the dataset and classifier complexity increase.35 To simplify this process, 

appropriate criteria must be applied for the selection of optimal classifiers to participate 

in the voting algorithm. For instance when classifiers in a voting scheme are highly 

dissimilar or independent (as assessed with dissimilarity indices), the classification 

performance may be significantly improved since the misclassification of one classifier 

can be potentially corrected by the success of another.36-39 Previous studies tried to 

incorporate the classifiers’ diversity in order to construct successful ensembles by using 



different methods such as clustering, pruning, proper weighting based on various 

diversity measures, fuzzy logic, greedy search, particle swarm optimization, random 

sampling or data manipulation.19,20,23,26,40-43 

Another important criterion is the performance of individual base classifiers to be 

combined during voting. Although it would seem intuitive to combine the best 

performing classifiers during voting, previous studies have shown that the best 

classification is not always achieved by combining classifiers that show the best 

individual performance.35,44,45 Therefore, the selection of the best combination of base 

classifiers should be based on simple and flexible criteria that will jointly consider their 

dissimilarity or independence along with their individual classification performance.26,46-

48 

In this study we aim to develop a user-friendly index capable of identifying the optimal 

combination of base classifiers feeding into the voting algorithm and maximizing its 

classification performance. To this aim, the specific objectives are (a) to assess the 

efficiency of base classifiers in performing substantially different classification tasks, (b) 

to identify combinations of base classifiers that have markedly different behavior (i.e. 

high dissimilarity), (c) to test whether these combinations also have a corresponding high 

performance in voting classification, and (d) to develop a new user-friendly index that 

will incorporate the two criteria of classifier dissimilarity and individual performance, by 

assigning them appropriate weights. We expect that this dissimilarity-performance (DP) 

index will be more efficient in selecting the most appropriate base classifiers to be 

combined for voting than the traditionally applied dissimilarity indices. In order to 

subjectively evaluate its efficiency, DP will be confronted with substantially different 

classification tasks based on 28 (training and testing) datasets spanning different 

scientific fields. 

2. Methods 

2.1 Outline of the Methodology 

The development of the DP index, identifying the optimal combination of base classifiers 

to perform classification tasks, was carried out as follows (Fig. 1). Initially 10 base 

classifiers were trained in order to directly compare their individual performance in 14 

different classification tasks (training datasets). This information was later used in the 

development of the new index which incorporates the individual performance of the base 

classifiers. The next step involved the training of the voting algorithm with all possible 

combinations of the 10 base classifiers in triads using all datasets. Thus, for each dataset 

the voting EM was trained using 120 different triads of base classifiers (denoted by all 

combinations of 3 out of the 10 selected base classifiers) and the voting performance of 

each triad was specified. Then, Binary Dissimilarity Indices (BDIs) were computed for 

all possible classifier triads of the training datasets to quantify within triad dissimilarity, 

and this measure was correlated with the corresponding voting performance. The last step 



was the development of the new DP index that takes into account both the individual 

performance of each base classifier and the dissimilarity of classifiers within triads used 

in voting. These two characteristics were optimally weighted using a weighing parameter 

a for all training datasets. To check whether DP efficiently rates the classifier 

combinations according to their voting performance, the DP classification performance 

was correlated with the corresponding voting performance of triads across the 14 testing 

datasets. To test whether DP can identify the optimal classifier triad we checked whether 

the optimal triad based on voting performance was amongst those that DP identified as 

the best classifier combinations. Finally, the overall behavior of DP was examined across 

all testing datasets, to assess its efficiency and consistency to perform substantially 

different classification tasks. 

 

 

Fig. 1. Schematic diagram of the methodological steps followed in the development and testing of the proposed 

Dissimilarity-Performance (DP) index. This index takes into account both the individual performance of base 

classifiers (P) and the dissimilarity (D) of classifier performance -measured with Binary Dissimilarity Indices 

(BDIs) - when those are combined in triads. 

All base classifiers were trained with the WEKA machine learning package (version 

3.6.9).49 This package was also used for training the voting algorithm with all possible 

combinations of classifiers in triads. The purpose of DP index is to identify the optimal 

combination of classifiers maximizing the classification performance during voting and 

therefore it is not necessary for base classifiers to participate with their highest potential 

performance. For this reason, the training of each classifier was performed using the 

default parameter values of the WEKA package. 

