
HAL Id: tel-01427171
https://theses.hal.science/tel-01427171

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Agent based Optimization Method for
Combinatorial Optimization Problems

Inès Sghir

To cite this version:
Inès Sghir. A Multi-Agent based Optimization Method for Combinatorial Optimization Problems.
Other [cs.OH]. Université d’Angers, 2016. English. �NNT : 2016ANGE0009�. �tel-01427171�

https://theses.hal.science/tel-01427171
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Inès SGHIR

Mémoire présenté en vue de l’obtention du

grade de Docteur de l’Université d’Angers

Docteur de l’Institut Supérieur de Gestion de l’Université de Tunis

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Informatique
Unité de recherche : Laboratoire d’Etude et de Recherche en Informatique d’Angers (LERIA)

Groupe de Recherche d’Informatique et d’Intelligence Artificielle (GR2IA)

Soutenue le 29 Avril 2016

A Multi-Agent based Optimization Method for
Combinatorial Optimization Problems

JURY

Rapporteurs : M. Patrick SIARRY, Professeur, Université Paris-Est Créteil

Mme Wided LEJOUAD CHAARI, Maître de Conférences HDR, Université La Manouba

Examinateur : M. David LESAINT, Professeur, Université d’Angers

Directeurs de thèse : M. Jin-Kao HAO, Professeur, Université d’Angers

M. Khaled GHÉDIRA, Professeur, Université de Tunis

Acknowledgements

I would like to express my special appreciation and thanks to my advisors: Pro-

fessor Jin-Kao Hao and Professor Khaled Ghédira. You have been a tremendous

mentor for me. I would like to thank you for encouraging my research and for al-

lowing me to grow as a research scientist. Your advice on both research as well as

on my career have been priceless. This thesis would not have been possible without

your help, support and patience.

Furthermore, I would like to thank Doctor Inès Ben Jaafar for the useful com-

ments, remarks and engagement through the learning process of this thesis.

Profuse thanks go to Professor Patrick Siarry (Université Paris-Est Créteil) and

to Doctor Wided Lejouad Chaari (Université La Manouba) for their participation

to my thesis committee. I am glad they accepted to be members of the jury of this

thesis. I appreciate particularly the precise and efficient reviewing of the complete

thesis they performed to improve this thesis.

I would like to extend my gratitude to Professor David Lesaint for honouring

my jury by presiding it.

I thank also the LERIA Laboratory of the Université d’Angers for providing me

the material, the means and the expertise. Besides, I would like to extend my grati-

tude to its staff who welcomed me nicely.

I would like to dedicate my thesis and to express my deepest appreciation to my

mother and father for all the sacrifices that you’ve made on my behalf. Your prayer

for me was what sustained me thus far.

3

Contents

General Introduction 15

1 State of the art 19

1.1 Combinatorial optimization problems and heuristic methods 20

1.1.1 Combinatorial optimization problems 20

1.1.2 Heuristic methods for combinatorial optimization problems 20

1.2 Multi-agent based optimization approaches 26

1.2.1 Multi-agent system . 26

1.2.2 Strategy based agents frameworks 27

1.2.3 Sub-problems based agents frameworks 30

1.3 Conclusion . 31

2 A Multi-Agent based Optimization Method for COPs 33

2.1 Introduction and motivation . 34

2.2 MAOM-COP architecture . 34

2.2.1 Decision matrix with reinforcement learning 35

2.3 MAOM-COP process . 37

2.4 Decision-maker agent . 40

2.4.1 Conditions and actions . 40

2.4.2 Archive of elite solutions 41

2.5 Intensification agents . 41

2.5.1 Conditions and actions . 41

2.6 Perturbation agent . 43

2.6.1 Reduced perturbation technique 43

2.6.2 Strong perturbation technique 43

2.7 Crossover agents . 43

2.8 Discussion . 45

2.9 Conclusion . 45

3 A Multi-Agent based Optimization Method for the QAP 47

3.1 Problem definition . 48

3.2 State of the art approaches for the QAP 48

3.3 Amulti-agent based optimization method for the QAP (MAOM-QAP) 49

3.3.1 Decision-maker agent . 49

3.3.2 Tabu search agents . 50

3.3.3 Perturbation agent . 51

5

6 CONTENTS

3.3.4 Crossover agents . 51

3.4 Experimentation . 53

3.4.1 Experimental results . 53

3.4.2 Impact of perturbation agent on MAOM-QAP 55

3.4.3 Impact of crossover agents on MAOM-QAP 55

3.5 Conclusion . 59

4 A Multi-Agent based Optimization Method for the GCP 61

4.1 Problem definition . 62

4.2 State of the art approaches for the GCP 62

4.3 A multi-agent based optimization method for the GCP (MAOM-GCP) 64

4.3.1 Decision-maker agent . 64

4.3.2 Tabu search agents . 65

4.3.3 Perturbation agent . 66

4.3.4 Crossover agents . 67

4.4 Experimentation . 68

4.5 Conclusion . 71

5 A Multi-Agent based Optimization Method for the WDP 73

5.1 Problem definition . 74

5.2 State of the art approaches for the WDP 75

5.3 A Multi-agent based optimization method for the WDP (MAOM-

WDP) . 77

5.3.1 Decision-maker agent . 77

5.3.2 Tabu search agents . 77

5.3.3 Perturbation agent . 78

5.3.4 Crossover agents . 79

5.4 Experimentations of MAOM-WDP 79

5.4.1 Experimental results . 81

5.5 Conclusion . 83

Appendix . 86

5.A A Recombination-based Tabu Search algorithm for the WDP 86

5.A.1 TSX_WDP algorithm . 86

5.A.2 Experimentations of TSX_WDP 86

6 A Multi-Agent based Optimization Method for the MKP 93

6.1 Problem definition . 93

6.2 State of the art approaches for the MKP 94

6.3 A multi-agent based optimization method for the MKP (MAOM-

MKP) . 95

6.3.1 Decision-maker agent . 95

6.3.2 Tabu search agents . 96

6.3.3 Perturbation agent . 97

6.3.4 Crossover agents . 97

6.4 Experimentation . 98

6.5 Conclusion . 99

CONTENTS 7

General Conclusion 103

References 107

List of Figures

2.1 The architecture of the search using cooperative agents in MAOM-

COP . 35

2.2 Structure of the decision matrix . 36

2.3 An example of reinforcement learning with the decision matrix . . . 36

3.1 An example for the first operator crossover used by the first crossover

agent in MAOM-QAP . 52

3.2 An example for the second operator crossover used by the second

crossover agent in MAOM-QAP(z=2 in this example) 53

5.1 An example of the recombination operator of MAOM-WDP algorithm 80

9

List of Tables

3.1 Results of MAOM-QAP compared to some of the best performing

QAP approaches on unstructured instances (type II) and on Real-

life like instances (type III). The times are given in minutes. 56

3.2 Comparative results between MAOM-QAP and some of the best perform-

ing QAP approaches on grid-based (type IV) instances. The times are

given in minutes . 57

3.3 Impact of perturbation agent on MAOM-QAP on the unstructured

instances (type II) and on Real-life like instances (type III): MAOM-

QAP isMAOM-QAPwith the perturbation agent andMAOM-QAP’

is MAOM-QAP without the perturbation agent 58

3.4 Impact of perturbation agent on MAOM-QAP on grid-based (type

IV) instances. MAOM-QAP’ is MAOM-QAP without the perturba-

tion agent . 58

3.5 Impact of crossover agents onMAOM-QAP on grid-based (type IV)

instances. MAOM-QAP” is MAOM-QAP without the crossover

agents . 59

3.6 Impact of crossover agents on MAOM-QAP on unstructured in-

stances (type II) and on Real-life like instances (type III): MAOM-

QAP is MAOM-QAP with crossover agents and MAOM-QAP” is

MAOM-QAP” without crossover agents 59

4.1 Computational results of MAOM-GCP on the difficult DIMACS

challenge benchmarks (Part I) . 69

4.2 Computational results of MAOM-GCP on the difficult DIMACS

challenge benchmarks(Part II) . 70

5.1 Some results obtained byMAOM-WDP on REL 500-1000 for bench-

marks . 81

5.2 Some results obtained by MAOM-WDP on REL 1000-1000 in-

stances for benchmarks . 82

5.3 Some results obtained byMAOM-WDP on REL 1000-500 instances

for benchmarks . 82

5.4 Some results obtained by MAOM-WDP on REL 1000-1500 in-

stances for benchmarks . 82

5.5 Some results obtained by MAOM-WDP on REL 1500-1500 in-

stances for benchmarks . 83

11

12 LIST OF TABLES

5.6 Comparative results between MAOM-WDP Casanova, MA, SLS,

TS, SAGII, MN/TS on WDP benchmarks: rows µ correspond to

the average of the best objective value of the 100 instances in each

group. Columns time represent the average time to reach the best

solution. 84

5.7 Some results obtained by TSX_WDP on REL 500-1000 instances

for benchmarks . 88

5.8 Some results obtained by TSX_WDP on REL 1000-1000 instances

for benchmarks . 88

5.9 Some results obtained by TSX_WDP on REL 1000-500 instances

for benchmarks . 89

5.10 Some results obtained by TSX_WDP on REL 1000-1500 instances

for benchmarks . 89

5.11 Results obtained by TSX_WDP on REL 1500–1500 instances for

benchmarks . 89

5.12 Comparative results between TSX_WDP and Casanova, MA, SLS,

TS, SAGII, MN/TS on WDP benchmarks: rows µ correspond to

the average of the best objective value of the 100 instances in each

group. Columns time represent the average time to reach the best

solution. 91

6.1 Comparative results between MAOM-MKP and some of the best

performing MKP approaches . 100

6.2 Some results obtained by MAOM-MKP on instances with 30 con-

straints from MKP benchmarks . 101

6.3 Some results obtained by MAOM-MKP on instances with 10 con-

straints from MKP benchmarks . 101

6.4 Some results obtained by MAOM-MKP on instances with 5 con-

straints from MKP benchmarks . 102

List of Algorithms

1.1 Descent algorithm . 21

1.2 Simulated Annealing algorithm . 22

1.3 Tabu search algorithm . 23

1.4 Variable Neighborhood Search algorithm 23

1.5 Iterated local search algorithm . 24

1.6 Genetic algorithm . 25

1.7 Memetic algorithm . 25

2.1 MAOM-COP generic procedure 39

2.2 Decision-maker agent behavior 42

2.3 Intensification agent behavior . 44

4.1 The greedy largest saturation degree heuristic (DSATUR): The sat-

uration degree of a vertex as the number of different colors to which

it is adjacent (colored vertices). 65

4.2 Incremental evaluation technique for updating the ∆ matrix 67

5.1 The recombination operator of the second crossover agent 80

5.2 TSX_WDP for the Winner Determination Problem 87

13

General Introduction

Context of work

This thesis deals with combinatorial optimization problems (COP) and their

resolution strategies. Heuristic methods, which have been used for COP, aim to

produce high quality solutions in reasonable computing time for hard problems.

Recently, research studies have integrated techniques of diversification, in order to

escape bad quality local optima.

An example of these methods is memetic algorithmwhich is an hybrid algorithm

combining local search and evolutionary algorithms. These hybrid approaches aim

at moving the optimization process from one local optimum to another. However,

they do not have an efficient way to know when activating the suitable techniques

according to the search process. Therefore, we can assume that existing methods

do not integrate an intelligent mechanism to control the resolution process.

These methods use the centralisation model to solve the combinatorial optimiza-

tion problems. Other types of solution methods are based on distributed model. In

fact, the decomposition of an entire system into smaller subsystems and optimizing

them in a distributed way to reach the system level optimum is one of the emerging

approaches to deal with the growing complexity encountered in hard optimization

problems. The multi-agent system is one of these emerging approaches.

In this thesis, we present a new generic approach to solve the limitation of

heuristics. The proposed approach can be considered as an hyper heuristic method

because it uses the multi-agent system to select the appropriate operators of meta-

heuristic methods using learning techniques.

Objectives

The main objective is to develop a generic approach that makes the search strat-

egy more intelligent and informative. For this purpose, we adopt some ideas from

multi-agent systems. In a multi-agent system, the rational behavior of agents is very

important to achieve the best possible local goal. The agents work collectively to

achieve the best possible global or system objective. The proposed approach aims

at solving hard combinatorial optimization problems. The result is a Multi-Agent

based Optimization Method for Combinatorial Optimization Problems (MAOM-

COP).

This method explores the multi-agent system as an intelligent tool to activate

15

16 General Introduction

the search operator needed by the optimization process in a distributed environment.

The distributed search combines some distinguishing characteristics of several well-

established metaheuristics including variable neighborhood search, tabu search, and

evolutionary algorithms. The intelligent selection is made by learning techniques.

Contributions

The main contributions of this thesis are summarized as follows:

A Multi-Agent based Optimization Method for Combinatorial Op-

timization Problems:

We elaborate a multi-agent based and distributed method for Combinatorial Op-

timization Problems. MAOM-COP is composed of decision-maker agent, intensifi-

cation agents and diversification agents. The crossover agents and the perturbation

agent are designed for the purpose of diversification. The tabu search agents are

responsible for intensification. With the help of a learning mechanism, MAOM-

COP dynamically decides the most suitable agent to activate according to the state

of search process.

Under the coordination of the decision-maker agent, the other agents fulfill ded-

icated search tasks of intensification and diversification. The performance of the

proposed approach is assessed on the following classical combinatorial optimization

problems: the Quadratic Assignment Problem (QAP), the Graph Coloring Problem

(GCP), theWinner Determination Problem (WDP) and the Multidimensional Knap-

sack Problem (MKP). For each of these problems, we tested the proposed approach

and we compared it with the current state of the art approaches using the corre-

sponding benchmark instances.

The results showed that our MAOM-COP algorithms are very competitive in

terms of solution quality with the current best performing algorithms from the liter-

ature. These contributions led to two papers describing the application of MAOM-

COP to the Quadratic Assignment Problem (QAP) (Sghir & al., 2015a) and the

Graph Coloring Problem (GCP) (Sghir & al., 2015b). Other applications of the

proposed approach will be submitted.

A Recombination-Based Tabu Search Algorithm for the WDP:

We propose a dedicated tabu search algorithm (TSX_WDP) for the Winner De-

termination Problem (WDP) in combinatorial auctions. TSX_WDP integrates two

complementary neighborhoods designed respectively for the purpose of intensifi-

cation and diversification. To escape deep local optima, TSX_WDP employs a

backbone-based recombination operator to generate new starting points for tabu

search and to displace the search into unexplored promising regions. The recombi-

nation operator operates on elite solutions previously found which are recorded in

a global archive. The performance of the proposed algorithm is assessed on a set of

17

500 well-known WDP benchmark instances. Comparisons with five state of the art

algorithms demonstrated the effectiveness of our approach. The proposed algorithm

was presented in (Sghir & al., 2013).

Thesis plan:

This thesis is organized as follows:

Chapter 1 provides the necessary background for this work and the relevant lit-

erature review. In the first section of this chapter, we introduce the combinatorial

optimization problems. Then, we review the most popular heuristic and metaheuris-

tic approaches proposed in the literature for hard combinatorial optimization prob-

lems. In the second section, we present the multi-agent system and we provide a

review of multi-agent based optimization approaches.

Chapter 2 presents the proposed approach, named a Multi-Agent based Opti-

mization Method for Combinatorial Optimization Problems.

In the third chapter, we apply the proposed method to the quadratic assignment

problem. We give an overview of current state of the art QAP approaches. We

present the characteristic of each agent of the method. Then, we test it using the

QAP benchmarks and we compare it with the best performing approaches from the

literature.

The fourth chapter solves the graph coloring problem by exploring the proposed

method. We start from an overview of the state of the art GCP approaches. We

present the components of MAOM-GCP. Then, we show experimental results ob-

tained by our algorithm for popular GCP instances, and we compare these results

with those obtained by the current best-performing GCP algorithms from the litera-

ture.

In the fifth chapter, we propose the application of MAOM-COP to the winner

determination problem. We introduce the problem and the state of the art research

solving it. We describe the tasks of each agent composing this method to be adapted

to the WDP. Experimental results of the proposed algorithm show that it can realize

good quality results when they are compared with the best performing approaches

for the WDP. Another elaborated algorithm is presented in the appendix of this

thesis. This algorithm is named as a Recombination-Based Tabu Search Algorithm

for the WDP (TSX_WDP). It includes several techniques of diversification which

improve the tabu search.

In the sixth chapter, we study the multidimensional knapsack problem. We re-

view the approaches solving this problem. We describe MAOM-MKP which is the

application of the proposed approach to MKP. Then, we evaluate its performance

by comparing it with the best approaches of the literature for this problem.

In the last chapter, we summarize our contributions in this thesis and we under-

line some possible future research topics.

1
State of the art

Combinatorial optimization problems (COPs) have been widely used in a num-

ber of application areas, such as transportation, production planning, design and

data fitting, automatic control systems, signal processing, communications and net-

works, product and shape design, truss topology design, electronic circuit design,

data analysis and modelling, statistics and financial engineering, etc. The resolution

of these problems can be very complex because the number of candidate solutions

can grow exponentially with the size of the problem. Heuristic and metaheuristic

methods are often used to generate high quality solutions in reasonable computing

time. Recent studies integrate other techniques to develop an intelligent optimiza-

tion process. Multi-agent system is an efficient technique of artificial intelligence.

Recently, due to their characteristics, multi-agent system has been applied to solve

optimization problems.

This chapter describes the necessary background for our contributions. In the first

section, we make a review of the most popular heuristic and metaheuristic ap-

proaches. In the second section, we present the multi-agent system and we provide

a review of multi-agent based optimization approaches.

Contents

1.1 Combinatorial optimization problems and heuristic methods 17

1.1.1 Combinatorial optimization problems 17

1.1.2 Heuristic methods for combinatorial optimization prob-

lems . 18

1.2 Multi-agent based optimization approaches 23

1.2.1 Multi-agent system . 24

1.2.2 Strategy based agents frameworks 25

1.2.3 Sub-problems based agents frameworks 27

1.3 Conclusion . 29

19

20 State of the art

1.1 Combinatorial optimization problems and heuris-

tic methods

In this section, we define combinatorial optimization problems. Furthermore,

we give a brief overview of popular heuristic and metaheuristic approaches for such

problems.

1.1.1 Combinatorial optimization problems

A mathematical optimization problem uses a function which is either maxi-

mized or minimized relative to a given set of alternatives. This is called the ob-

jective function and the set of alternatives is called the feasible region (or constraint

region). An optimization problem aims to find the best solution among the feasible

solutions.

Papadimitriou and Steiglitz (Papadimitriou & Steiglitz, 1998) proposed the follow-

ing definitions for an optimization problem and for an instance of an optimization

problem:

- An optimization problem is a set I of instances of an optimization problem.

- An instance of an optimization problem is a pair (S, f), where S is a set of

feasible solutions, and f an objective function or mapping f : S → R1. Given a

minimization problem, the objective is to find an optimal solution s ∈ S (also called

global optimum) for which f(s) < f(s′), ∀s′ ∈ S.
The optimization problems can be divided into two categories: problems with

continuous variables and problems with discrete variables, named combinatorial

optimization problems. In the continuous problems, solutions are a set of real num-

bers. In the combinatorial optimization problems (COP), solutions are objects (e.g.,

integer, permutation, graph) from a finite or possibly countable infinite set.

1.1.2 Heuristic methods for combinatorial optimization prob-

lems

In this section, we present an overview of some heuristic and metaheuristic

methods including greedy algorithms, neighborhood search algorithms, and evo-

lutionary algorithms.

1.1.2.1 Greedy algorithms

Greedy algorithms generate feasible solutions from scratch. In each step, a

value is assigned to a decision variable. The choice of this value depends on the

decisions and their values made in the previous steps. This choice can influence

the quality of final solution. We find different problems that have been solved with

greedy heuristics, like GRASP solved time constrained vehicle scheduling problem

(Atkinson, 1998), GRASP applied to quadratic assignment problem (Fleurent &

Glover, 1999), and the nearest neighbor heuristic for the travelling salesman prob-

lem (Reinelt, 1994).

1.1 Combinatorial optimization problems and heuristic methods 21

1.1.2.2 Local search algorithms

Local search corresponds to move from a solution to another one in its neighbor-

hood according to some well-defined rules. A local search algorithm begins from

an initial solution x1 ∈ X . Then, at each step n, a new solution x0 is generated in

the neighborhood V (xn) of the current solution x.
Formally, V (x) ⊆ X is called the neighborhood of x where x ∈ X . For in-

stance, if X is a set of binary vectors and x ∈ X , a neighborhood V (x) of x can be

defined as bit-flip mapping for these binary vectors. This bit-flip neighborhood can

be presented as the set of all solutions x ∈ X realized from x by flipping a single

coordinate from 0 to 1 or reversely.

Formally, the set of all the possible solutions generated with a single bit-flip

move is given as: V (x) = {x′ ∈ X | x ⊕ bit − flip(u), ∀u ∈ {1, ..., n}} where ⊕
is used to denote the move operator which presents the transition from the current

solution x to the new neighboring solution x0.

1.1.2.2.a Descent/ascent local search

Descent/ascent local search is the simplest form of local search (Algorithm 1.1).

For a maximization problem, it is called ascent or hill climbing algorithm. In each

iteration of this algorithm, a better solution is chosen among the neighbors of the

current solution. For the next generation, the new solution is the new starting point.

These operations are repeated until no better solution exists in the neighborhood. In

the literature, there is two main types of descent algorithms, first improvement and

best improvement. In the first improvement, the first better solution found in the

neighborhood is selected. The best improvement explores the entire neighborhood,

to find the best neighboring solution. Descent search can easily be trapped into local

optima.

Algorithm 1.1. Descent algorithm

Require: Initial solution s
Ensure: Improved solution sbest
1: sbest ← s
2: while local optimum is not reached do

3: Select a neighboring solution s′ ∈ N(sbest)
4: if f(s′) < f(sbest) then

5: sbest ← s′

6: end if

7: end while

1.1.2.2.b Simulated Annealing (SA)

Kirkpatrick et al. (Kirkpatrick & al., 1983) proposed the simulated annealing

algorithm (Algorithm 1.2). It is a randomized local search algorithm that has an

explicit strategy to escape local minima. Iteratively, the current solution is modified

by randomly selecting a move from the neighborhood. If this solution improves the

22 State of the art

current solution, it is directly accepted as a new current solution. Otherwise, it will

be accepted, but with a certain probability based on the control parameters which

are the temperature and the cost increase (for minimization). When the tempera-

ture is high and the cost increase is low, the move may be accepted with certain

probability. According to predefined cooling schedule, the temperature is progres-

sively decreased. When the temperature is adequately low, the method stops at a

local optimum by allowing only improving moves. A great number of different

simulated annealing algorithms have been proposed in the literature to solve opti-

mization problems like the multidimensional knapsack problem (Drexl, 1988), the

graph coloring problem (Lim & Wang, 2004), etc.

Algorithm 1.2. Simulated Annealing algorithm

Require: Initial solution s
Ensure: Improved solution sbest
1: n=0
2: sbest ← s
3: while stopping condition not reached do

4: Select a random neighboring solution s′ ∈ N(sbest)
5: △f = f(s)− f(s′)
6: if△f ≥ 0 or exp(△f/T (n)) > random[0, 1] then

7: s← s′

8: end if

9: if f(s) < f(sbest) then

10: sbest ← s
11: end if

12: n = n+ 1
13: end while

1.1.2.2.c Tabu search (TS)

The tabu search algorithm (Algorithm 1.3) was proposed by Glover (Glover,

1986). Tabu search (TS) is a neighborhood search method which employs flexible

memory to avoid being trapped at local optimum. The visited solutions, which are

maintained in this memory, are declared tabu to restrict the search space and avoid

cyclic behavior. A short term or a long term memory can be used, in order to im-

prove the exploration quality. When a tabu move can result in a solution better than

any visited so far, this solution can be accepted. This is the aspiration criterion.

In (Taillard, 1991), Taillard et al. proposed the robust tabu search (Ro-TS) for the

quadratic assignment problem. Carlton and Barnes (Carlton & Barnes, 1996) ap-

plied reactive TS to solve the travelling salesman problem. Hertz et al. (Hertz & de

Werra, 1987) used tabu search to solve the graph coloring problem, etc.

1.1 Combinatorial optimization problems and heuristic methods 23

Algorithm 1.3. Tabu search algorithm

Require: Initial solution s
Ensure: Improved solution sbest
1: T ← ∅ { T is the tabu list}

2: sbest ← s
3: while stopping condition not reached do

4: Find the best neighbor s′ ∈ N(s), such that (m ⊕ s = s′ and (m /∈ T or

aspired(m)=true))

5: s← s′

6: Update the tabu list T by adding m

7: if f(s) < f(sbest) then

8: sbest ← s
9: end if

10: end while

1.1.2.2.d Variable Neighborhood Search (VNS)

The Variable Neighborhood Search algorithm (VNS) (Algorithm 1.4) was pro-

posed by Mladenovic and Hansen (Mladenovic & al., 2010). VNS is a local search

algorithm which exploits the idea of neighborhood change. VNS is extended into

many forms of algorithms like Variable Neighbor Descent, Reduced VNS, Basic

VNS, Skewed VNS, etc. Different algorithms have been proposed using VNS like

VNS for the graph coloring problem (Avanthay & al., 2003), VNS for the multidi-

mensional knapsack problem (Puchinger & Raidl, 2005), VNS methodology for the

vertex separation problem on generic graphs (Duarte & al., 2012), etc.

Algorithm 1.4. Variable Neighborhood Search algorithm

Ensure: Improved solution sbest
1: s← initial_solution_generation, choose {Nk}, k = 1, ..., kmax

2: sbest ← s
3: repeat

4: k = 1
5: repeat

6: s′ ← Random_solution(Nk))
7: s′′ ← Local_search(s′)
8: if f(s′′) < f(s′)) then

9: s← s′′

10: else

11: k ← k + 1
12: end if

13: if f(s′′) < f(sbest)) then

14: sbest ← s′′

15: end if

16: until k = kmax

17: until stopping condition is not reached

24 State of the art

1.1.2.2.e Iterated Local Search (ILS)

Iterated Local Search (ILS) algorithm (Algorithm 1.5) has been introduced by

Baum (Baum, 1987). Starting from a local optimum, ILS performs some perturba-

tion moves to transform it to an intermediate solution. Then, the perturbed solution

is used as an initial solution to apply local search procedure, in order to obtain a

new local optimum.

If the perturbation is too weak, the search will often return to visited solutions.

If the perturbation is too strong, ILS becomes a simple random restart algorithm.

Consequently, the perturbation strategy should either be randomized or adaptive.

ILS is applied to several optimization problems like the flow shop problem (Stützle,

1998), the quadratic assignment problem (Misevicius & al., 2006), the graph color-

ing problem (Chiarandini & Stützl, 2002), the graph bipartitioning problem (Martin

& Otto, 1996), etc.

Algorithm 1.5. Iterated local search algorithm

Ensure: Improved solution s′′

1: s0 ← initial_solution_generation
2: s← local_Search(s0)
3: while stopping condition not reached do

4: s′ ← solution_Perturbation(s, history)
5: s′′ ← local_Search(s′)
6: end while

1.1.2.3 Population based algorithms

Among population based algorithms, we present the genetic algorithm and the

ant colony optimization algorithm.

1.1.2.3.a Genetic Algorithms (GA)

Genetic algorithm (Algorithm 1.6) was developed by Holland (Holland, 1975).

The genetic procedure is based on different operators such as mutation and recom-

bination. The reproductive success is formulated with a fitness function.

The genetic algorithm performs the following basic process: a set of solutions,

called population, are maintained. Some solutions are selected from this population

to be recombined to form new solutions. The new solutions can be mutated to

create other solutions. The population is updated with new solutions generated.

The process is repeated until a given stop condition is satisfied.

We cite some examples of genetic algorithms solving the quadratic assign-

ment problem (Tate & Smith, 1995; Misevicius, 2004), the vehicle routing problem

(Braysy, 2011), the multidimensional knapsack problem (Chu & Beasley, 1998),

etc.

1.1 Combinatorial optimization problems and heuristic methods 25

Algorithm 1.6. Genetic algorithm

1: t = 0
2: P (0)← initial_Population
3: evaluate_Population(P (0))
4: while stopping condition not reached do

5: P ′ ← Select_Parents(P (t))
6: P ′ ← Recombine(P ′)
7: P ′ ←Mutate(P ′)
8: evaluate_Population(P ′)
9: P (t+ 1)← UpDate_population(P (t), P ′)

10: t = t+ 1
11: end while

Algorithm 1.7. Memetic algorithm

Require: |P| (size of population P)

Ensure: S∗ (best solution found is recorded)
1: P ← Generation(|P |)
2: evaluate_Population(P)
3: S∗ ← Bestsolution(P)
4: f ∗ ← f(S∗)
5: while stopping condition not reached do

6: P ′ ← Select_Parents(P (t)) (two or more parents are selected from the

population)

7: s0 ← Recombine(P ′) (one or more offspring can be generated from the

parents)

8: s← local_Search(s0) (the offspring can be improved by local search)

9: P (t + 1) ← UpDate_population(P (t), s) (population is evaluated and up-

dated with the new solutions)

10: (S∗, f ∗) ← UpDate_Best_solution(S∗, f ∗, P) (the best solution is re-

tained)

11: t = t+ 1
12: end while

1.1.2.3.b Ant Colony Optimization (ACO)

Ant colony optimization (ACO) was proposed by Dorigo et al. (Dorigo & al.,

1991). In each iteration, a number of artificial ants is used in a greedy way, to gener-

ate solutions. Then, each ant chooses the amount of pheromone to be included into

the current partial solution. When a complete solution is generated, the procedure

is repeated with updated pheromone levels, until reaching a stopping criterion.

Many works have been developed using ACO like the graph coloring problem

(Dorigo & al., 1991), the job shop scheduling problem (Colorni & al., 1994), the ve-

hicle routing problem (Bell &McMullen, 2004) and the multidimensional knapsack

problem (Changdar & al., 2013).

26 State of the art

1.1.2.4 Hybridizing metaheuristics with (meta-) heuristics

Recently, researchers have combined metaheuristics to solve optimization prob-

lems. Generally, it consists on merging local search methods and population based

methods. Population based methods can determine the promising regions of the

search space. Local search methods determine quickly the best solutions. One of

the successful hybrid algorithms is memetic algorithm (Algorithm 1.7), which is

proposed by Moscato (Moscato, 1989).

