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Abstract

A data stream classification method called DISSFCM (Dynamic Incre-
mental Semi-Supervised FCM) is presented, which is based on an incre-
mental semi-supervised fuzzy clustering algorithm. The method assumes
that partially labeled data belonging to different classes are continuously
available during time in form of chunks. Each chunk is processed by semi-
supervised fuzzy clustering leading to a cluster-based classification model.
The proposed DISSFCM is capable of dynamically adapting the number
of clusters to data streams, by splitting low-quality clusters so as to im-
prove classification quality. Experimental results on both synthetic and
real-world data show the effectiveness of the proposed method in data
stream classification.

Data stream classification; Semi-supervised fuzzy clustering; Incremental
adaptive learning

1 Introduction

Data stream mining is a recent methodology that deals with the analysis of large
volumes of ordered sequences of data samples. Data streams are a manifestation
of Big Data, which are characterized by the four ‘V’ dimensions, namely Volume,
Velocity, Variety and Veracity.[1] They are produced by sensor networks[2, 3],
e-mails[4], online transactions[5], network traffic[6, 7], weather forecasting]§],
health monitoring[9], social networks[10, 11] , learning analytics[12], etc., just
to cite the the most common applications made available by current technology.

In data stream mining, it is commonly assumed that the volume of the
sequence of data is so large that samples can be used a few times (or just
once) for the analysis. This requirement involves the development of special-
purpose data analysis methods, which should not require to store the whole
stream of data in memory.[13] An approach to analyze data streams exploits an
incremental generation of informational patterns, which represent a synthesized
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view of all data records analyzed in past and progressively evolve as new data
records are available. Incremental and on-line algorithms are potentially useful
to deal with continuous arrival of data in rapid, time-varying, and potentially
unbounded streams since they continuously incorporate information into their
model.[14, 15]

Main challenges in data stream mining derive from dealing with non-stationary
and potentially unbounded data, which require the development of algorithms
capable of performing fast and incremental processing of data samples, with
limited time and memory constraints.[16] Data stream mining is applied for
different tasks, such as classification, clustering, frequent pattern mining and
time-series analysis.[17] In this paper, we focus on classification of data samples
in a stream[18, 19] which poses specific challenges in the data stream domain,
such as concept drift and class imbalance.[20, 21]

In particular, we specialize in semi-supervised methods as we do not assume
that all data samples are completely labeled; in fact, labeled samples may be
difficult or expensive to obtain in some real-world scenarios, meanwhile unla-
beled data are relatively easy to collect. For example it is quite easy to collect
new sensor data coming from continuous streams but it may be difficult or even
impossible to manually label all such data. Recently, we developed an incremen-
tal semi-supervised clustering method for data stream classification,[22] which
applies the Semi-Supervised Fuzzy C-Means algorithm (SSFCM)[23] to data
chunks. Successively, the method has been refined by enabling the dynamic
determination of the number of clusters through an appropriate splitting proce-
dure, leading to the DISSFCM (Dynamic Incremental Semi-Supervised FCM)
algorithm.[24]

In this paper we extend the previous work to better analyze the dynamic
nature of DISSFCM and its capability to cope with changes in the distribution
of data incoming in the stream.

The organization of the rest of the paper is as follows. Section 2 presents the
state of the art related to semi-supervised fuzzy stream data analysis. Section
3 presents our method for data stream classification and its extension based
on cluster splitting. In Section 4 the effectiveness of DISSFCM is evaluated
on synthetic and real-world datasets in order to show its ability to cope with
changes in data distribution. The last section draws some concluding remarks
and outlines future work.

2 Related Works

A common approach for data stream classification is based on sliding windows,
where a subset of data (data chunk) is considered for building and evolving a
classifier.[25] The data chunk contains the most recent data that are available
from a stream; when new data arrive, chunk change either by replacing oldest
data with newest, or replacing all data as soon as there are enough new data to
fill the whole chunk. The sliding windows approach is very general as it enables
the application of most classifier design methods, which however are limited to
use only a part of the stream.[17]

Different approaches can be adopted to design classification models from
data streams organized in chunks; among others, ensemble methods[26, 27] and
evolving schemes[28] are often used, sometimes in combination.[29] In particu-



lar, evolving schemes for data-driven classifiers can be used to train classifiers
on data chunks while taking into account the knowledge acquired in previous
chunks. As a consequence, a single model is dynamically adapted to data (in
contrast to ensemble methods, which build a multitude of models), thus foster-
ing interpretability and intelligent data analysis.[30]