2.2. Datasets 



Twenty eight datasets (Table 1) were randomly split into two groups. The first group was 

used for the training of base classifiers and voting EM in order to determine the weight of 

the DP index parameter a (Fig. 1). Twelve datasets of the first group are available from 

the UCI machine learning repository and two are related with the research interests of the 

authors. The first of those is the Berlin Emotional (BER) database (EMO-DB),50 which 

contains 535 utterances of 10 actors (5 male, 5 female) predicting 7 emotional states 

(anger, happiness, anxiety/fear, sadness, boredom, disgust and neutral). After processing 

with PRAAT software51 each utterance was converted to a 133-dimensional prosodic 

feature vector based on well-established speech features, such as Pitch, Mel Frequency 

Cepstral Coefficients (MFCCs), energy and formant frequencies.52 Thus, the dataset 

consists of 535 samples with 133 prosodic input variables to be categorized in 7 class 

labels. The second dataset (ECO) comprises of 188 seawater samples collected on 

monthly campaigns during one annual cycle (August ’04-July ’05) in Kalloni Gulf, 

Lesvos Island, Greece.53 The dataset includes 9 physico-chemical input variables (e.g. 

temperature and nutrients) and one target class including 5 levels of ecological quality 

(high, good, moderate, poor and bad). Those levels are based on chlorophyll α limits set 

by Simboura et al.54 for the evaluation of coastal water ecological quality for the 

purposes of the European Water Framework Directive 2000/60/EC.   

Table 1. List of datasets used in the experiments along with their structural characteristics i.e. number 

of instances and input variables, type of input variables (c for categorical, i for integer, r for real), 

number of labels of the target class and indicative classification performance based on previous studies. 

  

Dataset Name 

No. of 

instances 

No. and type 

of input 

variables 

No. of labels 

of the target 

class 

Previous 

classification 

performance  

Training Datasets    

U
C

I 
d
at

as
et

s 

1. Arrhythmia (ARR) 452 279 (c, i, r) 16 71.2555 

2. Breast cancer (BRE) 286 9 (c) 2 76.6355 

3. German credit (GER) 1,000 20 (c, i) 2 75.5056 

4. Glass Identification (GLA) 214 9 (r) 6 65.5057 

5. Ionosphere (ION) 351 34 (i, r) 2 93.0058 

6. Iris (IRI) 150 4 (r) 3 97.0059 

7. Labor relations (LAB) 57 16 (c, i, r) 2 89.2760 

8. Page blocks (PAG) 5,473 10 (i, r) 5 91.8059 

9. Segment challenge (SEG) 1,500 19 (r) 7 96.9361 

10. Vehicle silhouettes (VEH) 946 18 (i) 4 75.0062 

11. Vote (VOT) 435 16 (c) 2 97.0063 

12. Waveform (WAV) 5,000 40 (r) 3 83.1664 

 13. Berlin emotional database (BER) 535 133 (r) 7 78.0051 

 14. Ecological quality of Kalloni Gulf (ECO) 188 9 (r) 5 - 

Testing Datasets    

U
C

I 
d
at

as
et

s 

1. Banknote authentication (BAN) 1,372 4 (r) 2 100.0065 

2. Blogger (BLO) 100 5 (c) 3 85.0066 

3. Car evaluation (CAR) 1,728 5 (c) 3 95.7856 

4. Chronic kidney disease (CHR) 400 24 (c, r) 2 99.3067 

5. Dermatology (DER) 366 34 (c, r) 6 98.4059 

6. Fertility (FER) 100 9 (c, r) 2 86.0068 



7. Forest type mapping (FOR) 324 27 (r) 4 85.9069 

8. Hepatitis (HEP) 155 19 (c, i, r) 2 85.8055 

9. Lung cancer (LUN) 32 56 (i) 3 63.8470 

10. Seeds (SEE) 210 7 (r) 3 92.0071 

11. Seismic bumps (SEI) 2,584 18 (c, r) 2 93.3072 

12. Teaching assistant evaluation (TEA) 151 5 (c, i) 3 52.5059 

13. Wine quality (WIN) 4,898 11 (r) 7 64.6073 

 14. Abdominal pain (ABD) 516 16 (c, i, r) 7 86.0455 

The second group of datasets was used to evaluate the performance of the newly 

proposed DP index into unseen data. Thirteen of those datasets originate from the UCI 

machine learning repository while the last one (i.e. Abdominal pain) is related to the 

authors’ research.74 Abdominal pain (ABD) dataset contains 512 children’s medical 

records consisting of 16 demographic, clinical and laboratory input variables (e.g. sex, 

age, duration of pain, temperature, existence of anorexia or neutrophilia). The target class 

contains seven possible diagnosis results (i.e. focal appendicitis, phlegmonous or 

supurative appendicitis, gangrenous appendicitis, peritonitis, observation, discharge and 

no findings). 
The datasets of both groups (training and testing) originating from various scientific 

fields (e.g. Medicine, Ecology, Botany, Physics, Sociology, Economy, Web, and 

Engineering), deal with different classification problems leading to varied accuracies 

(classification performance from 65.50% to 97.00% for the training and 52.50% to 

100.00% for the testing group). This is due to the sufficiently different structure and 

interactions of database variables. Indeed, many characteristics substantially differ 

amongst those datasets, such as the number of instances (57 to 5,473 for the training and 

32 to 4,898 for the testing group), type (categorical, integer or real) and number of input 

variables (4 to 279 for the training and 4 to 56 for the testing group), predicted labels of 

the target class (2 to 16 for the training and 2 to 7 for the testing group). Additionally, all 

datasets differ in structure and functionality as some of them have relatively low numbers 

of instances compared to the number of input variables (LAB, BER or LUN), others 

contain numerous instances (PAG, WAV or WIN) whereas others have many class labels 

compared to the available training instances (ARR, DER or FOR) or vice versa (SEG or 

BAN). This diversity in database characteristics is expected to result in substantial 

differences in the performance of classifiers and their quantified dissimilarity supporting 

the exhaustive training and testing of the existing indices and the currently proposed DP 

index. 