1.2 Multi-agent based optimization approaches

Multi-agent system (MAS) technology becomes a popular paradigm used for

the conceptualization, design, analysis and implementation of many approaches and

solutions. In this section, we present multi-agent systems, then, we focus on studies

using this technique for optimization.

1.2.1 Multi-agent system

An agent is a physical or virtual entity that: (Ferber, 1999)

— can act in an environment;

— can communicate with other agents;

— is moved by a set of tendencies which can be an individual objective or a

satisfaction function;

— has its appropriate resources;

— can perceive its environment with limit;

— has skills and provides services;

— can reproduce;

— has behaviors to satisfy objectives using its resources and its skills based on

its perceptions, its representations and its communications with other agents.

A multi-agent system (MAS) is a system composed of agents which interact,

most of the time, according to cooperation and competition modes. In fact, in a

MAS, each agent has a partial view point to solve a problem because it has limited

information about this problem. Each agent is only responsible for its knowledge,

its actions and its communications with other agents. Nevertheless, it has no global

view of the whole system. Therefore, a MAS is a distributed system where the tasks

to be realized and the skills to make are distributed by agents. The agents interact

in a MAS according to the following types of interaction including the cooperation

to solve a common purpose, the coordination and the negotiation.

In a MAS, we distinguish three types of agents (Ferber, 1999):

— Cognitive agent: it has a capacity of reasoning and knowledge to execute its

tasks and to manage the interactions with other agents.

— Reactive agent: it does not have a representation of his environment, but it

acts with a behavior of stimulus answer and it reacts in a present state of its

environment. This type of agent does not consider the past and does not plan

the future.

1.2 Multi-agent based optimization approaches 27

— Hybrid agent: it has reactive and cognitive components to improve its ca-

pacity of reasoning. Analogically with the human interactions in a social

organization, in a MAS, agents have to communicate because a single agent

is an isolated, deaf and mute individual.

TheMAS is applied to several domains like optimization and decision problems,

modeling and simulation. Furthermore, it can be used in distributed applications

such as management of industrial systems, control of the aerial traffic, telecommu-

nication networks, e-commerce, robotics, image segmentation, etc.

We will present a review of multi-agent based optimization algorithms and their

applications. These studies are divided into two types of frameworks based on

agents functionality. Some frameworks use agents which explore the same search

space, but with various strategies of resolution. They can be called as strategy based

agents frameworks. In other frameworks, each agent handles a part of search space.

It consists in decomposing the global problem to different sub-problems. This de-

composition can concern the variables, the constraints and the objective functions.

This category of frameworks can be called as sub-problems based agents frame-

works.

1.2.2 Strategy based agents frameworks

In strategy based agents frameworks, agents are responsible for actions and be-

haviors. These agents explore learning or improving certain functionality. The

asynchronous team (A-Team) (Talukdar & al., 1993, 1996) is the first conceptual

framework that uses autonomous and cooperated agents to solve optimization prob-

lems. A-Team is based on features from a number of systems like insect societies,

cellular communities, genetic algorithms, simulated annealing, local search, and

brainstorming. A-Team is composed of a set of interconnected memories to create

a strongly cyclic network. Each memory, which saves solutions produced by each

agent, is dedicated to one problem, in order to form a population. In this network,

each agent is in a closed loop. All agents work in parallel way and no one of them

waits for results from another agent. This cooperation between agents is called

asynchronous cooperation.

These agents are divided into two types: construction agents which add solu-

tions to population and destruction agents which delete solutions from population.

Each agent defines three components: an operator or an algorithm that generates so-

lutions, a selector that selects which solutions are maintained, and a scheduler which

organizes behaviors (when solutions have to be selected and with what resources).

The intelligence of the agents is realized by their selector and their schedulers. Their

skills are resident in their operators.

The A-Team has been applied to several optimization problems like travelling sales-

man (De Souza, 1993), control of electric networks (Talukdar & Ramesh, 1994;

Avila-Abascal & Talukdar, 1996), job-shop-scheduling (Chen & al., 1993), train-

scheduling (Tsen, 1995), and steel and paper mill scheduling (Rachlin & al., 1996;

Lee & al., 1995).

In (Milano & Roli, 2004), Milano et al. proposed the Multi-AGent Metaheuris-

28 State of the art

tic Architecture (MAGMA). This approach is a conceptual framework that com-

bines hybrid metaheuristics in a multi-agent system. MAGMA is divided into dif-

ferent levels of abstraction. At each level, there are one or more agents. LEVEL-0

contains feasible solutions for the upper level. The agent, in this level, initializes

the search process. LEVEL-1 is composed of several agents that improve solutions

received from LEVEL-0 using local search algorithms. LEVEL-2 agents guide

the search toward promising regions and provide mechanisms for escaping local

optima by exploring evolutionary techniques. LEVEL-3 Agents are agents respon-

sible for coordination. These agents decide which information to communicate

between the agents of LEVEL-1 and LEVEL-2. They know the strategy of all other

level agents. In this work, several metaheuristics are used like GRASP, ILS, MA

and ACO. MAGMA can decompose the metaheuristics components into a group of

agents and makes communication with these agents to exchange information, but

this communication is not dynamic. Each level depends on other levels.

Jȩdrzejowicz and Wierzbowska (Jȩdrzejowicz & Wierzbowska, 2006) elabo-

rated the JADE-A-Team (JABAT) which is based on the A-Team architecture. JA-

BAT is composed of two types of Optimization agents (called OptiAgent) and Solu-

tionManagers agents. Each OptiAgent implements improvement algorithms (simu-

lated annealing, tabu search, genetic algorithm, local search heuristics). Solution-

Managers agents have the common memory which contains solutions generated by

OptiAgents. SolutionManagers agents are responsible for updating the common

memory and sending individuals to OptiAgents. All agents act in parallel way. JA-

BAT has no intelligence communication between agents.

In (Barboucha & Jȩdrzejowicz, 2007), Barbucha et al. applied the JABAT

framework to the vehicle routing problem (VRP). They integrate four instances of

OptiAgents which consist in four local improvement procedures: OA 2-Opt agent

is an implementation of the 2-opt local search algorithm for VRP which operates on

a single route, OA StringCross agent exchanges two strings (routes) of customers

by crossing two edges of two different routes. OA 2-Lambda agent executes the

local search algorithms based on λ-interchange local optimization algorithm. This

agent solves only the instances in which the customers are uniformly arranged on

the plane. OA 2-LambdaC agent explores the same algorithm of OA 2-Lambda

agent, but it concentrates on instances in which the customers are clustered.

In addition, JABAT framework has been implemented for multi-mode resource-

constrained project scheduling problem with minimal and maximal time lags prob-

lem (MRCPSP-GPR)(Jȩdrzejowicz & Ratajczak-Ropel, 2013). They created five

instances of OptiAgents whose two agents (optiLSAm and optiTSAe) explore two

local search algorithms with different neighborhood structures, one agent called op-

tiTSAe applies tabu Search algorithm, one agent named optiCA executes crossover

algorithm, and one agent named optiPRA employs path relinking algorithm.

In (Barbucha, 2013), JABAT is applied to the capacitated vehicle routing prob-

lem. In this work, they used four instances of OptiAgents which can be divided into

two groups operating on one (intra-route) or two (inter-routes) routes and include:

modified implementations of 3-opt procedure (Lin, 1965) and λ-interchange local

optimization method (Osman, 1993)(λ=2), and two dedicated local search methods,

1.2 Multi-agent based optimization approaches 29

based on moving/exchanging selected nodes or edges between routes.

In (Xu & Liu, 2006), Xu et al. proposed a multi-agent based particle swarm op-

timization (HMAS) for cluster analysis. In this framework, a group of agents forms

a swarm and a group of swarms agents forms sub-populations. In these swarms,

agents have the ability of self-organization, learning and detecting local environ-

ment.

The framework of (Bae & al., 2009) uses the multi-agent system to simulate the

traffic signal system. The agents are the driver agent and the vehicle agent. It is the

vehicle agent that is responsible for optimization tasks by exploring the simulated

annealing method.

The EMAS proposed by (Hanna & Cagan, 2009) explores the A-Team archi-

tecture using a group of strategy agents which execute genetic algorithms. In each

iteration, all agents are activated and perform actions based on their genetic se-

quence, in order to product solutions. Then, the considered agents are evaluated

according to the new solutions generated. The solutions provide a basis for increas-

ing or decreasing an agent’s fitness. The evaluation of agents is based on the average

solution quality in a memory. The memory is made by saving new solution found

by each agent. In fact, reproduction phase is applied only for selected parents based

on their fitness and new agents are created. During the selection phase the weakest

individuals (agents with low fitness value) are removed from the population. This

approach was applied to the travelling salesman problem.

Meignan et al. (Meignan & al., 2010) proposed the Coalition-BasedMetaheuris-

tic (CBM). It is a framework that used the multi-agent paradigm to select between

the intensification techniques and the diversification techniques according to the

search state. Each technique is manipulated by an agent. All agents are guided by a

decision process to choose the appropriate actions which are dynamically adapted

during the search using reinforcement learning. These agents are always in coalition

state because they are in competition to find the best solution. There is no commu-

nication between them. The proposed approach is applied to the vehicle routing

problem.

The multi-agent approach presented in (Guo & al., 2013) is composed of sev-

eral agents which explore the genetic algorithm. The learning mechanism, which

is built for each agent, guides the agents to choose the most appropriate genetic

operators during each generation. The genetic operators are the crossover opera-

tors and the mutation operators. In fact, there is an operator pool that stores these

operators to be selected. In this pool, the crossover operators and the mutation

operators are saved in pairs. Each pair corresponds to one crossover operator and

one mutation operator. At the beginning of each generation, two operators have the

same intensification or diversification search tendency. After applying a decision

making heuristic, one of these operators is selected for each agent. The decision

making heuristic is performed to learn adaptively and concurrently the behavior of

all agents, in order to predict the most suitable operator. The proposed approach

aims at solving the long-term car pooling problem.

30 State of the art

1.2.3 Sub-problems based agents frameworks

For sub-problems based agents frameworks, we will present briefly two well-

known frameworks that have been the results of various works: Probability Col-

lectives (PC) approaches and Distributed Constraint Optimization Problems ap-

proaches (DCOP).

Probability Collectives approaches Probability Collectives (PC) in the frame-

work of Collective Intelligence (COIN) was first proposed by David Wolpert in

1999 (Wolpert & Tumer, 1999). It is an extension from distributed optimization

methodology for modelling and controlling distributed MAS, inspired from a so-

ciophysics viewpoint with deep connections to game theory, statistical physics, and

optimization (Wolpert & Tumer, 1999; Wolpert & al., 2006). In PC, each variable

is an independent agent. The action of these agents is assigned via probability dis-

tributions which are updated independently according to their local goal and to the

global or system objective (Wolpert & Tumer, 1999; Bieniawski, 2005; Wolpert &

al., 2006). The process is repeated until reaching equilibrium. This equilibrium con-

cept is referred to Nash equilibrium (Basar & Olsder, 1995). The PC approach has

been applied to unconstrained problems like: (Bieniawski, 2005; Kulkarni & Tai,

2008, 2009; Bhadra & al., 2006; Wolpert & al., 2006; Huang & al., 2005; Vasirani

& Ossowski, 2008; Huang & Chang, 2010; Smyrnakis & Leslie , 2009), as well as

constrained problems like: (Wolpert & Tumer, 1999; Bieniawski, 2005; Sislak &

al., 2011; Wolpert & al., 2004; Autry, 2008; Kulkarni & Tai, 2011, 2010).

1.2.3.0.a Distributed constraint optimization approaches

Several optimization problems can be classified as Constraint Satisfaction Prob-

lems (CSP) such as the graph coloring problem, the scheduling problem, the asset

allocation problem, etc. Solving a CSP is equivalent to finding an assignment of val-

ues to all variables such that all constraints are satisfied. The Distributed Constraint

Satisfaction Problem resolution is the distributed version of constraint satisfaction

problems resolution (CSP). In DCOP, each variable is allocated to an agent which

has control of its value. Below, we present some representative DCOP algorithms.

ADOPT (Modia & al., 2005) is the first asynchronous complete algorithm for

optimally solving the Distributed Constraint Optimization Problem (DCOP). Each

agent must optimize a global objective function, so it must exchange the choice

of variable’s values to other agents. DCOP uses only local communication with

neighboring agents. The global objective function corresponds to the set of con-

straints and each agent knows about the constraints in which its variables are in-

volved. ADOPT uses the distributed backtrack search via a novel search strategy

and backtrack thresholds. These techniques help agents to explore locally and asyn-

chronously partial solutions. In order to guarantee a good quality solution in a rea-

sonable time, ADOPT employs the bounded-error approximation algorithm.

In (Yeoh & al., 2010), they proposed a Branch-and-Bound ADOPT (BnB-ADO-

PT). It is a memory-bounded asynchronous DCOP search algorithm that employs

the message-passing and the communication framework of ADOPT (Modia & al.,

2005). In BnB-ADOPT algorithm, the best-first search was replaced by the depth-

1.3 Conclusion 31

first branch-and-bound search. Like ADOPT algorithm, the agents in BnB-ADOPT

algorithm are implemented in asynchronous and concurrent way. The communi-

cation is only between agents that share constraints. The agents are ordered via a

pseudo-tree.

Distributed stochastic algorithm (DSA) (Fabiunke, 1999) is a uniform algo-

rithm. In each step, each agent sends its variable value, to its neighboring agents.

When it modifies this value, in the previous step, and it receives the state value from

its neighbors, it can decide, randomly, to keep its current value or change to a new

one. But, the neighbors have to maintain their values. The modification of variable

value aims at reducing violated constraints. The DSA uses a probability p to select

how frequently neighboring agents change values. p is called the degree of parallel

executions. DSA has been used in several DCOP with various extensions (Fabi-

unke, 1999; Fitzpatrick & Meertens, 2001) like graph coloring problem (Zhang &

al., 2002), scheduling problem (Zhang & al., 2003), etc.

1.3 Conclusion

In this chapter, we described combinatorial optimization problems and heuristic

methods which are used to solve them. Heuristic methods can generate high quality

solutions in reasonable computing time. They are improved by techniques of diver-

sification and techniques of intensification, in order to escape local optimum. Other

studies explore multi-agent system to create distributed algorithms for solving op-

timization problems. In the second section, we introduced the agent paradigm and

their applications to optimization problems. These methods are motivated by spe-

cific features offered by MAS like distributed computing, agent cooperation and dy-

namic decision making. Indeed, multi-agent systems have been successfully applied

to solve many challenging and various problems encountered in various settings.

The review above aims to describe some recent MAS-related studies to illustrate

the interest of MAS for building expert and intelligent systems for problem solving.

Our work shares similarities with these previous studies in the sense that it is based

on the generic framework of multi-agent systems. The proposed work, as described

in the next chapter, distinguishes itself by some particular features including the

distributed and collaborative architecture, the design of both intensification and di-

versification agents as well as the decision making method based on reinforcement

learning. In our work, we investigate a new solution approach for the combinatorial

optimization problems based on the principles of multi-agent systems (MAS).

2
A Multi-Agent based Optimization

Method for combinatorial

optimization problems

This chapter presents a new Multi-Agent based Optimization Method for Com-

binatorial Optimization Problems (MAOM-COP). A multi-agent system (MAS) is

typically composed of a group of interacting agents where each agent has one or

more basic skills. The agents can collectively find solutions to a difficult problem

even if each agent alone can not solve it. These agents explore several optimiza-

tion techniques like local search algorithms, crossover operators and perturbation

techniques. The selection of each one of these techniques is made in an intelligent

way based on reinforcement learning. MAOM-COP is evaluated on a number of

classical combinatorial optimization problems.

Contents

2.1 Introduction and motivation 32

2.2 MAOM-COP architecture 32

2.2.1 Decision matrix with reinforcement learning 32

2.3 MAOM-COP process . 35

2.4 Decision-maker agent . 38

2.4.1 Conditions and actions 38

2.4.2 Archive of elite solutions 39

2.5 Intensification agents . 39

2.5.1 Conditions and actions 39

2.6 Perturbation agent . 41

2.6.1 Reduced perturbation technique 41

2.6.2 Strong perturbation technique 41

33

34 A Multi-Agent based Optimization Method for COPs

2.7 Crossover agents . 41

2.8 Discussion . 43

2.9 Conclusion . 43

2.1 Introduction and motivation

As we have presented in the first chapter, several metaheuristic methods and

multi-agent based optimization methods have been proposed in the literature to

tackle optimization problems. In this work, we present a generic Multi-Agent based

Optimization Method for Combinatorial Optimization Problems (MAOM-COP).

MAOM-COP is generic and it can be applied to classical optimization problems.

In a search algorithm, one of the most important issues is to find the right balance

between diversification and intensification. MAOM-COP distinguishes itself by its

learning based distributed computing model, in order to know if the search needs

exploration or exploitation, in an intelligent way.

In our framework, we add a cooperative dimension to the evolutionary process.

Cooperation between individuals is modeled by embodying each strategy in an au-

tonomous and learning agent which can communicate. The team of agents navigates

the search space cooperatively. Some agents of MAOM-COP, which are called in-

tensification agents, employ local search algorithms to reach high quality local op-

tima. Other agents, which are called diversification agents, are trigged, when the

search needs to be diversified. These last agents explore perturbation techniques

and crossover operators.

In the following section, we will present the architecture of MAOM-COP. Then,

we will explain the behavior of each agent. In next chapters, we will apply and

evaluate the performance of MAOM-COP on a number of classical combinatorial

optimization problems.

2.2 MAOM-COP architecture

The proposedMAOM-COP architecture contains the following agents: decision-

maker agent, intensification agents and diversification agents. The intensification

agents are composed of agents which perform local search algorithms. The diver-

sification agents are composed of two types of agents which are perturbation agent

and crossover agents. Figure 2.1 illustrates the generic MAOM-COP architecture,

whose components are detailed in the following sections. Algorithm 2.1 describes

the generic procedure of the proposed method. In addition to the above agents,

MAOM-COP relies on reinforcement learning based on decision matrices for deci-

sion making. By linking a set of conditions and a set of actions, such a matrix helps

an agent to know the agents with which it will communicate, according to the state

of the search process.

2.2 MAOM-COP architecture 35

Decision-maker Agent

The common archive

Intensification Agent 1

Local_Search_neighbor1
Intensification Agent 2

Local_Search_neighbor2.

.

.

.Intensification Agent I

Local_Search_neighborI

A set of I Intensification Agents

2-Select between the intensification agents

and the crossover agents based on the reinforcement

learning
Crossover Agent 1

Crossover_Operator1
Crossover Agent 2

 Crossover_Operator2
.

.

.

.Crossover Agent I

Crossover_Operator C

A set of C Crossover Agents

...

one Solution

one Solution

3a-Fitness of each intensification agent

is the fitness of the local best

solution generated.

3b-Fitness of each crossover agent

is the fitness of the local offspring

obtained.

Perturbation Agent

Reduced_Perturbation

Strong_Perturbation

one Solution

one Solution

4a-Activate the perturbation agent

based on the reinforcement learning.

Diversification Agents

1-Fitness of the decision-maker agent is the

fitness of the best global solution discovered.

C solutions

I solutions

Figure 2.1 – The architecture of the search using cooperative agents in MAOM-COP

2.2.1 Decision matrix with reinforcement learning

In the proposed MAOM-COP, some agents (decision-maker agent and intensi-

fication agents) need to decide when to activate other agents and which agents to

activate. Such decisions are made based on a decision matrix which is dynami-

cally adjusted by a reinforcement learning process. This technique allows to adapt

the search strategy according to the experiences acquired during the search pro-

cess. For instance, after the application of an intensification action, if the search is

observed to be stagnating (e.g., captured by the condition ’the best solution is not

improved for a high number of iterations’), the applied action should be avoided for

the next search step and an action ensuring more diversification should be favored.

Inversely, if the applied action leads to a search progress (e.g., captured by the con-

dition ’the best solution is just improved’), the same action should be given a high

chance to be applied again (notion of reward).

We use a pair (condition, action) to represent the decision rules. The condition
part corresponds to the necessary prerequisite to trigger an associated action, the

action part indicates which action is to be performed. Let C be the set of conditions

and A the set of actions to perform. For a condition Ci, a weight Wij (initialized

to 0) is associated to each action Aj . The conditions are defined based on the im-

provement situation occurred at the end of each search generation (i.e., one while
iteration in Algorithm 2.2). The decision matrixW is used to dynamically influence

the probability of applying each action under each condition.

36 A Multi-Agent based Optimization Method for COPs

C1

C2

...

A1 A2 ...

Cc

Aa

W1,1 W1,2 W1,a

W2,1 W2,2 W2,a

......

...

... ...

Wc,1 Wc,2 ... Wc,a

Figure 2.2 – Structure of the decision matrix

A1 A2

C1

C2

C3

2 1

1

A1 A2

C1

C2

C3

2 1

11

3 2.5

reinforcement=1

Evaporation rate=0.5

Matrix before reinforcement Matrix after reinforcement

1

1 0.5

Figure 2.3 – An example of reinforcement learning with the decision matrix

We suppose that the current condition is C3 (e.g., the local best solution has been

improved in recent 20 generations). At this condition, action A1 (e.g., activate inten-

sification agents) must be reinforced for the current generation. Then, reinforcement

is applied by increasing the weightsW31 to augment the chance of selecting the ap-
plied action under this condition (e.g. W31 = 3 × 0.5 + 1 = 2.5). Nevertheless,
the weightsW32 is decreased by µ (e.g. W32 = 1× 0.5 = 0.5

2.3 MAOM-COP process 37

Given the decision matrix W (Figure 2.2), we use the following equation (Guo

& al., 2013) to calculate the probability P (Ci, Aj) of applying action Aj ∈ A under

condition Ci ∈ C.

P (Ci, Aj) =
Wij

∑

j∈A Wij

(2.1)

At the beginning of each generation, the improvement situation is assigned to

a default condition. Then, according to the decision matrix, the appropriate action

for this condition is selected according to the probability given in Eq. (2.1). At

the end of each generation, the performed action is evaluated with respect to its

condition and the concerned weight value is increased if an improvement in solution

quality is obtained in this generation. We use a credit assignment to perform the

reinforcement learning in order to identify the beneficial experiences and determine

a reward for them. Here, an experience is represented as a triplet (condition Ci,

action Aj , improvement V). When a new best local or global solution is found,

the weight value Wij which is related to the action of this generation is reinforced

by adding a reward rate σ to Wij . Before adding the reinforcement value, all the

weight valuesWij in the decision matrix corresponding to the related condition, are

decreased with an evaporation value µ, in order to enlarge the influence of the new

reward obtained in the current generation. The reinforcement with reward σ is then

performed using the following equations:

W ′

ij = µ×W ′′

ij (2.2)

Wij = µ×W ′

ij + σ (2.3)

whereW ′

ij is the weight value before adding the reinforcement σ,W ′′

ij is the weight

value before the evaporation µ, and σ is the learning factor.

Figure 2.3 shows an illustrative example of this reinforcement learning process

(More information about the example are given in section 2.4.1). In the proposed

MAOM-COP, such a matrix is used by the decision-maker agent (section 2.4) and

the intensification agents (section 2.5). The respective conditions and actions used

by these agents are provided in these sections.

2.3 MAOM-COP process

The MAOM-COP procedure is summarized in Algorithm 2.1. The decision-

maker agent initiates the search with a random feasible solution. Based on a de-

cision matrix W explained in the previous subsection, it decides to trigger either

the intensification agents or the crossover agents belonging to diversification agents

(lines 1-9 of Algorithm 2.2). As a result, one of the two following cases occurs.

— Case 1: Intensification agents are triggered:

This case corresponds to the situation where the decision-maker agent de-

cides that a more intensified search is needed considering the current search

state. For this, it triggers the intensification agents by sending them the

38 A Multi-Agent based Optimization Method for COPs

current solution (lines 10-11 of Algorithm 2.2). Each intensification agent

looks for the best solution in the predefined neighborhood for q iterations by
applying a local search procedure. Each agent uses a different neighborhood

structure and starts with the solution received from the decision-maker agent

(lines 6-11 of Algorithm 2.3).

After an iteration (i.e., one while iteration in Algorithm 2.3) of the intensifi-

cation agent concerned, each intensification agent decides whether it needs

to communicate with the other intensification agent or it can continue its

process without information exchange. This decision depends on another

decision matrix Q (see section 2.5). Q has the same mechanism as the de-

cision matrix W of the decision-maker agent, but here, the actions to be

performed are either to trigger another intensification agent (for intensifica-

tion) or a perturbation agent (for diversification).

When the search needs to be intensified, the agent concerned calls another

intensification agent and remains blocked until it receives the best solution

sent by the other intensification agent. Thereafter, the requesting agent com-

pletes its search starting with the solution received. When the desired action

is about diversification, the perturbation agent is triggered (lines 17-23 of

Algorithm 2.3). This agent performs one of two types of perturbations (re-

duced and strong perturbations) with the purpose of helping the intensifica-

tion agents to move towards new search areas. According to whether the

requesting intensification agent needs a small or large diversification, either

a reduced perturbation or strong perturbation is performed.

The new solution from the perturbation is passed to the intensification agent

to continue its search. The intensification agents execute for a number of

iterations by exchanging information as we just explained (lines 27-28 of

Algorithm 2.3). The best solutions obtained are forwarded to the decision-

maker agent (line 38 of Algorithm 2.3). The decision-maker agent records

the solutions received in an archive that represents a commonmemory shared

by all agents in the algorithms (lines 17-26 of Algorithm 2.2).

— Case 2: Crossover agents are triggered:

If the crossover agents are activated (lines 13-15 of Algorithm 2.2), they

are applied to two parent solutions (which are selected from the archive) to

create offspring solutions (section 2.7). These new solutions are sent back

to the decision-maker agent which stores them in the shared archive if they

are of good quality. The best offspring solution is taken as the new starting

point, to continue the search.

The decision-maker agent uses the current best solution found so far to start the next

cycle (generation) of the algorithm. The values of the decision matrix are updated

according to the new state reached by the last generation, in order for the decision-

maker agent to activate the appropriate agents for the next generation. This search

process is repeated until a stop condition is satisfied (e.g., a maximum number of

generations) and the best solution discovered is retained as the final result.

2.3 MAOM-COP process 39

Algorithm 2.1. MAOM-COP generic procedure

Require: Four types of agents: one decision-maker agent, i intensification agents,

one perturbation agent, c crossover agents
Ensure: best information (i.e., solution) found

1: decision-maker agent is active until it needs exchanging with intensification

agents or crossover agents (Algorithm 2.2)

2: if decision-maker agent decides to trigger intensification agents then

3: the intensification agents are activated and decision-maker agent waits for

new information from them (Algorithm 2.3)

4: if an intensification agent requests help from the perturbation agent then

5: perturbation agent is activated and the intensification agent is blocked until

it receives information from perturbation agent (section 2.6)

6: perturbation agent is killed after sending information to the corresponding

intensification agent

7: end if

8: if an intensification agent requests help from the other intensification agents

then

9: the requesting intensification agent is blocked until it receives information

from the other intensification agents (Algorithm 2.3)

10: end if

11: the intensification agents are killed after sending information to decision-

maker agent

12: end if

13: if decision-maker agent decides to trigger crossover agents then

14: the crossover agents are activated and decision-maker agent waits for new

information from the crossover agents (section 2.7)

15: the crossover agents are killed after sending information to decision-maker

agent

16: end if

17: Return best information found

40 A Multi-Agent based Optimization Method for COPs

2.4 Decision-maker agent

The decision-maker agent is the coordinating agent. According to the decision

making matrixW (section 2.2.1), the decision-maker agent decides whether it trig-

gers the intensification agents (for more intensification) or crossover agents (for

more diversification). It records the high-quality solutions which are discovered

during the search in the shared memory (archive) (Algorithm 2.2).

The decision-maker agent thus exchanges information with the intensification

agents or the crossover agents. The decision-maker agent stays alive until reaching

a stop criterion (a cutoff time limit, an allowed number of generations). During its

life, it is blocked when other agents are activated. So, it has only one life cycle.

2.4.1 Conditions and actions

During the search process of our algorithm, three types of solutions are used to

define conditions for agent activation: the local current solution obtained by each

agent, the local best solution obtained by each agent and the global best solution

obtained among all agents in the process. The decision matrix of the decision-maker

agent is composed of four different conditions which cover significant situations

that may occur during the search process:

— C1 = The algorithm does not reach g0 generations (cycles);
— C2 = The local or global best solution is improved in the recent g1 genera-

tions and this improvement is a small improvement in the objective function

value F ;

— C3 = The local or global best solution is improved in the recent g1 genera-
tions and this improvement is a large improvement in the objective function

value F ;

— C4 = The global best solution does not have been improved in the recent g2
generations. This solution is a deep local optimum or an optimum solution.

where g0, g1 and g2 are parameters set by the user according to the total allowed

generation number or total run time.

The set of actions are:

— A1 = Activating the intensification agents;

— A2 = Activating the crossover agents.

At the beginning of the search or when there is a large improvement obtained by

the application of an action between two successive generations (this corresponds

to the situations of C1 and C3), the search progresses well and, in this case, it is

appropriate to make intensified search by triggering the intensification agents. If

the decision-maker agent observes no improvement or an insignificant improvement

(this corresponds to the situations of C2 and C4), the search is stagnating and needs

to be diversified by activating the crossover agents.

After each generation (i.e., when the activated agents return their found solu-

tion), the decision-maker agent updates its decision matrix as explained in section

2.2.1. Figure 2.3 illustrates how the decision matrix is changed by the reinforcement

learning procedure. We suppose that in iteration i of Algorithm 2.2, the current con-

2.5 Intensification agents 41

dition C3 is verified (i.e., the local best solution is greatly improved in the recent

g1 = 20 generations). Under this condition, action A1 which corresponds to acti-

vating intensification agents is applied for the current generation. Reinforcement

learning is applied by increasing the weightW31 to augment the chance of selecting

the corresponding action under this condition. In Figure 2.3, we show for this ex-

ample, the initial decision matrix (left), and the matrix (right) after the update with

a reward value σ = 1 and an evaporation value µ = 0.5.