Many classical machine learning methods have been adapted to evolving
schemes. Yang et al. adopted naive Bayesian classifers due to their low con-
struction cost and easiness for incremental maintenance.[31] Tkonomovska et
al. propose an incremental method to learn regression and model trees from
stream data.[32] Zhang & Zhou propose a novel parameter estimation method,
called transfer estimation, to dynamically adapt the estimation of the class pri-
ors and adjust a classifier accordingly.[33] The method has been applied to the
Online Expectation-Minimization algorithm for non-stationary data sequence
classification.[34] Pang et al. developed an incremental linear discriminant
analysis that is able to evolve a discriminant eigenspace over fast and large
data streams.[35] Guarracino et al. propose Incremental Regularized Gener-
alized Eigenvalue Classification (I-ReGEC), which is an evolving scheme of a
supervised learning algorithm for dynamically tuning kernel functions used for
classification.[36] Annapoorna et al. implemented Random Forests with strati-
fied random sampling and Bloom filtering in order to fast training in the pres-
ence of high-velocity data.[37] Gomes et al. enhanced Random Forests for the
context of data stream mining with resampling and adaptive operators that can
cope with different types of concept drifts without complex optimization.[38]

In classification tasks, a common approach is to cluster data so as to group
data belonging to the same class.[39, 40] Aggarwal & Yu develop a method for
clustering uncertain data streams with the use of a micro-clustering model.[41]
Hyde et al. also used micro-clusters in a two-stage process, the first sfor pro-
ducing micro-clusters and the second stage for combining them into macro-
clusters.[19] Ghesmoune et al. developed a version of the growing neural gas
approach, aimed to clustering data streams by making one pass over the data,
which allows to discover clusters of arbitrary shapes without any assumptions
on the number of clusters.[42] In these cases, however, class information is not
directly exploited in the clustering process. Lughofer proposed a clustering-
based classification technique that is able to perform supervised clustering in a
data stream context, by extending the conventional learning vector quantization
scheme so as to evolve new clusters on demand when data of a stream become
available.[43]

Fuzzy clustering offers several advantages in the case of data stream analysis,
such as a better representation of concept drift through continuous membership
functions and robustness of possibilistic models among others.[44] This gave rise
to several extensions of fuzzy clustering techniques to data streams, mainly by
improving efficiency[45, 46] and effectiveness for highly-dimensional data.[47] On
more general terms, the use of fuzzy logic in data stream mining and big data
analytics is interesting for the robustness and interpretability of the resulting
models, at the expenses of a more complex design process.[48]

Different from most offline classification tasks, in data stream classification it
is not realistic to assume that all data are pre-classified. As a consequence, many
studies focus on classifying stream data that are partially or completely unla-
beled. Bassan & Santos propose a technique for classifying unlabeled stream-
ing data using grammar-based immune programming, where data are labelled



through an active learning technique.[49] Active learning if often used in data
stream mining[50], but it requires an external oracle (a human annotator or par-
ticular sample selection criteria[18]) to label critical data so as to refine the clas-
sification model. As an alternative approach to active learning, semi-supervised
clustering exploits data neighborhood to classify unlabeled data. Available class
labels provide information to the clustering process, so as to foster grouping
of data belonging to the same class while separating data belonging to dif-
ferent classes. Semi-supervised clustering is a mainstream methodology when
class labels are not available for all data samples.[51, 52] and its application to
data stream mining is currently in progress. Borchani et al. proposed a semi-
supervised approach for handling concept-drifting data streams containing both
labeled and unlabeled instances, which can be applied to different classification
models.[53] Castellano et al. proposed an incremental method for fuzzy clus-
tering process guided by partial supervision which has been applied to shape
annotation in image streams.[54]

In many cases, the number of clusters is either user-defined or determined
from data, but it is usually kept fixed throughout the clustering process. The
constant number of clusters turns out to be a limitation in data stream analysis,
because concept drifts lead to a change in the structure of data which could be
better described by adapting the number of clusters to incoming chunks. Silva
et al. describe a support system for both estimating the number of clusters from
data and monitoring the process of the data-stream clustering.[55] Lughofer pro-
posed split and merge operations for evolving cluster models, which are learned
incrementally from data streams.[56] Cao et al. proposed a new approach for
discovering clusters in an evolving data stream, which are dynamically adapted
in number through a pruning strategy.[57] In general, the design of clustering
algorithms that adapt the cluster number to the structure of data in a stream
is one of the main challenges in data stream clustering. Few works focus on
the dynamical adaption of the number of fuzzy clusters.[58] In this paper we
propose a novel approach for the dynamical adaption of the number of fuzzy
clusters in a semi-supervised setting for data stream analysis.