2.3. Training of base classifiers and voting EM 

The 10 base classifiers were selected to represent all different categories of classification 

such as rules, trees, lazy classifiers, functions, and Βayes (Table 2). The voting EM 

combines the results of base classifiers15,40 in triads to provide a classification for all 

instances of the 28 databases. In this work, an exhaustive training of the voting algorithm 

was achieved by combining the 10 base classifiers in all possible triads (i.e. 120 different 

combinations). We used classifier triads because the combination of an odd number of 

classifiers during voting excludes the risk of ties.36 Additionally, three is the minimum 



odd number that can be used in voting and thus combining classifiers in triads simplifies 

the whole procedure with respect to complexity and processing time. Three base 

classifier combinations have been commonly used in various EMs applications.37,39,47,75-77 

Table 2. Base algorithms plus voting ensemble method with their default WEKA values used during 

their training 

Category Abbreviation Classifier description Default WEKA values 

Rules JRip78 Implements the repeated 

incremental pruning to produce 

error reduction (RIPPER) 

Minimum weight of the 

instances in a rule = 2 

 Part79 Generates a PART decision list Minimum N# of instances 

per rule = 2 

Trees J4880 Generates a C4 decision tree Minimum N# of instances 

per leaf = 2 

 RF81 Constructs a forest of random 

trees 

Maximum depth = unlimited, 

N# of trees =10 

Lazy IBk82 The k  nearest neighbor  k = 1 

 K* 83 Instance-based with entropic 

distance measure  

Parameter of global blending 

= 20 

Functions Log84 Multinomial logistic regression ‒ 

 MLP85 Multilayer Perceptron trained with 

backpropagation 

N# of neurons = mean of the 

N# of input variables and the 

N# of labels of the target 

class 

 SMO86 Sequential Minimal Optimization 

for training a support vector 

classifier 

Complexity parameter = 1 

Bayes NB87 The Naïve Bayes classifier using 

estimator classes 

‒ 

Meta Vote88 Algorithm for combining 

classifier results 

Combination rule = average 

of probabilities 

The efficiency of the 10 base classifiers and the voting algorithm was evaluated for all 

datasets using the 10-fold cross validation procedure.89 The voting EM was trained based 

on the averaged probability estimates of the base classifiers, resulting to the classical 

weighted voting schema which for each instance gives to the combining classifiers the 

power of their individual performance related to the class they propose.20,90 Weighted 

training usually outmatches majority voting (i.e. the predicting class label needs to take at 

least half votes) or plurality voting (i.e. the predicting class label takes the largest number 

of votes) while it optimally confronts the confusing situation of ties. Thus, when the three 

classifiers vote a different class label, the weighted voting predicts the label of the more 

successful base classifier. For instance if the 1st classifier votes for “A” label, the 2nd 

votes for “B” and the 3rd votes for “C”, the voting EM searches for the rates of 

successfulness of each base classifier for the specific predicting labels. Then if the 1st 

classifier predicts the “A” label with 𝑝1𝐴 = 0.6  rate of successfulness and the 2st and 3rd 

classifier predict the “B” and “C” label with 𝑝2𝐵 = 0.7  and 𝑝3𝐶 = 0.8  rates 

correspondingly, the voting EM will predict label “C” for the specific instance. In case 



the two best rates are equal, the label of the most overall successful classifier will be 

selected.20 The classification performance was assessed with the most commonly used 

criterion i.e. the percentage of Correctly Classified Instances (CCI).14 CCI is calculated as 

the percentage of the true positive and true negative predictions. Values of CCI higher 

than 70% are considered as reliable, however the efficiency of the classification 

performance depends greatly on the characteristics of each dataset. 91 

2.4. Binary diversity indices (BDIs) 

BDIs quantify the dissimilarity or independency of classifications of base classifiers 

when they are combined in triads. This is later used to determine whether combinations 

of dissimilar or independent classifiers also have a corresponding high performance 

during voting. In the present study, the correct classification of an instance by a classifier 

was assigned a “1” score, whereas misclassification was assigned a “0” score. Using this 

binary assessment for all 10 classifiers, four well-known BDIs (Table 3) were computed. 

The first three BDIs are estimated by combining the classification results of two 

classifiers. Thus, to express dissimilarity with simple matching distance (SMD), Jaccard 

distance (JD) and independency (Phi) in triads, an average of the paired combinations 

was calculated. The last index (Q), being also a measure of independency (positive or 

negative) between classifiers, is estimated by using three classifiers as described in 

Kuncheva et al.76. 

