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Managing the container yard operations can be challenging as a result of various uncertainties 

associated with storing and retrieving containers from the yard. These associated uncertainties occur 

because the arrival of a truck to pick up the container is random, so the departure time of the container 

is unknown. The problem investigated in this paper emerges when newly arrived containers of 

different sizes, types and weights require storage operation in the same yard where other containers 

have already been stored. This situation becomes more challenging when the time of departure of 

existing container is not known. This study develops a new Fuzzy Knowledge-Based optimisation 

system named ‘FKB_GA’ for optimal storage and retrieval of containers in a yard that contains long 

stay pre-existing containers. The containers’ duration of stay factor is considered along with two other 

factors such as the similarity (containers with same customer) and the quantity of containers per stack. 

A new Multi-Layered Genetic Algorithm module is proposed which identifies the optimal fuzzy rules 

required for each set of fired rules to achieve a minimum number of container re-handlings when 

selecting a stack. An industrial case study is used to demonstrate the applicability and practicability of 

the developed system.  

Keywords: Fuzzy Knowledge-Based Model; Multi-Layer Genetic Algorithm; Fuzzy Rules; ‘ON/OFF’ 

Strategy; Container Yard Operations. 
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1.   Introduction  

As a result of globalisation and economic growth, the need for container transportation 

has become very significant, which consequently leads to competition between container 

terminals. Thus, efficient handling operations in container terminals are becoming 

increasingly important [1]. As most of the terminal operations are concerned with the 

containers storage and movement in or out of the yard, the efficiency of these operations 

is a very important issue [2].  

One of the most complex tasks in the management of container yards is the storage 

operation of import containers. This is because the arrival of a truck to pick up a container 

is random, so the departure time of the container is unknown. Storing an import container 

on the top of another that is due to go out of the yard first can lead to unnecessary handling 

by the yard cranes which is a costly and time-consuming operation [3].  

Several techniques have been developed for import container storage operation in yards 

with an unknown departure time for short durations of stay such as the segregation and 

non-segregation strategies discussed by [4], and a fuzzy logic-based rule model by [5]. 

However, there is still a lack of advanced optimisation systems for the storage of import 

containers, given their unpredictable departure behaviour. These systems will assist the 

planners of terminal operations to achieve the most efficient allocation of containers which 

will eventually contribute to minimise the total amount of re-handlings, reducing the re-

handling times and consequently improving the management productivity of the overall 

yard operations. 

In this study, a new fuzzy knowledge-based optimisation system is proposed to manage 

the operations of import container yard especially when containers stay for long duration, 

which may cause a disruption in the storage plan of the import containers. It considers real-

life factors and constraints that have an effect on the storage operation of import containers. 

These factors comprise the amount of containers in each stack, as well as the containers 

similarity i.e. that has the same customer and the time length of the container at the stack 

peak. The proposed system is associated with number of constraints such as the type and 

size of containers as well as weather they are empty or full. In addition, the Fuzzy 

Knowledge-Based optimisation system has been developed to optimise the fuzzy rules that 

contribute to the retrieval and storage processes of import containers. 

The novelty of this work is the development of an innovative multi-layer Genetic 

Algorithms module embedded in the fuzzy knowledge-based system proposed by [6]. The 

new system based multi-layered GA is used to optimise large number of dynamic sets of 

rules allocated to container stacks to minimise container retrieval. A comparison study is 

made with two relevant storage techniques to evaluate the performance of the proposed 

stack allocation system using a genetic algorithm (GA). 
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Although the container yard operations under constraints has been studied in [6] using 

a fuzzy knowledge-based system to manage the problem, the fuzzy rules used in the 

developed system were subjectively chosen. Some of these rules, especially those allocated 

for each container stack, might be unnecessary or redundant, and hence it is imperative 

optimise the fuzzy rules for higher accuracy decisions. This work proposes an optimisation 

module based multi-layer GA to refine and improve these fuzzy rules for better decision-

making for storing containers.   

The remainder of this paper is structured thus: in section 2 previous studies are 

presented, and section 3 defines the challenging of storing and retrieving container within 

the yard. The approach adopted in this paper is discussed in section 4. The description of 

the experiments and analysis of results is presented in Section 5. A comparison study with 

other approaches is illustrated in section 6 and section 7 concludes the research. 

 

2.   Literature Review 

In this section, most of the existing approaches for solving the containers 

storage/stacking problems with an unknown time of departure are discussed. A fuzzy logic-

based model was developed in [5] to solve the problem of allocation of storage space for 

seaport terminal containers. The containers that depart randomly had a short duration of 

stay in the yard. The study in [7] compared two techniques of stacking for the static 

assignment of the correct slot for 150 containers with a short duration of stay in the yard. 

In [4], a mathematical function based on a uniform distribution was used to examine non-

segregation and segregation strategies for the static container storage problem when the 

departure time of containers was random, and with a duration of stay based on the number 

of ship arrivals. In [8], difference equations were applied to extend the segregation strategy 

proposed by [4]. These equations took into account constant, cyclic, and dynamic arrival 

patterns for containers with a duration of stay of only 3 to 6 days, to achieve efficient 

storage operation. Also, a mathematical equation was formulated by [9] to tackle the 

problem of stacking containers. The main variable of the formulation was the number of 

containers that were removed with a short duration of stay. The study of [10] introduced 

two stacking methods to deal with the problem of container storage operation. The methods 

were used to decide how incoming containers are stacked up with the existing ones. The 

introduction of these methods was for impact assessment of short container duration of stay 

on storage procedures. A fuzzy knowledge-based model was developed in [6] for 

containers storage and retrieval in a yard. The allocation decisions of containers were made 

based on subjectively chosen fuzzy rules. However, the factor of long duration of container 

stay in the yard was considered in this study. A rolling horizon approach was discussed in 
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[11] for improving the allocation process of containers storage space with unknown pick 

up times. The total number of planning periods in a planning horizon was only 18 hours. 

In the study of [12], an intelligent neural network was modelled which focused on fuzzy 

logic for container yard operations scheduling. The study provided improvement of the 

containers’ storage as well as the scheduling operation for container durations of stay of a 

limited number of days. An algorithm was introduced in [13] with the aim of ensuring 

better performance to solve the problem relating to the Online Container Relocation (OCR) 

with periodic and sequential containers retrieval time. The algorithm aimed to reduce the 

number of relocations of containers with a short duration of stay in the yard.  

Optimisation techniques are also utilised to solve the same storage/stacking problems. 