2.4.2 Archive of elite solutions

The decision-maker agent records the best solutions discovered during the search

in an archive. These solutions are generated and submitted by the intensification

agents and the crossover agents. Even if the archive is shared by all the agents of

the model, only the decision-maker agent is responsible to update it. Each time the

decision-maker agent receives a new solution, it adds the solution in the archive, if

it is of good quality and is not present already in the archive.

2.5 Intensification agents

The intensification agents are designed for intensification. During its life time,

an intensification agent employs a neighborhood to generate improved solutions.

During the search, each intensification agent can decide, with the help of a decision

matrix, to exchange information with other alive intensification agents or with the

perturbation agent depending on its state of search. At the end of each intensifica-

tion agent run, the best solution found by the agent is sent to the decision-maker

agent (Algorithm 2.3). Below, we explain the conditions and the actions employed

by intensification agents.

2.5.1 Conditions and actions

As explained at the beginning of this section, each intensification agent can de-

cide, with the help of a decision matrix, to exchange information with other alive

intensification agents or with the perturbation agent depending on its state of search.

In this section, we present the conditions and the actions employed by the intensi-

fication agents. The decision matrices are managed by the same technique of the

decision matrix of decision-maker agent (section 2.2.1).

The set of the conditions are:

— C1 = The local best solution is improved in recent q3 generations and this

improvement is a small improvement;

— C2 = The local best solution is not improved in recent q4 generations;
— C3 = The local best solution is not improved in recent q5 generations and

q5 > q4.

where q3, q4 and q5 are parameters set by the user according to the total generation

number or total run time.

42 A Multi-Agent based Optimization Method for COPs

Algorithm 2.2. Decision-maker agent behavior

Require: parameter opt, interval andmax_opt
Ensure: A best solution Sbest

1: S ← Random_solution {Random initial solution}

2: Sbest ← S {Sbest records the best solution found so far}

3: Fbest ← F {Fbest records the best objective value reached so far}

4: opt← 0 {opt is the counter for consecutive non-improving local optimum}

5: W ← 0 {Initialization of the decision matrix of the decision-maker agent}

6: pop← ∅ {pop is the archive of elite solutions found during the search}

7: while Stopping condition not reached do

8: Update W based on interval, max_opt and opt {interval (matching the

improvement of solution between two successive iterations), max_opt and
opt help to identify the current condition, sections 2.2.1 and 2.4.1}

9: Action_type ← Select an action (agents) to activate based on W {section

2.4.1}

10: if Action_type = Intensification agents then

11: Activate intensification agents and send S to the Intensification agents

12: else

13: Activate crossover agents and send S to the crossover agents

14: opt← 0
15: end if

16: S1 ← ∅, S2 ← ∅ {S1 and S2 are two solutions received from the activated

agents, initialized to empty}

17: if S1 6= ∅ AND S2 6= ∅ then

18: if F (S1) ≥ F (S2) then

19: S ← S1

20: else

21: S ← S2

22: end if

23: tr ← Exist(S1, S2, pop) {Check if S1 and/or S2 are in the archive pop}
24: if tr = false then

25: Add S1 and/or S2 to pop {Add both solutions or one of them in pop}
26: end if

27: Let S ′ be the best solution between S1 and S2

28: if F (S ′) ≤ Fbest then

29: Sbest ← S ′, Fbest ← F (S ′)
30: else

31: opt=opt+1
32: end if

33: else

34: Block this agent {The decision-maker agent waits for solutions from other

agents}

35: end if

36: end while

37: Return Fbest and Sbest

2.6 Perturbation agent 43

The set of actions are:

— A1 = Activating other intensification agents;

— A2 = Activating the reduced perturbation behavior of the perturbation agent;

— A3 = Activating the strong perturbation behavior of the perturbation agent.

Each condition promotes a certain action. Thus, when the condition C1 is met,

one pursues an intensified search by activating other intensification (A1). When

C2 (resp. C3) is satisfied, the search needs to be diversified by triggering the per-

turbation agent with reduced (resp. strong) behavior (A2 or A3). The choice of

the most suitable action is controlled by the corresponding decision matrix of each

intensification agent.

2.6 Perturbation agent

The perturbation agent is triggered by intensification agents under specific con-

ditions (C2 and C3 of section 2.5.1). Basically, this agent disrupts a solution sent by

an intensification agent. The disruption is achieved by either a reduced perturbation

behavior or strong perturbation behavior. Then, the resulting solution is sent back

to the intensification agent which uses the perturbed solution as its new current so-

lution. Since the perturbation agent can be called many times, it can have several

life cycles.

2.6.1 Reduced perturbation technique

The perturbation agent can be triggered when an intensification agent observes a

slight search stagnation (condition C2 of section 2.5.1). From the solution received

from the intensification agent, the perturbation agent performs a number of random

moves to generate a new solution.

2.6.2 Strong perturbation technique

The second case where the perturbation agent can be activated is when it re-

ceives a request for strong perturbation from an intensification agent. The pertur-

bation agent then employs the common archive of elite solutions to create a new

solution.

2.7 Crossover agents

Crossover agents are agents for diversification. Each crossover agent performs a

different crossover operation to generate one offspring solution. Offspring solutions

are transmitted to the decision-maker agent to be a new starting point for the search

process. In both cases, parents are selected from the common archive.

44 A Multi-Agent based Optimization Method for COPs

Algorithm 2.3. Intensification agent behavior

Require: Solution S0 received from decision-maker agent, parameters: maximum itera-

tions iteration_max, improvement threshold interval, consecutive non-improving it-

erationsmax_opt_LS
Ensure: A best solution Sbest_LS

1: S ← S0 {S is the current solution found by each intensification agent}

2: Q← 0 {Q is the decision matrix, section 2.5.1}

3: opt = 0 {opt is the counter for consecutive non-improving local optima}

4: S1 ← S0 {S1 records the solution obtained in generation iteration-1}
5: while iteration ≤ iteration_max do

6: V ← Generate the best solution by exploring an iteration of a local search

7: if F (S) ≤ F (Sbest_LS) then

8: Sbest_LS ← S
9: else

10: opt = opt+ 1
11: end if

12: if (F (S)− F (S1)) < interval or opt = max_opt_LS then

13: {The intensification agent is stagnating and needs helps from another intensifica-

tion agent or the perturbation agent}

14: Sperturbed ← ∅ {Sperturbed is the solution received from another agent, initialized

to empty}

15: Update Q {Update the decision matrix based on the improvement of the current

solution, sections 2.5.1 & 2.2.1}

16: Action_exchange← Select the agent to activate based on Q
17: if Action_exchange = Triggering perturbation agent with weak behavior then

18: Activate the perturbation agent with reduced behavior and send it solution S
19: end if

20: if Action_exchange = Triggering the perturbation agent with strong behavior

then

21: Activate the perturbation agent with strong behavior

22: opt← 0
23: end if

24: if Action_exchange = Triggering other intensification agents then

25: Request the best current solution of other intensification agents

26: end if

27: Let Sperturbed be the best new solution received from any of the above exchange

28: if Sperturbed 6= ∅ then

29: S ← Sperturbed

30: else

31: Block this agent {This agent waits for a solution from other agents }

32: end if

33: else

34: S1 ← S {intensification agent continues its exploration without exchanging in-

formation}

35: end if

36: iteration = iteration+ 1
37: end while

38: Return Sbest_LS to decision-maker agent

2.8 Discussion 45

2.8 Discussion

This chapter presented a multi-agent based optimization method for solving

combinatorial optimization problems. Our method is able to select if the search

needs to be intensified or diversified. This is realized by a group of agents which

concurrently explore the search space but cooperate to coordinate the search and

improve their behaviors. These agents are reinforced by a learning mechanism, in

order to know which techniques to trigger. The intensification agents of MAOM-

COP can as well be related to the VNS and the ILS methods because they use sev-

eral neighborhood strategies and different perturbation techniques throughout the

optimization process. The change of neighborhoods offers an adaptive mechanism

for tracking the optimum in the search space. In addition, switching between sev-

eral perturbation strategies aims to escape poor optima. In contrast with these two

metaheuristics and due to distributed and parallel behaviors of MAOM-COP, inten-

sification agents and perturbation agent can exchange solutions during the search.

Like memetic algorithms, MAOM-COP integrates crossover agents. Crossover

agents are triggered only when a local optimum is reached. These agents can

be considered as another technique of diversification that directs the search to-

wards more promising regions of the search space. Among multi-agent based opti-

mization methods, MAOM-COP is the first one that considers all these techniques

which cover the optimization process. Other existing methods (like (Jȩdrzejowicz

& Wierzbowska, 2006)), use only one metaheuristic in each agent and there is no

efficient exchange with them.

2.9 Conclusion

Our work is motivated by appealing features of a MAS which could be advan-

tageously used to elaborate intelligent computing systems. Compared with existing

studies on the COP, this work has the following main contributions: it integrates a

set of collaborative agents (tabu search agents, crossover agents, perturbation agent)

which are managed dynamically by a distributed model to ensure a suitable balance

of intensification and diversification of the given search space. Decision making is

based on reinforcement learning which is used to adjust the probability of applying

dedicated actions to trigger specific agents under specific conditions. The proposed

approach is generic and could be adapted to design distributed intelligent systems

for complex search problems.

MAOM-COP can be applied to different combinatorial optimization problems.

In the next chapters, we will see that only neighborhood relations for intensifica-

tion agents, evaluation functions, perturbation moves for perturbation agent and

crossover operators for crossover agents, will be changed according to the consid-

ered problem. The learning mechanism, used to indicate which agents to activate,

is the same for all problems. This includes the update of decision matrices and the

definition of the conditions and actions in these matrices.

3
A Multi-Agent based Optimization

Method for the Quadratic

Assignment Problem

In this chapter, we apply the proposed method explained in chapter 2 to the

Quadratic Assignment Problem (QAP). We will present the QAP and the most ef-

fective algorithms for this problem. Then, we will describe MAOM-QAP, i.e., the

adaptation of MAOM-COP to the QAP by describing the behaviors of the agents.

MAOM-QAP is evaluated using various benchmark instances. The comparison

with the current state of the art approaches, shows that the proposed algorithm per-

forms well in terms of solution quality. The content of this chapter is presented in

(Sghir & al., 2015b).

Contents

3.1 Problem definition . 46

3.2 State of the art approaches for the QAP 46

3.3 A multi-agent based optimization method for the QAP (MAOM-

QAP) . 47

3.3.1 Decision-maker agent 48

3.3.2 Tabu search agents . 48

3.3.3 Perturbation agent . 49

3.3.4 Crossover agents . 49

3.4 Experimentation . 50

3.4.1 Experimental results 50

3.4.2 Impact of perturbation agent on MAOM-QAP 53

3.4.3 Impact of crossover agents on MAOM-QAP 53

3.5 Conclusion . 57

47

48 A Multi-Agent based Optimization Method for the QAP

3.1 Problem definition

The Quadratic Assignment Problem (QAP) is known as one of the most popular

combinatorial optimization problems with a number of practical applications like

backboard wiring in electronics, analysis of chemical reactions for organic com-

pounds, design of typewriter keyboards balancing turbine runners (Burkard, 1991;

Duman & Or, 2007).

Given a flow fij from facility i to facility j for all i, j in {1, 2, ...n} and a distance
dab between locations a and b for all a, b in {1, 2, ...n}, the QAP is to assign the set

of n facilities to the set of n locations while minimizing the sum of the products

of the flow and distance matrices. Let Π be the set of the permutation functions π:
{1, 2, ...n} → {1, 2, ...n}. The QAP is mathematically formulated as follows:

Minimize π ∈ Π F (π) =
n

∑

i=1

n
∑

j=1

fijdπiπj
(3.1)

3.2 State of the art approaches for the QAP

In this section, we present a brief summary of some of the most representative

heuristic algorithms for the QAP. These algorithms will be used as reference algo-

rithms for our computational study. Note that none of these QAP approaches can

be considered as the most effective method for all QAP benchmark instances, due

to the differences in structures of the benchmark instances.

The robust tabu search (Ro-TS) algorithm, proposed by (Taillard, 1991), is an

early and influential heuristic. Ro-TS employs the swap move which exchanges two

elements of a solution (a permutation). The tabu list forbids the reverse exchange

of a swap move during the next h iterations. The tabu tenure h varies randomly

within a given interval. The most important new feature introduced in Ro-TS is that

a complete swap neighborhood is explored inO(n2) instead ofO(n3) as in previous
algorithms. We use this technique in our algorithm.

The improved hybrid genetic algorithm (IHGA) is proposed by Misevicius (Mi-

sevicius, 2004). IHGA integrates a robust local improvement procedure and a new

optimized crossover. The optimized crossover usesM runs of an uniform crossover

to produce a child that has the best fitness value. The offspring is then improved

with a tabu search procedure and a solution reconstruction procedure. The recon-

struction is attained by performing a number of random swaps. IHGA uses also

a shift mutation, which simply consists in shifting all the items in a wrap-around

fashion by a predefined number of positions.

Misevicius (Misevicius & al., 2006) later proposed an iterated tabu search (ITS).

It applies a traditional tabu search. When it reaches local optima, it triggers a pertur-

bation phase in order to escape the attained local optimum. The found solution be-

comes a new starting point for the basic TS procedure. The perturbation mechanism

adaptively changes the number of random perturbation moves in some interval.

The particular population-based iterated local search (PILS) proposed by (Stüt-

zle, 2006) is an extension of iterared local search (ILS). The algorithm applies the

3.3 A multi-agent based optimization method for the QAP (MAOM-QAP) 49

don’t look bit strategy, inspired from the local search algorithms for the TSP. When

a local optimum is attained, ILS executes a perturbation move that consists of ex-

changing k randomly chosen items. In PILS, the population contains p solutions and
in each iteration q new solutions are generated. The new population of p solutions

is created from the p former solutions and the q new solutions.

The cooperative parallel tabu search algorithm (CPTS), which is proposed by

(James & al., 2009), applies the parallel execution on multiple processors based on

several tabu search (TS) runs. The TS procedure is the same as Ro-TS (Taillard,

1991), but it uses different stopping conditions and the tabu tenure parameters for

each processor participating in the algorithm. The cooperation and information

exchange between TS processes are realized with the help of a global reference set.

The Breakout Local Search (BLS) proposed by (Benlic & Hao, 2013) is based

on a local search phase and a dedicated perturbation phase. The local search phase

aims to reach new local optima, while the perturbation phase is used to discover

new promising regions. The perturbation mechanism of BLS dynamically deter-

mines the number of perturbation moves and adaptively chooses between two types

of moves of different intensities depending on the current search state. The types

of perturbation are a guided perturbation using a tabu list and a random perturba-

tion. BLS is later integrated into the memetic search framework in (Benlic & Hao,

2015). BMA combines BLS as local optimizer, a crossover operator, a pool up-

dating strategy, and an adaptive mutation mechanism. BMA outperforms its local

search component (BLS).

Our proposed algorithm distinguishes itself by its multi-agent based distributed

computing model which is described in the next section.

3.3 A multi-agent based optimization method for the

QAP (MAOM-QAP)

In this section, we present the Multi-Agent based Optimization for the QAP

(MAOM-QAP), which is an adaptation of our generic MAOM-COP method to the

QAP. We consider the following agents: the decision-maker agent, two tabu search

agents which are intensification agents, the perturbation agent and two crossover

agents. In particular, we show the problem dependent ingredients such as the neigh-

borhood relation manipulated by tabu search agents, the crossover operators used

by crossover agents and the perturbation moves explored by perturbation agent.

3.3.1 Decision-maker agent

The Decision-maker agent selects other agents to trigger based on its decision

matrix (section 2.2.1) and according to the specific condition (section 2.4.1). If other

agents (tabu search agents or crossover operator agents) are trigged, the decision-

maker agent waits high-quality solutions received from these agents, to record them

in the shared memory (archive) (Algorithm 2.2). In addition, it generates the initial

50 A Multi-Agent based Optimization Method for the QAP

solution, in order to start the search and sends it to the appropriate agents. For the

QAP, this solution consists in a simple random initial facility location assignment.

3.3.2 Tabu search agents

The tabu search agents manage the intensification search of MAOM-QAP. Each

tabu search agent uses a tabu search algorithm applying two different strategies to

explore the swap-based neighborhood (Algorithm 2.3). Based on their decision

matrix (section 2.2.1) and according to the corresponding condition (section 2.5.1),

they can request helps from another alive tabu search agent or the perturbation agent.

At the end of each tabu search agent run, the best permutation found by the agent

is sent to the decision-maker agent. Below, we define the two neighborhood explo-

ration strategies employed by these agents.

3.3.2.1 Neighborhood

As explained in the introduction, a candidate QAP solution can be conveniently

represented by a permutation π of {1, 2, ...n} where πi is the facility assigned to

location i. Let swap(i, j) be a move operator which exchanges the facilities located

at i and j. Given a candidate solution π, let π′ = π⊕ swap(i, j) be the neighboring
solution of π obtained by exchanging the facilities πi and πj of locations i and
j. Then N(π) = {π′ : π′ = π ⊕ swap(i, j), i, j ∈ {1, 2, ...n}, i 6= j} is the set of
neighboring solutions induced by the swap operator. To assess the relative quality of

a neighboring solution π′, i.e., the cost variation δ(π, i, j) = F (π′)−F (π) between
π and π′ (also called the move gain of swap(i, j)), we use the incremental technique

proposed in (Taillard, 1991) which can be achieved in O(n) in the worst case.

3.3.2.2 Neighborhood exploration strategies

Given this neighborhood, our tabu search agents employ two different strategies

to explore the neighboring solutions. Let π be the incumbent solution and N(π)
its neighborhood. Our first tabu search agent examines the whole neighborhood

N(π) (in O(n3)) and retains the best neighboring solution which becomes the new

incumbent solution. As such, this tabu search agent realizes a highly aggressive ex-

ploitation of the neighborhood, ensuring thus an intensified search. Our second tabu

search agent operates slightly differently in two stages. First, it picks at random a

location i. Then it seeks the best location j which leads to the highest swap(i, j)
move gain. This neighborhood exploration strategy, which is achieved in O(n2),
leads to a less aggressive search. Yet, given the random choice of one of the two

locations to be exchanged, this strategy provides the tabu search agent with an in-

tensified search while ensuring some degree of diversification at the same time.

3.3.2.3 Tabu list

Each tabu search agent uses a traditional tabu list to prevent the search from

revisiting a previously encountered solution. Each time a facility xi is displaced

3.3 A multi-agent based optimization method for the QAP (MAOM-QAP) 51

from location i to a new location by a swap(i, j) move, xi is forbidden to move

back to location i during the next h iterations. The iterations h is dynamically

determined by h = α×F (S)+ rand(10), where rand(10) takes a random number

in [1,, 10] and α is set to 0.09.

3.3.3 Perturbation agent

When tabu search agents need help from the perturbation agent under specific

conditions (C2 and C3 of section 2.5.1), they decide to trigger the latter agent. This

agent disrupts a solution sent by a tabu search agent. Two parallel behaviors, that are

reduced perturbation behavior and strong perturbation behavior, are realized. The

resulting solution is used then by the tabu search agent as its new current solution.

3.3.3.1 Reduced perturbation technique

In order to solve a slight search stagnation (condition C2 of section 2.5.1), the

tabu search agents can activate the perturbation agent with a reduced behavior. The

last agent applies a number of random swap moves to generate a new solution,

started from the solution received from tabu search agents. This is achieved by

exchanging the locations of two facilities chosen randomly. Also, the number of

perturbation swap moves is chosen randomly between 1 and n/2 (n being the num-

ber of facilities).

3.3.3.2 Strong perturbation technique

When a strong search stagnation (optimum) is encountered, the perturbation

agent can receive a request for strong perturbation from a tabu search agent. The

perturbation agent uses the common archive of elite solutions to create a new solu-

tion. From this archive, the perturbation agent extracts the number of occurrences

of each facility i assigned to location xi. Then, each facility i is assigned to the

location having the smallest occurrence number. Additional data structures are em-

ployed to avoid the creation of the same solution for future calls to the perturbation

agent.

3.3.4 Crossover agents

The decision-maker agent can trigger crossover agents, when it observes that

the search is trapped into a deep optimum. For the QAP, we have two crossover

agents each one performing a different crossover operation to generate one offspring

solution. The two offspring solutions are sent to the decision-maker agent to be a

new starting point for the search process. In each crossover agent, the parents are

chosen randomly from the common archive. Each crossover agent applies one of

the following crossover operators:

— The first operator consists in blending uniformly information from the par-

ents. Given two selected parents, the crossover operator builds one offspring

solution by alternatively transmitting location-facility assignments from the

52 A Multi-Agent based Optimization Method for the QAP

parents. Specifically, starting with the parent having the smallest objective

value, the first crossover agent transmits the facility of the first location (i.e.,

with index one) to the first location of the child and then removes the as-

signed facility from both parents. For the second location of the child, it

switches to the other parent and transmits the facility (which may be empty)

of the second location (i.e., with index two) to the child. Then, this agent

goes back to parent one and repeats this process until reaching the last lo-

cation. Finally, the unassigned facilities of the offspring are affected to a

location randomly chosen among the set of the free locations.

— The second crossover operator has the same idea of the first crossover opera-

tor, only the first z << n (a parameter) location-facility assignments of each

parent are transmitted to the offspring solution. The crossover agent starts

from the parent who has the smallest objective value to build the child. It

copies the z first location-facility assignments of this parent into the child.

Then, it extracts from the other parent, the next z location-facility assign-

ments and copies them to the child from the z + 1 locations. Finally, each

unassigned facility is affected to a random unassigned location.

Figures 3.1 and 3.2 provide illustrating examples for these two crossover oper-

ators.

2 3 1 5 4

4 2 5 13

2

3 1 5 4

4 5 13

2

3 1 5 4

4 5 13

2

4

5 4

5

2

3

3

1

1

3

4

5

5

4

2 1 3 4 2 1 3 45

Iteration 1: Start with parent1 because

it has the smallest objective value

Iteration 2: empty location (from parent2

because we selected it for previous facility

Parent1 Parent1 Parent1

Parent1 Parent1

Parent2 Parent2Parent2

Parent2 Parent2

Offspring Offspring Offspring

Offspring Offspring

Offspring

Iteration 3: location 1 (selected from parent1)

allocated in the same facility

Iteration 4: location 3 (transmitted from parent2)

allocated in facility 4

Iteration 5: location 4 (selected from parent1)

allocated in the same facility 5

Iteration 6: location 5 (not yet selected in the child)

allocated to non assigned facility 2

Figure 3.1 – An example for the first operator crossover used by the first crossover

agent in MAOM-QAP

3.4 Experimentation 53

2 3 1 5 4

4 2 5 13

2 3

1 5 4

4 5 1

2 3 5

1 4

4 1

2 3 5 4

2 3 5 41

OffspringOffspringOffspring

Offspring

Parent1 Parent1 Parent1

Parent2 Parent2 Parent2

Iteration 1: Start with parent1 with selecting

two successives locations {2,3}, then allocate them

to the same facilities {1,2}

Iteration 2: Select the next 2 locations {5,empty}

from parent2, and allocate them to the same positions

of child {3,4}

Iteration 3: Select the next locations {4}

from parent1 and allocate it to the facility 5

Iteration 4: Allocate location 1 (not yet selected)

to facility 4 (empty facility)

Figure 3.2 – An example for the second operator crossover used by the second

crossover agent in MAOM-QAP(z=2 in this example)

3.4 Experimentation

This section presents experimental results of MAOM-QAP. We campare it with

best-known algorithms from the literature, then we give the impacts of the compos-

ing agents in terms of solution quality.

3.4.1 Experimental results

MAOM-QAP was implemented in Java using the multi-agent platform Jade.

The program was run on a computer with a Core I5 2.5 GHz, 8GB of RAM. To

assess MAOM-QAP, tests were realized on various benchmark instances from the

QAPLIB (http://www.seas.upenn.edu/qaplib/inst.html). The in-

stances size n varies from 12 to 150 (indicated in the instances name).

The QAPLIB archive contains 135 instances that can be divided into four types:

1. Type I: Real-life instances obtained from practical applications;

2. Type II: Unstructured and random instances for which the distance and flow

matrices are randomly generated based on a uniform distribution;

54 A Multi-Agent based Optimization Method for the QAP

3. Type III: Randomly generated instances with structure that is similar to that

of real-life instances;

4. Type IV: Instances in which distances are based on the Manhattan distance

on a grid.

Following (Benlic & Hao, 2015), we focus on the set of 21 most challenging

instances of types II-IV (the remaining 114 instances including all the real-life in-

stances of Type I are easy and are not included in the paper).

We adjusted the parameters of the proposed algorithms by an experimental

study. They depend on the type of the problem. The number of iterations for each

local search agent (iter_max) was fixed to 1000. The parameter interval that eval-
uates the improvement of the solution was fixed to 10000 for the decision-maker

agent and the tabu search agents. The parameters g0, g1, g2, q3, q4 and q5, which
are the numbers of generations responsible for controlling the improvement of the

search process (presented in section 2.4.1 and section 2.5.1), were fixed respectively

to 2, 10, 2, 20, 20 and 25. The parameter rate µ used in updating the decision matri-

ces was fixed to 0.5. The stopping condition is the elapsed time which we set to 12

hours for all the instances of size n < 100, and to 24 hours for the large instances of
size n >= 100. The best-known solutions can be attained before these time limits.

We compare our MAOM-QAP to seven best-known algorithms from the litera-

ture cited in the introduction of the paper.

— Improved hybrid genetic algorithm (IHGA) (Misevicius, 2004);

— Iterated tabu search (ITS) (Misevicius & al., 2006);

— Population-based iterated local search (PILS) (Stützle, 2006);

— A hybrid genetic tabu search algorithm (MRT60) (Drezner, 2008);

— Cooperative parallel tabu search (CPTS) (James & al., 2009);

— The Breakout local search (BLS) (Benlic & Hao, 2013);

— The population-based Memetic Algorithm (BMA) (Benlic & Hao, 2015).

Our main purpose of this assessment is to compare our results with the best-

known results ever reported by any existing algorithms of the literature. Note that

these best-known results, as well as those of the reference algorithms, have been

achieved by different algorithms under various conditions (different stop conditions,

computing platforms etc). As a result, the comparisons with the existing methods

are included only for indicative information.

Table 3.1 reports our computational results along with those of the seven refer-

ence algorithms on the unstructured instances (type II) and real-life like instances

(type III). The second column ‘BKS’ presents for each instance the best-known ob-

jective value ever reported in the literature. For each algorithm, column δ̄ shows

the percentage deviation of the average solution, obtained with the considered al-

gorithm over a certain number of trials, from the best-known solution. If known,

the success rate for reaching the best-known solution over several trials is given in

parentheses next to the value of the δ̄. The CPU time (in minutes) is only given for

indicative purposes. The last row indicates the averaged information.

For the unstructured instances (type II), MAOM-QAP finds the best-known so-

lution for 7 out of the 9 instances like other algorithms. We show in Table 1 only the

3.4 Experimentation 55

results of 5 most difficult instances because the 4 other instances are easy to solve.

The average deviation δ̄ from the best-known solution is 0.341. As to the real-life

like instances (type III), MAOM-QAP can attain the best-known solution for all the

instances, except for the largest instance tai150b. The difference of deviation δ̄ be-
tween them is 0.015 over the 5 instances, which matches the performance of BLS

and CPTS.

Table 3.2 presents our computational results along with those of the seven ref-

erence algorithms on the instances with grid distances (type IV). We observe that

MAOM-QAP is able to reach the best-known results for 14 out of the 15 instances

with a deviation δ̄ of 0.001 which is the best result with CPTS and BMA. As to

the computing times, MAOM-QAP is more computationally expensive due to the

perturbation agent whichse impact will be presented in the next section.

3.4.2 Impact of perturbation agent on MAOM-QAP

In the MAOM-QAP algorithm, we use two different perturbation techniques

leading to either a reduced or strong perturbation behavior. In this section, we

perform an experiment to assess the usefulness of the perturbation agent. For this,

we compare MAOM-QAP and MAOM-QAP with its perturbation agent disabled

by running them under the same condition as specified in section 3.4 and report

the comparative results in Tables 3.3 and 3.4 where MAOM-QAP’ is MAOM-QAP

without the perturbation agent. These tables disclose that on all the benchmarks,

MAOM-QAP without the perturbation agent fails to reach the best-known results

of 21 instances. These results show that the perturbation agent reinforces the search

performance of MAOM-QAP.

3.4.3 Impact of crossover agents on MAOM-QAP

In order to show the relative effectiveness of the crossover agents which rep-

resent a technique of diversification in our algorithm, we compare MAOM-QAP

with and without the crossover agents. As before, we run both algorithms under

the same condition as specified in section 3.4 and report the comparative results

in Tables 3.5 and 3.6 where MAOM-QAP” is MAOM-QAP without the crossover

agents. We observe that the algorithm without the crossover agents (MAOA-QAP”)

performs much worse since it can find the best-known results for only 4 out of the

21 instances. So, we can conclude that the crossover agents are indispensable for

the performance of our MAOM-QAP algorithm.

56 A Multi-Agent based Optimization Method for the QAP

T
ab
le
3
.1
–
R
esu

lts
o
f
M
A
O
M
-Q

A
P
co
m
p
ared

to
so
m
e
o
f
th
e
b
est

p
erfo

rm
in
g
Q
A
P
ap
p
ro
ach

es
o
n
u
n
stru

ctu
red

in
stan

ces
(ty

p
e
II)

an
d
o
n

R
eal-life

lik
e
in
stan

ces
(ty

p
e
III).

T
h
e
tim

es
are

g
iv
en

in
m
in
u
tes.