3 Dynamic Incremental Semi-Supervised FCM

We assume the availability of a data stream X consisting of samples x char-
acterized by numerical features, i.e. x € R". Each sample belongs to a class
in C = {1,...,C} through a classification function f : X — C. However, ac-
cording to the semi-supervised hypothesis, the classification function is generally
unknown but is some samples only; we formalize this hypothesis through a func-
tion b : X — {0,1} such that b(x) = 1 iff x is pre-labeled, i.e. its class value
f(x) is known. The structure of X as a data stream is formalized as a sequence
of chunks, i.e. X = X1, Xo,...,X;,... being X; C R™ a chunk of samples.
Within each chunk, it is possible to apply a clustering procedure in order
to find a structure in data. We base our study on Fuzzy C-Means (FCM)[59]
clustering because it is particularly suited for numerical data. FCM is a fast and
simple fuzzy partitional clustering method that is widely used in literature; its
process is based on the minimization of an objective function so as to optimally
distribute samples into a pre-defined number of fuzzy clusters. Clusters are
represented with their centers ¢ € R™ while data clustering is represented by



a partition matrix U which reports the membership degree of each sample to
each cluster. (The membership degrees of a sample to all clusters must sum
up to unity.) FCM is a purely unsupervised clustering method and requires
an a-priori specification of the number of clusters; it is therefore necessary to
extend FCM so as to make it suitable for semi-supervised data stream mining.

The clustering process can be guided by the class information available
in data, so that the discovered structure is conditioned by the class distribu-
tion; however, we must take into account the partial availability of class labels
among samples. To this end, we resort to Semi-Supervised Fuzzy C-Means
(SSFCM)[23], which embeds partial supervision in the classical FCM clustering
algorithm by adapting the objective function as follows:
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where K > C'is the number of clusters, Ny = | X;| is the cardinality of the ¢-th
chunk in the data stream, uj; € [0,1] is the membership degree of a sample x;
in the k-th cluster, d; , is the Euclidean distance between sample x; and center
¢y of the k-th cluster, a > 0 is a regularization parameter for the second part of
the objective function that exploits class information, b; = b(x;) and fj;; = 1 iff
the j-th sample belongs has the same class label of the k-th cluster. As stated
in [23] the choice of o depends on the relative number of labeled and unlabeled
data. Usually the number of the latter is much higher than the number of
labeled data. To ensure that the impact of the labeled data is not ignored, the
value of a should produce approximately equal weighting of the two additive
components of J; this suggests that o be proportional to the rate N/M where
N is the number of data and M denotes the number of labeled data. In this
work we have fixed a = N/M.

It is required that each cluster is associated to a class; this is accomplished
as follows: (i) at the beginning of clustering, K pre-labelled samples are ran-
domly selected, which will define the initial values of the cluster centers (class
distribution is preserved); (ii) being these samples pre-labelled, each cluster is
tagged with the class label of the corresponding sample; (iii) the class label is
preserved throughout the optimization process, so that it is always possible to
compute the value of f;;. As a consequence, the second term of the objective
function is minimized if all samples are close to prototypes of the same class.

The objective function (1) must be minimized subject to the constraint

K
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which leads to the following formulas to be applied in an alternating optimiza-
tion scheme[23]:
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Eqgs. (2) and (3) are iteratively applied to update both centers and the partition
matrix, as in [60].

We used SSFCM to data stream clustering by applying the algorithm to
each chunk.[22] For each chunk, cluster prototypes are computed, which can be
seen as representatives of local data. In particular, for each cluster a medoid py
is computed as the closest data sample to the center cx and is tagged with the
class of the corresponding cluster. In order to take into account the evolution
of data in successive chunks, the calculated prototypes for a chunk are used as
pre-labeled prototypes in the next chunk. The labeled prototypes obtained at
each step of the incremental clustering are used for classification, namely all
data samples maximally belonging! to the k-th cluster are associated with the
class label assigned to prototype p,.