In this work of [14], a fuzzy-based optimisation model was developed to allow better 

allocation of container storage space. One of the objectives of the study was to minimise 

the number of blocks to which the same group of containers were split where the duration 

of stay was only a few hours. Also, the work of [15] aimed to achieve optimal storage for 

containers with 3 to 4 days duration of stay by proposing a mathematical model. The model 

which was based on probability distribution functions was used to reduce redundant 

movements of containers within the yard. A Multi-Objective Integer Programming (MOIP) 

model was introduced in [16]. The model helped to solve the problem relating to Stacking 

Position Determination (SPD) of container in a situation where there are fewer days and 

time of stay. The study of [17] aimed to minimise the reservation numbers, clusters, of each 

export container group by introducing a mathematical model. This has to do with when 

storage space is been allocated for containers for time of stay was less than a week. In [18], 

a Genetic Algorithm model was proposed to optimise positions of containers of different 

types with random delivery dates. The model was used to determine an optimal storage for 

containers operation with a short duration of stay to minimise re-handlings and improve 

the possibility of achieving customer delivery target. Another Genetic Algorithm model 

was developed by [19] aimed for storage-space allocation optimisation for export and 

import containers. The model helped to reduce the re-handling operations and efficiently 

organise containers with a short duration of stay in the available storage space. The storage 

space assignment problem for containers was the focus in [20], where a simulation-based 

genetic algorithm was proposed to optimise storage rules for containers with a short 

duration of stay in the yard. The algorithm was purposely designed to minimise 

unnecessary container movement. In [21], a stochastic dynamic programming model was 

proposed to calculate the minimum number of expected reshuffles for containers. 

Relocated containers were given different departure time windows with an assumed 

duration of stay of only a few days. Also, in [22] a reward-based algorithm was proposed 
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for solving the outbound container stacking problem for containers with duration of stay 

of a few days. The algorithm aimed at reducing the amount of containers re-handlings. 

Even though the reviewed literature revealed several allocation techniques and 

optimisation approaches for solving the containers storage/stacking problems with an 

unknown time of departure, the focus of all these techniques was made on containers with 

a short duration of stay. None of them has considered key factors related to long stay 

durations such the container duration of stay factor and the use of fuzzy techniques based 

optimisation to predict the likely departure and to assess the effect of other factors on the 

storage and retrieval plans. Although [6] developed stack allocation decisions based on 

subjectively chosen fuzzy rules that took into consideration the factor of long duration of 

container stay. However, this paper presents an improved approach from previous work [6] 

for optimal allocation techniques for unknown departure times of containers based on 

optimisation of fuzzy rule-based systems. The optimisation of each set of rules allocated 

per stack of containers has not been investigated yet and hence, the focus of this work is 

established. In general, two major contributions added to the above literature: the 

consideration of long duration of stay of containers and the optimisation of the fuzzy rules 

used in the fuzzy rule-based systems. 

Hence, this study presents a new Fuzzy Knowledge-Based optimisation system named 

‘FKB_GA’, which is specially developed for efficient container storage and retrieval 

operations taking into account a number of realistic factors including the container duration 

of stay factor. 

 

3.   Problem Definition  

      The problem starts when containers of many different types, sizes, and weights brought 

by a train need to be stacked in a yard on other containers that may stay for unpredictable 

times before departing the yard. If this happens the topmost containers may require moving 

to access the container to be despatched. In a situation where the time of departure of 

containers are not known and these containers are allowed to stay for long stay time 

(maximum one month period) before a notification is sent to customers. This kind of event 

can occur in a situation where customers arrange their container collection by 3PL 

companies without notifying the yard operators before-hand. Hereby the delivery company 

proceeds to the terminals to collect containers with no further, hereby creating problems 

for storage and retrieval operations of containers in the yard. However, most yard operators 

are happy for containers to stay for a long time given that customers pay a pre-defined daily 

storage fee.  
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      For the number of containers that spend longer time in the yard, the period of their stay 

is considered vital and relatively associated to their time of departure. This implies that the 

more time a container spend in the yard is directly proportional to their chance of being 

retrieved and collected.  

      However, an unknown departure time makes it difficult to determine how to stack and 

store containers in the yard by just taking into account their duration of stay. It becomes 

even more problematic when the containers at the peak of the stack have been stored for 

roughly the same time. For this reason, additional further factors such as the amount of 

containers in a stack and containers similarities (i.e. container with the similar customer) 

need to be considered for storage operation optimisation and then minimise the amount of 

re-handlings, as depicted in Fig. 1 below. 

 

Fig. 1 Schematic representation for the layout of a pre-existing container yard.  

 

     In order to model the fuzzy aspect associated with each of the three storage factors both 

individually and combined, a novel Fuzzy Knowledge-Based optimisation system is 

proposed. Then, the optimisation process identifies which fuzzy rules allocated per stack 

should be selected and then refined by keeping the most influential ones to achieve the best 

allocation plan for containers. This improves the retrieval operation and minimising the 

total number of re-handlings for containers.  

     The connected approaches adopted for the container yard management system 

modelling in this paper are explained in the next section. 

 

 

 

 



 A New Fuzzy Knowledge-Based Optimisation System for Management of Container Yard Operations  
 

 

 
 

 

 
 

 

7 

4.   Development of ‘FKB_GA’ – The Fuzzy Knowledge-Based Genetic Algorithm 

System 

     Major headings should be typeset in boldface with the first letter of important words 

capitalized. The fuzzy knowledge-based model is introduced in this section for problem 

relating to allocation of containers stack with unknown departure time. This model is used 

also for re-handling operations of containers during retrieval. This technique is selected 

because the arrival time of trucks to take containers to their destination is unknown. In 

addition, most of values of the factors being considered in this allocation problem cannot 

always be precisely predicted. Table 1 shows the source and reason of fuzzy in the values 

of the considered storage factors. 

Table 1. Reason of selecting fuzzy logic  

 
 

     The number of containers in each stack i (Ni) is considered for use in this model as a 

first input (N). The incoming container similarity to the existing in the stack i (Si) is 

considered to be the second input (S). Finally, the time of stay of the containers at the peak 

of each stack i (Ti) is implemented in the fuzzy knowledge-based model as a third input 

(T). This input Ti affects the output in that the longer the duration of stay of containers in 

the stack, the lower the acceptability for a new incoming container for the stack i (αi).  

     A Multi-Layered Genetic Algorithm model is proposed and integrated with the fuzzy 

knowledge-based model for the optimal/near optimal rules selection from a set of fired 

fuzzy rules for each possible stack in the yard. The term “fired rules” means the rules which 

are likely to fire (i.e. to a degree greater than 0) when a fuzzy system is applied on an input 

[23]. 
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     In order to imitate the events for arrival, storage, retrieval and departure of containers, 

the Discrete Event Simulation approach is used for this purpose. Below is the explanation 

of proposed ‘FKB_GA’ system framework. 