Table 3. Definition and ranges of four binary similarity (or dissimilarity) indices  

Coefficient 
Required 

classifiers 
Range Formula (𝑆𝑖𝑗 or 𝑆𝑖𝑗𝑘) 

Simple matching 

distance (SMD)92 2 [0,1] 
𝑁10 + 𝑁01

𝑁11 + 𝑁10 + 𝑁01 + 𝑁00
 

Jaccard Distance 
(JD)93 2 [0,1] 

𝑁10 + 𝑁01

𝑁11 + 𝑁10 + 𝑁01
 

Phi94 2 [-1,1] 
𝑁11𝑁00 − 𝑁10𝑁01

√(𝑁11 + 𝑁10)(𝑁01 + 𝑁00)(𝑁10 + 𝑁00)(𝑁11 + 𝑁01)
 

Q95 3 [-1,1] 
𝑁111𝑁001𝑁010𝑁100 − 𝑁011𝑁101𝑁110𝑁000

𝑁111𝑁001𝑁010𝑁100 + 𝑁011𝑁101𝑁110𝑁000
 

𝑁11   Number of instances that have been correctly classified by both classifiers 

𝑁10, 𝑁01  Number of instances that have been correctly classified by the 1st classifier but 

not by the 2nd and vice versa 

𝑁00   Number of instances that have been correctly classified by neither classifier 

𝑁111  Number of instances that have been correctly classified by all three classifiers 

𝑁011, 𝑁101, 𝑁110 Number of instances that have been correctly classified by the 2nd and 3rd 

classifiers but not by 1st and the other calculated in the same way 

𝑁001, 𝑁010, 𝑁100 Number of instances that have been correctly classified by 3rd classifiers but 

not by 1st nor 2nd and the other calculated in the same way 

𝑁000   Number of instances that have been correctly classified by neither classifier 



2.5. Dissimilarity-Performance index (DP) 

Apart from the classifier dissimilarity within triads (quantified by the traditionally used 

BDIs), the individual performance of each classifier was also considered in the present 

study aiming to provide further information on the best set of classifiers to be combined 

for improved classification.96 This joint approach for the identification of the best 

performing classifier triad was achieved in the present study by developing an integrated 

Dissimilarity-Performance (DP) index. The proposed formula for this DP index is the 

following: 

𝐷𝑃 = (1 − 𝑎) ∙
∑ 𝐽𝑖,𝑗

𝑛
𝑖<𝑗

3
+ 𝑎 ∙

∑ 𝑝𝑖
𝑛
𝑖=1

3
               𝑖, 𝑗 = 1,2,3                       (1) 

where 𝐽𝑖,𝑗 the JD index calculated from the binary classification results of the i-th and j-th 

classifiers, 𝑝𝑖  is the ratio of the correctly classified samples by the i-th classifier to the 

total number of instances and 𝑎 is a parameter between 0 and 1 (0 ≤ 𝑎≤ 1). The first 

addend represents the average of the JD for all classifier pairs, while the second is the 

average of the single performances of each classifier used in voting. Parameter 𝑎 

expresses the different contribution of the aforementioned criteria, i.e. dissimilarity and 

performance of the combined classifiers. Therefore, if 𝑎 is equal to 0 the characteristic of 

dissimilarity among classifiers prevails in the DP index, expressing the case that better 

voting performance is achieved by combining classifiers showing large discrepancies 

among their individual predictions. On the other hand, if 𝑎  is equal to 1 only the 

individual performance of the base classifiers is counting in the DP index, meaning that 

the voting performance of the various classifier combinations is proportional solely to 

their individual performance. Finally, if 𝑎 = 0.5  then the two criteria have an equal 

contribution to the DP index. It should be noted that the DP values are always in the 

range 0 to 1.  

The efficiency of BDIs and DP based on the performance criterion (i.e. CCI) for the 120 

different classifier triads was assessed with Spearman’s rank correlation coefficient. 

Moreover, the DP index was calculated for many different values of the parameter 𝑎 

(from 0 to 1 with a 0.01 step) for each classifier triad across the 14 training databases in 

order to define the value of 𝑎 that optimizes the Spearman’s rank correlation coefficient 

between DP and voting performance. This procedure (a) optimizes the determining force 

of DP in identifying the best classifier triads, (b) determines the efficiency and 

consistency of DP to perform substantially different classification tasks (c) offers a 

prioritization of the two crucial criteria of dissimilarity and performance among 

classifiers participating in voting. Furthermore, we tested whether DP can identify the 

classifier triad with the best voting performance for 14 testing (unseen) datasets. This was 

performed by crosschecking whether the best triad falls within the 10% of the triads (i.e. 

12 triads) with the highest DP values. DP was further tested for monotonicity (consistent 

increase or decrease along the CCI spectrum) as this is an important prerequisite for an 

index.97 Finally, the DP efficiency was examined to improve the voting EM when trained 

with datasets containing different number of labels of the target class. 