The main limitation of SSFCM stands in the choice of the number of cluster,
which is fixed throughout the data chunks. This has a twofold disadvantage: (i)
the shape of clusters may not follow the distribution of classes, resulting in model
under-fitting; (ii) the distribution of classes my evolve throughout chunks, thus
requiring reshaping the data clusters. We therefore extended SSFCM by intro-
ducing the ability of evolving the clustering structure also in terms of number
of clusters.[24]

The resulting method, called Dynamical Incremental SSFCM (DISSFCM)
adjusts the number of clusters by splitting low-quality clusters. The quality of
clusters is measured by the reconstruction error[61], which evaluates the ability
of a clustering model in reconstructing the original data samples. Formally, the
reconstruction error for cluster Cj is defined as:
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The reconstruction error finds motivation from the granulation—degranulation
strategy [62] that uses the prototypes to represent each data point by comput-
ing the corresponding membership degrees (granulation step) and then estimates
the data point on a basis of the prototypes and the membership degrees (de-
granulation step). Ideally, for a good granulation of data we would expect that
the result of the de-granulation step should return the original data points. In
practice we can consider the distance between the original data point x; and
its de-granulated (reconstructed) version X; as a good measure of quality of the
obtained granulation.

As an overall measure of the cluster quality we use the maximum reconstruc-
tion error, given by:

()
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If the prototypes derived from a data chunk do not meet the reconstruction
criterion, i.e. if the reconstruction error V., exceeds the value computed on

1A data sample maximally belongs to a cluster if the prototype of this cluster is the closest
to the sample among all prototypes. Ties are solved randomly.
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Figure 1: Scheme of DISSFCM

the previous chunk, then some clusters need to be split so as to increase the
number of clusters. This is done by splitting the cluster with the highest value
of reconstruction error.

Summarizing, the proposed adaptive incremental approach has the follow-
ing workflow (fig. 1). When a new chunk is available, the SSFCM clustering
is applied to generate a number of labeled prototypes. Prototypes are used to
reconstruct the data and the reconstruction error is evaluated. If the recon-
struction error increases with respect to the previous chunk, then a splitting is
applied and the resulting prototypes are stored. The prototypes are then used
to classify data in the incoming chunk.

The steps of DISSFCM are detailed in algorithm 1. The algorithm requires
the data stream granulated into chunks and an initial collection of labeled pro-
totypes such that each class label is represented by at least one prototype. After
application of SSFCM clustering (Step 4) the resulting prototypes are labeled
automatically due to the semi-supervised nature of SSFCM. The derived proto-
types are the basis for the classification process (Step 10). Indeed, the derived
labeled prototypes are used to classify all the data in the current chunk via a
matching mechanism. Namely, each data sample is matched? against all proto-
types and assigned to the class label of the best-matching prototype. At the end,
the algorithm returns the most recent collection of the prototypes, reflecting the
data structure of the last data chunk. Notice that the returned collection can be
used as input for a new run of the algorithm as long as new data are available
from the data stream. The split function used in step 7 of the algorithm is
detailed below.

2The matching mechanism is based on the standard Euclidean distance.



Algorithm 1 DISSFCM
Require: Data stream of chunks Xi,..., Xy, ... containing some labeled data
belonging to C' classes
Require: Initial set Py of K labeled prototypes containing at least one proto-
type per class;
Ensure: P: labeled prototypes;
ct+ 1
: P+ Py
while 3 nonempty chunk X; do
P+ SSFCM(X:,P)
Compute the reconstruction error Vn(fgz
while V;\Y), > Vi\l..,") do
P+ split(P, X})
Compute the reconstruction error VTSZJ,
end while
10:  Classify data in X; using labeled prototypes in P
11: t+t+1
12: end while

3.1 Splitting

The splitting mechanism is activated when the reconstruction error on the cur-
rent chunk exceeds the reconstruction error computed on the previous chunk.
This means that the current number of clusters is not enough to effectively rep-
resent the data, hence the number of clusters should be augmented. This is
done by splitting one cluster in two parts, so as to form two new clusters.