P
ro
b
lem

B
K
S

M
A
O
M
-Q

A
P

B
M
A

B
L
S

C
P
T
S

IT
S

IH
G
A

%
δ̄
a
v
g

t(m
)

%
δ̄
a
v
g

t(m
)

%
δ̄
a
v
g

t(m
)

%
δ̄
a
v
g

t(m
)

%
δ̄
a
v
g

t(m
)

%
δ̄
a
v
g

t(m
)

R
an
d
o
m

in
stan

ces
(T
y
p
e
II)

tai4
0
a

3
1
3
9
3
7
0

0
.0
9
9
(2
)

8
3
.5

0
.0
5
9
(2
)

8
.1

0
.0

2
2
(7
)

3
8
.9

0
.1
4
8
(1
)

3
.5

0
.2
1
0
(1
)

0
.8

0
.2
0
9
(1
)

1
.4

tai5
0
a

4
9
3
8
7
9
6

0
.3
2
0

(1
)

1
3
5
.2

0
.1

3
1
(2
)

4
2
.0

0
.1
5
7
(2
)

4
5
.1

0
.4
4
0
(0
)

1
0
.3

0
.3
7
3
(0
)

3
.0

0
.2
6
2
(0
)

5
.0

tai6
0
a

7
2
0
5
9
6
2

0
.3
8
5

(2
)

1
7
8
.1

0
.1

4
4
(2
)

6
7
.5

0
.2
5
1
(1
)

4
7
.9

0
.4
7
6
(0
)

2
6
.4

0
.3
3
0
(1
)

9
.7

0
.5
8
3
(0
)

1
2

tai8
0
a

1
3
4
9
9
1
8
4

0
.4

2
6
(0
)

2
2
5

0
.4

2
6
(0
)

6
5
.8

0
.5
1
7
(0
)

4
7
.3

0
.6
9
1
(0
)

9
4
.8

0
.4
9
4
(0
)

2
5
.0

0
.7
5
6
(0
)

5
3
.3

tai1
0
0
a

2
1
0
5
2
4
6
6

0
.4
7
0
(0
)

2
8
8

0
.4

0
5
(0
)

4
4
.1

0
.4
3
0

(0
)

3
9
.0

0
.5
8
9
(0
)

2
6
1
.2

0
.4
2
7
(0
)

6
0
.0

0
.6
0
6
(0
)

2
0
0
.0

A
v
erag

e
0
.3
4
1

1
0
7
.6

0
.2
3
3

4
5
.5

0
.2
7
5

4
3
.6

0
.4
6
9

7
9
.2

0
.3
6
7

1
9
.2

0
.4
8
3

5
4
.3

R
eal-life

lik
e
in
stan

ces
(T
y
p
e
III)

tai5
0
b

4
5
8
8
2
1
5
1
7

0
.0

0
0
(1
0
)

1
4
.3

0
.0

0
0
(1
0
)

1
.2

0
.0

0
0
(1
0
)

2
.8

0
.0

0
0
(1
0
)

1
3
.8

0
.0

0
0
(1
0
)

0
.9

0
.0

0
0
(1
0
)

0
.3

tai6
0
b

6
0
8
2
1
5
0
5
4

0
.0

0
0
(1
0
)

3
8
.2

0
.0

0
0
(1
0
)

5
.2

0
.0

0
0
(1
0
)

5
.6

0
.0

0
0
(1
0
)

3
0
.4

0
.0

0
0
(1
0
)

2
.2

0
.0

0
0
(1
0
)

0
.7

tai8
0
b

8
1
8
4
1
5
0
4
3

0
.0

0
0
(1
0
)

6
2
.7

0
.0

0
0
(1
0
)

3
1
.3

0
.0

0
0
(1
0
)

1
1
.4

0
.0

0
0
(1
0
)

1
1
0
.9

0
.0

0
0
(1
0
)

5
.8

0
.0

0
0
(1
0
)

2
.5

tai1
0
0
b

1
1
8
5
9
9
6
1
3
7

0
.0

0
0
(1
0
)

9
1
.2

0
.0

0
0
(1
0
)

1
3
.6

0
.0

0
0
(1
0
)

1
6
.0

0
.0
0
1
(8
)

2
4
1
.0

0
.0

0
0
(9
)

2
3
.3

0
.0

0
0
(1
0
)

7
.3

tai1
5
0
b

4
9
8
8
9
6
6
4
3

0
.0
7
7
(0
)

9
9
8
2

0
.0

6
0
(1
)

7
8
.1

0
.1
0
0
(0
)

8
0
.5

0
.0
7
6
(0
)

7
3
7
7
.8

0
.1
0
0
(1
)

6
0
.0

0
.1
1
1
(2
)

3
8
.3

A
v
erag

e
0
.0
1
5

1
0
3
0
.8

0
.0
1
2

2
5
.9

0
.0
2
0

2
3
.3

0
.0
1
5

1
5
5
4
.8

0
.0
2
0

1
8
.4

0
.0
2
2

9
.8

3.4 Experimentation 57

T
ab
le
3
.2
–
C
o
m
p
ar
at
iv
e
re
su
lt
s
b
et
w
ee
n
M
A
O
M
-Q

A
P
an
d
so
m
e
o
f
th
e
b
es
t
p
er
fo
rm

in
g
Q
A
P
ap
p
ro
ac
h
es

o
n
g
ri
d
-b
as
ed

(t
y
p
e
IV

)
in
st
an
ce
s.
T
h
e
ti
m
es

ar
e
g
iv
en

in
m
in
u
te
s

P
ro
b
le
m

B
K
S

M
A
O
M
-Q

A
P

B
M
A

B
L
S

C
P
T
S

M
R
T
6
0

%
δ̄
a
v
g

t(
m
)

%
δ̄
a
v
g

t(
m
)

%
δ̄
a
v
g

t(
m
)

%
δ̄
a
v
g

t(
m
)

%
δ̄
a
v
g

t(
m
)

sk
o
7
2

6
6
2
5
6

0
.0

0
0
(1
0
)

6
3
.3

0
.0

0
0
(1
0
)

3
.5

0
.0

0
0
(1
0
)

4
.1

0
.0

0
0
(1
0
)

6
9
.6

0
.0

0
0
(1
0
)

1
9
.9

sk
o
8
1

9
0
9
9
8

0
.0

0
0
(1
0
)

2
0
8
.5

0
.0

0
0
(1
0
)

4
.3

0
.0

0
0
(1
0
)

1
3
.9

0
.0

0
0
(1
0
)

1
2
1
.4

0
.0

0
0
(1
0
)

3
1
.9

sk
o
9
0

1
1
5
5
3
4

0
.0

0
0
(1
0
)

2
5
6
.4

0
.0

0
0
(1
0
)

1
5
.3

0
.0

0
0
(1
0
)

1
6
.6

0
.0

0
0
(1
0
)

1
9
3
.7

0
.0

0
0
(1
0
)

4
8
.5

sk
o
1
0
0
a

1
5
2
0
0
2

0
.0

0
0
(1
0
)

3
2
1

0
.0

0
0
(1
0
)

2
2
.3

0
.0
0
1
(9
)

2
0
.8

0
.0

0
0
(1
0
)

3
0
4
.8

0
.0

0
0
(1
0
)

7
3
.6

sk
o
1
0
0
b

1
5
3
8
9
0

0
.0

0
0
(1
0
)

3
2
2
.2

0
.0

0
0
(1
0
)

6
.5

0
.0

0
0
(1
0
)

1
0
.8

0
.0

0
0
(1
0
)

3
0
9
.6

0
.0

0
0
(1
0
)

7
3
.6

sk
o
1
0
0
c

1
4
7
8
6
2

0
.0

0
0
(1
0
)

3
2
4
.8

0
.0

0
0
(1
0
)

1
2
.0

0
.0

0
0
(1
0
)

1
5
.5

0
.0

0
0
(1
0
)

3
1
6
.1

0
.0

0
0
(1
0
)

7
3
.6

sk
o
1
0
0
d

1
4
9
5
7
6

0
.0

0
0

(9
)

3
3
0

0
.0
0
6
(9
)

2
0
.9

0
.0
0
1
(5
)

3
8
.9

0
.0

0
0
(1
0
)

3
0
9
.8

0
.0

0
0
(1
0
)

7
3
.6

sk
o
1
0
0
e

1
4
9
1
5
0

0
.0

0
0
(1
r
0
)

3
4
3
.3

0
.0

0
0
(1
0
)

1
1
.9

0
.0

0
0
(1
0
)

4
2
.5

0
.0

0
0
(1
0
)

3
0
9
.1

0
.0

0
0
(1
0
)

7
3
.6

sk
o
1
0
0
f

1
4
9
0
3
6

0
.0

0
0
(1
0
)

3
2
0

0
.0

0
0
(1
0
)

2
3
.0

0
.0

0
0
(1
0
)

1
7
.3

0
.0
0
3
(4
)

3
1
0
.3

0
.0
0
0
(9
)

4
3
.5

w
il
1
0
0

2
7
3
0
3
8

0
.0

0
0
(1
0
)

3
5
5

0
.0

0
0
(1
0
)

1
4
.5

0
.0

0
0
(1
0
)

1
8
.9

0
.0

0
0
(1
0
)

3
1
6
.6

0
.0

0
0
(1
0
)

7
3
.6

th
o
1
5
0

8
1
3
3
3
9
8

0
.0
1
1
(0
)

5
2
3

0
.0
0
8
(3
)

4
1
6
.4

0
.0
2
3
(1
)

2
6
8
.8

0
.0
1
3
(0
)

1
9
9
1
.7

0
.0

0
3
(3
)

1
2
2
3
.6

A
v
er
ag
e

0
.0
0
1

2
2
9

0
.0
0
1

5
0
.1

0
.0
0
2

4
2
.6

0
.0
0
1

4
1
3
.9

0
.0
0
0

1
6
4
.5

58 A Multi-Agent based Optimization Method for the QAP

Table 3.3 – Impact of perturbation agent on MAOM-QAP on the unstructured in-

stances (type II) and on Real-life like instances (type III): MAOM-QAP is MAOM-

QAP with the perturbation agent and MAOM-QAP’ is MAOM-QAP without the

perturbation agent

Problem BKS MAOM-QAP MAOM-QAP’

δ̄ t(m) δ̄ t(m)

tai40a 3139370 0.099(2) 83.5 4.556(0) 0.00

tai50a 4938796 0.320(1) 135.2 7.64(0) 20.3

tai60a 7205962 0.385(2) 178.1 4.71(0) 22.1

tai80a 13499184 0.426(0) 225 3.898(0) 30.5

tai100a 21052466 0.470(0) 288 4.74(0) 28.45

Average 0.341 107.6 5.419 11.26

tai50b 458821517 0.000(10) 14.3 13.587(0) 0.00

tai60b 608215054 0.000(10) 38.2 8.758(0) 0.00

tai80b 818415043 0.000(10) 62.7 11.823(0) 0.00

tai100b 1185996137 0.000(10) 91.2 14.182(0) 9.16

tai150b 498896643 0.077(0) 9982 13.542(0) 83.1

Average 0.015 1030.8 11.447 9.22

Table 3.4 – Impact of perturbation agent on MAOM-QAP on grid-based (type IV)

instances. MAOM-QAP’ is MAOM-QAP without the perturbation agent

Problem BKS MAOA-QAP MAOA-QAP’

δ̄ t(m) δ̄ t(m)

sko72 66256 0.000(10) 63.3 3.156(0) 0.00

sko81 90998 0.000(10) 208.5 4.581(0) 12

sko90 115534 0.000(10) 256.4 5.789(0) 11.2

sko100a 152002 0.000(10) 321 4.865(0) 15

sko100b 153890 0.000(10) 322.2 5.889(0) 13.8

sko100c 147862 0.000(10) 324.8 4.19(0) 14.1

sko100d 149576 0.000(10) 330 3.86(0) 30

sko100e 149150 0.000(10) 343.3 4.245(0) 25.4

sko100f 149036 0.000(10) 320 3.79(0) 15.4

wil100 273038 0.000(10) 355 5.228(0) 18.1

tho150 8133398 0.011(0) 523 3.699(0) 45

Average 0.001 229 4.143 13.33

3.5 Conclusion 59

Table 3.5 – Impact of crossover agents on MAOM-QAP on grid-based (type IV)

instances. MAOM-QAP” is MAOM-QAP without the crossover agents

Problem BKS MAOM-QAP MAOM-QAP”

δ̄ t(m) δ̄ t(m)

sko72 66256 0.000(10) 63.3 1.99(0) 4.5

sko81 90998 0.000(10) 208.5 2.457(0) 12.4

sko90 115534 0.000(10) 256.4 2.75(0) 15.7

sko100a 152002 0.000(10) 321 2.486(0) 12.3

sko100b 153890 0.000(10) 322.2 1.25(0) 11.8

sko100c 147862 0.000(10) 324.8 3.724(0) 13.78

sko100d 149576 0.000(10) 330 2.785(0) 25.89

sko100e 149150 0.000(10) 343.3 1.42(0) 15.9

sko100f 149036 0.000(10) 320 3.75(0) 22.4

wil100 273038 0.000(10) 355 2.15(0) 28.2

tho150 8133398 0.011(0) 523 3.489(0) 34

Average 0.001 229 2.56 31.5

Table 3.6 – Impact of crossover agents on MAOM-QAP on unstructured in-

stances (type II) and on Real-life like instances (type III): MAOM-QAP is MAOM-

QAP with crossover agents and MAOM-QAP” is MAOM-QAP” without crossover

agents

Problem BKS MAOM-QAP MAOM-QAP”

δ̄ t(m) δ̄ t(m)

tai40a 3139370 0.099(2) 83.5 2.8(0) 2.08

tai50a 4938796 0.320(1) 135.2 3.78(0) 15.12

tai60a 7205962 0.385(2) 178.1 2.75(0) 18.4

tai80a 13499184 0.426(0) 225 3.82(0) 20.1

tai100a 21052466 0.470(0) 288 3.28(0) 20.5

Average 0.341 107.6 2.87 8.46

tai50b 458821517 0.000(10) 14.3 4.78(0) 0.00

tai60b 608215054 0.000(10) 38.2 5.96(0) 0.00

tai80b 818415043 0.000(10) 62.7 5.2(0) 5.2

tai100b 1185996137 0.000(10) 91.2 5.11(0) 8.4

tai150b 498896643 0.077(0) 9982 6.45(0) 23

Average 0.015 1030.8 5.29 3.66

3.5 Conclusion

In this chapter, we introduced a multi-agent algorithm for the Quadratic Assign-

ment Problem based on different techniques of intensification and diversification.

The decision-maker agent is the central agent which decides the most suitable agent

to activate and maintains a shared memory to record the elite solutions discovered

60 A Multi-Agent based Optimization Method for the QAP

during the search. Its decisions are influenced by a learning-based probabilistic

strategy which dynamically adjusts the application probability of a particular action

under a specific condition. On the other hand, the tabu search agents are introduced

to ensure an intensified examination of specific search zones while the perturbation

agents and crossover agents are used to diversify the search.

Our computational study shows that the proposed approach performs well on

the tested benchmark instances in terms of solution quality.

4
A Multi-Agent based Optimization

Method for the Graph Coloring

Problem

In this chapter, we apply the proposed method to the Graph Coloring Problem

(GCP). We will start with the problem definition and a brief review of popular graph

coloring algorithms. Then, we will define the agents of MAOM-GCP, which adapts

the MAOM-COP to the GCP. The proposed algorithm will be evaluated on graph

coloring benchmarks. The comparative study shows that MAOM-GCP is able to

reach the best known solution of several instances. The content of this chapter is

published in (Sghir & al., 2015a)

Contents

4.1 Problem definition . 60

4.2 State of the art approaches for the GCP 60

4.3 A multi-agent based optimization method for the GCP (MAOM-

GCP) . 62

4.3.1 Decision-maker agent 62

4.3.2 Tabu search agents . 63

4.3.3 Perturbation agent . 64

4.3.4 Crossover agents . 65

4.4 Experimentation . 66

4.5 Conclusion . 69

61

62 A Multi-Agent based Optimization Method for the GCP

4.1 Problem definition

Given an undirected graph G = (V,E) with vertices set V , edges set E and

an integer k. A k-coloring of G is represented by S = V1, V2, ..., Vk. The value

V (x) of a vertex x defines the color of x. The vertices with color r (1 < r < k)
correspond to a color class. If two adjacent vertices x and y are colored with the

same color r, vertices x and y are declared as conflicting vertices, the edge [x, y] is
a conflicting edge, and r is a conflicting color. A coloring graph with no conflicting

edge is called a legal k-coloring.

The graph coloring problem (GCP) aims at determining the smallest integer k
(called chromatic number of G, ℵ(G)) such that there exists a legal k-coloring of

G. There are four different strategies to represent the search space: legal strategy,

penalty strategy, k-fixed partial legal strategy, k-fixed penalty strategy. We adopt

the k-fixed penalty strategy like many studies. In this strategy, we fix the number k
of colors and we accept all possible k-colorings which can be legal or illegal solu-

tions. Given a k-coloring S = {V1, V2, ..., Vk}, the evaluation function f consists in

calculating the conflict number induced by S such that:

f(S) =
∑

u,v∈E

δuv (4.1)

where

δuv =

{

1, if u ∈ Vi , v ∈ Vj , i = j
0, otherwise

Based on this function, we seek to minimize its value. So, in order to find a legal

k-coloring S, the evaluation function f(S) = 0.

The GCP can be associated with a variety of real-world applications, such as the

frequency assignment (Smith & al., 1998), the satellite range scheduling (Zufferey

& al., 2008), the crew scheduling (Gamache & al., 2007), the printed circuit testing

(Garey & al., 1976), the timetabling (Burke & al., 2007), the register allocation

(DeWerra & al., 1999). The GCP is a well-known NP-complete problem (Garey &

Johnson, 1979).

4.2 State of the art approaches for the GCP

In this section, we make a review on popular heuristic algorithms solving the

GCP. Greedy search is the first heuristic algorithm for the GCP. The largest sat-

uration degree heuristic (DSATUR) and the recursive largest first heuristic (RLF)

(Leighton, 1979) are the most successful algorithms. These algorithms are often

employed to generate initial solutions for advanced metaheuristic algorithms.

4.2 State of the art approaches for the GCP 63

The GCP can be solved by metaheuristics which can be divided into three types

of methods: local search methods, population based methods and hybrid methods.

Several local search methods are applied to GCP, such as simulated annealing

(Kirkpatrick & al., 1983), tabu search (Glover, 1986), variable neighborhood search

(Mladenovic & Hansen, 1997), iterated local search (Chiarandini & Stützl, 2002)

and large scale neighborhood search (Trick & Yildiz, 2007). Hertz andWerra (Hertz

& de Werra, 1987) were the first who used tabu search (TS) known as Tabucol to

find a solution to the graph coloring problem using k-fixed penalty strategy.

Another complete version of Tabucol is obtained by Dorne and Hao (Dorne

& Hao, 1998). Zufferey et al. (Blochliger & Zufferey, 2008) proposed a variant

of Tabucol known as Partialcol which integrated a reactive component to adjust the

length of the time of the moves. Porumbel et al. (Porumbel & al., 2009) elaborated a

new local search algorithm known as position guided tabu search (PGTS) heuristic

which adds techniques to avoid local optima. Hertz et al. (Hertz & al., 2008)

proposed variable search space (VSS-COL) which alternates different techniques

from the three different local search heuristics: Tabucol, Partialcol, and a third tabu

search algorithm proposed by (Gendron & al., 2007).

Population based methods are, also, used to solve GCP as genetic algorithm

(Holland, 1975), ant colony optimization (Dorigo & al., 1991), particle swarm op-

timization (Kennedy & Eberhart, 1995).

Hybrid methods are methods which combine different techniques from local

search methods and population based methods.

Hao and Galinier (Galinier & Hao, 1999) proposed an hybrid coloring algorithm

(HCA) that is based on tabu search and genetic algorithm. HCA integrates the

greedy partition crossover (GPX) operator which combines color classes instead

of specific color assignments. Lim and Wang (Lim & Wang, 2004) used various

metaheuristic which are genetic algorithm, simulated annealing and tabu search.

Sivanandam et al. (Sivanandam & al., 2005) elaborated a new permutation based

representation of the graph coloring problem. They used a parallelism model for

genetic algorithm (PGA) based on Message Passing Interface (MPI) getting three

crossover operators. David (Chalupa, 2011) proposed two algorithms for GCP. A

multi-agent evolutionary algorithm (MEA) based on multi-agent system where an

agent represents a tabu search procedure. The second algorithm is a pseudo reac-

tive tabu search (PRTS) integrating a new online learning strategy. Lu and Hao (Lu

& Hao., 2010) proposed a memetic algorithm (MACOL) integrating several dis-

tinguished features such as an adaptive multi-parent crossover (AMPaX) operator

which is inspired from GPX crossover operator and a distance-and-quality based

replacement criterion for pool updating. It uses the Tabucol as a local search algo-

rithm.

In (Titiloye & Crispin, 2011), Olawale et al. proposed a distributed hybrid quan-

tum annealing algorithm. Quantum simulated annealing is a population of agents

cooperating to optimize a shared cost function defined as the total energy between

them. This algorithm finds better results than those of any known algorithm, for

some graphs. Wu and Hao introduced, in (Wu & Hao, 2012), a forward indepen-

dent set extraction strategy to reduce the initial graph. From the reduced graph,

64 A Multi-Agent based Optimization Method for the GCP

they trigger a backward coloring process which uses extracted independent sets as

new color classes for intermediate subgraph coloring. This algorithm provides new

upper bounds for other graphs. This method is, then, improved in (Hao & Wu,

2012). Moalic and Gondran (Moalic & Gondran, 2015) proposed a memetic algo-

rithm using tabu search. The main characteristic of this algorithm is to work with a

population of only two individuals.

Compared to these popular graph coloring algorithms, MAOM-GCP is the first

algorithm which explores the tabu search with other operators in a multi-agent sys-

tem. We will describe its characteristics in the next section.

4.3 A multi-agent based optimization method for the

GCP (MAOM-GCP)

We propose a Multi-Agent based Optimization method for the Graph Coloring

Problem (MAOM-GCP) based on our generic MAOM-COP presented in chapter 2.

In MAOM-GCP, the agents are the learners who can handle various diversification

techniques and other intensification techniques to direct the search towards promis-

ing areas. We consider the following agents: the decision-maker agent, two tabu

search agents, the perturbation agent and two crossover agents.

4.3.1 Decision-maker agent

We name this agent as decision-maker agent because it is the agent which starts

the search cycle of the algorithm by generating an initial solution, then, it decides

to select other agents to trigger and finally finishes the search. Based on its decision

matrix (section 2.2.1) and according to the state of search (section 2.4.1), it decides

whether the search process needs to be intensified or diversified. If other agents

are trigged, the decision-maker agent waits them, until it receives best solutions

generated by tabu search agents or crossover operator agents, then it maintains all

these solutions in an archive.

4.3.1.1 The initial solution

The decision-maker agent creates an initial legal coloring using the greedy large-

st saturation degree heuristic (DSATUR) (Algorithm 4.1) (Brélaz, 1979). Then,

starting with this initial coloring, it randomly displaces the vertices whose color

number is higher than the given color number k to a color class between [1, k]. This
procedure usually leads to an illegal k-coloring which will be repaired by MAOM-

GCP.

4.3.1.2 Archive of elite solutions

The decision-maker agent saves the best k-coloring, received from tabu search

agents and crossover agents, in an archive. The archive represents a shared memory

4.3 A multi-agent based optimization method for the GCP (MAOM-GCP) 65

Algorithm 4.1. The greedy largest saturation degree heuristic (DSATUR): The

saturation degree of a vertex as the number of different colors to which it is adjacent

(colored vertices).

Require: Graph G
Ensure: the initial k-coloring S0

1: while All the vertices are not colored do

2: Arrange the vertices by decreasing order of degrees.

3: Color a vertex of maximal degree with color i
4: Choose a vertex with a maximal saturation degree. If there is an equality,

choose any vertex of maximal degree in the uncolored subgraph.

5: Color the chosen vertex with the least possible (lowest numbered) color.

6: i = i+ 1
7: return to 4

8: end while

between all agents. It is updated by the decision-maker agent with new solutions of

good quality.

4.3.2 Tabu search agents

The decision-maker agent can activate two tabu search agents, when it observes

that the search process needs to be intensified based on its decision matrix. Each

tabu search agent applies a specific strategy based on a particular neighborhood

to seek new solutions. During the search, a tabu search agent can exchange its

solutions with another alive tabu search agent or with a perturbation agent. These

communications depend on a decision matrix, conditions and actions explained in

(section 2.2.1) and (section 2.5.1). At the end of each tabu search agent run, the best

k-coloring found by each agent is sent to the decision-maker agent. The behavior

of the tabu search agent is described in Algorithm 2.3. Below, we define the used

neighborhood structures for each tabu search agent.

4.3.2.1 Neighborhoods

A candidate solution for GCP can be generated by changing the color class

of vertices. Different modifications lead to different neighborhood structures. In

this work, we explore 3 neighborhoods: the vertex neighborhood which changes

the color of some conflicting vertices, the class neighborhood which changes the

color of some or all vertices of a conflicting color class, and the non-increasing

neighborhood which changes the color of some vertices without increasing the total

number of conflicting edges.

4.3.2.2 Neighborhood exploration strategies

In MAOM-GCP, we use two complementary neighborhood strategies due to

the cooperation act realized by each tabu search agent. One of these strategies,

66 A Multi-Agent based Optimization Method for the GCP

performed by our first tabu search agent, changes the colors of conflicting vertices

to produce new k-colorings. This is done by moving a conflicting vertex x from its

original color class Vi to the best possible other color class Vj (i 6= j) (this change
or move is denoted by (x, i, j)). The new color class for each conflicting vertex x is

chosen among those which are not assigned to vertices adjacent to x. Among these

color classes found, the best possible color class (in terms of fitness minimization)

is selected for the considered conflicting vertex.

Our second tabu search agent uses the same mechanism of selecting the best

color class to be assigned to vertices as the first tabu search agent. The difference

is that these vertices are not the set of conflicting vertices, but the vertices that are

adjacent to conflicting vertices. The tabu search agent chooses the best color class

for each vertex belonging to the set of adjacent vertices of conflicting vertices. The

best color allocated must not belong to the color classes allocated to conflicting

vertices.

For these two neighborhood strategies, tabu search agents evaluate each move

using an incremental evaluation technique. This technique consists in maintaining a

special data structure that records the move values for each candidate neighborhood

move (Dorne & Hao, 1998; Fleurent & Ferland, 1996; Galinier & Hao, 1999). A ∆
matrix is used, in which element ∆(x, j) corresponds to the value gain of changing

the current color of node x from color i to color j. Each element can be initialized

in O(|V |) operations following this expression:

δ(x, j) =
∑

y∈x(ICj
(y)−ICi

(y))

(4.2)

where for x, N(x) = y ∈ V | (y, x) ∈ E , and IA is the indicator variable of set

A, defined as:

IA(x)=

{

1, if x ∈ A
0, otherwise

Based on expression 4.2, the ∆ matrix can be initialized. After that, it can be

updated as we describe in Algorithm 4.2.

4.3.2.3 Tabu list

Each tabu search agent uses a tabu list to forbid the reverse moves. When a

move (x,i,j) is generated, vertex x is forbidden to move back to color class Vi for

the next h iterations (called tabu tenure). The tabu tenure is dynamically determined

by h = f(S)+r(10), where r(10) is a random number between 1 and 10 (Galinier &

Hao, 1999). The stop condition of each tabu search is a fixed number of iterations.

4.3.3 Perturbation agent

The perturbation agent, triggered by tabu search agents, creates a disturbed k-
coloring solution by exploring two types of perturbations. The new k-coloring is

then sent to the tabu search agent for further improvement.

4.3 A multi-agent based optimization method for the GCP (MAOM-GCP) 67

Algorithm 4.2. Incremental evaluation technique for updating the ∆ matrix

1: for y ∈ N(x) do

2: if y /∈ Ci then

3: ∆(y, i) = ∆(y, i)− 1
4: end if

5: if y /∈ Cj then

6: ∆(y, j) = ∆(y, j) + 1
7: end if

8: if y ∈ Cj then

9: for c = 1 to k do

10: if c 6= j then

11: ∆(y, c) = ∆(y, c)− 1
12: ∆(x, c) = ∆(x, c)− 1
13: end if

14: end for

15: end if

16: if y ∈ Ci then

17: for c = 1 to k do

18: if c 6= i then

19: ∆(y, c) = ∆(y, c) + 1
20: ∆(x, c) = ∆(x, c) + 1
21: end if

22: end for

23: end if

24: end for

4.3.3.1 Reduced perturbation technique

The reduced perturbation technique can be triggered when a tabu search agent

observes a slight search stagnation (condition C2 of section 2.4.1). From the k-
coloring received from the tabu search agent, the perturbation agent makes t moves

to create a new solution, where each move changes randomly the color of a conflict-

ing vertex of the incumbent solution. The number t of moves is chosen randomly

between 1 and conf (where conf is the number of conflicting vertices).

4.3.3.2 Strong perturbation technique

The strong perturbation technique is performed when a tabu search agent ob-

serves deep search stagnation. The perturbation agent uses the shared archive of

elite k-colorings to create a new solution. It extracts the number of occurrences of

each vertex x colored by each color class Vi. Starting with an uncolored graph, each

vertex x is colored with a color class Vi which has the smallest occurrence number.

Dedicated data structures are employed to avoid the creation of the same solution

for future calls to the perturbation agent.

4.3.4 Crossover agents

When the decision-maker agent decides to activate the crossover agents, two

crossover agents are created based on two different crossover operators from the

68 A Multi-Agent based Optimization Method for the GCP

literature: the AMPaX operator (Lu & Hao., 2010) and the GPX operator (Galinier

& Hao, 1999). These operators are among the best crossover operators for GCP.

The new k-coloring solutions are sent to the decision-maker agent to continue the

search process. We will describe the two crossover operators used by these agents.

4.3.4.1 GPX operator

The GPX crossover (Galinier & Hao, 1999) uses two random parent k-colorings

S1 and S2 from the archive. In each step, the k classes V1, V2,..., Vk of the offspring

k-coloring S0 are created. At the first step, the class V1 is built by selecting the class

having the maximum number of vertices in parent S1. The second class V2 of S0 is

built by the same idea but considering the second parent S2. Other color classes are

built considering two parents S1 and S2 successively. Once k color classes are built,

each left uncolored vertex is allocated to a random color.

4.3.4.2 AMPaX operator

The AMPaX operator (Lu & Hao., 2010) is an extension of GPX operator. It

uses randomly more than 2 parents from the archive to produce offspring. For each

class color of the new offspring, the color classes of all parents are considered. In

each step, the color class with the maximal cardinality in all m parents individu-

als, is chosen. Then, all vertices colored with this color class are removed from all

m parents individuals. The current parent which has been selected, can be recon-

sidered only after a few number of steps. This mechanism is integrated to avoid

focusing in a single parent, so creating other k-coloring solutions.