3. Results 

3.1.  Results of base classifiers and voting ensemble method 

The classification performance of the worst and best performing base classifier along 

with the corresponding performance of the voting EM across all datasets are presented in 

Table 4. The MLPs achieved the highest performance in most databases and can be 

characterized as the best base classifier in this study. On the other hand, NB was the base 

classifier with the lowest performance showing the lowest % CCI in twelve out of 28 

databases.  

Table 4. Percentage of CCI for the worst and best base classifiers cited in parenthesis along with 

the corresponding percentage of the Voting EM for training databases. The symbol † denotes the 

participation of the best base classifier in the best classifier triad of Voting EM. 

 Database Worst base classifier 

performance 

Best base classifier 

performance 

Voting performance 

(best triad)  

T
ra

in
in

g
 D

at
ab

as
es

 

ARR 52.88 (IBk) 70.35 (JRip) 71.48 (†) 

BRE 64.69 (MLP) 75.52 (J48) 77.30 (†) 

GER 69.40 (K*) 75.40 (NB) 76.90 (†) 

GLA 48.60 (NB) 75.23 (RF) 81.71 (†) 

ION 82.62 (NB) 92.88 (RF) 94.89  

IRI 94.00 (Part) 97.33 (MLP) 97.33 (†) 

LAB 82.46 (IBk) 92.98 (Log) 96.67 (†) 

PAG 90.85 (NB) 97.01 (Part) 97.50 (†) 

SEG 81.07 (NB) 96.80 (MLP) 98.13 (†)  

VEH 44.80 (NB) 81.68 (MLP) 83.23 (†) 

VOT 90.11 (NB) 96.32 (J48) 97.01 (†) 

WAV 73.48 (K*) 86.68(SMO) 86.74 (†) 

BER 51.59 (NB) 81.70 (MLP) 86.73 (†) 

ECO 44.15 (SMO) 63.30 (IBk) 69.15  

T
es

ti
n
g

 D
at

ab
as

es
 

BAN 84.26 (NB) 99.93 (MLP) 100.00 (†) 

BLO 71.00 (NB) 85.00 (RF) 88.00 (†) 

CAR 85.53 (NB) 99.48 (MLP) 99.60 (†) 

CHR 91.75 (K*) 99.75 (RF) 100.00 (†) 

DER 86.89 (JRip) 97.27 (NB) 98.09 (†) 

FER 83.00 (IBk) 90.00 (MLP) 92.00 (†) 

FOR 76.31 (K*) 86.46 (SMO) 87.35  

HEP 74.84 (JRip) 85.16 (RF) 87.71  

LUN 37.50 (IBk) 62.50 (NB) 69.17 (†) 

SEE 90.48 (JRip) 95.24 (MLP) 97.14 (†) 

SEI  86.73 (NB) 93.42 (SMO) 93.42 (†) 

TEA 40.40 (JRip) 66.23 (IBk) 66.25 (†) 

WIN 44.24 (NB) 70.17 (RF) 68.58 (†) 

ABD 79.46 (IBk) 86.24 (JRip) 86.81 (†) 

The best combination triad of the 10 aforementioned base classifiers that trained the 

voting EM has shown higher classification performance (2% on average) compared to the 

performance of the best individual classifier for most of the databases (25 out of 28) 



(Table 4). Moreover, in 4 datasets (GLA, BER, ECO and LUN) voting achieved an 

increase in classification performance (based in % CCI) exceeding 5%. As for the IRI 

and SEI databases, the voting performance was found equal to the performance achieved 

by the best base classifier (MLP and SMO respectively) and finally for the WIN database 

the voting performance was worse compared with the performance of the RF base 

classifier. The latter was possibly due to the relatively worse performance of all base 

classifiers except RF (average performance of the all other classifiers is equal to 56.44% 

while the second best classifier lags in performance more than 5% from RF). The best 

voting triad for all datasets did not always contain the best base classifier. In fact, in ION, 

ECO, FOR and HEP datasets the best triad contained, instead of the best base classifier, 

another base classifier which also achieved high performance (has in average only 1% 

lower performance than the best base classifier). However this classifier is much more 

diverse when compared with the two other members of the classifier triad (JD index 

increases at least 3% with this classifier instead of the best base classifier). 

3.2. Results of existing BDIs  

The correlations between the BDIs and the corresponding voting performance (in terms 

of CCI) of the classifier combinations across training datasets are presented in Table 5. 

JD can be characterized as the best among BDIs, showing statistically significant 

correlation (p<0.01) for most datasets (11 out of 14) compared to other indices. Other 

BDIs such as SMD were more weakly but significantly correlated (p<0.01) for 10 of the 

datasets, whereas Q was significantly correlated (p<0.01) with CCI only in 8 datasets. 