 

4.1.   Framework of the ‘FKB_GA’ System 

     The Fuzzy Knowledge-Based Genetic Algorithm system framework that is has been 

proposed is presented in this section. This framework includes input, process and output 

components. The input component is comprised of the specification information with 

storage factors and constraints information. The Discrete Event Simulation (DES) 

approach is utilised to mimic the events of arrival, resource status, storage, retrieval and 

departure of containers, and these are fed as global inputs in terms of storage and handling 

times to the other fuzzy knowledge-based and genetic algorithm modules. A number of 

techniques including Fuzzy Knowledge- Based Rules and Genetic Algorithms are 

combined for inputs processing are included with the component of the process. A number 

of key performance indicators comprise the output process and are classified under the 

criteria such as operational and yard. The utilisation of yard can be considered as one of 

the yard criteria for terminal throughput evaluation. For the system framework, see Fig. 2.  

 
  Fig. 2. The ‘FKB_GA’ System Framework 
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     The container yard settings are included with the specification information of input 

component, details for pre-existing containers, trains, transportation times (contents shown 

in the framework above), and finally the GA model information are fed into the system.    

The GA model information consists of population size, probabilities of crossover and 

mutation and stopping criterion.  

     The storage factors and constraint information are also fed into both the storage and 

collection modules. These factors comprise of container similarities, the containers number 

in each stack, and the time of stay (i.e. the duration the container at the peak has stayed in 

each stack). The constraints are container size, weight (full or empty) and type. Information 

regarding the duration of stay for all the topmost containers collectively is also fed into the 

storage and retrieval modules. As the container time of stay dynamically changes with time, 

a strategy called ON/OFF’ is required to decide that factors like the time of stay will be 

considered in succeeding processing. 

     There are two modules within the process component, they are the Genetic Algorithm 

(GA) and the Fuzzy Knowledge-Based module. The process commences with the specific 

information been inputted into the Fuzzy Knowledge-Based module and the factors and 

constraints information is inputted into both the retrieval and storage modules for 

processing. Based on the above input, the Fuzzy Knowledge-Based module decides which 

stack the container would be stored by firing a number of fuzzy rules per stack then 

determining a level of acceptance (αi) for individual stack. The GA module is then 

introduced, to temporarily select some of the active rules out of the fired fuzzy rules, for 

each incoming container and the possible stacks in which they could be stored, providing 

the activated rules for de-fuzzification to re-calculate the level of acceptance values of the 

stacks (αi). The stack that has the highest level of acceptance value is the optimal stack and 

is then allocated to store the incoming container. The container is stored in the allocated 

stack and the yard information including factors and constraints will be updated 

accordingly. In addition, this update takes place when a retrieval operation is complete and 

the required container is despatched. The output module includes operational criteria and 

yard criteria.  

4.2.   The ‘FKB_GA’ System Components  

4.2.1.   The FKB Module  

     The Fuzzy Knowledge-Based module is proposed to assess the store location for the 

incoming container by applying fuzzy reasoning, considering certain constraints and 

factors and then assign level of acceptance for storage value (αi) to individual stack. The 

level of acceptance of storage (α) is the model output, which is an uninformed value that 
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implies the current stack value in the process of decision. This uninformed value is known 

as the level of acceptance of an incoming container to the stack i (αi). For every stack i 

available in the container yard, a value (α) is created in relation to the input constraints and 

factors. This level of acceptance enables the evaluation of the most appropriate stack 

location for the incoming container. The stack that has the highest level of acceptance value 

will be assigned new container to store.  

     From the container yard are the input known as the crisp inputs that require fuzzy sets 

to be fuzzified, characterised by their individual membership functions. The membership 

functions from the fuzzy sets are allocated to individual variable together with linguistic 

definitions [24] and a triangular “shape” will be applied for all the membership functions.         

The idea of using fuzzy sets (linguistic variables) rather than crisp representation was 

introduced by [25] in order to mimic human thinking in systems. The linguistic variables 

were subjectively determined using expert opinions and experience characterised by 

literature in this case. According to [26], in the work by [27], triangular membership 

functions were the most common and suitably represented the behaviour of data. 

The factors and constraints explained above, together with their fuzzy sets are shown in 

Table 2 and explained below. 

Table 2. Fuzzy input factors, constraints and the output factor 

 

The output variable (αi) is assigned a triangular membership function with six fuzzy sets 

(linguistic variables) as recommended by [28]. 

 

A triangular membership function was assigned by the output variable (𝛼𝑖) of this model 

with six linguistic variables. These linguistic variables are defined by 6 fuzzy sets with 

their corresponding membership functions depicted in Fig. 3a. The fuzzy sets comprise 

Very Low ‘VL’, Low ‘L’, Medium Low ‘ML’, Medium ‘M’, Medium High ‘MH’, and 

High ‘H’.     



 A New Fuzzy Knowledge-Based Optimisation System for Management of Container Yard Operations  
 

 

 
 

 

 
 

 

11 

The triangular membership functions were assigned three linguistic variables for the first 

input variable (𝑁𝑖). The triangular membership function is defined with three fuzzy sets 

(linguistic variables for  𝑛𝑖 which are ‘Low’, ‘Medium’, and ‘High’ as shown in Fig. 3b. 

Similar to 𝑁𝑖 , the second input variable (𝑆𝑖) has triangular shaped membership functions. 

The linguistic variables determined for 𝑠𝑖  are ‘Low’, ‘Medium’, and ‘High’ as Fig. 3c 

represents. The third input variable considered in this work is (𝑇𝑖). Fuzzy sets have 

triangular membership functions, there are three selected linguistic variables for 𝑇𝑖, which 

are ‘Low’, ‘Medium’ and ‘High’ as  Fig. 3d shows. 

 

 

Fig. 3. The fuzzy membership functions: the output (a) the number of containers factor (b) the similarity of 

containers factors (c) the duration of stay of containers factor (d) the fuzzy membership function of the input 

factor (T) 

  

     In Fig. 3 membership functions depend on the interval value of variables considered by 

[29]. 𝜇(𝛼𝑖), 𝜇(𝑆𝑖), 𝜇(𝑁𝑖), 𝑎𝑛𝑑 𝜇(𝑇𝑖) represent fuzzy membership of the output (αi), 

Similarity of containers, (𝑆𝑖), number of containers (𝑁𝑖), and Duration of Stay of 

containers (𝑇𝑖) respectively. For the number of containers per stack, the interval value is 

set from 0 to 5 containers in each stack i. Because the interval value is small all three fuzzy 

sets (L, M, H) are considered to range from 0 to 5. The similarity of containers is related 

to the number of containers and hence the fuzzy sets are considered to be the same as the 

number of containers. Because the period of time for the duration of stay of containers is 

long, a different interval value is set for each fuzzy set (L, M, H).   
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The three considered constraints Wi, Fi and Yi have only one set called ‘Accept’ or crisp 

membership functions. The graphical representation of their membership functions is 

presented in Fig. 4 (a) for Wi, Fig. 4 (b) for Fi and Fig. 4 (c) for Yi.  