The cluster having the highest value of the reconstruction error, i.e. the
cluster with lowest reconstruction ability, is selected as candidate for splitting.
We denote by k* the selected cluster. Its splitting is performed by means of
the conditional fuzzy clustering[63] applied to the collection of data samples
belonging to the cluster so as to create two novel clusters. Given the set C«
of data samples belonging to the selected cluster k*, the splitting process is
performed by the minimization of the following objective function
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where v, is the membership degree of x; to the cluster k, k =1, 2.
The objective function (7) is minimized by iteratively computing the mem-
bership values v;; and the prototypes z; according to:
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Iterative application of (8) and (9) stops when there is no significant decrease
of objective function J.. Once the new clusters are generated, they inherit the
class label of the original cluster (which is no more used) and membership de-
grees are re-computed according to (2). The splitting procedure is repeated
until the reconstruction error drops below the reconstruction error of the previ-
ous chunk.

4 Experimental results

Numerical experiments were conducted to evaluate the effectiveness of the pro-
posed algorithm in data stream classification. Synthetic data were firstly ana-
lyzed to better understand how the algorithm behaves when a change in the class
distribution occurs. Then real data were considered to analyze the classification
ability of DISSFCM.

4.1 Synthetic data

The Sinel dataset® has been considered to analyze the behavior of DISSFCM
in presence of abrupt concept drift, i.e. sudden changes happen in data class
distribution. It is a two dimensional synthetic dataset of uniformly distributed
points in the interval [0, 1]. The sine function y = sin(x) is used to classify the
instances as positive if they are under the sine curve, negative otherwise. The
data are divided in five chunks in order to have a drift point (i.e. the reversion
of the class labels) in each chunk.

Figure 2 shows the five chunks and the prototypes produced by DISSFCM
when each chunk arrives. Two colors (blue and green) are used for the two
output classes. Data points are represented by dots and prototypes by squares.
The color red is used to highlight misclassifications. When the process starts,
one cluster prototype is associated to each class. At the end of the computation,
DISSFCM separates the data in two classes, being each of them described by
the prototypes and the membership values. We can observe few misclassified
data near the class separation border (fig. 2(a)). When the next chunk arrives,
the class positions are reversed as the green class moves to the upper part of the
graph whilst the blue one goes to the bottom. It can be seen that DISSFCM
is able to recognize the changed class distribution and to switch the prototypes
according to the classes they belong to (fig. 2(b)). Moreover, since the number
of misclassified data after processing the third chunk has increased (fig. 2(c)),
when the next chunk arrives the green cluster (with the highest reconstruction
error) is split and two new prototypes are generated (fig. 2(d)). Finally, when
the last chunk arrives, the blue cluster is split and two new blue prototypes
(with corresponding clusters) are generated. The new model better fits the
data structure and the error is consequently reduced (few red dots on the last

graph fig. 2(e)).

Shttps://github.com/alipsgh/data_streams




(a) chunk 1 (b) chunk 2

(¢) chunk 3 (d) chunk 4

(e) chunk 5

Figure 2: Sinel synthetic dataset processed by DISSFCM.

In summary, DISSFCM is able to adapt the cluster-based model according to
the structure of incoming data, even when an abrupt concept drift occurs. More-
over, when the current clusters do not sufficiently represent new data chunks,
the granularity of the model is refined as new clusters are generated.

4.2 Real-world data

The Occupancy Detection Data Set? by Candanedo et al., [64] was used to test
the effectiveness of DISSCM for classifying real-world temporal data.

The goal of this dataset is to detect the absence of people in the room, in
order to switch off lights, ventilation and all the tools that require energy. Since
the presence/absence of humans can be used for saving energy and safety pur-
poses, accurate automatic occupancy detection in buildings has recently grown
attention[64] focusing on the assessment of smart spaces that are aware of their
state and can act accordingly. Sensors are commonly used to measure the state
of a room in terms of light, temperature, humidity and CO,. Indeed, they allow
to automatically infer the presence/absence of people in the room.

4https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
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Class Distribution

Data set  Observations 0 (non-occupied) 1 (occupied)

Training 8134 79% 21%
Testing 1 2665 64% 36%
Testing 2 9752 79% 21%

Table 1: Data set description.

Time slots #chunks chunk size
S1 (00.00, 23.58] 7 1440
S2 (00.00, 11.58] [12.00, 23.58] 12 720
S3  [00.00,07.59] [08.00,15.59] [16.00, 23.58] 17 479

Table 2: Different structures of the data stream considered for experiments.