4.4 Experimentation

In this section, we present experimental results of our MAOM-GCP on well-

known DIMACS coloring benchmarks. Then, we compare the results with other

state of the art coloring algorithms from the literature.

The DIMACS graphs are the recognized standard benchmarks in the litera-

ture for evaluating the performance of graph coloring algorithms (Johnson & al.,

1996). The DIMACS graphs are composed from 12 random graphs (DSJC125.x,

DSJC250.x, DSJC500.x and DSJC1000.x, x = 1, 5 and 9), 6 flat graphs (flat300

x 0, x=20, 26 and 28; flat1000 x 0, x = 50, 60 and 76), 8 Leighton graphs (le450

15x, le450 25x, x = a, b, c and d), 12 random geometric graphs (R125.x, R250.x,

DSJR500.x and R1000.x, x = 1, 1c and 5), 2 huge random graphs (C2000.5 and

C4000.5), 2 class scheduling graphs (school1 and school1.nsh) and 1 latin square

graph (latin square 10).

These instances can be classified into two categories: easy graphs and difficult

graphs. Easy graphs can be solved very easily by most modern coloring heuristics.

Difficult graphs can not be solved by all algorithms which can reach chromatic

number or the best known results. We only mention our computational results on

the set of difficult graphs.

4.4 Experimentation 69

T
ab

le
4
.1

–
C
o
m
p
u
ta
ti
o
n
al

re
su

lt
s
o
f
M

A
O
M

-G
C
P
o
n
th
e
d
if
fi
cu

lt
D
IM

A
C
S
ch

al
le
n
g
e
b
en

ch
m
ar
k
s
(P
ar
t
I)

M
A
O
M

-G
C
P

In
st
an

ce
s

n
n
e

d
en

s
k
∗

R
ef

er
en

ce
s

k
h
it

ti
m
e(
m
)

D
S
JC

2
5
0
.5

2
5
0

1
5
,6
6
8

0
.5
0

2
8

(G
al
in
ie
r
&

H
ao

,
1
9
9
9
;
G
al
in
ie
r
&

al
.,
2
0
0
8
;
M

al
ag

u
ti
&

al
,
2
0
0
8
)

2
8

1
0
/1
0

5
(H

er
tz

&
al
.,
2
0
0
8
;
P
o
ru
m
b
el

al
.,
2
0
0
9
,
2
0
1
0
)

(T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
;
W

u
&

H
ao

,
2
0
1
2
)

D
S
JC

5
0
0
.1

5
0
0

1
2
,4
5
8

0
.1
0

1
2

(B
lo
ch

li
g
er

&
Z
u
ff
er
ey

,
2
0
0
8
;
G
al
in
ie
r
&

al
.,
2
0
0
8
)

1
2

1
0
/1
0

6
(H

er
tz

&
al
.,
2
0
0
8
;
P
o
ru
m
b
el

al
.,
2
0
0
9
,
2
0
1
0
)

(T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
;
W

u
&

H
ao

,
2
0
1
2
)

(H
ao

&
W

u
,
2
0
1
2
;
M

o
al
ic

&
G
o
n
d
ra
n
,
2
0
1
5
)

D
S
JC

5
0
0
.5

5
0
0

6
2
,6
2
4

0
.5
0

4
7

(M
o
al
ic

&
G
o
n
d
ra
n
,
2
0
1
5
)

-
-

-
4
8

(G
al
in
ie
r
&

H
ao

,
1
9
9
9
;
B
lo
ch

li
g
er

&
Z
u
ff
er
ey

,
2
0
0
8
)

4
8

1
0
/1
0

8
5

(G
al
in
ie
r
&

al
.,
2
0
0
8
;
H
er
tz

&
al
.,
2
0
0
8
;
M

al
ag

u
ti
&

al
,
2
0
0
8
)

(P
o
ru
m
b
el

al
.,
2
0
1
0
;
T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

D
S
JC

5
0
0
.9

5
0
0

1
1
2
,4
3
7

0
.9
0

1
2
6

(B
lo
ch

li
g
er

&
Z
u
ff
er
ey

,
2
0
0
8
;
G
al
in
ie
r
&

al
.,
2
0
0
8
;
H
er
tz

&
al
.,
2
0
0
8
)

1
2
6

1
0
/1
0

3
2
0

(M
al
ag

u
ti
&

al
,
2
0
0
8
;
P
o
ru
m
b
el

al
.,
2
0
1
0
)

(T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
;
W

u
&

H
ao

,
2
0
1
2
)

(P
o
ru
m
b
el

al
.,
2
0
0
9
;
H
ao

&
W

u
,
2
0
1
2
;
M

o
al
ic

&
G
o
n
d
ra
n
,
2
0
1
5
)

D
S
JC

1
0
0
0
.1

1
0
0
0

4
9
,6
2
9

0
.1
0

2
0

(G
al
in
ie
r
&

H
ao

,
1
9
9
9
;
B
lo
ch

li
g
er

&
Z
u
ff
er
ey

,
2
0
0
8
;
G
al
in
ie
r
&

al
.,
2
0
0
8
)

2
0

1
0
/1
0

4
4
1

(H
er
tz

&
al
.,
2
0
0
8
;
P
o
ru
m
b
el

al
.,
2
0
1
0
)

(T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
;
W

u
&

H
ao

,
2
0
1
2
)

(M
al
ag

u
ti
&

al
,
2
0
0
8
;
H
ao

&
W

u
,
2
0
1
2
;
M

o
al
ic

&
G
o
n
d
ra
n
,
2
0
1
5
)

D
S
JC

1
0
0
0
.5

1
0
0
0

2
4
9
,8
2
6

0
.5

8
2

(M
o
al
ic

&
G
o
n
d
ra
n
,
2
0
1
5
)

-
-

-
8
3

(G
al
in
ie
r
&

H
ao

,
1
9
9
9
;
M

al
ag

u
ti
&

al
,
2
0
0
8
)

8
3

1
0
/1
0

2
0
5

(P
o
ru
m
b
el

al
.,
2
0
1
0
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

D
S
JC

1
0
0
0
.9

1
0
0
0

4
4
9
,4
4
9

0
.9
0

2
2
2

(G
al
in
ie
r
&

H
ao

,
1
9
9
9
;
B
lo
ch

li
g
er

&
Z
u
ff
er
ey

,
2
0
0
8
;
H
er
tz

&
al
.,
2
0
0
8
)

2
2
2

4
/1
0

8
0
1

(P
o
ru
m
b
el

al
.,
2
0
1
0
;
T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
;
M

o
al
ic

&
G
o
n
d
ra
n
,
2
0
1
5
)

D
S
JR

5
0
0
.1
c

5
0
0

1
2
1
,2
7
5

0
.9
7

8
5

(H
er
tz

&
al
.,
2
0
0
8
;
T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
)

8
5

1
0
/1
0

6
0

(W
u
&

H
ao

,
2
0
1
2
)

D
S
JR

5
0
0
.5

5
0
0

5
8
,8
6
2

0
.4
7

1
2
2

(H
er
tz

&
al
.,
2
0
0
8
;
P
re
st
w
ic
h
,
2
0
0
2
)

1
2
2

3
/1
0

4
8
0

(T
it
il
o
y
e
&

C
ri
sp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

70 A Multi-Agent based Optimization Method for the GCP

T
ab

le
4
.2

–
C
o
m
p
u
tatio

n
al

resu
lts

o
f
M

A
O
M

-G
C
P
o
n
th
e
d
iffi

cu
lt
D
IM

A
C
S
ch

allen
g
e
b
en

ch
m
ark

s(P
art

II)

M
A
O
M

-G
C
P

In
stan

ces
n

n
e

d
en

s
k
∗

R
ef

eren
ces

k
h
it

tim
e(m

)

R
2
5
0
.5

2
5
0

1
4
,8
4
9

0
.4
8

6
5

(B
lo
ch

lig
er

&
Z
u
fferey

,
2
0
0
8
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

6
5

1
0
/1
0

4
2

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

R
1
0
0
0
.1
c

1
0
0
0

4
8
5
,0
9
0

0
.9
7

9
8

(B
lo
ch

lig
er

&
Z
u
fferey

,
2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

9
8

1
0
/1
0

5
5

(P
o
ru
m
b
el

al.,
2
0
0
9
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

R
1
0
0
0
.5

1
0
0
0

2
3
8
,2
6
7

0
.4
8

2
3
4

(H
ertz

&
al.,

2
0
0
8
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

2
4
0

2
/1
0

1
1
2
0

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

le4
5
0
_
1
5
c

4
5
0

1
6
,6
8
0

0
.1
7

1
5

(G
alin

ier
&

al.,
2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

1
5

1
0
/1
0

4
0

(H
ertz

&
al.,

2
0
0
8
;
P
o
ru
m
b
el

al.,
2
0
0
9
,
2
0
1
0
)

(T
itilo

y
e
&

C
risp

in
,
2
0
1
1
;
W

u
&

H
ao

,
2
0
1
2
)

le4
5
0
_
1
5
d

4
5
0

1
6
,7
5
0

0
.1
7

1
5

(G
alin

ier
&

al.,
2
0
0
8
;
H
ertz

&
al.,

2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

1
5

1
0
/1
0

5
0

(P
o
ru
m
b
el

al.,
2
0
0
9
,
2
0
1
0
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

le4
5
0
_
2
5
c

4
5
0

1
7
,3
4
3

0
.1
7

2
5

(B
lo
ch

lig
er

&
Z
u
fferey

,
2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

2
5

1
0
/1
0

1
2
0

(P
o
ru
m
b
el

al.,
2
0
0
9
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

le4
5
0
_
2
5
d

4
5
0

1
7
,4
2
5

0
.1
7

2
5

(B
lo
ch

lig
er

&
Z
u
fferey

,
2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

2
5

1
0
/1
0

4
2

(P
o
ru
m
b
el

al.,
2
0
0
9
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

fl
at3

0
0
_
2
6
_
0

3
0
0

2
1
,6
3
3

0
.4
8

2
6

(B
lo
ch

lig
er

&
Z
u
fferey

,
2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

2
6

1
0
/1
0

4
0

(T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

fl
at3

0
0
_
2
8
_
0

3
0
0

2
1
,6
9
5

0
.4
8

2
8

(H
ertz

&
al.,

2
0
0
8
;
W

u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

3
0

5
/1
0

5
0
0

fl
at1

0
0
0
_
5
0
_
0

1
0
0
0

2
4
5
,0
0
0

0
.4
9

5
0

(G
alin

ier
&

al.,
2
0
0
8
;
H
ertz

&
al.,

2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

5
0

1
0
/1
0

4
0

(P
o
ru
m
b
el

al.,
2
0
0
9
,
2
0
1
0
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

fl
at1

0
0
0
_
6
0
_
0

1
0
0
0

2
4
5
,8
3
0

0
.4
9

6
0

(G
alin

ier
&

al.,
2
0
0
8
;
H
ertz

&
al.,

2
0
0
8
;
M

alag
u
ti
&

al,
2
0
0
8
)

6
0

1
0
/1
0

4
5

(P
o
ru
m
b
el

al.,
2
0
0
9
,
2
0
1
0
;
T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

(W
u
&

H
ao

,
2
0
1
2
;
H
ao

&
W

u
,
2
0
1
2
)

fl
at1

0
0
0
_
7
6
_
0

1
0
0
0

2
4
6
,7
0
8

0
.4
9

8
1

(H
ao

&
W

u
,
2
0
1
2
;
M

o
alic

&
G
o
n
d
ran

,
2
0
1
5
)

-
-

-
8
2

(M
alag

u
ti
&

al,
2
0
0
8
;
P
o
ru
m
b
el

al.,
2
0
0
9
)

8
2

1
0
/1
0

2
8
0

(T
itilo

y
e
&

C
risp

in
,
2
0
1
1
;
W

u
&

H
ao

,
2
0
1
2
)

C
2
0
0
0
.5

2
0
0
0

9
9
9
,8
3
6

0
.5
0

1
4
5

(H
ao

&
W

u
,
2
0
1
2
)

-
-

-
1
4
6

(W
u
&

H
ao

,
2
0
1
2
)

1
4
7

1
/5

8
0
0
0

latin
_
sq

r_
1
0

9
0
0

3
0
7
,3
5
0

0
.7
6

9
7

(T
itilo

y
e
&

C
risp

in
,
2
0
1
1
)

9
8

2
/1
0

6
0
0

4.5 Conclusion 71

OurMAOM-GCPwas implemented in Java using the multi-agent platform Jade.

The program was run on a computer with a Core I5 2.5 GHz, 8GB of RAM.

Each instance was solved 10 times independently (5 times for very large graphs).

We stopped the algorithm when a legal k-coloring is found or the fixed execution

timeout is reached. For all instances, a timeout limit of 240 CPU hours was used

except for the large graph C2000.5 where a limit of 500 CPU hours (note that large

computing times are usually allowed in the literature on GCP). We adjusted the

parameters of the proposed algorithms by an experimental study. The number of

iterations for each tabu search agent (iter_max) was fixed to 1000. The parameters

max_opt (for decision-maker agent) andmax_opt_TS (for tabu search agent), that

evaluate the improvement of solutions between generations, were fixed to 20 and

2 for respectively. For interval, we considered the same value 10 for the same

agents. The rate µ used in updating the decision matrices was fixed to 0.9.

Table 4.1 and Table 4.2 summarize the computational results of our MAOM-

GCP. Columns 2-4 show the features of the tested instances: the number of vertices

(n), the number of edges (ne) and the density of the graph (dens). Columns 5

and 6 correspond to the best known results k∗ ever reported in the literature and the

corresponding references. The remaining columns give the computational results of

our MAOM-GCP: the smallest number of colors needed to obtain a legal k-coloring,
the success rate (#hit) and the average time for reaching the best legal k-coloring
(time in minutes).

Table 4.1 and Table 4.2 show that the results obtained by our MAOM-GCP

are competitive with respect to many state of the art algorithms in terms of solu-

tion quality (i.e., the number of colors used). It can reach previous best known

results except for 7 very difficult cases (DSJC500.5, DSJC1000.5, flat300_28_0,

flat1000_76_0, latin_sqr_10, C2000.5 and R1000.5) for which very few algorithms

are able to attain the best known results. For these 7 instances, MAOM-GCP

the deviation between our results and the best-known results is respectively 0.021

(DSJC500.5), 0.012 (DSJC1000.5), 0.034 (flat300_28_0), 0.012 (flat1000_76_0),

0.002 (R1000.5), 0.013 (C2000.5) and 0.01 (latin_sqr_10) respectively.

4.5 Conclusion

In this section, we presented a multi-agent based optimization algorithm for the

Graph Coloring Problem. MAOM-GCP is based on distributed programming real-

ized by multi-agent system which is reinforced by a technique of learning, in order

to manage the search to the right decision. In fact, a decision-maker agent decides if

the search process needs to be intensified or diversified based on a decision matrix,

so two different types of agents are trigged. Tabu search agents, responsible for

intensification search, explore two different neighbor structures, and apply a tabu

search algorithm to generate progressively a legal k-coloring.

These last agents can get helps from other agents, when the solution can not be

further improved. It is the perturbation agent which applies a reduced perturbation

move or a strong perturbation move, in order to create another depart solution for

tabu search agents. Crossover agents are trigged, to escape deep local optima, by

72 A Multi-Agent based Optimization Method for the GCP

performing two different recombination operators. These agents create a new solu-

tion based on a an elite solution archive which is built and updated by the decision-

maker agent. All the best k-coloring found by tabu search agents and crossover

agents are maintained in this archive, in the decision-maker agent. The proposed

algorithm is evaluated on DIMACS coloring benchmarks. The comparative study

shows that it is able to reach best known solutions of several instances.

5
A Multi-Agent based Optimization

Method for the Winner

Determination Problem

In this chapter, we present another application of the proposed method to the

Winner Determination Problem (WDP) in combinatorial auctions. In the next sec-

tion, we will describe the problem. In section 5.2, we will give an overview of algo-

rithms for the WDP. Then, we will apply the proposed method to the WDP. Section

5.4 will contain the experimentations of MAOM-WDP using the WDP benchmarks.

In the appendix of this chapter, we will present another algorithm for the WDP.

It is a Recombination-Based Tabu Search Algorithm for the WDP (TSX_WDP).

TSX_WDP will be evaluated using the same benchmarks. TSX_WDP is presented

in (Sghir & al., 2013).

Contents

5.1 Problem definition . 72

5.2 State of the art approaches for the WDP 73

5.3 A Multi-agent based optimization method for the WDP (MAOM-

WDP) . 75

5.3.1 Decision-maker agent 75

5.3.2 Tabu search agents . 75

5.3.3 Perturbation agent . 76

5.3.4 Crossover agents . 77

5.4 Experimentations of MAOM-WDP 78

5.4.1 Experimental results 79

5.5 Conclusion . 82

Appendix . 84

73

74 A Multi-Agent based Optimization Method for the WDP

5.A A Recombination-based Tabu Search algorithm for the WDP 84

5.A.1 TSX_WDP algorithm 84

5.A.2 Experimentations of TSX_WDP 84

5.1 Problem definition

The auction consists of an auctioneer wishing to maximize his/her selling rev-

enue and a set of bidders wishing to minimize their cost. Examples of the most

widely known auctions are the English auction, the Holland’s auction, the Sealed

envelope auction and the Vickrey auction (Klemperer, 2004). These auctions typ-

ically treat only a single item for each sell. Combinatorial auctions are multi-item

auctions, which allow bids on a combination of items (Cramton & al., 2006; Jawad

& al., 2007).

In combinatorial auctions, we have a set of items which are exposed to buyers.

Buyers offer different bids. Each bid is defined by a subset of items with a price.

Two bids are conflicting, if they share at least one item. The Winner Determination

Problem (WDP) is to determine a conflict-free allocation of items that maximizes

the auctioneer’s revenue defined as the sum of the valuations of the winning bids.

The WDP is known to be a NP-hard combinatorial optimization problem with a

number of practical applications like the e-commerce, the games theory and the

resources allocation in multi-agent systems (Vries & Vohra, 2003; Jawad & al.,

2007).

Formally, given a set of m items M = {1, 2, ...,m} to sell and a set of n bids

N = {1, 2, ...n}. Each bid j is a tuple < Sj, Pj > where Sj is a subset of items

covered by bid j, and Pj is the price of bid j. Let B be a m × n binary matrix

such that Bij = 1 if object i ∈ Sj , Bij = 0 otherwise. Furthermore, we define

the decision variable xj for each bid j such that xj = 1, if bid j is a winning

bid, 0 otherwise. Formally, the WDP can be stated as the following binary integer

optimization problem.

Maximize f(x) =
∑

j∈N

Pjxj (5.1)

subject to
∑

j∈N

Bijxj ≤ 1, i ∈M (5.2)

The objective function (5.1) is to maximize the auctioneer’s gain calculated by

the sum of prices of the winning bids, while the constraints expressed by formula

(5.2) ensure that an item appears at most in one winning bid. We present a simple

example to understand better the notations used in the modeling of the WDP. Let us

consider a set of five items 1, 2, 3, 4, 5 to sell by auction and four bids. Each bid is

represented by a couple < Sj, Pj > where Pj indicates the price of bid j containing

a set of items Sj . The following bids are:

— Bid1: (1, 2), 250

5.2 State of the art approaches for the WDP 75

— Bid2: (1, 2, 3), 400
— Bid3: (3, 4, 5), 500
— Bid4: (4, 5), 200

Bid1 contains a set of two items (1, 2) which the price is 250. Bid3 has as price 500
for the set of three items (3, 4, 5). Bid1 and Bid3 can constitute a winning allocation

maximizing the gain of the seller. The total price of the sale is 750.

5.2 State of the art approaches for the WDP

Several algorithms were proposed to solve the winner determination problem.

These algorithms can be divided into two categories: the exact algorithms and the

stochastic algorithms. For the exact algorithms, we can quote: Branch-on-Items

(BoI), Branch-on-Bids (BoB) (Sandholm & Suri, 2000), CABoB (Sandholm & al.,

2001), Combinatorial Auction Structural Search (CASS) (Fujishima & al., 1999),

Combinatorial Auctions Multi-unites Search (CAMUS) (Leyton-Brow & al., 2000).

In (Rothkopf & al., 1998), an algorithm of dynamic programming for the WDP

was introduced. Nisan (Nisan, 2000) proposed a linear programming algorithm for

the WDP. Holland and Sullivan (Holland & O’sullivan, 2004) used the constraints

programming to solve a particular combinatorial of Vickrey auction.

Some stochastic algorithms were proposed for the WDP.

Casanova (Hoos & Boutilier, 2000) is a local search algorithm proposed by

Hoos and Boutilier. Casanova begins with an empty allocation where all bids are

considered unsatisfied. In each iteration, an unsatisfied bid is selected to be added in

the allocation. Any incompatible bid, which can occur in the current allocation, is

removed, when new bids are added. The selection of a bid is based on the following

strategies:

— With a probability wp (Walk probability), an unsatisfied bid is randomly

selected.

— With a probability 1-wp, unsatisfied bids are classified according to their

profit. The profit is the price of a bid divided by the number of items cov-

ered by this bid. Then, with a probability np (Novelty probability), the best

unsatisfied bid, which has the biggest profit value, is selected to be added in

the current allocation. Otherwise, with a probability 1-np, the best second

unsatisfied bid is chosen.

In (Guo & al., 2006), Guo et al. proposed the SAGII algorithm which is a

simulated annealing combined with the Branch-and-Bound algorithm for the WDP.

SAGII begins with a preprocessing to exclude the bids which can lead to the optimal

solutions. The search process is composed of three components:

— A branch-and-Bound algorithm applied to the items subsets of the current

allocation;

— A simulated annealing algorithm used to select the best unsatisfied bid to be

added in the current allocation;

— A random movement performed to select randomly an unsatisfied bid to be

considered in the current allocation.

76 A Multi-Agent based Optimization Method for the WDP

SAGII starts from an empty allocation. A penalty function is used to eliminate the

incompatible bids. The Branch-and-Bound algorithm is executed with a probability

p1 = 0.2. The simulated annealing algorithm is performed with a probability p2 =
0.7. The random movement is applied with a probability 1− p1 − p2.

The local search (SLS) proposed by (Boughaci & al., 2009) starts with a possi-

ble initial allocation and tries to improve it, by searching for a better solution in the

current neighborhood. A Random Key Encoding (RK) is used to generate the initial

solution (Bean, 1994). Then, in each iteration, an unsatisfied bid is selected to be in-

tegrated into the current allocation. Any contradictory bid, in the current allocation,

is removed. Two criteria are fixed for the bid selection. The first criterion consists

in choosing an unsatisfied bid in a random way with a fixed probability wp. The

second criterion consists in choosing, with a probability 1-wp, the best unsatisfied

bid that maximizes the gain of the seller.

The tabu search (TS) elaborated by (Boughaci & al., 2009) begins with the RK

algorithm (Bean, 1994) to generate the initial solution. The best neighbor is selected

for the next solution. To produce neighbor solutions, TS performs two moves which

are built in the following way:

— the best unsatisfied bid, which maximizes the total profit of the current al-

location, when it will be inserted, is selected. All incompatible bids, in the

current allocation, are removed;

— the search space is composed of the items which are not covered by the bids

in the current allocation. The best bid covering such items is chosen. All

incompatible bids in the current allocation are removed;

After generating all neighbor configurations, the best configuration is selected to

be a candidate solution. To escape the visited allocations, a list maintains the bids

recently selected.

The memetic algorithm (MA) proposed by (Boughaci & al., 2010) starts by

the RK algorithm. Then, it selects C individuals from the current population P to

participate in the reproduction phase. C contains the best individuals C1, which

have the highest fitness, and the diverse individuals C2, which are the individuals

the most diverse in the population P . The diversity is measured using a similarity

function which calculates the number of the common bids between two individuals.

Two parents are selected randomly from C. They are combined to generate a new

individual. To locate more effectively solutions, the mutation phase is replaced by

a stochastic local search (SLS). The population is updated with the new individual

based on the quality and the diversity criteria.

In (Wu & Hao, 2015), Wu and Hao developed an algorithm for the WDP by

recasting the WDP into the maximum weight clique problem (MWCP). They solve

the transformed problem using a recent heuristic dedicated to theMWCP. Amemetic

algorithm (MA) was proposed. The proposed algorithm incorporated a novel selec-

tion strategy and a specific crossover operator. The stochastic local search (SLS)

was used for the intensification search.

We explore the operators and the techniques used in these reference algorithms

in our multi-agent model, in order to create the first multi-agent based optimization

algorithm solving the WDP. In the next section, we will present the components of

5.3 A Multi-agent based optimization method for the WDP (MAOM-WDP) 77

the proposed algorithm.

5.3 A Multi-agent based optimization method for the

WDP (MAOM-WDP)

In this section, we apply our multi-agent approach to the Winner Determination

Problem (MAOM-WDP). We use the following agents: the decision-maker agent,

two tabu search agents which are the intensification agents, the perturbation agent

and two crossover agents. Below, we describe the behaviors of these agents.

5.3.1 Decision-maker agent

The decision-maker agent generates a simple non conflicting allocation by se-

lecting random items. The decision-maker agent uses a decision matrix (section

2.2.1) which helps it to decide which agents to activate between crossover agents

and tabu search agents. It maintains all high-quality solutions, received from other

agents, in a shared memory.

5.3.2 Tabu search agents

Two tabu search agents are responsible for the intensification search of MAOM-

WDP. During their search, these agents can exchange with another alive tabu search

agent or with a perturbation agent based on their decision matrices (section 2.2.1)

and according to the corresponding condition (section 2.5.1). They send the best

allocation found to the decision-maker agent. Below, we define the used neighbor-

hood strategies for each tabu search agent.

5.3.2.1 Neighborhood exploration strategies

A candidate solution is represented by an allocation A (a dynamic vector). Each

element of this allocation A receives the winning bid. Each bid is an object com-

posed of the list of items and the associated prices. The first tabu search agent

explores the neighborhood strategy proposed by (Boughaci & al., 2009) (section

5.2).

The second tabu search agent performs the following neighborhood strategy:

— The initial candidate (unsatisfied) bids are sorted according to their utility

prices;

— For each candidate bid Bx, a binary gain function is used to verify if the bid

can increase the revenue of the current allocation when the bid is inserted;

— LetQ be the set of winning bids that are in conflict with the current candidate

bid Bx, Let f(Q) be the revenue of the set of winning bids Q, and f(Bx)
the price of the candidate bid Bx. The gain function returns true if f(Q) <
f(Bx) and returns false otherwise;

78 A Multi-Agent based Optimization Method for the WDP

— According to this expression, a candidate bid Bx can enter in the current

allocation only if its price f(Bx) is higher than the revenue of other winning

bids which are conflicting with Bx in the current allocation (i.e., the gain

function is true);

— The gain of Bx, when it is selected to be added in the current allocation, is

calculated according to the following function:

Gain(Bx) = f(A)− f(Q) + f(Bx) (5.3)

— When a bid Bx is inserted in the current allocation A, the bids of Q which

are conflicting with Bx are removed from A;

— The steps mentioned previously are iterated until all the initial candidate

bids are visited and possibly added in the current allocation A.

5.3.2.2 The tabu list and the tabu tenure management

The tabu search agents use a tabu list to forbid recently visited solutions from

being revisited. A bid that is chosen to be inserted in the current allocation A is

forbidden to be removed for the next tt iterations. This number of iterations, named

the tabu tenure, is calculated dynamically by the function: tt = L + ⋋ + f(A)
where L is randomly chosen from the interval [0, 9] and ⋋ is empirically fixed to

0.6. Notice that we allow a move to be accepted in spite of being tabu if the move

leads to a solution better than any found so far. This is called the aspiration criterion.

5.3.3 Perturbation agent

The perturbation agent is activated by a tabu search agent when it needs diver-

sification search under specific conditions (C2 and C3 of section 2.5.1). This agent

creates a new perturbed solution that manages the search towards other regions. It

performs two parallel behaviors which are reduced perturbation behavior and strong

perturbation behavior. The resulting solution is sent to the tabu search agent.

5.3.3.1 Reduced perturbation technique

The reduced perturbation technique is activated when the tabu search agent ob-

serves a slight search stagnation (condition C2 of section 2.5.1). The perturba-

tion agent chooses randomly one candidate unsatisfied bid from the available ones.

Then, the selected bid is inserted in the allocation received from the tabu search

agent. All the contradictory bids are removed from this allocation.

5.3.3.2 Strong perturbation technique

The strong perturbation technique is applied, when the tabu search agent ob-

serves a strong search stagnation. Based on the archive of elite solutions, the per-

turbation agent extracts the number of occurrences of each bid appeared in the high-

quality allocations. Then, the bids, which have the smallest occurrence number, are

inserted in the current non conflicting allocation. In order to create a new solution in

5.4 Experimentations of MAOM-WDP 79

each call of the perturbation agent, data structures are employed to save the visited

solutions.

5.3.4 Crossover agents

Two crossover agents are activated, when the decision-maker agent observes

a local optimum reached based on its decision matrix. These two agents apply

crossover operations to produce new offspring allocations. The first crossover agent

explores the crossover operator which was proposed by (Boughaci & al., 2010) (sec-

tion 5.2). The second crossover agent employs the recombination operator which is

described below.

This operator aims to transform the good properties of the parents towards the

offspring. These criteria have to assure that the offspring inherits the properties of

the parents. The pseudo-code of the recombination operator is given in Algorithm

5.1. Given two parent allocations I1 and I2 from the common archive, these parents

share the highest number of bids. The second crossover agent constructs the off-

spring I0 in k steps until all the bids of the two parents are visited. This operator is

inspired by the idea of backbone used in (Benlic & Hao, 2011; Wang & al., 2013).

In the first step, the set of bids, that are shared by the parents, are identified and

directly transmitted to I0. Then the following steps are performed:

— Choose the bid with the lowest price from each parent (lines 4 and 5 from

Algorithm 5.1);

— The two selected bids are candidates bids that can be inserted in the off-

spring, if they are not conflicting bids. This is by conserving, the best bids,

which have the highest revenue (lines 6 and 7 from Algorithm 5.1);

— Remove the selected bids from their parents, even if they are not inserted in

the offspring (lines 9 and 10 from Algorithm 5.1);

— Repeat the previous steps until all the bids of the parents are examined and

removed.