 

 

Fig. 4. The defined crisp membership functions of the constraints, (a) The membership function of the weight 

( Wi,), (b) The membership function of the size (Fi ) and (c) The membership function of the type (Yi) 

 

     The fuzzy inference component that comprises of aggregation, will regenerate the 

information obtained in fuzzy format based on fuzzy rules. Fuzzy rules are determined in 

order to define the connection between the inputs and the output. The result of the 

integration of each input variable on the output is defined by these rules [30]. For each 

input factor 27 different rules with their respective levels are determined and their 

interactions analysed for the selected variables 𝑁𝑖 , 𝑇𝑖, and 𝑆𝑖. Divers rules with the total 

of 27 are acknowledged with individual levels for their input factor. The rules, which 

follow an ‘IF-Then’ structure consider the effect each input variable has on the output.   

Literature, observation and logic are the main determinants of the rules, based subjectively 

on expert opinion. Minimising the re-handlings number during the containers retrieval 

operation is the objective and to achieve this the availability of a location for the incoming 

container is reflected in the rules. See Table 3 which lists all the fuzzy rules used. 
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Table 3. The defined fuzzy rules. 

 

     To manipulate the format of the above rules in fuzzy format an aggregation process is 

used. The minimum operator is applied for the aggregation on completing the rules [31]. 

The approach used for container stack allocation, Eq. (1), is shown below; for each rule a 

truncated value (𝑇𝑗) being calculated.  

 

𝑇𝑗 = 𝑚𝑖𝑛{𝜇(𝑁)̃ 𝑛𝑖, 𝜇(𝑆)̃𝑠𝑖, 𝜇(𝑇)̃𝑡𝑖, 𝜇(𝑊)̃𝑤𝑖,  𝜇(𝐹 ̃)𝑓𝑖,  𝜇(𝑌̃)y𝑖}                             (1)  

When any or all of constraints (Wi, Fi and Yi) of a newly arrived or a re-handled 

container do not match the topmost containers Wi, Fi and Yi in each stack, then the 

acceptability level values of that stacks will be 0. As the aggregation operator is minimum 

(as stated in equation (1) in any rule because of the considered constraints), if the degree 

of membership of a given value for Wi, Fi  and Yi is computed to be 0, the final output for 

all Tj will also be 0. For example, when 𝜇(𝑊)̃𝑤𝑖 = 0,  𝜇(𝐹 ̃)𝑓𝑖 = 0,  𝜇(𝑌̃)y𝑖 = 0, then the 𝑇𝑗 

value will be 0 using equation (1) and the acceptability level values will be 0. 

     In the previous case of 𝑊𝑖 , 𝐹𝑖 and 𝑌𝑖, the operator was minimum, so, when the degree 

of membership for 𝑊𝑖, 𝐹𝑖  and 𝑌𝑖 in any rule is calculated to be 0, the final output for all 

𝑇𝑗 will also be 0. The fuzzy output will then be de-fuzzified to transform the fuzzy output 

set into a crisp output using the centroid method derived from the centre strategy of gravity 

method. According to [32], [33] and [34], it is the most common as well as the most 

physically appealing and prevalent method used. In the de-fuzzification stage, for each 

rule, the centre value (𝑦𝑗) is discovered by applying the truncated value reflected on the 

output fuzzy sets. This is then used to compute the overall centre of gravity. When the 

truncated value 𝑇𝑗 and the output 𝛼̃ where the rule defines the outcome to be the level-p is 
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considered, the centre value as shown in Fig. 5 is given by the Eqs. 2 to 5. Eq (6) shows 

how the centre of gravity method is used to compute the crisp output value 𝑦∗ by discovery 

the matching centre values for respective defined rules j (𝑦𝑗).  

 

 

 

Fig. 5. Truncated value on the output fuzzy set  

 

𝑦𝑗 =
𝑥𝑗𝑎 + 𝑥𝑗𝑏

2
,                                     𝑤ℎ𝑒𝑟𝑒;                                                        (2)  

𝑇𝑗 =
𝑥𝑗𝑎 − 𝑞1

𝑞2 − 𝑞1

=  
𝑞3 − 𝑥𝑗𝑏

𝑞3 − 𝑞2

,                 where;                                                        (3)   

𝑥𝑗𝑎 =  𝑞1 + 𝑇𝑗(𝑞2 − 𝑞1)    𝑎𝑛𝑑     𝑥𝑗𝑏 = 𝑞3 − 𝑇𝑗(𝑞3 − 𝑞2)                                 (4) 

∴  𝑦𝑗 =
𝑥𝑗𝑎 + 𝑥𝑗𝑏

2
=

𝑞1 + 𝑞3 + 𝑇𝑗(2𝑞2 − 𝑞1 − 𝑞3)

2
                                             (5) 

𝑦∗ =
∑ 𝑦𝑗

𝑙
𝑗=1 𝑇𝑗

∑ 𝑇𝑗
𝑙
𝑗=1

                                                                                                           (6) 

Equation (2) is used to find the centre value of the output fuzzy set (𝑦𝑗) from the 

boundary values (xja, xjb). Equations (3) and (4) are used to find boundary values (xja, xjb) 

of the centre value in any rules j. Equation (5) is used to find the centre value (𝑦𝑗) of any 

rules j, and equation (6) is used to calculate the acceptability level values of stacks (i.e. 

crisp outputs). 

The level acceptance value (i.e. crisp value) of individual stack (αi) to be applied for 

the incoming containers assignment is then calculated. The stack with the highest level of 

acceptance value will then be selected to store container, while sustaining all conditions 

relating to input at the same time. As soon as the container is stored, the yard information 

is updated by the system for the subsequent container coming. The optimisation of the 
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storage operation is achieved through the application of the proposed Genetic Algorithm 

module. This module holds all the fired fuzzy rules for each incoming container, for all the 

possible stacks on which they could be stored then releases them for the optimisation 

process.  