In the considered dataset, each data sample is defined by five features: Tem-
perature (Celsius), Relative Humidity (%), Light (Lux), CO2 (ppm), Humidity
Ratio (kg of water-vapor/kg of air), which have been measured every minute in
a room in the period from Feb. 3rd, 2015 to Feb. 10th, 2015. Each sample is
classified in one out of two possible classes: 0 (non-occupied room) and 1 (occu-
pied room). As a consequence, the dataset is structured as a stream of 20,551
chronologically sorted data samples, which have been divided in a training set
and two test sets differing by the room conditions (in the first one, as in the
training set, the measurements have been taken mostly with the door closed
during occupied status, whilst in the second one the measurements have been
taken mostly with the door open during occupied status). Table 1 reports some
basic statistics on data.

We considered temporal slots to partition the training set in chunks, in order
to simulate a data stream. As reported in Table 2, we considered three different
structures of the data stream (S1, S2, S3) by defining chunks (time slots) of three
different granularities. This lead to the emergence of different class distributions
in the chunks. Specifically, we considered daily time slots (S1), half-day slots
(S2) and one-third-of-day slots (S3) so as to roughly separate working hours
from the rest of the day. Figure 3 shows the class distribution for each chunk
in the three experiments. It can be observed that class distributions change
gradually over time, which can be referred as a gradual concept drift. There
are few abrupt concept drifts in correspondence of days when there was no
occupancy at all. Moreover, abrupt concept drifts are more apparent in S3
where the chunks are made of fewer data, leading to higher variability in class
distributions.

Standard classification measures have been used to evaluate the classification
performance of DISSFCM, namely accuracy, precision, recall and F-measure.
Moreover the trend of the reconstruction error during the computation of the
chunks has been considered to evaluate how the model fits with the observed
data over each chunk.

In the following, we first show the behavior of DISSFCM when dealing with
different stream structures and concept drifts. Then, we report an extensive
experiment to show the effectiveness of the proposed method under different
percentage of labeled data. We finally compare DISSFCM results with other
state-of-art classification algorithms.
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4.2.1 First experiment

Preliminary simulations were devoted to analyze the behavior of DISSFCM in
presence of gradual and abrupt concept drifts. In these simulations we con-
sidered daily chunks (stream S1) and the percentage of labeled data was fixed
to 25%. After processing a single data chunk we computed the classification
accuracy on the current chunk, as well as on the previous chunks. Of course the
algorithm does not require access to previously used data during subsequent in-
cremental learning sessions, but the accuracy on previous chunks was evaluated
to show how the method is able to retain the previously acquired knowledge.
Table 3 reports the accuracy values achieved by DISSFCM on the training set.
It can be seen that when a new chunk is processed a good accuracy on the
current chunk is achieved and the accuracy on the previous chunks is preserved
as well. This means that the model is successfully adapted to new data with-
out forgetting the knowledge acquired from previous data. The lowest accuracy
values at times tg and t7 are observed for the third chunk X3 when a big change
in data distribution is occurred (chunks X4 and Xj5), nevertheless the model
well describes the previous chunks. A connection between the changes in data
distribution and the algorithm effectiveness could be observed in the trend of
the reconstruction error in figure 4.

As reported in figure 3(a), there is a gradual concept drift between the first
and the second chunk. Indeed few data belong to class 1 in chunk 1, while
almost half of the data belong to the each class in the second chunk. This
change produces an increment of the reconstruction error when the second chunk
arrives, because the model is no more adequate to describe the current data.
For this reason the splitting is activated, so the number of prototypes increases
by one (K = 3) and the maximum reconstruction error decreases (requiring no
more splits). When the third chunk is presented the class distribution does not
change, the model fits the new data, and the error decreases. We then observe
an abrupt concept drift when the fourth chunk comes (an unexpected change in
the class distribution: the first class is no more represented). The old model does
not describe the new data, so the error rises again. A novel splitting is applied
and four prototypes are used to describe this new configuration. When the fifth
chunk comes, it has the same distribution of the previous one, the model is able
to describe these new data and so no error increase is observed. On the contrary,
with the seventh chunk another class distribution change occurs, the error raises,
a splitting is required (K = 5). Finally, even if the class distribution in the last
chunk is quite different from that in the previous one, since both classes are
represented, the algorithm is able to move the prototypes in order to describe
the new data.