An example of this recombination operator is provided in Figure. 5.1.

The two allocations, generated by the crossover agents, are sent to the decision-

maker agent. They will be the new current allocation for the search process.

5.4 Experimentations of MAOM-WDP

We present in this section experimental results of MAOM-WDP on the set of

well-known WDP benchmarks. MAOM-WDP was implemented in Java using the

platform Jade. The program was run on a computer with a Core I5 2.5GHz, 8GB

of RAM. Tests were made on various benchmarks of diverse sizes defined in (Lau

& Goh, 2002). These benchmarks take into account several factors like the prices,

bidders preferences and object distribution on bids. They can be divided into five

groups where each group contains 100 instances:

— REL 500-1000: From in101 to in200: m = 500, n = 1000

— REL 1000-1000: From in201 to in300: m = 1000, n = 1000

— REL 1000-500: From in401 to in 500: m = 1000, n = 500

80 A Multi-Agent based Optimization Method for the WDP

Algorithm 5.1. The recombination operator of the second crossover agent

Require: two parent solutions I1 and I2
Ensure: An offspring solution I0
1: I0 ← ∅, D1 ← ∅, D2 ← ∅
2: Sort the bids in each parent according to their prices

3: while I1 and I2 are not empty do

4: D1 ← first_element(I1)
5: D2 ← first_element(I2)
6: if D1 and/or D2 are no conflict bids with the bids in I0 then

7: add D1 and/or D2 to I0
8: end if

9: remove D1 from I1
10: remove D2 from I2
11: end while

12: Return Child I0

2 7 5 8 11I1

2 4 116I2

7 5 8

4 6

I1

I2

5 8

6

I1

I2

8I1

I2

2 11I0 2 11 7 4 2 11 7 4 6 2 11 7 4 6 8I0 I0 I0

II1={7}

II2={4}

I0={2, 11, 7, 4}

Iteration2 { the fort bids 2, 11, 7

and 4 are not conflicted bids,

so they are assigned to I0}

II1={5}

II2={6}

I0={2, 11, 7, 4, 6}

Iteration 3 { the bid 5 is a conflicted

bid, so it is discarded from I0}

II1={8}

II2={}

I0={2, 11, 7, 4, 6, 8}

Iteration 4

A simple example of WDP that contains 11 bids and 16 items:

Bid 1={{1, 2, 3}; 50}, Bid 2={{1, 2, 4}; 100}, Bid 3={{2, 4}; 200}, Bid 4={{3, 5, 6}; 200}, Bid 5={{6, 7, 8}; 300}, Bid 6={{7, 8}; 200}, Bid 7={{9, 10, 11}; 150},

Bid 8={{12, 13, 14}; 400}, Bid 9={{7, 9}; 200}, Bid 10={{9, 10, 11}; 250}, Bid 11={{15,16}; 450}.

I0=I1 and I2={2, 11}

Iteration 1

Figure 5.1 – An example of the recombination operator of MAOM-WDP algorithm

5.4 Experimentations of MAOM-WDP 81

— REL 1000-1500: From in501 to in 600: m = 1000, n = 1500

— REL 1500-1500: From in601 to in 700: m = 1500, n = 1500

We adjusted the parameters of MAOM-WDP by an experimental study. The

number of iterations for each tabu search agent (iter_max) was fixed to 500. The

parametersmax_opt (for decision-maker agent) andmax_opt_TS (for tabu search

agents), which evaluate the improvement of solutions between generations, were

fixed to 20 and 25 respectively. As interval, we considered the same value 1000

for the same agents. The rate µ used in updating the decision matrices was fixed to

0.9.

5.4.1 Experimental results

In Tables 5.1, 5.2, 5.3, 5.4, and 5.5, we provide the computational results of

MAOM-WDP on the set of the five groups of benchmarks. Given that there are

500 instances, we show only some results of each group, like in some recent papers

(Boughaci & al., 2010). Columns give the following computational statistics of each

tested instance: the maximumrevenue obtained by the MAOM-WDP algorithm

over the 10 independent trials Rbest, the averagerevenue over the 10 trials Ravg,
the worstrevenue over the 10 trials Rworst and the average CPU time in seconds

AvgT ime. These tables show that the values of Ravg are equal to the values of

Rbest in all instances.

Table 5.1 – Some results obtained by MAOM-WDP on REL 500-1000 for bench-

marks

Instance Rbest Ravg Rworst AvgTime

in101 69585.298 69585.298 69585.298 96

in102 72518.222 72518.222 72518.222 65

in103 70999.247 70999.247 70999.247 81

in104 71327.641 71327.641 71327.641 75

in105 73351.044 73351.044 73351.044 102

in106 66440.95 66440.95 66440.95 81

in107 68796.927 68796.927 68796.927 74

in108 74867.585 74867.585 74867.585 76

in109 64662.355 64662.355 64662.355 79

in110 66549.957 66549.957 66549.957 71

82 A Multi-Agent based Optimization Method for the WDP

Table 5.2 – Some results obtained by MAOM-WDP on REL 1000-1000 instances

for benchmarks

Instance Rbest Ravg Rworst AvgTime

in201 81557.742 81557.742 81557.742 66

in202 90537.285 90537.285 90537.285 61

in203 86239.213 86239.213 86239.213 64

in204 84879.397 84879.397 84879.397 59

in205 83758.599 83758.599 83758.599 62

in206 87544.451 87544.451 87544.451 64

in207 93115.569 93115.569 93115.569 68

in208 91774.549 91774.549 91774.549 57

in209 86441.696 86441.696 86441.696 59

in210 89962.396 89962.396 89962.396 56

Table 5.3 – Some results obtained by MAOM-WDP on REL 1000-500 instances for

benchmarks

Instance Rbest Ravg Rworst AvgTime

in401 77417.482 77417.482 77417.482 10

in402 76273.336 76273.336 76273.336 11

in403 74843.958 74843.958 74843.958 10

in404 78761.690 78761.690 78761.690 12

in405 75915.900 75915.900 75915.900 10

in406 72863.324 72863.324 72863.324 10

in407 76365.717 76365.717 76365.717 11

in408 77018.833 77018.833 77018.833 10

in409 73188.62 73188.62 73188.62 15

in410 73791.65 73791.65 73791.65 18

Table 5.4 – Some results obtained by MAOM-WDP on REL 1000-1500 instances

for benchmarks

Instance Rbest Ravg Rworst AvgTime

in501 88656.95 88656.95 88656.95 112

in502 86236.911 86236.911 86236.911 95

in503 83718.749 83718.749 83718.749 93

in504 85600.002 85600.002 85600.002 84

in505 83071.930 83071.930 83071.930 73

in506 83059.438 83059.438 83059.438 74

in507 90288.472 90288.472 90288.472 81

in508 84033.386 84033.386 84033.386 88

in509 86045.479 86045.479 86045.479 87

in510 88163.815 88163.815 88163.815 85

5.5 Conclusion 83

Table 5.5 – Some results obtained by MAOM-WDP on REL 1500-1500 instances

for benchmarks

Instance Rbest Ravg Rworst AvgTime

in601 107823.098 107823.098 107823.098 120

in602 99718.150 99718.150 99718.150 85

in603 98577.454 98577.454 98577.454 82

in604 102332.650 102332.650 102332.650 85

in605 111645.103 111645.103 111645.103 92

in606 101496.527 101496.527 101496.527 83

in607 104616.624 104616.624 104616.624 95

in608 102231.73 102231.73 102231.73 84

in609 100697.634 100697.634 100697.634 86

in690 106754.424 106754.424 106754.424 63

5.4.1.1 Comparative results for MAOM-WDP

In this section, we show the comparative study of MAOM-WDP with other

algorithms from the literature: Casanova (Hoos & Boutilier, 2000), SAGII (Guo &

al., 2006), SLS (Boughaci & al., 2009), TS (Boughaci & al., 2009), MA (Boughaci

& al., 2010), MN/TS (Wu & Hao, 2015).

In Table 5.6, we present the generic comparative results for each group. In this

table, rows µ correspond to the average of best objective value of the 100 instances

in each group. Rows time represent the average time to reach the best solution.

δ(%) is the deviation of the MAOM-WDP algorithm with respect to each reference

algorithm. The deviations are calculated respectively as follows: µMAOM−WDP −
µalgo_X)/µMAOM−WDP where algo_X is one of the five reference algorithms. Since

the compared algorithms are implemented in different languages and run in different

computer, the comparison is focused on solution quality that can be reached by each

algorithm. The computing time is provided only for indicative purposes. The results

of the reference algorithms are extracted from the corresponding papers except the

results of Casanova are given by (Guo & al., 2006).

Table 5.6 shows that MAOM-WDP gives an improvement between 32% and

48% in solution quality compared to Casanova in shorter time. MAOM-WDP out-

performs TS (the improvement rate is between 4% and 11%), SLS (the improve-

ment rate is between 4% and 10%), MA (the improvement rate is between 2% and

9%). The results of MAOM-WDP are close to the results of MN/TS. The deviation

is between -2% and 0 %.

5.5 Conclusion

In this chapter, we proposed a multi-agent based optimization algorithm for the

winner determination problem. The proposed algorithm combines different tech-

niques of diversification and techniques of intensification. The tabu search agents

84 A Multi-Agent based Optimization Method for the WDP

T
ab

le
5
.6

–
C
o
m
p
arativ

e
resu

lts
b
etw

een
M

A
O
M

-W
D
P
C
asan

o
v
a,

M
A
,S

L
S
,T

S
,S

A
G
II,M

N
/T

S
o
n
W

D
P
b
en

ch
m
ark

s:
ro
w
s
µ
co

rresp
o
n
d

to
th
e
av

erag
e
o
f
th
e
b
est

o
b
jectiv

e
v
alu

e
o
f
th
e
1
0
0
in
stan

ces
in

each
g
ro
u
p
.
C
o
lu
m
n
s
tim

e
rep

resen
t
th
e
av

erag
e
tim

e
to

reach
th
e
b
est

so
lu
tio

n
.

T
est

S
et

1
0
0
in
stan

ces
R
E
L
-5
0
0
-1
0
0
0

R
E
L
-1
0
0
0
-5
0
0

R
E
L
-1
0
0
0
-1
0
0
0

R
E
L
-1
0
0
0
-1
5
0
0

R
E
L
-1
5
0
0
-1
5
0
0

M
A
O
M

-W
D
P

T
im

e
7
0

1
0

5
3

8
5

1
0
1

µ
7
0
2
1
5
.7
1
1

7
5
5
4
0
.6
8

8
7
.2
9
2
.8
4
8

8
7
0
4
1
.0
3
7

1
0
6
0
9
3
.9
5
5

C
asan

o
v
a

T
im

e
1
1
9
.4
6

5
7
.7
4

1
1
1
.4
2

1
6
8
.2
4

1
6
5
.9
2

µ
3
7
0
5
3
.7
8

5
1
2
4
8
.7
9

5
1
9
9
0
.9
1

5
6
4
0
6
.7
4

6
5
6
6
1
.0
3

δ
M

A
O
M
−
W

D
P
/
C
a
s
a
n
o
v
a (%

)
4
7
.2
2

3
2
.1
5

4
0
.4
4

3
5
.1
9

3
8
.1
1

T
S

T
im

e
9
1
,0
7

2
5
.8
4

1
0
4
,3
0

2
2
3
,3
7

1
7
5
.6
8

µ
6
5
2
8
6
.9
4

7
1
9
8
5
.3
4

8
1
6
3
3
.6
3

7
7
9
3
1
.4
1

9
7
8
2
4
.6
4

δ
M

A
O
M
−
W

D
P
/
T
S
(%

)
7
.0
1

4
.7

6
.4
8

1
0
.4
6

7
.7
9

S
L
S

T
im

e
2
2
.3
5

5
.9
1

1
4
.1
9

1
4
.9
7

1
6
.4
7

µ
6
4
2
1
6
.1
4

7
2
2
0
6
.0
7

8
2
1
2
0
.3
1

7
9
0
6
5
.0
8

9
8
8
7
7
.0
7

δ
M

A
O
M
−
W

D
P
/
S
L
S
(%

)
8
.5
4

4
.6
1

5
.9
2

9
.1
6

6
.8

M
A

T
im

e
5
6
.6
4

1
4
.9
8

3
3
.0
5

2
4
.5
1

2
8
.2
2

µ
6
5
7
4
0
.2
5

7
3
6
0
4
.6
2

8
3
3
0
4
.2
0

7
9
6
4
4
.6
4

9
9
9
5
7
.9
6

δ
M

A
O
M
−
W

D
P
/
M

A
(%

)
6
.3
7

2
.5
6

4
.5
6

8
.4
9

5
.7
8

S
A
G
II

T
im

e
3
8
.0
6

2
4
.4
6

4
5
.3
7

6
8
.8
2

9
1
.7
8

µ
6
4
9
2
2
.0
2

7
3
9
2
2
.1
0

8
3
7
2
8
.3
4

8
2
6
5
1
.4
9

1
0
1
7
3
9
.6
4

δ
M

A
O
M
−
W

D
P
/
S
A
G
I
I (%

)
7
.5
3

2
.1
4

4
.0
8

5
.0
4

4
.1

M
N
/T

S
T
im

e
1
2
.2
8

0
.3
8

3
.1
2

6
.3
9

2
.6
4

µ
7
1
4
7
0
.9
3

7
5
5
4
0
.6
8

8
9
1
5
8
.9
8

8
9
5
5
2
.1
8

1
0
8
6
2
7
.1
7

δ
M

A
O
M
−
W

D
P
/
M

N
/
T
S
(%

)
-1
.7
5

0
-2
.0
9

-2
.8

-2
.3
3

5.5 Conclusion 85

are responsible for the intensification search. One of these tabu search agent ex-

plores new neighborhood strategy for the WDP. The new strategy of the selection of

the best neighbor helps the algorithm to maintain, a diversification of the population

what leads to a good compromise between the intensification and the diversification.

The use and the update of the tabu tenure, in each iteration of the algorithm, improve

the diversification in order to discover other areas in the search space.

The crossover agents employ crossover operators as another tool for the diver-

sification of the search space. One of these agent explores a new technique of

crossover for the WDP, that gives the priority to the invariants bids to stay in the

new descendant. Then, this agent adds the conflict-free bids from the two parents

selected according to their prices. The new crossover strategy aims to take the good

information of the parents, then try to find other different efficient solutions. The

new descendant solution can change the direction of the search because it is the new

starting point for other iterations of the tabu search. The proposed MAOM-WDP is

evaluated on a set of 500 benchmark instances. The comparative study with refer-

ence algorithms shows that it is able to reach solution of very high quality. Another

centralized algorithm, named TSX_WDP, is presented in the appendix of this chap-

ter.

86 A Multi-Agent based Optimization Method for the WDP

5.A Appendix: A Recombination-based Tabu Search

algorithm for the WDP (TSX_WDP)

We propose a dedicated tabu search algorithm (TSX_WDP) for the Winner De-

termination Problem (WDP) in combinatorial auctions. TSX_WDP integrates two

complementary neighborhoods designed respectively for the purpose of intensifi-

cation and diversification. To escape deep local optima, TSX_WDP employs a

backbone-based recombination operator to generate new starting points for tabu

search and to displace the search into unexplored promising regions. The recombi-

nation operator operates on elite solutions previously found which are recorded in

a global archive. In this section, we present these key components. Then, the per-

formance of the proposed algorithm is assessed on a set of 500 well-known WDP

benchmark instances. Comparisons with state of the art algorithms demonstrate the

effectiveness of TSX_WDP.

5.A.1 TSX_WDP algorithm

The generic TSX_WDP algorithm is formalized in Algorithm 5.2. The algo-

rithm starts with an empty allocation in which no bd is chosen and tries to improve

it, by looking for a better solution in the current neighborhood. In each iteration,

the best authorized bids are selected among the candidate bids to be included in

the current allocation. This is achieved with an intensification move (lines 7-9 of

Algorithm 5.2). This intensification move is the neighborhood strategy performed

by the second tabu search agent of MAOM-WDP and developed in section 5.3.2.1.

When no bit can be found to increase the revenue with the intensification move,

TSX_WDP switches to the perturbation move by choosing a random bid from the

candidate bids (line 11 of Algorithm 5.2). In both cases, the choice of the bids de-

pends on a status of the tabu list which is updated after each move. Any conflicting

bid, being able to occur in the current allocation, when new bids are considered, is

removed (lines 13 and 14 of Algorithm 5.2).

The search process is repeated for a fixed number Itermax of iterations. During

these Itermax iterations, if the current best solution can not be updated for consec-

utive p (fixed experimentally) moves, the best local optimum found so far is inserted

into the archive P and a recombination operator (Algorithm 5.1 & section 5.3.4) is

activated to generate a new starting point for a new round of the tabu search proce-

dure (lines 20-25 of Algorithm 5.2). The tabu search steps starts again with the new

offspring. The best solution is the best revenue found during these iterations.

5.A.2 Experimentations of TSX_WDP

This section gives experimental results of TSX_WDP which was implemented

in Java. The program was run on a computer with a Core I5 2.5GHz, 8GB of RAM.

We adjusted the parameters of the proposed algorithms by an experimental study:

The maximum number of iterations (itermax) was fixed to 200 and the parameter

5.A A Recombination-based Tabu Search algorithm for the WDP 87

Algorithm 5.2. TSX_WDP for the Winner Determination Problem

Require: A matrix M , a parameter Itermax, Vector of bids B, Parameter p
Ensure: a vector of winning bids A∗ and its revenue f(A∗)
1: Iter ← 0 {Iteration counter}, Initiate tabu_list
2: A∗ ← A← ∅

3: opt← 0 {An integer that will be incremented if the current solution doesn’t

improve in two consecutive iterations opt returns to 0, when it exceeds the value

p, after activating the recombination operator}

4: initialize tabu_list
5: P ← ∅ {An archive of the best local optima encountered A∗}
6: while (Iter < Itermax) do

7: Construct neighborhoods from A based on the intensification move

8: if There exists intensification move then

9: Choose an overall best allowed neighbor A′ according to max gain crite-

rion and by considering M {to remove from A′ any conflicting bid) {sec-

tion 5.3.2.1}

10: else

11: Apply the perturbation move by choosing a random bid from B to create

a neighbor A′

12: end if

13: A← A′ (Move to the selected neighboring solution A′)
14: Update tabu_list {section 5.3.2.2} and B {delete the winner bids from B

and add the looser bids in it}

15: if f(A) > f(A∗) then

16: A∗ ← A
17: else

18: opt← opt+ 1
19: end if

20: if opt = p then

21: Add A∗ to the Archive P
22: I1, I2 ← Parent_Selection(P) { section 5.3.4 }

23: I0 ← Recombination_Operator(I1, I2) { section 5.3.4 }

24: A← I0
25: opt← 0
26: end if

27: Iter ← Iter + 1
28: end while

29: Return (A∗ and f(A∗))

88 A Multi-Agent based Optimization Method for the WDP

responsible for the tabu tenure ⋋ was fixed to 0.00006. Each instance was solved

40 times independently by the TSX_WDP algorithm with different random seeds.

In Tables 5.8, 5.10 and 5.11, the computational results of the TSX_WDP are

presented on the set of the five groups of benchmarks. Given that there are 500

instances, we show only some results of each group, like in some recent papers

(Boughaci & al., 2010). According to this table, the values of Ravg are very close

to the values of Rbest in most of cases and these two values are even equal for

certain instances (for example for in101, in102, in205...). These tables show that

the proposed algorithm can consistently reach high quality solutions for the tested

problems.

Table 5.7 – Some results obtained by TSX_WDP on REL 500-1000 instances for

benchmarks

Instances Rbest Ravg Rworst AvgTime

in101 69585.298 69585.298 69585.298 88

in102 72518.222 72518.222 72518.222 76

in103 69730.618 69475.485 65903.632 75

in104 71327.641 70765.941 65948.396 78

in105 73351.044 71570.624 68899.994 93

in106 66361.943 66361.943 66361.943 73

in107 68796.927 68087.087 63208.126 71

in108 74867.585 74867.585 74867.585 76

in109 64662.355 63063.546 60265.685 70

in110 65446.198 65446.198 65446.198 72

Table 5.8 – Some results obtained by TSX_WDP on REL 1000-1000 instances for

benchmarks

Instances Rbest Ravg Rworst AvgTime

in201 81557.742 80383.277 79331.63 56

in202 89289.573 86815.261 81291.193 52

in203 86239.213 83941.410 77220.427 54

in204 84879.397 84374.869 76822.810 55

in205 83748.837 83748.837 83748.837 57

in206 87544.451 84866.292 78889.312 56

in207 93115.569 90605.049 85924.110 61

in208 91774.549 90543.192 79460.979 56

in209 86441.696 85261.813 80749.28 54

in210 89962.396 88281.194 79813.790 54

5.A A Recombination-based Tabu Search algorithm for the WDP 89

Table 5.9 – Some results obtained by TSX_WDP on REL 1000-500 instances for

benchmarks

Instance Rbest Ravg Rworst AvgTime

in401 77417.482 77191.182 70628.481 12

in402 76273.336 76153.051 74469.073 10

in403 74843.958 74356.247 69989.28 10

in404 78761.690 78597.224 77939.364 10

in405 75915.900 75640.510 74899.125 10

in406 72863.324 72671.474 71424.453 10

in407 76365.717 76066.503 72325.694 10

in408 77018.833 76606.838 71892.212 10

in409 70035.529 69789.998 68800.204 9

in410 73628.485 73212.462 71107.518 10

Table 5.10 – Some results obtained by TSX_WDP on REL 1000-1500 instances for

benchmarks

Instance Rbest Ravg Rworst AvgTime

in501 83738.040 83506.552 82605.443 107

in502 83297.340 82546.590 76751.565 82

in503 83718.749 82017.955 78112.719 81

in504 83944.901 82772.535 77217.558 76

in505 83071.930 81876.413 78909.275 66

in506 83059.438 82252.613 78694.650 64

in507 90288.472 85525.706 83484.521 79

in508 84033.386 83588.301 80031.616 77

in509 86045.479 85169.719 79655.527 75

in510 88163.815 87802.967 77338.362 74

Table 5.11 – Results obtained by TSX_WDP on REL 1500–1500 instances for

benchmarks

Instance Rbest Ravg Rworst AvgTime

in601 107246.248 102862.848 96840.461 117

in602 99668.269 97854.579 91452.904 78

in603 98577.454 96567.287 95219.36 75

in604 101713.602 100786.326 99395.413 78

in605 107919.106 103579.211 92948.474 80

in606 101496.527 100090.342 91790.496 79

in607 100336.777 98225.923 95251.78 82

in608 102231.73 100540.091 95641.925 78

in609 100697.634 100060.045 90727.512 76

in690 106754.424 103128.505 95636.147 57

90 A Multi-Agent based Optimization Method for the WDP

In order to further show the effectiveness of the algorithm, we present a com-

parative study with six state of the art algorithms from the literature: Casanova

(Hoos & Boutilier, 2000), SAGII (Guo & al., 2006), SLS (Boughaci & al., 2009),

TS (Boughaci & al., 2009), MA (Boughaci & al., 2010) and MN/TS (Wu & Hao,

2015).

In Table 5.12, we show the generic comparative results for each group. Ta-

ble 5.12 discloses that TSX_WDP gives an improvement between 31% and 47%

in solution quality compared to Casanova. The TSX_WDP algorithm finds better

solutions in shorter time, than Casanova. In addition, it shows good performances

of the TSX_WDP algorithm in solving the WDP compared to SLS. The improve-

ment rate is between 4% and 8%. The results of TSX_WDP is better than TS in

quality and in time (the improvement rate is between 4% and 9%). TSX_WDP out-

performs MA. The deviation is between 2% and 7%. Finally, TSX_WDP produces

better results than SAGII which is based on sophisticated Branch-and-Bound and

preprocessing tools (The deviation is between 1% and 7%). Compared to MN/TS

algorithm, which is the most successful algorithm, the deviation is between -5%

and -0.5 %. Thus, we can conclude that the TSX_WDP algorithm discovers good

results for the five groups of benchmarks.

5.A A Recombination-based Tabu Search algorithm for the WDP 91

T
ab

le
5
.1
2

–
C
o
m
p
ar
at
iv
e
re
su

lt
s
b
et
w
ee

n
T
S
X
_
W

D
P

an
d

C
as
an

o
v
a,

M
A
,
S
L
S
,
T
S
,
S
A
G
II
,
M

N
/T

S
o
n

W
D
P

b
en

ch
m
ar
k
s:

ro
w
s
µ

co
rr
es
p
o
n
d
to

th
e
av

er
ag

e
o
f
th
e
b
es
t
o
b
je
ct
iv
e
v
al
u
e
o
f
th
e
1
0
0
in
st
an

ce
s
in

ea
ch

g
ro
u
p
.
C
o
lu
m
n
s
ti
m
e
re
p
re
se
n
t
th
e
av

er
ag

e
ti
m
e
to

re
ac

h

th
e
b
es
t
so

lu
ti
o
n
. T
es
t
S
et

1
0
0
in
st
an

ce
s

R
E
L
-5
0
0
-1
0
0
0

R
E
L
-1
0
0
0
-5
0
0

R
E
L
-1
0
0
0
-1
0
0
0

R
E
L
-1
0
0
0
-1
5
0
0

R
E
L
-1
5
0
0
-1
5
0
0

T
S
X
_
W

D
P

T
im

e
7
4
.1
9

9
.4
5

4
8
.9
8

7
5
.9
2

9
0
.6
1

µ
6
9
6
4
7
.9
7
5

7
5
2
7
4
.1
8
4

8
6
7
8
6
.1
5
9

8
5
5
7
7
.8
0
6

1
0
3
1
7
8
.7
3
2

C
as
an

o
v
a

T
im

e
1
1
9
.4
6

5
7
.7
4

1
1
1
.4
2

1
6
8
.2
4

1
6
5
.9
2

µ
3
7
0
5
3
.7
8

5
1
2
4
8
.7
9

5
1
9
9
0
.9
1

5
6
4
0
6
.7
4

6
5
6
6
1
.0
3

δ T
S
X
/
C
a
s
a
n
o
v
a
(%

)
4
6
.7
9

3
1
.9
1

4
0
.0
9

3
4
.0
8

3
6
.3
6

T
S

T
im

e
9
1
,0
7

2
5
.8
4

1
0
4
,3
0

2
2
3
,3
7

1
7
5
.6
8

µ
6
5
2
8
6
.9
4

7
1
9
8
5
.3
4

8
1
6
3
3
.6
3

7
7
9
3
1
.4
1

9
7
8
2
4
.6
4

δ T
S
X
/
T
S
(%

)
6
.2
6

4
.3
6

5
.9
3

8
.9
3

5
.1
8

S
L
S

T
im

e
2
2
.3
5

5
.9
1

1
4
.1
9

1
4
.9
7

1
6
.4
7

µ
6
4
2
1
6
.1
4

7
2
2
0
6
.0
7

8
2
1
2
0
.3
1

7
9
0
6
5
.0
8

9
8
8
7
7
.0
7

δ T
S
X
/
S
L
S
(%

)
7
.7
9

4
.0
7

5
.3
7

7
.6
1

4
.1
6

M
A

T
im

e
5
6
.6
4

1
4
.9
8

3
3
.0
5

2
4
.5
1

2
8
.2
2

µ
6
5
7
4
0
.2
5

7
3
6
0
4
.6
2

8
3
3
0
4
.2
0

7
9
6
4
4
.6
4

9
9
9
5
7
.9
6

δ T
S
X
/
M

A
(%

)
5
.6
1

2
.2
1

4
.0
1

6
.9
3

3
.1
2

S
A
G
II

T
im

e
3
8
.0
6

2
4
.4
6

4
5
.3
7

6
8
.8
2

9
1
.7
8

µ
6
4
9
2
2
.0
2

7
3
9
2
2
.1
0

8
3
7
2
8
.3
4

8
2
6
5
1
.4
9

1
0
1
7
3
9
.6
4

δ T
S
X
/
S
A
G
I
I
(%

)
6
.7
8

1
.7
9

3
.5
2

3
.4
1

1
.3
9

M
N
/T

S
T
im

e
1
2
.2
8

0
.3
8

3
.1
2

6
.3
9

2
.6
4

µ
7
1
4
7
0
.9
3

7
5
5
4
0
.6
8

8
9
1
5
8
.9
8

8
9
5
5
2
.1
8

1
0
8
6
2
7
.1
7

δ T
S
X
/
M

N
/
T
S
(%

)
-2
.5
4

-0
.5
8

-2
.6
6

-4
.4
3

-5
.0
1

6
A Multi-Agent based Optimization

Method for the Multidimensional

Knapsack Problem

This chapter shows another application of the proposed method to the Multidi-

mensional knapsack problem (MKP). In the first section, we will present this prob-

lem. Then, we will give a brief overview of algorithms for the MKP. Section 6.3

will describe the behaviors of the agents of MAOM-MKP. In section 6.4, MAOM-

MKP will be tested using the OR-library benchmarks, then, it will be compared to

the current state of the art approaches.

Contents

6.1 Problem definition . 92

6.2 State of the art approaches for the MKP 92

6.3 A multi-agent based optimization method for the MKP (MAOM-

MKP) . 93

6.3.1 Decision-maker agent 94

6.3.2 Tabu search agents . 94

6.3.3 Perturbation agent . 95

6.3.4 Crossover agents . 96

6.4 Experimentation . 96

6.5 Conclusion . 97

6.1 Problem definition

The Multidimensional Knapsack Problem (MKP) consists in selecting a subset

of objects (or items), in order to maximize their total profit. The selected objects

93

94 A Multi-Agent based Optimization Method for the MKP

must not violate a set of knapsack constraints. The Multidimensional Knapsack

Problem (MKP) can be formulated as:

Maximize f(x) =
n

∑

j=1

pjxj (6.1)

subject to
n

∑

j=1

rijxj ≤ bi (6.2)

xj ∈ {0, 1} (6.3)

where i = {1,,m} and j = {1,, n}
According to these expressions, the decision variables xj = 1, if the object j is

selected, 0 otherwise. pj is the profit associated to j. Each of the m constraints is

called a knapsack constraint. A set of n objects with profit pj > 0 and a set of m
resources are given. Each object j consumes an amount rij ≥ 0 from each resource

i. When m = 1, the MKP degenerates to the knapsack problem. It can be solved

in pseudo-polynomial time. However, when m > 1, it becomes a strongly NP-hard

problem and exact techniques can only be used to solve small instances sizes.