 

Numerical Example 

 

A numerical example is presented demonstrating how fuzzy-knowledge-based rules are 

used to select one out of three possible stacks for storing one incoming container. In this 

example, the case of three stacks in a yard where each stack contains a different number of 

containers is explained.  

To start with the allocation of the stack for the incoming container, the fired rules that have 

been identified by the system are: Stack 1; rules 1, 10 and 19, Stack 2; rules 7, 8, 9, 16, 17, 

18, 25, 26, and 27, while Stack 3; rules 4, 7, 13, 16, 22, and 25.    

Stack 1 has 4 containers with similarity of containers equal to 0% (i.e. none of these 

containers belong to the same customer), with the duration of stay of the topmost container 

equal to 1 day. There are 2 containers in stack 2 with a similarity of containers equal to 

20% and the duration of stay of the topmost container equal to 24 days. Stack 3 has 2 

containers with a similarity equal to 0%, and duration of stay equal to 19 days. 

For the given inputs above, the matched degrees of the input factors in rule 1 are 0.2, 1, 

and 0.917 as shown in Figs. 6 (a), 6 (b), and 6 (c) respectively. The matched degrees of 

three corresponding factors are determined by the given inputs of one fuzzy rule. The 

matched degree of consequence in the one rule will be the minimised value of the matched 

degrees of three corresponding factors [35]. The truncated value 𝑇1  is calculated by using 

equation (1) and equal to 0.2, see Fig. 6 (d).  

 

 

Fig. 6. The matched degrees and truncated value in rule 1 

(a) The matched degrees of the number of containers factor in the stack, (b) the matched degrees of the similarity 

of containers factor in the stack, (c) The matched degrees of the duration of stay factor of containers in the stack, 

and (d) The truncated value. 
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In order to calculate the acceptability level value of stack 1, the centre values y1 of all rules 

of stacks need first to be calculated. Starting with the calculation of the centre value y1 of 

rule 1, referring to Fig. 5, the boundary (x1a,x1b) is constructed first from the truncated 

value T1 in rule 1 as shown in Fig. 6.  The values of q1 and q2 in Fig. 6 are 80 and 100 

respectively. For the high fuzzy set of the output membership function, see Fig. 7. 

 

Fig. 7. The boundary of centre value for rule 1 

 
Now the centroid method is applied to calculate the values of x1a and x1b using equation 

(4); 

 x1a = 80 + 0.2(100 − 80) = 84  and 

 x1b = q2 = 100.   

 

By using equation (5), the centre value y1 is then calculated as shown below: 

y1 =
84% + 100%

2
= 92% 

Similarly, the matched degrees of the input factors, truncated Tj and centre values yj can 

be obtained by adapting the other rules. The matched degrees of the input factors in rule 

10 are 0.4, 1, and 0.917. The matched degrees of the input factors in rule 19 are 0.8, 1, and 

0.917. The truncated values of rules 10 and 19 are 0.4 and 0.8 respectively. The centre 

values of rules 10 and 19 are 60% and 20% respectively. Then the acceptability level value 

of stack 1 is calculated using equation (6).  

 

y∗ =
∑ yj

l
j=1 Tj

∑ Tj
l
j=1

=
(0.92∗0.2)+(0.60∗0.4)+(0.20∗0.8)

0.2+0.4+0.8
= 0.417  

However, the above steps can be applied for calculation acceptability level values of stacks 

2 and 3. Acceptability level values of stacks 2 and 3 are 0.307 and 0.362 respectively. 

Since the acceptability level value of stack 1 is the highest one, stack 1 has been allocated 

for accommodating the incoming container.  
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4.2.2.   The Proposed ‘ON/OFF’ Strategy  

     The level of acceptance value for individual stack is calculated by the FKB model using 

the three input factors and other related constraints. To store the container, the stack with 

the highest level of acceptance value is assigned. The duration of stay factor is used to 

determine the level of acceptance values for the stacks. This factor is dynamic because, as 

time passes, the duration of stay for a container increases so each could have a varying time 

of stay. As containers are retrieved off the top of the stacks the container underneath has a 

varying time of stay as the updated containers at the peak in the selected stack.   

     Because the time of stay of a container is dynamic, an ‘ON/OFF’ strategy is proposed 

to activate/deactivate the time of stay factor in the system if the times of stay for the 

containers at the peak of stack do not significantly differ. The ‘ON/OFF’ strategy for the 

time of stay factor is shown in Fig. 8 below.  

 

 

                                Fig. 8. ‘ON/OFF’ strategy of Duration of Stay factor [6] 

 

     As soon as the time of stay factor is activated (i.e. ON) to the system as an input, all factors 

(N, S, and T) are applied to determine the level of acceptance values for the operation of 

container storage. But when the time of stay factor is temporarily deactivated (i.e. OFF), only 

the two factors (N and S) are used to calculate the acceptability level values for the container 

storage operation (i.e. for stack allocation).  

     The defined fuzzy rules determine how the acceptability level values (i.e. the output) are 

affected by the mixture of various linguistic variables for each input factor. Table 3 identifies 

27 fuzzy rules which demonstrate the effect of each input factor on the output. Together with 

the other two factors, when the duration of stay factor is activated (i.e. ON), all the rules are 

used by the fuzzy inference engine to calculate the acceptability level values for each stack, for 

the operation of container storage (i.e. the output). When the time of stay factor is deactivated 

(i.e. OFF), only the other two factors (N and S) are used to determine the level of acceptance 
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values for the stacks. This reduces the number of the defined fuzzy rules to 9 and the 

acceptability level values are updated. This is shown in Table 4 below. 

 

                Table 4. The reduced fuzzy rules 

 

     The rules emphasised in green will be the only rules used by the system when the duration 

of stay factor is deactivated (OFF), as shown in Table 4. To determine the level of acceptance 

values for the stacks in the operation of container storage in this case, only the number of 

containers and the container similarity factors will be used. The linguistic variables for the time 

of stay factors are displayed in the highlighted column in red. The linguistic variables for the 

similarity and container number factors are shown in the rows highlighted in green in the second 

and third columns. The linguistic variables for the acceptability levels (i.e. output) are 

highlighted in green in the last column. The Table 4 above represents how the linguistic 

variables for the levels of acceptance (i.e. output) are updated based on the linguistic variables 

for the two input factors.  

     The proposed GA will then select some of the rules out of all the fired fuzzy rules for each 

incoming container, for each stack, utilising the selected rules for de-fuzzification to re-

calculate the acceptability level values of the stacks (αi). The stack that has the highest level of 

acceptance value is the optimal stack and will be allocated to store the incoming container fired 

fuzzy rules per container and possible stack. The proposed GA module selects the best fired 

fuzzy rules from all the rules fired per stack to achieve the minimum number of container re-

handlings.  