The negative correlation between SMD or JD and the voting performance shows that 

when combining classifiers solely based on their highly dissimilar results (i.e. without 

taking into account the performance criterion), the subsequent voting performance is 

reduced. Regarding the sign of the correlation between Q index and CCI, it was found 

negative in most datasets; in 3 of them (i.e. PAG, VEH and WAV) it was positive with 

significant correlation, showing that Q cannot consistently follow the increase of the 

voting performance. As a result, in some databases the combinations leading to high 

voting performance correspond to small Q values (negative sign of correlation) while in 

others to relative large (positive sign). Finally, Phi index was not correlated with voting 

performance for most of the classifications tasks, therefore it is considered as the least 

efficient BDI in this study.  

Table 5. Spearman rank correlation coefficients of the performance (based 
on CCI%) of the voting algorithm and the BDIs.  

Training Database SMD JD Phi Q 

ARR -0.34** -0.44** 0.19* 0.06 
BRE -0.39** -0.43** 0.31* -0.59** 
GER -0.17 -0.21* 0.12 -0.32** 
GLA -0.40** -0.46** 0.31** -0.09 
ION 0.05 0.02 -0.29** -0.41** 
IRI -0.08 0.04 -0.11 -0.45** 



LAB -0.34** -0.40** -0.11 -0.07 
PAG -0.70** -0.71** 0.66** 0.18* 
SEG -0.72** -0.72** 0.34 -0.18 
VEH -0.24** -0.38** 0.01 0.34** 
VOT  -0.60** -0.60** 0.35** -0.37** 
WAV -0.61** -0.62** 0.56** 0.52** 
BER -0.53** -0.62** 0.00 -0.39** 
ECO -0.21* -0.41** 0.16 -0.15 

*    Significant correlation at the 0.05 level (2-tailed) 
**  Significant correlation at the 0.01 level (2-tailed) 

3.3. Optimizing the DP index 

DP index incorporates two basic criteria (i.e. individual performance and the dissimilarity 

of base classifiers) by weighting them with parameter α (section 2.5). Since JD was the 

best performing BDI (showing the best correlation with voting performance across 

databases), it was selected to represent the dissimilarity among classifier results in DP 

index. In order to select the optimal value of parameter a, DP was computed along an α 

range from 0 to 1 with 0.01 step for all datasets. Subsequently, the correlation coefficient 

between DP and voting performance was computed along the parameter α range for all 

datasets (Fig. 2). The graph shows that for small parameter α values (i.e. the criterion of 

dissimilarity among classifiers results prevails in DP), the correlation coefficient starts 

with high negative values and approaches zero as the value of a increases (the criterion of 

individual performance of base classifiers getting into DP). Thereafter, the correlation 

coefficient changes sign and increases gradually reaching a maximum value when a is 

within a relative small interval (between 0.7 and 0.8 for all datasets). Above this point the 

correlation decreases as a approaches 1 (i.e. only individual classifier performance 

remains in DP). The aforementioned behavior was observed across all training datasets, 

except of IRI in which the correlation increases constantly when a parameter increases. 

This inconsistency can be explained by the fact that in this database the base classifiers 

had very similar performances (CCI equal to 94% and 97.33% for the worst and best 

classifier) (Table 4) and also by the negligible dissimilarity among the classifier results 

(mean JD of the 10 classifiers equal to 0.03).  



 

Fig. 2. Change of correlation coefficient between voting performance and DP index for different values of 

parameter α for each training dataset. 

The optimal values of parameter a (maximizing the correlation between DP and voting 

performance for each dataset) had relatively small variation (n=14, variance=0.004, 

coefficient of variation=8%) showing that the optimal value of parameter a does not 

considerably vary among datasets. Thus, the mean of optimal values of a estimated from 

all datasets was used as the most appropriate measure to determine the a value within DP 

index (a=0.77). The DP index was thus computed by fixing the value of parameter a at 

0.77. 

3.4. Efficiency of DP index 

The correlation between DP and voting performance (in terms of CCI) for the 120 

different classifier triads for all datasets is presented in Table 6. DP correlated (p<0.01) 

with voting performance for both training and testing datasets and the correlation 

coefficients were considerably high (R>0.70) in most databases. In three datasets (i.e. 

IRI, GER and HEP) the correlation was rather weak but still statistically significant 

(p<0.01). Considering that voting performance can be expressed by % CCI, the most 

efficient among the considered indices is DP showing consistently positive and higher 

correlations for all datasets. Moreover, the 12 triads (10% of the total) with the highest 

DP values for each testing dataset were those having the corresponding higher 
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performance during voting EM. The optimal triad (i.e. the one with the best voting 

performance) was found amongst the selected triads across testing (also for training) 

datasets (tick symbol in Table 6) and thus DP can be considered effective in identifying 

the best classifier combination. 

 
Table 6. Spearman rank correlation coefficient of the performance (based on 

CCI%) of the voting algorithm and the proposed DP index trained on the 120 

classifier combination triads for all datasets. The symbol † denotes the 

identification of the best classifier triad from the DP index. 