The MKP can formulate many real-world application like capital budgeting

problem (Markowitz & Manne, 1957), allocating processors and databases in a dis-

tributed computer system problem (Gavish & Pirkul, 1979), cutting stock problem

(Gilmore & Gomory, 1966) and project selection and cargo loading problem (Shih,

1979). The MKP can be considered as a generic 0-1 integer programming problem

with non-negative coefficients.

6.2 State of the art approaches for the MKP

We give a brief overview of some of the most representative algorithms for the

MKP. The best algorithms will be used to evaluate the proposed algorithm. Exact

algorithms and metaheuristic have been developed for the MKP. On the one hand,

the branch and bound algorithms (Shih, 1979) were proposed as exact algorithms.

For instance, Gavish and Pirkul (Gavish & Pirkul, 1985) proposed a branch and

bound algorithm with tighter upper bounds, combined with relaxation techniques.

On the other hand, several metaheuristics have appeared in the literature. A

simulated annealing, based on the add-interchange-drop technique for handling the

constraints, was presented by Drexl (Drexl, 1988).

Hanafi and Fréville (Hanafi & Fréville, 1998) elaborated a tabu search algo-

rithm using the surrogate constraints information. A genetic algorithm is proposed

by Chu and Beasley (Chu & Beasley, 1998). Vasquez and Hao (Vasquez & Hao,

2001) presented a hybrid approach combining the linear programming and the tabu

search. This algorithm integrates the drop-add repair operator based on the pseudo-

utility ratios to generate feasible solutions. Sakawa and Kato (Sakawa & Kato,

2003) proposed a genetic algorithm with double strings based on a decoding algo-

rithm. Vasquez and Vimont (Vasquez & Vimont, 2005) proposed a hybrid method

6.3 A multi-agent based optimization method for the MKP (MAOM-MKP) 95

combining the linear programming with an efficient tabu search. Puchinger et al.

(Puchinger & al., 2005) presented a cooperative combination of a memetic algo-

rithm and a branch-and-cut algorithm. These algorithms run in parallel and asyn-

chronous way by exchanging information during the optimization process.

Li et al. (Li & al., 2006) elaborated a genetic algorithm based on the orthogonal

design. A scatter search method was applied in (Hanafi & Wilbaut, 2008) for the

MKP. Kong et al. (Kong & al., 2008) presented a binary ant system (BAS) algo-

rithm based on the drop-add repair operator. In (Boyer & al., 2009), two heuristics

were provided. The first one uses surrogate relaxation, and the relaxed problem is

solved via a modified dynamic programming algorithm. The second one combines

a limited-branch-and-cut procedure with the previous heuristic, and tries to improve

the bound obtained by exploring some nodes that have been rejected by the modified

dynamic programming algorithm.

Zou et al. (Zou & al., 2011) employed a novel global harmony search algo-

rithm to solve MKP. Bonyadi and Li (Bonyadi & Li, 2012) proposed a discrete

electromagnetism-like mechanism (DEM) which integrates the drop-add repair op-

erator. Langeveld and Engelbrechta (Langeveld & Engelbrecht, 2012) elaborated

a set-based particle swarm optimization (SBPSO) algorithm based on the penalty

function method to handle the constraints. An ant colony optimization algorithm for

binary knapsack problem under fuzziness was proposed by Changdar et al. (Chang-

dar & al., 2013). A simplified binary version of the artificial fish swarm algorithm

applied to the MKP was provided in (Abul Kalam Azad & Ana Maria , 2015). We

can find an interesting review of approaches for the MKP in (Fréville, 2004).

Based on this review, we elaborate the first multi-agent algorithm for the MKP

(MAOM-MKP). MAOM-MKP, which is presented in the next section, combines

several techniques and operators from existing algorithms for the MKP in an intel-

ligent way using multi-agent system and reinforcement learning.

6.3 A multi-agent based optimization method for the

MKP (MAOM-MKP)

This section describes the multi-agent based optimization algorithm for the

MKP (MAOM-MKP). The agents are the decision-maker agent, two tabu search

agents, the perturbation agent and two crossover agents. We explain the specific

characteristics of the proposed method to be applied to the MKP.

6.3.1 Decision-maker agent

In MAOM-MKP, the selection of agents to activate, is handled by the decision-

maker agent using its decision matrix (section 2.2.1) under a specific condition (sec-

tion 2.4.1). The decision-maker agent starts the optimization process by generating

an initial solution. This initial solution is a simple feasible configuration which con-

tains random non conflicting objects. This solution is sent to the appropriate agents.

Then, when other agents are activated, decision-maker agent waits high-quality so-

96 A Multi-Agent based Optimization Method for the MKP

lutions received from tabu search agents or crossover agents. Decision-maker agent

maintains these solutions in the shared memory. (Algorithm 2.2)

6.3.2 Tabu search agents

Tabu search agents apply tabu search algorithm with two different neighbor-

hood strategies (Algorithm 2.3). During their optimization process, they can ex-

change information with another alive tabu search agent or with the perturbation

agent. The triggered agent depends on their decision matrices (section 2.2.1) and

the corresponding condition (section 2.5.1). The best solutions generated are sent

to the decision-maker agent. Below, we describe the two neighborhood exploration

strategies explored by these agents.

6.3.2.1 Neighborhood

A candidate MKP solution can be represented by binary decision variables xj

where xj = 1, if the object j is selected, 0 otherwise. In our algorithm, a solution

is a configuration (a dynamic vector) V that contains the selected objects (variables

xj = 1). The objective value of a solution is the sum of the prices of the objects

selected. Let move(x, x′) be a move operator which changes a small set of compo-

nents of x giving x′. The neighborhood of x is the subset of configurations reachable

from x in one move. According to the predefined representation, this move operator

is to remove objects from the current configuration and to add other non selected

objects to it, at the same time. The neighborhood which satisfies the constraints is

the classical add/drop neighborhood.

6.3.2.2 Neighborhood exploration strategies

In MAOM-MKP, we have two tabu search agents. Each agent applies a strategy

to explore the neighboring solutions. The first tabu search agent explores the whole

neighborhood by removing an object j from the current configuration and adds

the best non selected object j′ to it. j′ is chosen from objects that do not belong

to the current configuration. The best retained neighboring solution is a feasible

configuration that does not violate the capacity constraints.

The second tabu search agent examines a reduced neighborhood by picking a

random object j from the current configuration. Then, this object is replaced by the

best non selected object j′ that improves the total profit of the current configuration.

This exploration strategy reduces the aggressive exploitation of the first tabu search

agent and gives some aspect of diversification.

In order to reduce the complexity search of a neighboring solution, these two

strategies employ a matrix δ(x, x′) (Expression 6.4) that stores the move gain, if an

object j is replaced by an object j′.

δ(x, x′) = (F + f(x′))− f(x) (6.4)

where F is the total profit of the current configuration, f(x) is the profit of an object

j and f(x′) is the profit of an object j′.

6.3 A multi-agent based optimization method for the MKP (MAOM-MKP) 97

6.3.2.3 Tabu list

The tabu search agents use a traditional tabu list to store the selected objects

of all completed moves. When an object j′ is added to the new configuration, it is

forbidden to be selected during the next h iterations. The iterations h is dynamically

determined by h = α × F + rand(10) where rand(10) takes a random number in

[1,, 10] and α is set to 0.1 fixed by experimentation tests.

6.3.3 Perturbation agent

During their optimization process, tabu search agents can reach specific cases

that require diversification tasks (C2 and C3 of section 2.5.1). In these cases, it can

trigger the perturbation agent to perturb the current configuration. The perturbation

agent applies two techniques of perturbation which are reduced perturbation tech-

nique and strong perturbation technique. After generating the perturbed solution,

the perturbation agent sends it to the requester tabu search agent which uses it as its

new current configuration.

6.3.3.1 Reduced perturbation technique

The perturbation agent triggers the reduced perturbation behavior, when the tabu

search agent detects a slight search stagnation (condition C2 of section 2.5.1). This

perturbation consists in performing add/remove random moves to generate a new

feasible configuration. L random objects are removed from the received configura-

tion. The removed objects are replaced by S random non selected objects, generat-

ing a new configuration that satisfies the constraints.

6.3.3.2 Strong perturbation technique

In the second case, the perturbation agent can activate the strong perturbation be-

havior, when the tabu search agent encounters a strong search stagnation. Based on

the common archive of elite solutions, the perturbation agent creates a new solution

to manage the search towards new regions. It extracts the number of occurrences

of each object j which has been selected in a high quality solution belonging to the

archive. The new configuration contains the non conflicting objects which have the

smallest occurrence number. Like other problems solved in this thesis, we use an

additional data structure (matrix that maintains the visited solutions) that avoids the

creation of the same solution by the perturbation agent.

6.3.4 Crossover agents

The decision-maker can activate two crossover agents to escape deep local op-

tima. The crossover agents apply two different crossover operators to generate two

new solutions which are sent to the decision-maker agent. For these crossover

agents, the parents selection is based on diversity criterion. The parents are se-

lected from the common archive as follow:

98 A Multi-Agent based Optimization Method for the MKP

The diversity of the solutions is measured by a similarity function which calculates

the number of common objects between two configurations, in the archive. Based

on the similarity values, a random number of diverse solutions are selected. From

these solutions, two parents are randomly picked up. Below, we present the two

crossover operators explored by the crossover agents:

— The first crossover operator gives priority to one parent to transmit all its

objects to the offspring. A parent is selected to give its objects value to the

offspring. Starting from the parent having the smallest objective value, the

first crossover agent transmits all its objects to the offspring. Then, the non

conflicting objects are extracted from the second parent, to be added to the

configuration of the offspring.

— The second crossover operator gives chance to only one object from each

parent to be added to the offspring, at each step. The second crossover agent

starts from the parent which has the smallest total profit value to build the

offspring. This agent copies the first object of this parent to the offspring.

Then, it extracts from other parent, the next object and transmits it to the

configuration of the offspring. Each selected object has to be deleted from its

parent and from other parent (if another parent contains the selected object).

An object, that violates the capacities constraints, is discarded. Notice that

the objects, in each parent, are sorted according to their profits.

6.4 Experimentation

We implemented MAOM-MKP in Java using the multi-agent platform Jade.

The code was run on a computer with a Core I5 2.5 GHz, 8GB of RAM. We have

tested our algorithm using a large sized benchmark 0â1 MKP test instances. This

benchmark was described in (Chu & Beasley, 1998) and it was extracted from OR-

library (http://people.brunel.ac.uk/mastjjb/jeb/info.html).

There are instances with 5, 10, and 30 constraints and 100, 250, and 500 variables.

The values of the tightness ratio α for resource capacities bk(bk = α
∑n

j=1 akj, k =
1, 2, ...,m) are 0.25, 0.50 and 0.75. For each n ×m × α combination, there is ten

instances, that is give a total of 270 instances.

According to the experimentations, the parameters of MAOM-MKP were ad-

justed as follows: the number of iterations for each local search agent (iter_max)
was fixed to 1000. The parameter interval which computes the quality of the im-

provement of the solution between generations was fixed to 200 for both decision-

maker agent and tabu search agents. For controlling the optimization process and

updating the decision matrices, the parameters g0, g1, g2, q3, q4 and q5 were set

respectively to 2, 10, 20, 24, 2 and 4. The parameter rate µ used in updating the

decision matrices was fixed to 0.9. The stopping condition is set to one hour for all

the instances except hard instances (instances of 30× 500× 0.75 combination) that

have be run for 24 hours.

MAOM-MKP is compared with the best heuristic methods available in the lit-

erature presented in 6.2:

— Genetic algorithm (GA) (Chu & Beasley, 1998);

6.5 Conclusion 99

— Discrete electromagnetism-like mechanism (DEM) (Bonyadi & Li, 2012);

— Set-based particle swarm optimization (SBPSO) (Langeveld & Engelbrecht,

2012);

— Simplified binary version of the artificial fish swarm algorithm (newS-bAF-

SA) (Abul Kalam Azad & Ana Maria , 2015).

The best known solutions for the MKP, as far as we know, were obtained by

Vasquez and Hao (Vasquez & Hao, 2001). Then, they were improved by Vasquez

and Vimont (Vasquez & Vimont, 2005). The performance of the obtained results are

evaluated using the percentage (%) gap between the best objective function value

and the optimal value of theLP (linear programming) relaxation. The gap is defined

as:

Gap% =
optimal LP value− best objective value

optimal LP value
× 100 (6.5)

In table 6.1, T represents the average computational time (in seconds) of a prob-

lem set. n is the number of variables for each instance and m is the number of the

capacities constraints. We cite, in this table, the average results obtained in each

n × m × α combination. We give some results of the proposed MAOM-MKP in

Tables 6.2, 6.3, 6.4.

From table 6.1 and considered average results, we observe that the DEM ap-

proach outperforms other methods. Our proposed algorithm MAOM-MKP reaches

better results for the group of instances with 30 constraints and 100 variables. Con-

sidering average results, MAOM-MKP gives better results than SBPSO. The per-

centage average gap is 0.93 %.

6.5 Conclusion

In this chapter, we proposed a multi-agent algorithm for the multidimensional

knapsack problem. We kept the proposed generic model MAOM-COP and we

adapted it to the studied problem. We selected two different neighborhood strate-

gies from the literature for the intensification agents. Two crossover operators are

used by the crossover agents. The perturbation agent helps the tabu search agents

to diversify their searches by performing two different perturbation techniques. The

trigged perturbation technique depends on the state of search according to the deci-

sion matrices. The experimental results show that MAOM-MKP gives high quality

solutions.

100 A Multi-Agent based Optimization Method for the MKP

T
ab

le
6
.1

–
C
o
m
p
arativ

e
resu

lts
b
etw

een
M

A
O
M

-M
K
P
an

d
so

m
e
o
f
th
e
b
est

p
erfo

rm
in
g
M

K
P
ap

p
ro
ach

es

P
ro
b
.
set

G
A

D
E
M

S
B
P
S
O

n
ew

S
-b
A
F
S
A

M
A
O
M

-M
K
P

m
n

G
ap

T
G
ap

T
G
ap

T
G
ap

T
G
ap

T

5
1
0
0

0
.5
9

2
0
.0

0
.5

8
1
3
.0

1
.1
1

-
0
.5
9

1
4
.9

0
.7
2

3
5

2
5
0

0
.1

4
1
7
4
.4

0
.1

4
2
5
.0

1
.8
6

-
0
.2
2

1
2
7
.4

0
.9

1
1
2

5
0
0

0
.0

5
7
0
.5

0
.0

5
9
5
.0

2
.6
6

-
0
.1
7

6
9
6
.6

0
.9
8

2
6
0

1
0

1
0
0

0
.9

4
3
1
4
.4

0
.9

4
1
9
.0

1
.1
4

-
1
.0
0

1
9
.5

0
.9
7

4
5

2
5
0

0
.3
0

2
7
6
.8

0
.2

8
3
1
.0

1
.5
3

-
0
.4
6

1
6
4
.6

0
.9
2

1
2
4

5
0
0

0
.1
4

7
3
4
.1

0
.1

2
1
5
5
.0

1
.8
6

-
0
.3
5

8
6
0
.7

0
.9
8

5
6
0

3
0

1
0
0

1
.6
9

1
2
8
.5

1
.6
8

1
4
.0

1
.5
0

-
1
.7
3

4
4
.2

0
.9

8
6
0

2
5
0

0
.6
8

8
4
7
.9

0
.6

5
5
7
.0

1
.8
6

-
0
.9
0

3
2
8
.8

0
.9
7

2
2
2

5
0
0

0
.3
5

1
3
8
4
.0

0
.3

4
2
5
2
.0

1
.9
8

-
0
.7
0

1
4
8
7
.3

0
.9
7

3
6
0
0

A
v
erag

e
0
.5
4

4
3
8
.9

0
.5

3
7
3
.4

1
.7
2

-
0
.6
8

4
1
6
.0

0
.9
3

5
5
7

6.5 Conclusion 101

Table 6.2 – Some results obtained byMAOM-MKP on instances with 30 constraints

from MKP benchmarks

CB OR MOAM-MKP CB OR MOAM-MKP

30.500.00 115868 114282 30.250.00 56693 55955

30.500.01 114667 112432 30.250.01 58318 57513

30.500.02 116661 114922 30.250.02 56556 55973

30.500.03 115237 113635 30.250.03 56863 56061

30.500.04 116353 114433 30.250.04 56629 55904

30.500.05 115604 114667 30.100.00 21946 21708

30.500.06 113952 112778 30.100.01 21716 21353

30.500.24 304404 302818 30.100.02 20754 20191

30.500.25 296894 294951 30.100.17 42719 42453

30.500.26 303233 301149 30.100.18 42230 41917

30.500.27 306944 305952 30.100.19 41700 41208

30.500.28 303057 302140 30.100.24 58884 58781

30.500.29 300460 299194 30.100.25 60011 59879

30.250.27 152841 151227 30.100.26 58132 57912

30.250.28 149568 148550 30.100.27 59064 58878

Table 6.3 – Some results obtained byMAOM-MKP on instances with 10 constraints

from MKP benchmarks

CB OR MOAM-MKP CB OR MOAM-MKP

10.500.00 117726 116513 10.250.22 151900 150287

10.500.01 119139 118614 10.250.23 151275 150104

10.500.02 119159 117550 10.250.24 151948 150473

10.500.03 118802 117316 10.250.27 153520 152463

10.500.05 119454 118092 10.250.26 153131 152575

10.500.06 119749 118767 10.500.00 117726 116513

10.500.07 118288 116750 10.500.01 119139 118614

10.500.08 117779 116754 10.500.05 119454 118092

10.500.09 119125 118207 10.500.06 119749 118767

10.500.25 301730 299186 10.500.07 118288 116750

10.250.00 59187 58601 10.500.08 117779 116754

10.250.01 58662 57770 10.500.09 119125 118207

10.250.02 58094 57240 10.100.10 41395 40885

10.250.21 148772 147110 10.100.11 42344 42094

10.250.22 151900 150287 10.100.12 42401 41925

102 A Multi-Agent based Optimization Method for the MKP

Table 6.4 – Some results obtained by MAOM-MKP on instances with 5 constraints

from MKP benchmarks

CB OR MOAM-MKP CB OR MOAM-MKP

5.100.00 24381 240079 5.250.26 148607 147247

5.100.01 24274 24112 5.250.27 149772 148268

5.100.02 23551 23463 5.250.28 155075 153981

5.100.03 23534 23275 5.250.29 154662 153538

5.100.04 23991 23789 5.100.00 24381 240079

5.100.05 24613 24396 5.100.01 24274 24112

5.100.06 25591 25343 5.100.02 23551 23463

5.100.07 23410 231548 5.100.03 23534 23275

5.100.08 24216 24068 5.100.04 23991 23789

5.100.09 24411 24153 5.100.05 24613 24396

5.100.10 42757 42382 5.100.25 58959 58737

5.250.00 59312 58618 5.100.26 61538 61105

5.250.01 61472 60679 5.100.27 61520 61170

5.250.02 62130 61751 5.100.28 59453 59202

5.250.03 59446 58744 5.100.29 59965 59544

General Conclusion

Principal contributions

In this thesis, we proposed the Multi-Agent based Optimization Method for

Combinatorial Optimization Problems (MAOM-COP). This method is based on

multi-agent system and combines some features of several other well-established

metaheuristics including tabu search, variable neighborhood search and evolution-

ary methods. In the first chapter, we made a brief literature review of the most

popular heuristic and multi-agent based optimization approaches for combinatorial

optimization problems.

In the second chapter, we presented the proposed method MAOM-COP, which

explores several techniques of intensification and techniques of diversification. The-

se techniques are manipulated by agents. In fact, tabu search agents perform inten-

sification search by applying different neighborhood strategies. The perturbation

agent and the crossover agents aim at escaping the current local optimum. During

the optimization process, the decision-maker agent controls the search and decides

which and when activating other agents according to the optimization state. The se-

lection of agents to trigger is made dynamically, based on decision matrices whose

values are adjusted using the reinforcement learning.

In the third chapter, we explored MAOM-COP to solve the quadratic assign-

ment problem. The resulted MAOM-QAP is composed of the following agents: a

decision-maker agent, two tabu search agents, two crossover agents and a pertur-

bation agent. The decision-maker agent saves high quality solutions received from

other agents, in an archive. Tabu search agents perform tabu search with two dif-

ferent strategies to explore the neighboring solutions. One of them explores the

whole neighborhood swap moves to generate the best solution and the other uses

a reduced search space to find an other best solution. These agents can exchange

solutions with each other and they can trigger the perturbation agent to escape local

optimum. A dynamic tabu tenure is used to control the degree of diversification

introduced into the search. The perturbation agent applies two techniques of dis-

turbed moves. A strong perturbation technique is made based on the archive, to

create a new solution. A reduced perturbation technique makes some random per-

turbations in the current assignment. The crossover agents apply two informative

recombination operators. The activated agents are adaptively determined based on

the current search state and the decision matrices. We evaluated the performance of

our algorithm by comparing it with the current best-performing approaches, using

the set of QAPLIB instances. The proposed MAOM-QAP attained the best-known

103

104 General Conclusion

result for many instances.

In the forth chapter, we considered the graph coloring problem and we proposed

MAOM-GCP to solve it. MAOM-GCP is an other application of MAOM-COP de-

scribed in chapter 2. MAOM-GCP has the same characteristic of MAOM-COP with

necessary adaptation for the GCP. Moreover, the agents have the same features and

they communicate in the same way of other applications of the proposed approach.

Nevertheless, the differences include the neighborhood strategies, the perturbation

moves and the recombination operators. As we mention, tabu search agents are the

intensification agents. They apply tabu search with two neighborhood strategies.

The first tabu search agent changes the colors of conflicting vertices to produce

new k-coloring. A conflicting vertex is colored with the best possible other color

class. The new color class is chosen among those which are not assigned to ver-

tices adjacent to the conflicting vertex. The second tabu search agent uses the same

mechanism of selecting the best color class to be assigned to vertices as the first

tabu search agent. However, the modified vertices are the adjacent of conflicting

vertices and not conflicting vertices. The perturbation agent performs two perturba-

tion moves. The reduced perturbation move is applied, when there is a slight search

stagnation. From a solution received from a tabu search agent, the perturbation

agent makes random moves to create a new solution. It consists in a random change

of the color of a conflicting vertex of the received solution. The strong perturbation

move is performed when a tabu search agent observes a deep search stagnation. The

perturbation agent explores the shared archive to create a new solution. It extracts

the number of occurrences of each vertex colored by each color class. Each vertex

is affected to a color class which has the smallest occurrence number. The crossover

agents use two different recombination operators taken from the literature. We com-

pared the results of MAOM-GCP with best known results using DIMACS coloring

benchmarks. The comparative study shows that it is able to reach best known solu-

tions of several instances.

In the fifth chapter, we presented an application of MAOM-COP to the Win-

ner Determination Problem given MAOM-WDP. MAOM-WDP adds the following

features comparing with other WDP approaches: the choice of the best neighbor is

based on the selection of several bids instead of one bid. The update of the tabu

tenure is dynamically adjusted, that improves the diversification. In addition, a new

technique of crossover operator, for the WDP, is introduced. This operator gives

the priority to the invariants bids to stay in the new solution, in order to take the

good information of parents. Tabu search agents and crossover agents explore the

proposed neighborhood strategy with the existing one, while the perturbation agent

applies two perturbation moves. The reduced move consists in making random

modification of the solution received from tabu search agents. The strong move

uses the archive to generate a new solution whose bids often appear in high-quality

solutions. The computational study on a set of 500 benchmark instances shows

that MAOM-WDP finds high quality results on tested benchmark instances. An-

other representative algorithm (TSX_WDP) is proposed to solve the WDP in the

appendix of this chapter.

In the sixth chapter, we applied MAOM-COP to the multidimensional knap-

105

sack problem. As other algorithms elaborated in this thesis, MAOM-MKP has its

specific characteristics. Each tabu search agent applies a strategy to explore the

neighboring solutions. The first tabu search agent visits the whole neighborhood by

removing an object from the current configuration and adds the best non selected

object to it. The second tabu search agent selects a random object from the current

configuration. Then, it replaces it by the best non selected object that improves the

total profit. The perturbation agent performs two perturbations moves. The reduced

perturbation move consists in performing add/remove random moves to generate a

new feasible configuration, starting from the solution received from the tabu search

agent, while, the strong perturbation move consists in generating a new solution.

Based on the common archive, the perturbation agent selects the objects which

have been less selected in the configurations belonging to the archive. When the

crossover agents are activated, two different recombination operators are performed

to introduce a higher degree of diversification. MAOM-MKP is tested using large

sized benchmarks from OR-library. According to the comparison results with best

MKP approaches, MAOM-MKP was able to reach good quality solutions.

Future research perspectives

Last years, agent paradigm has emerged as an interesting alternative for solv-

ing different optimization problems. In fact, specific features of software agents,

like autonomy, reactiveness or ability to work in teams, provide a promising tool

for solving optimization problems. This thesis focuses on a multi-agent approach,

dedicated for solving hard combinatorial optimization problems. The proposed ap-

proach belongs to the group of approaches combining metaheuristics, optimization

problem solving, multi-agent system and learning paradigms. The main goal of the

proposed MAOM-COP is to investigate the multi-agent system to create coopera-

tive multi-search methods. These methods explore several existing metaheuristics

and their techniques. The reinforcement learning is used to dynamically select ac-

tivating agents according to the state of search. Several interesting directions that

improve the performance of the proposed approach, can be envisaged in the future.

First, concerning the optimization process, one possibility which was not inves-

tigated during this thesis is to exploit other local search algorithms like iterated local

search or simulated annealing, for intensification agents. The number of intensifica-

tion agents and diversification agents depends on the problem solved. We can apply

the proposed approach to other problems. Other improvement that relates to search

process is to activate several simultaneous independent search agents. Each search

agent starts with a different initial solution from the common archive that makes dif-

ferent trajectory in the search space. It is the search space decomposition which is

based on the idea of dividing the whole search space into smaller subspaces, solving

the resulting subproblems.

Second, we may focus on the reinforcement learning. The proposed approach

used intelligent agents that carry out some set of operations based on decision matri-

ces whose values are regulated by reinforcement learning. Indeed, better learning,

that can depend on the solved problem, will make the agents more informed and

106 General Conclusion

allow them to choose the most appropriate operation to activate.

Finally, the current version of the proposed model can be considered as a proof-

of-concept implementation. One interesting perspective to improve the computa-

tional efficiency of the proposed approach is to envisage a dedicated implementa-

tion. Other possibility is to use parallel and distributed programming in the design

and the implementation of metaheuristics to speed up the search. Especially reduc-

ing the search time is important in case of complex optimization problems where

the search time is critical.

References

Abul Kalam Azad, M.D., & Ana Maria, A.C.R. (2015). Solving Large 0-1 Multidi-

mensional Knapsack Problems by a New Simplified Binary Artificial Fish Swarm

Algorithm. Journal of Mathematical Modelling and Algorithms in Operations

Research, 14(3), 313–330.

Atkinson, J.B. (1998). A greedy randomized search heuristic for time-constrained

vehicle scheduling and the incorporation of a learning strategy. J. Oper. Res. Soc,

49, 700–708.

Autry, B. (2008). University Course Timetabling with Probability Collectives. Mas-

ter’s Thesis, Naval Postgraduate School Montery, CA, USA.

Avanthay, C., Hertz, A., & Zufferey, N. (2003). A Variable Neighborhood Search

for Graph Coloring. Eur. J. Oper. Res., 151, 379–388.

Avila-Abascal, P., & Talukdar, S.N. (1996). Cooperative Algorithms and Abductive

Causal Networks for the Automatic Generation of Intelligent Substation Alarm

Processors. In Proceedings of International Conference on Intelligent Systems

Applications to Power Systems, January 1996, 7–1, Orlando, FL.

Bae, C.B., Cho, K.Y., Ji, S.H., Kim, B.Y., & Suh, M.W. (2009). Multi-agent based

traffic simulation and integrated control of freeway corridors: Part 2 integrated

control optimization. Journal of Mechanical Science and Technology, 23(5),

1374–1382.

Barbucha, D., & Jȩdrzejowicz P. (2007). An Agent-Based Approach to Vehicle

Routing Problem. International Journal of Computer, Electrical, Automation,

Control and Information Engineering, 1(2), 301–306.

Barbucha, D. (2013). Solving Instances of the Capacitated Vehicle Routing Problem

Using Multi-agent Non-distributed and Distributed Environment. Agent-Based

Optimization Studies in Computational Intelligence, 456, 55–75.

Basar, T., & Olsder, G.J. (1995). Dynamic Non-Cooperative Game Theory. Aca-

demic Press, London/New York, January 1995, Revised 2nd edition of 1982 book

with the same title.

Baum, E.B. (1987). Towards practical ‘neural’ computation for combinatorial opti-

mization problems. In AIP Conference Proceedings 151 on Neural Networks for

Computing, March 1987, 53–58, Woodbury, NY, USA.

107

108 REFERENCES

Bean, J.C. (1994). Genetics and random keys for sequencing and optimization.

ORSA J Comput, 6(2), 154–160.

Bell, J.E., & McMullen, P.R. (2004). Ant colony optimization techniques for the

vehicle routing problem. Adv. Eng. Inform., 1, 41–48.

Benlic, U., & Hao, J.K. (2011). A multilevel memetic approach for improving graph

k-partitions. IEEE Transactions on Evolutionary Computation, 15(5), 624–472.

Benlic, U., & Hao, J.K (2013). Breakout local search for the quadratic assignment

problem. Applied Mathematics and Computation, 219(9), 4800–4815.

Benlic, U., & Hao, J.K. (2015). Memetic search for the quadratic assignment prob-

lem. Expert Systems with Applications, 42(1), 584–595.

Bhadra, S., Shakkotai, S., & Gupta, P. (2006). Min-cost selfish multicast with

network coding. IEEE Transactions on Information Theory, 52(11), 5077–5087.

Bieniawski, S.R. (2005). Distributed Optimization and Flight Control Using Col-

lectives. PhD Dissertation, Stanford University, CA, USA.