     The next section presents in detail the development of the optimisation module (GA).        
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4.2.3.   Optimisation of Fuzzy Rules of the FKB module Using GA 

Although fuzzy-knowledge-based models were previously used to select the fuzzy rules 

from the rule base [36], [37], [38], and [39]. However, the genetic algorithms (GA) was utilised 

to tune and finally select the optimal/near optimal rules from the fired fuzzy rules, by removing 

those that might reduce system performance. This is due to the fact that the definition of fuzzy 

rules and membership functions is actually affected by subjective decisions, and some of the 

fired rules would be redundant which reduces the overall performance of the fuzzy-knowledge-

based system. 

In the storage problem being investigated, a set of rules are fired for each possible stack 

taking into account the input factors and constraints. The GA model is then used to tune a set 

of the fired fuzzy rules per stack and then to optimise these rules by selecting the most effective 

rules in each set that leads to the minimum number of re-handlings for containers. 

Using the binary coding, the GA model starts by selecting only the fired rules per stack (set 

to ‘1’) which are to be included in the calculation of the acceptability level values for stack 

allocation. The rest of the rules will be temporarily unselected (set to ‘0’). The learning process 

enables the GA model to keep continuously evolving the selection process for rules until a 

solution with the minimum number of re-handlings of containers is achieved. See Fig. 9 for an 

explanation of the GA module rules selection per stack. 



Ammar Al-Bazi                                           Vasile Palade                                               Ali Abbas 
 

 

 

 

 

 

20 

 

Fig. 9. The proposed GA for rules selection per stack 

 

In Fig. 9, a number of fuzzy rules for each possible storage stack in the yard fuzzy rule 

base are fired by the FKB model. The selection of some of these rules for each stack, illustrated 

by the green boxes is then made by using the GA model, while the white boxes illustrate the 

temporarily unselected rules for each stack. 

To further explain the mechanism of GA in rules tuning and selection, consider the 5 fuzzy 

rules that are fired in stack 1, bay 5. Rules number 2 and 3 are unselected as represented in 

white boxes. While rules 1, 4 and 5 are selected by using GA, represented by green boxes. 

Based on the selected rules 1,4, and 5, the acceptability level value of storage in stack 1, bay 5 

is calculated rather than the one obtained by using all the 1-5 fired rules. 
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4.2.4.   The Multi-Layer GA Optimisation Module 

     In this section, a multi-layer GA optimisation module is proposed to be integrated with the 

Fuzzy Knowledge-Based (FKB) model, for optimising the stack allocation of the container 

storage operation. A multi-layer Genetic Algorithm (GA) module was developed to optimise 

the process of selecting stacks for container storage.  

     In previous studies ([40]; [41] and [42]), multi-layer Genetic Algorithms models were 

considered, where each layer/level represented a separate traditional GA model. In this study, 

each GA layer is assigned per container which includes all possible stacks and their rules. This 

provides the GA with more flexibility for dealing with large sets of information and the 

capability of solving the problem for selecting the optimal/near optimal rule(s) out of a set of 

fired fuzzy rules per container. The Genetic Algorithm steps used in this study include: the 

design of the chromosome structure, objective function, generation of an initial population, 

selection method, cross-over and mutation operators which are presented in Fig. 10. 
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                Fig. 10. The flow chart of the proposed Multi-Layer GA 
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     In the proposed Multi-Layer GA, an initial population of the selected rules out of each set 

of rules per stack is randomly identified. Binary coding was applied on each chromosome layer 

by coding the selected rules to 1 and 0 for any other temporarily unselected rules. Based on the 

selected fuzzy rule(s), the acceptability level values for the possible stacks were calculated, 

then a stack was allocated to store the container.  

     The GA starts by repeating the genetic cycle, manipulating chromosomes, from the initial 

random population, to generate new offspring chromosomes (i.e. strings). Each chromosome 

was evaluated based on its fitness function value. At the end of each generation, all fitness 

function values are sorted into ascending order, those with the minimum number of re-

handlings of containers being kept on the top of the selection list for further selection. Crossover 

and mutation genetic operators are then applied to create the next generation. The steps repeat 

until the stopping (i.e. termination) condition was satisfied. 

 

 

Multi–Layer Chromosome Structure  

     The design and structure of a chromosome depends on the problem requirements. In a Multi-

Layer chromosome, each layer can be used to represent a set of information. In this 

chromosome, the content of each gene is represented by a fired fuzzy rule for a specific 

container and the possible stack(s) in which it can be stored. The number of genes is equal to 

the number of fired (i.e. used) fuzzy rules for a specific container and possible stacks, and the 

number of layers is equal to the number of containers. The height dimension for the possible 

stacks for storing each container is attached with each gene. The fired fuzzy rules are placed in 

the length dimension (i.e. string) which was a chromosome. This chromosome includes a 

number of genes that represented the fired fuzzy rules for a container for all possible stack(s).    

The container number is placed in the width dimension; each container being represented in 

one layer with its fired fuzzy rules and possible stacks.  

     The multi-layer chromosome structure is proposed to provide more flexibility to deal with 

such sets of information in order to select fuzzy rule(s) from the fired rules for each container 

and possible stacks. Fig. 11 shows the proposed Multi-Layer chromosome structure. 
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Fig. 11. The Multi-Layer chromosome structure for fuzzy rule representation of n containers 

 

 

     The reason behind this multi-layer chromosome structure is to accommodate different sets 

of information that can be represented in a chromosome structure. For each container and 

possible stacks, a number of fuzzy rules are fired to store containers. Based on the fired fuzzy 

rules per container and possible stacks and the related degrees of membership of the input 

factors, the acceptability levels for the possible stacks are calculated to store the containers. For 

each container and possible stacks, a number of fuzzy fired rules are stored in the generations 

of a chromosome. The front (i.e. first) layer of the chromosome represents the first container 

with its fired fuzzy rules and all the possible stack(s). The second layer of the chromosome 

represents the second container with its fired fuzzy rules and possible stacks. The number of 

layers depends on the total number of containers. Each gene of each layer is used to select or 

not to select rules from the fired fuzzy rules using binary coding. All fired fuzzy rules per 

container and possible stacks are then stored in multiple layers.  

 

The Objective function 

     The objective function is formulated to evaluate the performance of the developed 

‘FKB_GA’ system in terms of total number of re-handlings of containers. The total number of 

re-handlings obtained by executing each chromosome is used to develop the objective function 

below: 

min ∑ γi

n

i=1

                                                                                     (7) 
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     Where i represents the container number, n is the total number of stored containers in the 

yard. The variable γn is the number of re-handlings of all n containers. The formulated 

objective function guarantees a minimum total number of re-handlings of containers. This total 

number of re-handlings is the sum of the number of re-handlings to retrieve all containers in 

the yard.  