4.2.2 Second experiment

The second set of simulations was devoted to evaluate the accuracy of DISSFCM
when changing the chunk composition (S1, S2, S3) and the percentage of labeled
data (25%, 50%, 75%, 100%). The main goal of this study was to observe the
influence of the labeling percentage on the classification process. In table 4
we show the average accuracy of all the cluster-based models derived during
chunk processing on the two test sets. Figure 5 shows the trend of the accuracy.
As it can be expected, once fixed the number of chunks, the more the labeled

13
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Figure 4: Trend of the reconstruction error V,q. (S1, %Labeling=25%). Green
dots correspond to the error upon arrival of new chunks, the blue ones indicate
the error after a split. Numbers on the dots indicate the number of cluster
prototypes.

data are, the higher the accuracy is. Moreover, it can be observed that the
number of chunks (hence their cardinality and class distribution) emphasizes the
influence of the percentage of labeled data. In fact, when the class distribution
does not change across the chunks, the same results are obtained regardless the
percentage of labeled data. When a significant change in the distribution occurs
(chunk 4 in S1, chunks 6 — 9 in S2 and chunks 8 — 14 in S3) then the results
differ significantly depending on the labeling percentage.

We also computed precision, recall and F-measure of the target class (i.e.
no occupancy) in order to assess the usefulness of the classification models in a
real-world scenario. Tables 5-7 and figures 6-8 report these metrics. We observe
high values of precision ((> 0.90) for streams S1 and S2. This is a good result
from the application point of view. Actually, high precision values mean that in

t1 to t3 ty ts ts tr
K | 2 2 3 3 4 4 )
X |1 1 1 0.957 1 0.957 1
Xo| - 095 095 084 095 085 0.90
X3 | - - 099 099 094 059 0.59
Xy | - - - 0.81 1 1 1
X5 | - - - - 0.93 1 1
X6 | - - - - - 0.97 0.98
X7 | - - - - - - 1

Table 3: Accuracy obtained on single chunks during the incremental process
(S1, %Labeling=25%).
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most cases the classifier correctly recognizes that there are no people in the room
when it is really empty. As a consequence, a sensor control system embodying
the classification model may correctly activate energy saving without causing
annoyance to users. In case S3 the performance of the classifier decreases when
data are partially labeled, while it is quite high when all data are labeled. On
the overall, we found that large data chunks make the classification models less
sensitive to the percentage of labeled data as well as to concept drifts, both
abrupt and gradual. Similar behavior is observed for recall: almost every time
there are actually no people in the room the system is able to recognize the
correct state. This allows sensible energy saving.

Test set 1 Test set 2
%labeling S1 S2 S3 S1 S2 S3
25 0.93(0.06)  0.91(0.08)  0.79(0.23) | 0.91(0.05) 0.91(0.06) 0.73(0.26)
50 0.93(0.06)  0.90(0.15)  0.74(0.32) | 0.91(0.05) 0.90(0.07) 0.76(0.25)
75 0.93(0.06) 0.90(0.12)  0.70(0.34) | 0.91(0.05) 0.90(0.05) 0.82(0.14)
100 0.95(0.03)  0.94(0.04) 0.95(0.07) | 0.94(0.04) 0.91(0.05) 0.90(0.10)

Table 4: Average classification accuracy (and standard deviation) on the test
sets.

Test set 1 Test set 2
%labeling S1 S2 S3 S1 S2 S3
25 0.94(0.08)  0.91(0.11) 0.91(0.19) | 0.96(0.07)  0.94(0.08)  0.95(0.09)
50 0.94(0.09) 0.90(0.14) 0.85(0.27) | 0.96(0.07) 0.93(0.09) 0.97(0.07)
75 0.94(0.09) 0.91(0.11) 0.77(0.31) | 0.96(0.07) 0.94(0.08) 0.91(0.10)
100 0.97(0.06)  0.96(0.07)  0.96(0.09) | 0.97(0.04) 0.96(0.06) 0.96(0.06)

Table 5: Average precision (and standard deviation) for the target class 0 (no
occupacy) on the test sets.

Test set 1 Test set 2
%labeling S1 S2 S3 S1 S2 S3
25 0.96(0.02)  0.97(0.01) 0.73(0.38) | 0.93(0.06) 0.95(0.05) 0.69(0.35)
50 0.96(0.02)  0.94(0.12) 0.75(0.36) | 0.93(0.06) 0.95(0.06) 0.75(0.29)
75 0.96(0.02)  0.95(0.06) 0.76(0.33) | 0.93(0.06) 0.95(0.06) 0.87(0.14)
100 0.97(0.02)  0.96(0.02) 0.96(0.02) | 0.95(0.06) 0.91(0.07) 0.90(0.12)

Table 6: Average recall (and standard deviation) on the target class 0 (no
occupacy) on the test sets.