Blochliger, I., & Zufferey, N. (2008). A graph coloring heuristic using partial solu-

tions and a reactive tabu scheme. Comput. Oper. Res., 35(3), 960–975.

Bonyadi, M.R., & Li, X. (2012). A new discrete electromagnetism-based meta-

heuristic for solving the multidimensional knapsack problem using genetic oper-

ators. Oper. Res. - Int. J., 12, 229–252.

Boughaci, D., Belaid, B., & Habiba, D. (2009). A memetic algorithm for the opti-

mal winner determination problem. Soft Computing, 13(8-9), 905-917.

Boughaci, D., Belaid, B., & Habiba, D. (2010). Local Search Methods for the

Optimal Winner Determination Problem in Combinatorial Auctions. Journal of

Mathematical Modelling and Algorithms in Operations Research, 9(2), 165–180.

Boyer, V., Elkihel, M., & El Baz, D. (2009). Heuristics for the 0-1 multidimensional

knapsack problem. European Journal of Operational Research, 199, 658–664.

Braysy, O. (2001). Genetic algorithms for the vehicle routing problem with time

windows. Technical Report, January 2001, University of Vaasa, Vaasa, Finland.

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications

of the ACM, 22(4), 251–256.

Burkard, R.E. (1991). Locations with spatial interactions: The quadratic assignment

problem. In Mirchandani and L. Francis (Eds.), Discrete Location Theory, New

York, USA.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-

based hyper heuristic for timetabling problems. European Journal of Operational

Research, 176, 177–192.

REFERENCES 109

Carlton, W., & Barnes, J. W. (1996). Solving the Traveling Salesman Problem with

Time Windows Using Tabu Search. IIE Trans, 28, 617–629.

Chalupa, D. (2011). Population-based and learning-based metaheuristic algorithms

for the graph coloring problem. In Krasnogor, N., Lanzi, P.L. (eds.), GECCO,

July 2011, 465–472, Dublin, Ireland.

Changdar, C., Mahapatra, G.S., & Pal, R.K. (2013). An Ant colony optimization

approach for binary knapsack problem under fuzziness. Applied Mathematics

and Computation, 223, 243–253.

Chen, S.Y., Talukdar, S.N., & Sadeh, N.M. (1993). Job-Shop-Scheduling by a

Team of Asynchronous Agents. In Workshop on Knowledge-Based Production,

Scheduling and Control, IJCAI-93, August 1993, Chambery, France.

Chiarandini, M., & Stützle, T. (2002). An application of iterated local search to

graph coloring. In Johnson, D.S., Mehrotra, A., Trick, M. (eds.), Proceedings

of the Computational Symposium on Graph Coloring and its Generalizations,

September 2002, 112â125, Ithaca, New York, USA.

Chu, P.C., & Beasley, J.E. (1998). A genetic algorithm for the multidimensional

knapsack problem. J. Heuristics, 4, 63–86.

Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant system for

job-shop scheduling. Belgian J. Oper. Res. Stat. and Comput. Sci., 34, 39–54.

Cramton, P., Shoham, Y., & Steinberg, R. (2006). Combinatorial auctions. MIT

Press, Cambridge.

De Souza, P. (1993). Asynchronous Organizations for Multi-Algorithm Problems.

Ph. D. dissertation, Dept. of Electrical and Computer Engineering, Carnegie

Mellon University, Pittsburgh, PA.

DeWerra, D., Eisenbeis, C., Lelait, S., &Marmol, B. (1999). On a graph-theoretical

model for cyclic register allocation. Discrete Applied Mathematics, 93(2-3), 191–

203.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search

strategy. Technical Report 91-016, Politecnico di Milano, Italy.

Dorne, R., & Hao, J.K. (1998). Tabu Search for graph coloring, T-coloring and

Set T-colorings. In Osman, I.H., et al. (eds.), Metaheuristics 1998: Theory and

Applications. ch. 3. Kluver Academic Publishers.

Drexl, A. (1988). A simulated annealing approach to the multiconstraint zeroâone

knapsack problem. Computing, 40, 1–8.

Drezner. (2008). Extensive experiments with hybrid genetic algorithms for the solu-

tion of the quadratic assignment problem. Computers and Operations Research,

35(3), 717–736.

110 REFERENCES

Duarte, A., Escudero, L.F., Marti, R., Mladenovic, N., Pantrigo, J.J., & Sanchez-

Oro, J. (2012). Variable Neighborhood Search for the Vertex Separation Problem.

Comput. and Oper. Res., 39(12), 3247–3255.

Duman, E., & Or, I. (2007). The quadratic assignment problem in the context of

the printed circuit board assembly process. Computers and Operations Research,

34(1), 163-179.

Fabiunke, M. (1999). Parallel distributed constraint satisfaction. In Proc. In-

tern. Conf. on Parallel and Distributed Processing Techniques and Applications

(PDPTA-99), July 1999, 1585–1591, Monte Carlo Resort, Las Vegas, Nevada,

USA.

Ferber, J. (1999). Multi-agent systems: an introduction to distributed artificial in-

telligence Addison-Wesley (Eds.): Multi-agent systems: an introduction to dis-

tributed artificial intelligence.

Fitzpatrick, S., & Meertens, L. (2001). An experimental assessment of a stochastic,

anytime, decentralized, soft colourer for sparse graphs. In Proc. 1st Symp. on

Stochastic Algorithms: Foundations and Applications, December 2001, 49–64,

Berlin, Germany.

Fleurent, C., Ferland, J.A. (1996). Genetic and hybrid algorithms for graph color-

ing. Annals of Operations Research, 63, 437–461.

Fleurent, C., & Glover F. (1999). Improved constructive multistart strategies for the

quadratic assignment problem using adaptive memory. INFORMS J. Comput, 11,

198–204.

Fréville, A. (2004). The multidimensional 0â1 knapsack problem: an overview.

Eur. J. Oper. Res., 155, 1–21.

Fujishima, Y., Leyton-Brown, K., & Shoham, Y. (1999). Taming the computational

complexity of combinatorial auctions: optimal and approximate approaches. In

16th International Joint Conference on Artificial Intelligence, August 1999, 48–

53, Stockholm, Sweden.

Galinier, P., & Hao, J.K. (1999). Hybrid evolutionary algorithms for graph coloring.

J. Comb Optim., 3(4), 379–397.

Galinier, P., Hertz, A., & Zufferey, N. (2008). An adaptive memory algorithm for

the k-coloring problem. Discrete Applied Mathematics, 156(2), 267–279.

Gamache, M., Hertz, A., & Ouellet, J.O. (2007). A graph coloring model for a feasi-

bility problem in monthly crew scheduling with preferential bidding. Computers

and Operations Research, 4(8), 2384–2395.

Garey, M.R., Johnson, D.S., & So, H.C. (1976). An application of graph coloring to

printed circuit testing. IEEE Transactions on Circuits and Systems, 23, 591–599.

REFERENCES 111

Garey, M.R., & Johnson, D.S. (1979). Computers and intractability: A guide to the

theory of NP-completeness. W.H. Freeman and Company, San Francisco.

Gavish, B., & Pirkul, H. (1979). Allocation of databases and processors in a dis-

tributed computing system. In J. Akoka (ed.), Management of Distributed Data

Proc., North-Holland, 215–231.

Gavish, B., & Pirkul, H. (1985). Efficient algorithms for solving multiconstraint

zero-one knapsack problems to optimality. Mathematical Programming, 31, 78–

105.

Gendron, B., Hertz, A., & St-Louis, P. (2007). On edge orienting methods for graph

coloring. J. of Comb. Optim., 13(2), 163–178.

Gilmore, P.C., & Gomory, R.E. (1966). The theory and computation of knapsack

functions. Operations Research, 14, 1045–1075.

Glover, F. (1986). Future paths for integer programming and links to artificial intel-

ligence. Comput. Open Res, 13, 533–549.

Guo, Y., Lim, A., Rodrigues, B., & Zhu, Y. (2006). Heuristics for a bidding prob-

lem. Computers and Operations Research, 33(8), 2179–2188.

Guo, Y., Goncalves, G., & Hsu, T. (2013). A Multi-agent Based Self-adaptive

Genetic Algorithm for the Long-term Car Pooling Problem. Journal of Mathe-

matical Modelling and Algorithms in Operations Research, 12(1), 45–66.

Hao, J.K., & Wu, Q. (2012). Improving the extraction and expansion method for

large graph coloring. Discrete Applied Mathematics, 2397–2407.

Hanafi, S., & Fréville, A. (1998). An efficient tabu search approach for the 0â1

multidimensional knapsack problem. Eur. J. Oper. Res., 106, 659–675.

Hanafi, S., & Wilbaut, C. (2008). Scatter search for the 0-1 multidimensional knap-

sack problem. Journal of Mathematical Modelling and Algorithms, 7, 143–159.

Hanna, L.D., & Cagan, J. (2009). Evolutionary Multi-Agent Systems: An Adaptive

and Dynamic Approach to Optimization. Journal of Mechanical Design, 131(1).

Hertz, A., & de Werra, D. (1987). Using tabu search techniques for graph coloring.

Comput., 39(4), 345–351.

Hertz, A., Plumettaz, M., & Zufferey, N. (2008). Variable space search for graph

coloring. Discret. Appl. Math., 156(13), 2551–2560.

Holland, J.H. (1975). Adaption in natural and artificial systems. The University of

Michigan Press, Ann Harbor.

Holland, A. , O’sullivan, B. (2004). Towards fast vickrey pricing using constraint

programming. Artificial Intelligence Review, 21(3-4), 335–352.

112 REFERENCES

Hoos, HH., & Boutilier, C. (2000). Solving combinatorial using stochastic local

search. In Proceedings of the 17th National Conference on Artificial Intelligence,

August 2000, 22–29, Austin, Texas.

Huang, C.F., Bieniawski, S., Wolpert, D., & Strauss, C.E.M. (2005). A Compara-

tive Study of Probability Collectives Based Multiagent Systems and Genetic Al-

gorithms. In Proceedings of the Conference on Genetic and Evolutionary Com-

putation, GECCO, June 2005, 751–752, Washington, USA.

Huang, C.F., & Chang, B.R. (2010). Probability Collectives Multi-agent Systems:

A Study of Robustness in Search. In Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.),

ICCCI 2010, Part II. LNCS, November 2010, 6422, 334–343, Kaohsiung, Tai-

wan.

James, T., Rsego, C., & Glover, F. (2009). A Cooperative Parallel Tabu Search

Algorithm for the Quadratic Assignment Problem. European Journal of Opera-

tional Research, 195(3), 810–826.

Jawad, A., Teodor, GC., Michel, G., & Monia, R. (2007). Combinatorial auctions.

Annals of Operational Research, 153(1), 131–164.

Jȩdrzejowicz, P., & Ratajczak-Ropel, E. (2013). Triple-Action Agents Solving the

MRCPSP/Max Problem. Agent-Based Optimization Studies in Computational

Intelligence, 456, 103–122.

Jȩdrzejowicz, P., & Wierzbowska, I. (2006). Jade-based A-team environment. In

Proceedings of the 6th International Conference on Computational Science, May

2006, 719-726, Reading, UK.

Johnson, D.S., Trick, M. (1996). Cliques, coloring, and satisfiability: second DI-

MACS implementation challenge. Dimacs Series in Discrete Mathematics and

Theoretical Computer Science (Book 26), American Mathematical Society.

Kennedy, J., Eberhart, R.C. (1995). Particle swarm optimization. In Proceedings

of IEEE Int. Conf. Neural Netw., December 1995, 1942–1948, Piscataway, NJ,

USA.

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simulated

annealing. Sci, (220), 671-680.

Klemperer, P. (2004). Auctions: Theory and Practice Princeton, N.J.: Princeton

University Press.

Kong, M., Tian, P., Kao, Y. (2008). A new ant colony optimization algorithm for

the multidimensional knapsack problem. Comput. Oper. Res., 35, 2672–2683.

Kulkarni, & A.J., Tai, K. (2008). Probability Collectives for Decentralized, Dis-

tributed Optimization: A Collective Intelligence Approach. In Proceedings of

the IEEE International Conference on Systems, Man, and Cybernetics, October

2008, 1271–1275, Singapore, .

REFERENCES 113

Kulkarni, A.J., & Tai, K. (2009). Probability Collectives: A Decentralized, Dis-

tributed Optimization for Multi-Agent Systems. In Mehnen, J., Koeppen, M.,

Saad, A., Tiwari, A. (eds.), Applications of Soft Computing, 441–450.

Kulkarni, A.J., & Tai, K. (2010). Probability Collectives: A Multi-Agent Ap-

proach for Solving Combinatorial Optimization Problems. Applied Soft Com-

puting, 10(3), 759–771.

Kulkarni, A.J., Tai, K. (2011). A Probability Collectives Appraoch with a

Feasibility-based Rule for Constrained Optimization. Applied Computational In-

telligence and Soft Computing, 2011(3859).

Langeveld, J., & Engelbrecht, A.P. (2012). Set-based particle swarm optimization

applied to the multidimensional knapsack problem. Swarm Intell., 6, 297–342.

Lau, H.C., & Goh, Y.G. (2002). An intelligent brokering system to support multi-

agent web-based for thparty logistics. In Proceedings of the 14th International

Conference on Tools with Artificial Intelligence, November 2002, 54-61, Wash-

ington, DC, USA.

Lee, H., Murthy, S., Haider, W., & Morse,D. (1995). Primary Production Schedul-

ing at Steel making Industries. IBM report, 40(2), 231.

Leighton, F.T. (1979). A graph coloring algorithm for large scheduling problems.

Journal of Research of the National Bureau of Standards, 84(6), 489–506.

Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000). An algorithm for multi-

unit combinatorial auctions. In Proceedings of the 17th National Conference on

Artificial Intelligence, August 2000, Austin, Texas.

Li, H., Jiao, Y., Zhang, L., & Gu, Z. (2006). Genetic algorithm based on the or-

thogonal design for multidimensional knapsack problems. Advances in Natural

Computation. Springer Berlin/Heidelberg, 696–705.

Lim, A., & Wang, F. (2004). Meta-heuristics for robust graph coloring problem.

In Proceedings of 16th IEEE International Conference on Tools with Artificial

Intelligence, November 2004, 514–518, Boca Raton, FL, USA.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell Syst.

Tech. J., 44, 2245–2269.

Lu, Z., Hao, J.K. (2010). A memetic algorithm for graph coloring. Eur. J. Oper.

Res., 203(1), 241–250.

Malaguti, E., Monaci, M, Toth, P. (2008). A metaheuristic approach for the vertex

coloring problem. INFORMS Journal on Computing, 20(2), 302–316.

Markowitz, H.M., & Manne, A.S. (1957). On the solution of discrete programming

problems. Econometrica, 25, 84–110.

114 REFERENCES

Martin, O., & Otto, S.W. (1996). Combining simulated annealing with local search

heuristics. Annals of Operations Research, 63, 57–75.

Meignan, D., Koukam, A., & Créput, J.C. (2010). Coalition-based metaheuristic: a

self-adaptive metaheuristic using reinforcement learning and mimetism. Journal

of Heuristics, 16(6), 859–879.

Milano, M., & Roli, A. (2004). MAGMA: a multiagent architecture for metaheuris-

tics. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions,

34(2), 925–941.

Misevicius, A. (2004). An improved hybrid genetic algorithm: New results for the

quadratic assignment problem. Knowledge Based Systems, 17(2-4), 65–73.

Misevicius, A., Lenkevicius, A., & Rubliauskas, D. (2006). Iterated tabu search:

An improvement to standard tabu search. Information Technology and Control,

35(3), 187–197.

Mladenovic, N., & Hansen, P. (1997). Variable Neighborhood Search. Comput.

Oper. Res., 24, 1097–1100.

Mladenovic, N., Urosevic, D., Perez-Brito, D., & Garcia-Gonzalez, C. G. (2010).

Variable neighborhood search for bandwidth reduction. European Journal of

Operational Research, 200(1), 14–27.

Moalic, L., & Gondran, A. (2015). The new memetic algorithm HEAD for graph

coloring: an easy way for managing diversity. em In Ochoa and Chicano (Eds.),

EvoCOP2015, Lecture Notes in Computer Science, April 2015, 9026, 173–183,

Copenhagen, Denmark.

Modia P.G., Shena W.M., Tambea M., & Yokoo M. (2005). Adopt: asynchronous

distributed constraint optimization with quality guarantees. Journal of Artificial

Intelligence, Distributed Constraint Satisfaction, 161(1â2), 149–180.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Technical report, Tech. Rep. No. 790,

Caltech Concurrent Computation Program, California Institue of Technology.

Eur. J. Oper. Res., 200, 14–27.

Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In Proceed-

ings of ACM Conference on Electronic Commerce (EC’00). ACM Press, October

2000, 1–12, Minneapolis, USA.

Osman, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms

for the vehicle routing problem. Annals of Operations Research, 41, 421–451.

Papadimitriou, C.H., & Steiglitz. K (1998). Combinatorial Optimization : Algo-

rithms and Complexity. Edition: Dover Books on Computer Science.

REFERENCES 115

Porumbel, D.C., Hao, J.K., & Kuntz, P. (2009). Diversity control and multi-parent

recombination for evolutionary graph coloring algorithms. In C. Cotta, P. Cowl-

ing (Eds.), EvoCOP 2009, Lecture Notes in Computer Science, April 2009, 5482,

121-132, Tübingen, Germany.

Porumbel, D.C., Hao, J.K., & Kuntz, P. (2009). Position-Guided Tabu Search Al-

gorithm for the Graph Coloring Problem. In Stützle, T. (ed.), 3(5851), 148–162.

Porumbel, D.C., Hao, J.K., & Kuntz, P. (2010). A Search Space "Cartography"

for Guiding Graph Coloring Heuristics. Computers Operations Research, 37(4),

769–778.

Prestwich, S. (2002). Coloration neighbourhood search with forward checking.

Annals of Mathematics and Artificial Intelligence, 34(4), 327–340.

Puchinger, J., & Raidl, G. R. (2005). Relaxation Guided Variable Neighborhood

Search. In Proceedings of the XVIII Mini EURO Conference on VNS, November

2005, Tenerife, Spain.

Puchinger, J., Raidl, G.R., & Gruber, M. (2005). Cooperating memetic and branch-

and-cut algorithms for solving the multidimensional knapsack problem. In Pro-

ceeding of the 6th Metaheuristics International Conference, August 2005, 775–

780, Vienna, Austria.

Rachlin, J., Wu, F., Murthy, S., Talukdar, S.,Sturzenbecker, M., Akkiraju, R.,

Fuhrer, R., Aggarwal, A., Yeh, J., Henry, J., & Jayaraman, J. (1996). Forest View:

A System For Integrated Scheduling In Complex Manufacturing Domains. IBM

report, 0.

Reinelt, G. (1994). The Traveling Salesman, Computational Solutions for TSP

Applications. Lecture Notes in Computer Science. Springer, 840.

Rothkopf, MH., Pekee, A., Ronald, M. (1998). Computationally manageable com-

binatorial auctions. Management Science, 44(8), 1131-1147.

Sakawa, M., & Kato, K. (2003). Genetic algorithms with double strings for 0â1

programming problems. Eur. J. Oper. Res., 144, 581–597.

Sandholm, T., & Suri, S. (2010). Improved optimal algorithm for combinatorial

auctions and genericizations. In Proceedings of the 17th National Conference on

Artificial Intelligence, August 2000, 90–97, Austin, Texas.

Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2001). CABoB: a fast optimal al-

gorithm for combinatorial auctions. In Proceedings of the International Joint

Conferences on Artificial Intelligence, August 2001, 1102-1108, Seattle, WA,

USA.

Sghir, I., Hao, J.K., ben Jaafar, I., & Ghédira, K. (2013). A Recombination-Based

Tabu Search Algorithm for the Winner Determination Problem. Selected and re-

vised paper in the International Conference of Evolution Artificielle (EA 2013),

116 REFERENCES

Bordeaux, France, October 2013. Lecture Notes in Computer Science, 8752,

157–167.

Sghir, I., Hao, J.K., ben Jaafar, I., & Ghédira, K. (2015). A Distributed Hybrid

Algorithm for the Graph Colorin g Problem. Selected and revised paper in the

International Conference of Evolution Artificielle (EA 2015), Lyon, France, Oc-

tober 2015. Lecture Notes in Computer Science, 9554, 205–218.

Sghir, I., Hao, J.K., ben Jaafar, I.,& Ghédira, K. (2015). A Multi-Agent Based

Optimization Method applied for the Quadratic Assignment Problem. Expert

Systems With Applications Journal, 42(23), 9252–9263.

Shih, W. (1979). A Branch and Bound Method for the Multiconstraint Zero-One

Knapsack Problem. Journal of the Operational Research Society, 30, 369–378.

Sislak, D., Volf, P., Pechoucek, M., & Suri, N. (2011). Automated Conflict Resolu-

tion Utilizing Probability Collectives Optimizer. IEEE Transactions on Systems,

Man and Cybernetics: Applications and Reviews, 41(3), 365–375.

Sivanandam, S.N., Sumathi, S., & Hamsapriya, T. (2005). A hybrid parallel genetic

algorithm approach for graph coloring. Int. J. Knowl. Based Intel. Eng. Syst., 9,

249–259.

Smith, D.H., Hurley, S., & Thiel, S.U. (1998). Improving heuristics for the fre-

quency assignment problem. European Journal of Operational Research, 107(1),

76–86.

Smyrnakis, M., & Leslie, D.S. (2009). Sequentially Updated Probability Collec-

tives. In Proceedings of 48thIEEE Conference on Decision and Control and 28th

Chinese Control Conference, December 2009, 5774–5779, Shanghai, China.

Stützle, T. (1998). Applying iterated local search to the permutation flow shop

problem. Technical Report AIDA-98-04, FG Intellektik, TU Darmstadt.

Stützle, T. (2006). Iterated local search for the quadratic assignment problem. Eu-

ropean Journal of Operational Research, 174(3), 1519–1539.

Taillard, E. (1991). Robust taboo search for the quadratic assignment problem.

Parallel Computing, 17, 443–455.

Talukdar, S. N., & Ramesh, V.C. (1994). AMulti-Agent Technique for Contingency

Constrained Optimal Power Flows. In Proceedings of the Power Industry Com-

puter Applications Conference (PICA-93), IEEE Trans. on Power Systems, May,

1993, 9(2), 855–861, Phoenix, USA.

Talukdar, S.N., Souza, P. de, & Murthy S. (1993). Organizations for Computer-

Based Agents. Engineering Intelligent Systems, 1(2), 56-69.

REFERENCES 117

Talukdar, S., Baerentzen, L., Gove, A., & De Souza, P. (1996). Asynchronous

Teams: Cooperation Schemes for Autonomous Agents. Journal of Heuristics,

4(4), 295–321.

Tate, D.M., & Smith, A.E. (1995). A genetic approach to the quadratic assignment

problem. Computers and Operations Research, 2(1), 73–83.

Titiloye, O., & Crispin, A. (2011). Graph Coloring with a Distributed Hybrid Quan-

tum Annealing Algorithm. In J. O’Shea, N. Nguyen, K. Crockett, R. Howlett, L.

Jain (eds.), Agent and Multi-Agent Systems: Technologies and Applications, 553-

562.

Trick, M.A., & Yildiz, H. (2007). A Large Neighborhood Search Heuristic for

Graph Coloring. In Van Hentenryck, P., Wolsey, L.A. (eds.), CPAIOR, May 2007,

4510, 346–360, Brussels, Belgium.

Tsen, C. K. (1995). Solving Train Scheduling Problems Using A-Teams. Ph.D.

dissertation, Electrical and Computer engineering Department, Carnegie Mellon

University, Pittsburgh, USA.

Vasirani, M., Ossowski, S. (2008). Collective-Based Multiagent Coordination: A

Case Study. In Artikis, A., OâHare, G.M.P., Stathis, K., Vouros, G.A. (eds.),

ESAW 2007. LNCS (LNAI), October 2007, 4995, 240–253, Athens, Greece.

Vasquez, M., & Hao, J.K. (2001). A hybrid approach for the 0-1 multidimensional

knapsack problem. In Proceeding of the 17th Int. Joint Conference on Artificial

Intelligence, August 2001, 328–333, Seattle, Washington, USA.

Vasquez, M., & Vimont, Y. (2005). Improved results on the 0â1 multidimensional

knapsack problem. Eur. J. Oper. Res., 165, 70–81.

Vries de S,Vohra, R. (2003). Combinatorial auctions a survey. INFORMS Journal

on Computing, 15, 284–309.

Wang, Y., Lu, Glover, F., & Hao, J.K. (2013). Backbone guided tabu search for

solving the UBQP problem. Journal of Heuristics, 19(4), 679–695.

Wolpert, D.H., & Tumer, K. (1999). An introduction to Collective Intelligence.

Technical Report, NASA ARC-IC-99-63, NASA Ames Research Center.

Wolpert, D.H., Antoine, N.E., Bieniawski, S.R., & Kroo, I.R. (2004). Fleet Assign-

ment Using Collective Intelligence. In Proceedings of the 42nd AIAA Aerospace

Science Meeting Exhibit, January 2004, Reno, Nevada.

Wolpert, D.H. (2006). Information Theory–The Bridge Connecting Bounded Ra-

tional Game Theory and Statistical Physics. In Braha, D., Minai, A.A., Bar-Yam,

Y. (eds.), Complex Engineered Systems, 262–290.

118 REFERENCES

Wolpert, D.H., Strauss, C.E.M., & Rajnarayan, D. (2006). Advances in Distributed

Optimization using Probability Collectives. Advances in Complex Systems, 9(4),

383–436.

Wu, Q., & Hao, J.K. (2012). Coloring large graphs based on independent set ex-

traction. Computers and Operations Research, 39, 283–290.

Wu, Q., & Hao, J.K. (2015). Solving the winner determination problem via a

weighted maximum clique heuristic. Expert Systems with Applications, 42(1),

355–365.

Xu, K., & Liu, H. (2006). A Multi-Agent Particle Swarm Optimization Framework

with Applications. 1st International Symposium on Pervasive Computing and

Applications, August 2006, 1–6, Urumchi, Xinjiang, China.

Yeoh W., Felner A., & Koenig S. (2010). BnB-ADOPT: An Asynchronous Branch-

and-Bound DCOP Algorithm. Journal Of Artificial Intelligence Research, 38,

85–133.

Zhang, W., Wang, G., & Wittenburg, L. (2002). Distributed stochastic search for

distributed constraint satisfaction and optimization: Parallelism, phase transitions

and performance. In Proceedings of AAAI-02 Workshop on Probabilistic Ap-

proaches in Search, July 2002, 53–59, Edmonton, Alberta, Canada.

Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2003). An Analysis and Ap-

plication of Distributed Constraint Satisfaction and Optimization Algorithms in

Sensor Networks. In Proceedings of the second international joint conference on

Autonomous agents and multiagent systems, AAMAS ’03, July 2003, 185–192,

Melbourne, VIC, Australia.

Zou, D., Gao, L., & Li, S. (2011). Solving 0-1 knapsack problem by a novel global

harmony search algorithm. Appled Soft Computing, 11, 1556–1564.

Zufferey, N., Amstutz, P., & Giaccari, P. (2008). Graph colouring approaches for a

satellite range scheduling problem. Journal of Scheduling, 11(4), 263–277.

Thèse de Doctorat

Inès SGHIR
Une méthode d’optimisation à base de système multi-agents pour
l’optimisation combinatoire

A Multi-Agent based Optimization Method for Combinatorial Optimization
Problems

Résumé

Nous élaborons une approche multi-agents pour la
résolution des problèmes d’optimisation combinatoire
nommée MAOM-COP. Elle combine des métaheuris-
tiques, les systèmes multi-agents et l’apprentissage
par renforcement. Les heuristiques manquent d’une
vue d’ensemble sur l’évolution de la recherche. Notre
objectif consiste à utiliser les systèmes multi-agents
pour créer des méthodes de recherche coopératives.
Ces méthodes explorent plusieurs métaheuristiques.
MAOM-COP est composée de plusieurs agents qui
sont l’agent décideur, les agents intensificateurs et
les agents diversificateurs (agents croisement et agent
perturbation). A l’aide de l’apprentissage, l’agent dé-
cideur décide dynamiquement quel agent à activer
entre les agents intensificateurs et les agents croise-
ment. Si les agents intensificateurs sont activés, ils
appliquent des algorithmes de recherche locale. Du-
rant leurs recherches, ils peuvent s’échanger des infor-
mations, comme ils peuvent déclencher l’agent pertur-
bation. Si les agents croisement sont activés, ils exé-
cutent des opérateurs de recombinaison. Nous avons
appliqué MAOM-COP sur les problèmes suivants : l’af-
fectation quadratique, la coloration des graphes, la dé-
termination des gagnants et le sac à dos multidimen-
sionnel. MAOM-COP possède des performances com-
pétitives par rapport aux algorithmes de l’état de l’art.

Abstract

We elaborate a Multi-Agent based Optimization
Method for Combinatorial Optimization Problems
named MAOM-COP. It combines metaheuristics, multi-
agent systems and reinforcement learning. Although
the existing heuristics contain several techniques to es-
cape local optimum, they do not have an entire vision
of the evolution of optimization search. Our main objec-
tive consists in using the multi-agent system to create
intelligent cooperative methods of search. These meth-
ods explore several existing metaheuristics. MAOM-
COP is composed of the following agents: the decision-
maker agent, the intensification agents and the di-
versification agents which are composed of the per-
turbation agent and the crossover agents. Based
on learning techniques, the decision-maker agent de-
cides dynamically which agent to activate between in-
tensification agents and crossover agents. If the in-
tensifications agents are activated, they apply local
search algorithms. During their searches, they can ex-
change information, as they can trigger the perturba-
tion agent. If the crossover agents are activated, they
perform recombination operations. We applied MAOM-
COP to the following problems: quadratic assignment,
graph coloring, winner determination and multidimen-
sional knapsack. MAOM-COP shows competitive per-
formances compared with the approaches of the litera-
ture.

Mots clés

Multi-agents, recherche coopérative, optimisation
combinatoire, intensification, diversification,
métaheuristique.

Key Words

Multi-agent, cooperative search, combinatorial
optimization, intensification, diversification,
metaheuristics.

L’UNIVERSITÉ NANTES ANGERS LE MANS