 

Initial Population of Selected Fuzzy Rules  

     As a starting point, an initial set of selected rules are required to provide a feasible starting 

basic solution. After the set of fired fuzzy rules for each container together with the possible 

stacks were stored, binary coding was applied randomly to select some fuzzy rules and set them 

to 1 and temporarily unselect the rest and set them to 0. Based on the selected fuzzy rules, the 

acceptability level values for the stacks were calculated, then, a stack allocated to store each 

container. The binary coding process avoided generating 0s for all the genes at each layer of 

the chromosomes.  

 

The Selection Method 

     After the chromosomes were sorted ascendingly based on their fitness values (total number 

of re-handlings of containers), the Rank Selection method is applied in which, each pair of 

chromosomes with minimum fitness function values in the population list were selected to 

generate further chromosomes (offspring) using GA operators. This is in case the population 

size was even. In the case where it was odd, each pair of chromosomes with minimum fitness 

values was selected for further generations. The last chromosome was coupled with any 

randomly selected chromosome from the population for further offspring generation. The GA 

operators are explained in detail below:  

 

Multi-Layer Genetic Algorithm Operators 

     Crossover Operator: The crossover operator for the Genetic Algorithms was based on the 

exchange of genes between two chromosomes when they were selected. To crossover genes in 

the chromosome, the genes of each chromosome were coded in binary representation (0, 1) in 

the Multi-Layer chromosome. This type of representation meant that the genes that were set to 

1 were selected genes. The genes that were set to 0 were unselected genes. Each gene in a 

chromosome represented the fired fuzzy rule number per specific container and possible stacks. 

Based on the selected genes (i.e. rules), the acceptability level values for stacks to store a 

container was calculated.  

     With the crossover operator, the selection of genes to be exchanged depended on the 

probability of crossover (i.e. a specific percentage). The probability of crossing over genes 

determined how many genes will be selected for exchanging. If a gene does not contain a fuzzy 
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rule (i.e. the rule of selecting a stack for a container was not fired from the fuzzy rule base), 

then the crossing over process skips to the next gene. A Binary Probabilistic Vertical Crossover 

operator was used to swap selected genes of the first selected chromosome in the selected layer 

with the opposite gene of the second selected chromosome in the same selected layer. The 

opposite gene means the gene that is selected based on probability of crossover in a 

chromosome to be exchanged with its opposite gene in another selected chromosome [43]. This 

crossover operator is used to present the best random exchanging of genes between each pair 

of chromosomes. See Fig. 12 for an illustration of the crossing-over of two selected 

chromosomes. 

 
                                Fig. 12. The Crossing-over of genes in Multi-Layer chromosome 
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     The genes marked with x are empty genes that do not include fired fuzzy rules. The 

probability of crossover value decides the number of genes to be exchanged at each 

chromosome. The crossover was skipped when genes contained no fired rule. This operator 

excludes any marked genes from the mutation operation and considers only genes with fired 

fuzzy rules. This type of crossover operator provides an equal chance for all genes in a layer 

to be selected for swapping with the opposite chromosomes genes by changing the status of 

the fuzzy rule stored in a gene from being selected (1) to temporarily unselected (0) and vice 

versa.  

     Mutation Operator: A Binary Probabilistic mutation operator is applied on new 

chromosomes that were generated from the crossover operation. This operator changes the 

status of fuzzy rules stored in genes of each layer from selected status (1) to temporarily 

unselected status (0). Based on the probability of mutation, the number of genes was selected 

randomly and flipped from 0 to 1 and vice versa. The proposed GA is used to test only unique 

(i.e. non-repeated) chromosomes. Any repeated chromosomes will be discarded as there is no 

point to test these chromosomes again. This repetition wastes time and leads to long 

computations.  

     This operator excludes any genes marked with x from the mutation operation and considers 

only genes with fired fuzzy rules. In each chromosome, the equipped genes are randomly 

selected across all layers with an equal chance to change their status from selected (1) to 

temporally unselected (0) and vice versa. See Fig. 13 for the mutation operator. 

 

 

                                     Fig. 13. The Mutation of genes in Multi-layer chromosome 

 



Ammar Al-Bazi                                           Vasile Palade                                               Ali Abbas 
 

 

 

 

 

 

28 

 
5. Case Study, Experiments and Results Analysis 

     This case study was used to justify the proposed yard management system. It was conducted 

in collaboration with Maritime Transport- the UK’s leading Container Transport Company. 

Maritime is one of the UK’s leading multimodal transport and container service specialists, 

combining road, rail & storage to become an integral element of the supply chain for its 

customers. This company provides highly effective UK container transport and services. Most 

of the system inputs were collected from the Maritime Company. This included the yard 

dimension in terms of number of rows, bays and tiers. For each train, the inter-arrival time, 

number of containers, container attributes (e.g. for each container: the size, type, weight, 

destination customer, owner company and truck id), and the number of 3PL companies were 

also captured. The number of trucks available at each company was assumed to be between 20 

and 30 trucks. These trucks are used to pick up containers directly from the yard and deliver 

them to their destinations (i.e. customers). 

Factors of yard occupation by pre-existing containers are provided by Maritime Company 

based on their calculations on the yard on hand. In order to test the behaviour of the developed 

‘FKB_GA’ system, two real life scenarios were considered including a ‘Busy’ yard with a 

significant number of pre-existing containers, and a ‘Quiet’ yard with a small number of pre-

existing containers. In these two scenarios, the proposed Fuzzy Knowledge-Based Genetic 

Algorithm system was used to calculate the total number of re-handlings. This KPI was selected 

due to the fact that the total number of re-handlings for retrieving a container is dependent on 

the total number of containers in the yard and this will clearly reflect the performance of the 

proposed system in the container retrieval operations, considering the two different volumes of 

containers scenarios [9]. 

The impact of embedding the GA in the FKB model was also identified. The system was 

coded using Visual Basic for Applications (VBA) in MS Office Excel. 

 

5.1. Validation of the developed System  

     After running the ‘FKB_GA’ system for Maritime, it was important to determine if the 

simulation outputs were close to reality. This validation procedure is applied to justify the 

accuracy and quality of the generated outputs by the system compared with the current way 

applied by the Maritime Company.  