Test set 1 Test set 2
%labeling S1 S2 S3 S1 S2 S3
25 0.95(0.04 0.94(0.06)  0.74(0.34) | 0.94(0.03 0.94(0.03 0.74(0.30)
50 0.95(0.04 0.91(0.12)  0.77(0.34) | 0.94(0.03 0.93(0.04 0.81(0.22)

) ) )
(0.04) (0.03) (0.04)
75 0.95(0.04)  0.93(0.08) 0.76(0.32) | 0.94(0.03) 0.94(0.03)  0.88(0.10)
100 0.96(0.02)  0.96(0.03) 0.96(0.05) | 0.96(0.03) 0.93(0.03)  0.92(0.07)

Table 7: Average F-measure (and standard deviation) for the target class 0 (no
occupancy) on the test sets.
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Figure 8: F-measure on test set 1 and 2 during the processing of streams S1 (a)
and (b), S2 (c) and (d) and S3 (e) and (f).

4.2.3 Comparison

Finally, the proposed DISSFCM was compared with some standard classification
algorithms. We considered the comparative study made in [64], where Random
Forest (RF), Gradient Boosting Machines (GBM), Linear Discriminant Analysis
(LDA) and Classification and Regression Trees (CART) are compared on the
Occupancy dataset. Since all the considered algorithms are based on supervised
learning, we applied DISSFCM with 100% of labeled data for a fair comparison.
Table 8 reports the accuracy on test set 1 and test set 2, for the standard
classifiers and for the classifiers built by DISSFCM on the three streams (S1,
S2, S3). It can be observed that the accuracy of DISSFCM-based classifiers
compares well with standard classification methods. In addition, we point out
that DISSFCM is able to create incrementally the classification model using
portions of data, while standard methods construct the model using the whole
dataset. In real scenarios, where the whole data are not always available, this
ability of DISSFCM turns out to be very useful. It can enable the development
of a control system that performs real-time occupancy detection to assure energy
saving.
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Model Test set

1 2
RF 95.06 97.16
GBM 93.06 95.14
CART 95.57 96.47
LDA 97.90 98.76

DISSFCM (S1)  95.34 93.83
DISSFCM (S2) 94.59  90.63
DISSFCM (S3)  94.86  89.68

Table 8: Accuracy comparison

5 Conclusions

In this work we have presented DISSFCM, a dynamic incremental semi-supervised
version of the classical fuzzy c-means (FCM) clustering algorithm. DISSFCM
extends FCM in a number of ways. First, it enables semi-supervision as a power-
ful means to inject knowledge in the clustering process, by driving the grouping
of data through the pre-classification of a subset of data. Second, clustering
becomes incremental, i.e. it does not require the whole dataset beforehand:
chunks of data are enough to proceed with clustering and prototypes are even-
tually adapted to follow the evolution of structure in data. Third, the structure
of clustering is dynamic: when the reconstruction error of data given a cluster-
ing structure becomes inadequate, the most troublesome clusters are split into
finer grained clusters that better represent data.

Preliminary results on a real-world dataset show the potentialities of DISS-
FCM in data stream analytics: data chunks are processed just once, therefore
there is no need to store the entire dataset in memory. Notwithstanding, the
final results are comparable to batch algorithms in terms of classification accu-
racy. Moreover, results on both synthetic and real-world data show the ability
of DISSFCM to cope with gradual and abrupt concept drift, especially when
labeled data are available. All the above features make DISSFCM a good candi-
date for classification tasks in real-world applications where very large amounts
of data are continuously available as a stream. In particular, we have shown
the effectiveness of DISSFCM in a real-world problem of occupancy detection
based on sensor data.

Further work is devoted to analyze deeper the influence of the chunk size/composition
on DISSFCM, so as to better take into account real data stream scenarios, where
the incoming chunks may have different sizes and may contain data with inho-
mogeneous class distributions. Future research is going on along the direction
of merging small-scale clusters, which may hamper the quality of clustering in
terms of structure and interpretability. Also, automated techniques for detect-
ing concept evolution (i.e. the emergence of new classes or the disappearance
of existing ones) are a subject of further studies.
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