Training Database DP (α=0.77) Testing Database DP (α=0.77) 

ARR 0.63**  (†) BAN 0.81**  (†) 

BRE 0.59**  (†) BLO 0.88**  (†) 

GER 0.45**  (†) CAR 0.82**  (†) 

GLA 0.80**  (†) CHR 0.89**  (†) 

ION 0.64**  (†) DER 0.74**  (†) 

IRI 0.39**  (†) FER 0.66**  (†) 

LAB 0.84**  (†) FOR 0.55**  (†) 

PAG 0.83**  (†) HEP 0.46**  (†) 

SEG 0.86**  (†) LUN 0.64**  (†) 

VEH 0.79**  (†) SEE 0.81**  (†) 

VOT  0.82**  (†) SEI  0.65**  (†) 

WAV 0.66**  (†) TEA 0.80**  (†) 

BER 0.84**  (†) WIN 0.70**  (†) 

ECO 0.83**  (†) ABD 0.75**  (†) 

*    Significant correlation at the 0.05 level (2-tailed) 

**  Significant correlation at the 0.01 level (2-tailed) 

 

The monotonic behavior of DP was checked by plotting its variability (120 classifier 

triads implemented in 14 datasets=120*14=1680 points) in relation to the voting 

performance in terms of CCI (Fig. 3) for comparative reasons. DP has shown consistent 

increase along the voting CCI spectrum and thus its behavior is monotonic. The few 

points in which the estimated DP index was rather high (4-5 points at the left side) 

represent classifier triads in which one poorly performing classifier participates. In those 

few cases, the voting performance was greatly affected by the contribution of a poor 

classifier (i.e. NB for WIN dataset or IBk for LUN dataset) but DP could not incorporate 

such effects. However, the estimated correlation coefficient between DP and voting 

performance was extremely high for all points (n=1680, Spearman R=0.99, p<0.01) 

indicating the monotonic increase of DP across the corresponding voting performance 

increase expressed by % CCI. More specifically, the triads having high DP values (being 

of high importance because they can demonstrate the optimal classifier combinations) are 

those that finally achieved the best voting performances (points located on the top right of 

the graph). 



 

Fig. 3. Monotonic behavior of DP along voting performance in terms of CCI% gradient for all classifier triads 

across training datasets (120 classifier combinations * 14 datasets  = 1680 points) 

 

The percentage of improvement in voting performance when trained with the DP 

proposed triad against the best base classifier across different number of labels of the 

target class is presented in Fig 4. This improvement in performance is approximately 1-

2% for databases with 2, 3, 4 and more than 6 labels and relatively higher (around 4%) 

for databases with 5 or 6 labels. Thus, DP offers significant performance improvement 

regardless of the number of labels of the target class of the trained dataset.  

 



Fig. 4. Percentage of improvement achieved by voting EM compared to the best base classifier in accordance 

with the number of labels of the target class of each dataset. 

4. Discussion 

In the present study, 10 base classifiers corresponding to various ML categories, were 

trained using 28 substantially different datasets from diverse scientific fields (e.g. 

Medicine, Ecology, Botany, Physics, Sociology, Economy, Web, and Engineering) in 

order to access their individual classifying efficiency. MLP was the best performing base 

classifier in contrast to NB which showed the poorest performance in agreement with 

previous applications.98-100 Subsequently, all possible classifier triads resulting from 

combinations of the 28 base classifiers were used to train the easiest and most widely 

applicable EM i.e. voting classifier. The best triad has shown improved performance 

across most datasets (except for IRI, SEI and WIN databases in which the voting 

performance was either equal or slightly worse compared with the best base classifier) in 

agreement with the general principle that ensembles of classifiers are often substantially 

more accurate than their individual base classifiers.20,27,29,40,101 For 4 datasets the % 

increase of CCI was over 5%, considered as a remarkable improvement in classification 

performance.12 

Each base classifier employs a different learning strategy to provide its own classification 

results which are fed into the voting algorithm for the final classification. When the 

individual results are similar then the outcome will be based more or less on the same 

information (errors and corrects), without offering any additive value in voting, 

increasing however the system complexity.25,26,35,102 On the other hand, EMs consisting of 

classifiers offering different results have the potential to achieve significantly better 

performance compared to those of individual base classifiers.15,19,35,39,103 This finding was 

confirmed in the present study, with SMC and JD dissimilarity measures showing 

statistically significant correlations with voting performance for most of the training 

datasets. More specifically JD scored higher (absolute) values of correlation than the 

comparable SMC index rather because it emphasizes on differences between classifier 

results.104 However, the two measures of independency (i.e. Q and Phi) that were 

supposed to improve voting accuracy,17,76,105 showed low correlation with voting 

performance also in agreement with some previous studies.35,36,38 

Although dissimilarity among individual classifiers combined to develop EMs may be the 

key towards improving classification efficiency,88 dissimilar but powerless classifiers are 

unlikely to bring any benefits in EMs performance.35,106 The latter was confirmed in the 

present study by the negative sign of correlation indicating that classifier triads with 

highly differentiated results (as expressed by JD or SMC) often contain at least one poor 

classifier which significantly affects the voting performance. In addition, the relative high 

correlation between the voting performance and the individual performances (when a=1 

in DP) of base classifiers denoted for the training datasets, indicates that the individual 

performance is a rather crucial characteristic in optimizing EMs as previously 



suggested.18,107,108 Thus, both accurate and diverse classifiers are needed in order to 

construct combinations that optimize the voting performance. 

These two crucial characteristics, dissimilarity and individual performance of combined 

classifiers, have been integrated in the present study in a new index selecting the 

optimum classifier combinations to train the voting algorithm. The DP index integrates 

dissimilarity using the JD measure, which is generally considered as an efficient and 

stable indicator.109 In the present study JD was the most sensitive among the BDIs on 

following the voting performance variability. This is in agreement with Kuncheva and 

Hadjitodorov110 who employed JD in cluster ensembles. In addition, DP index integrates 

the performance characteristic using the individual performance of the classifiers, as it is 

widely accepted and also proved in the present study that optimal combinations should 

include classifiers with high individual performances.24,47 

The dissimilarity and the individual performance of classifier combinations were 

weighted in DP using parameter α. The optimal value of this parameter (maximizing the 

correlation between DP and voting performance) did not vary significantly among the 14 

substantially different training datasets suggesting that the DP performance is consistent 

and robust across different classification tasks. Subsequently, the determined DP 

outperformed all BDIs by showing statistically significant correlation with the voting 

performance across all training datasets. The same correlation was also found statistically 

significant for all testing datasets, the values of the correlation coefficient being relatively 

high (R>0.7 in most cases). These findings show that DP index is both efficient and 

consistent, being highly correlated with voting performance. Moreover, the optimization 

of DP offered a prioritization between the two characteristics of the classifier 

combinations with the dissimilarity weighting almost three times less than the individual 

performance (a=0.77). This prioritization makes DP efficient in determining the best 

performing classifier triad during voting for all datasets, even for those (ION, ECO, FOR 

and HEP) where the best triad did not contain the base classifier with the best individual 

performance. In these datasets, the best triads contain classifiers with relatively lower 

performance compared to the best, however with sufficiently dissimilar results which 

maximize DP value. This finding shows that DP performs better than methods proposing 

triads including by default the best performing base classifier.41 Furthermore, DP showed 

a monotonic increase across the voting performance spectrum (R>0.95) regardless of the 

testing dataset suggesting that it closely matches the voting performance. This matching 

was achieved even for datasets where voting EM performed lower than the best base 

classifier (i.e. WIN), in which although DP managed to determine the best triad. Finally, 

DP offered significant improvement (as least 1%) in the ensemble performance 

regardless of the number of labels of the target class.  

 

5. Conclusions 



In this paper, a new index named DP was proposed in order to rank the classifier 

combinations according to their performance during voting training. Based on the 

simulation results, comparisons and discussion we have the following conclusions: 

(1) Both individual performance and dissimilarity in classification outcomes when 

classifiers participate in voting are crucial criteria affecting the voting 

performance. 

(2) DP which optimally incorporates the above characteristics (i.e. individual 

performance and dissimilarity) achieved an efficient ranking of classifier 

combinations according to their voting performance. 

DP is a useful tool for the individual users aiming to identify the optimal classifier 

combinations to use in voting EM, in order to easily achieve improved classification 

performance using their own familiar and tested ML algorithms. Apart from the easiness 

of application, DP has a number of additional advantages i.e. simplicity (it uses only 

three combined classifiers), efficiency (it successfully selects the classifiers to participate 

in the voting algorithm), flexibility (any base classifier can be included in the DP 

computation) and consistency (robust performance across substantially different 

datasets). On the other hand, DP cannot be compared with EM schemes that perform 

thorough search towards inducing all possible kinds of classification errors which 

however need qualified designers to apply them to new tasks. Finally, in datasets where 

the training of voting EM results in lower performance compared to the individual base 

classifiers, DP still defines the optimal classifier triad which however is not improving 

the performance of the requested classification issue.  
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Figure captions 

 

Fig. 1. Schematic diagram of the methodological steps followed in the development and 

testing of the proposed Dissimilarity-Performance (DP) index. This index takes into 

account both the individual performance of base classifiers (P) and the dissimilarity (D) 

of classifier performance -measured with Binary Dissimilarity Indices (BDIs) - when 

those are combined in triads. 

 

Fig. 2. Change of correlation coefficient between voting performance and DP index for 

different values of parameter α for each training dataset. 

 

Fig. 3. Monotonic behavior of DP along voting performance in terms of CCI % gradient 

for all classifier triads across training datasets (120 classifier combinations * 14 datasets 

= 1680 points) 