     Before running the system, a sample of collected data types and their time were recorded as 

summarized in Table 5. 
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   Table 5. Sample of data types and time recorded. 
Data Type Time Recorded (minutes) 

The storage of a container in the first bay 2  

The storage of a container in a neighbouring bay 0.78  

The uploading of a container onto a truck 0.70  

The re-handling of containers to a neighbouring row 0.76  

The re-handling of a container to a neighbouring bay  0.80  

      

This table presents a sample of data types and time recorded for the data types by the stop- 

watch tool. The time recorded for the storage of the container (ACLU4738932) in the first bay 

was 2 minutes, while the time recorded for the storage of a container between two neighbouring 

bays was 0.78 minutes. 0.70 minutes was recorded for uploading a container onto a truck. 

Finally, the time recorded for re-handling a container (GCNU6954487) between two neighbour 

rows and bays was 0.76 minutes and 0.80 minutes respectively. 

     After running the system, the results were as follows: The system was presented to Maritime 

Company key operators. The ‘Current‘approach of handling containers was simulated using 

the developed system. The company used to store containers based on the similarity of 

containers in the stack. The system was validated as follows:  

     A container (GCNU1243219) was stored in row 1, stack 2 at bay 5, and the simulated time 

to store the container was 6 minutes. The actual storage time of the container was 5.93 minutes.  

The same stored container was retrieved, but before retrieving this container, two containers 

(GCNU2006572 & GCNU1229118) were stored on it. These containers were re-handled to 

other stacks, stack 3 at bay 4 and stack 5 at bay 6. The simulated time to retrieve the container 

was 3 minutes. The actual retrieval time of the container was 2.9 minutes. The difference in the 

simulation times for both storage and retrieval operations of the container were due to the 

approximation of the transportation time of the container by the reach stacker. After showing 

them the simulated and actual times for container storage and retrieval, Maritime accepted the 

difference, thus, the system was validated. 

 
5.2. Busy Yard Scenario 

     This scenario used a factor agreed with Maritime that assumes 80%-90% of the yard was 

occupied with pre-existing containers. In order to guarantee the best search for solutions in such 

a busy scenario, the GA parameters were tuned after a number of experiments. Three population 

sizes were tested against different crossover and mutation probabilities. Each population size 

consisted of a predefined number of chromosomes and each chromosome covered all the yard 
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stacks in terms of their fuzzy rules. As far as a large yard size of 225 stacks is considered in 

this case study, a maximum of 15 chromosomes is decided as a population size. However, 50 

generations are run to explore more promising solutions with this population size. The optimal 

settings of these parameters were population size (i.e. number of chromosomes) equal to 15, 

the probability of crossing-over genes was 0.90, and the mutating rate of genes was 0.10. The 

stopping condition was satisfied when the number of generations reached 50. Table 6 shows 

the parameters tuned by the GA along with their optimal/ near optimal total number of re-

handlings. 

 

Table 6. The tuned GA parameters for the Busy Yard Scenario. 

 

Population Size Probability 

of Crossover 

Probability of 

Mutation 

Minimum total number of re-

handlings 

At which 

generation 

5 0.45 0.05 1544 42 

0.45 0.10 1633 9 

0.75 0.10 1385 32 

0.90 0.05 1484 19 

10 0.45 0.10 1423 26 

0.45 0.20 1664 13 

0.75 0.10 1457 31 

0.75 0.20 1458 44 

15 0.45 0.20 1573 13 

0.75 0.05 1394 9 

0.75 0.10 1502 22 

0.90 0.10 1353 22 

 

     As shown by Table 6, a population size of 15 chromosomes, probability of crossover 0.90 

and probability of mutation 0.10 were selected as the most appropriate tuned parameters of GA. 

The minimum number of re-handlings achieved was 1353. Fig. 14 demonstrates the current 

adopted approach by the company current, ‘FKB’ and GA results of the ‘busy yard’ scenario. 
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Fig. 14. The busy yard scenario experiment results 

 

     In Fig. 14, the current approach used by the company resulted in 1822 re-handlings to deliver 

all its containers, which was higher than the number required by both the ‘FKB’ and 

‘FKB_GA’. The current approach stored the containers in groups (i.e. containers were grouped 

by customer) taking into consideration the three storage constraints. The ‘FKB’ approach 

achieved a significant reduction in re-handlings (i.e. from 1822 to 1686 when compared to the 

current approach. The reduction in re-handlings between the ‘FKB’ and ‘FKB_GA’ (i.e 1686 

to 1353) can be explained by the embedding of the GA because, with the ‘FKB’ approach, all 

the fired fuzzy rules including the unnecessary ones were utilised, rather than using only the 

most influential ones that led to the minimum number of re-handlings. For the ‘FKB_GA’ an 

early reduction of the number of re-handlings (i.e. 1402) was obtained from the initial 

population. This is because the initial population randomly selected promising rules from the 

fired fuzzy rules. Further reductions of the re-handlings were obtained later at generation 

numbers 2 and 11 because the best set of GA parameters led to the selection of more effective 

rules from the previous rules obtained. This led to the investigation of more promising solutions 

to achieve the required randomness in the search process. A slight reduction in the number of 

re-handlings was obtained at the 3rd and 5th generations. It can be seen that after the 21st 

generation, the minimum number of re-handlings was obtained (i.e. 1353 re-handlings). 

Although repeated chromosomes are not allowed as discussed in section 4.2.3, the total number 

of re-handlings has not been further improved after a greater number of generations (22 in this 

scenario). This is due to the reason that a binary coding mechanism of genes was applied where 

each gene represents a rule and hence, selection of good genes might be affected by some other 
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activated weak ones, and hence, the resultant outcome of number of re-handlings of all 

containers might be similar.  

     The stacks allocated by the system were the best stacks for the container storage operation 

which yielded the minimum number of re-handlings of containers after the retrieval operation 

was complete. This also led to reducing the total retrieval times of containers, see Fig. 15. 

 

                  Fig. 15. The total retrieval time of containers 

      

In Fig. 15, by comparing the ‘FKB_ GA’ approach with the current approach, the total 

retrieval time of containers was decreased by 19.4%. This is because of the large number of 

containers within the yard which restricted the time savings in the retrieval process. The total 

number of re-handlings using the current approach was the highest when compared with the 

other approaches, that is why the reduction of the total retrieval time was high when the 

‘FKB_GA’ was applied. 

     When the ‘FKB_GA’ approach is compared with the ‘FKB’ approach, the total retrieval 

time of containers was reduced by 18.6%. The number of re-handlings obtained by using the 

‘FKB_ GA’ was the lowest when compared with the current and ‘FKB’ approaches, and hence, 

this led to the reduction of the total retrieval time.  
   

5.3. Quiet Yard Scenario 

     To ensure the best search for results for a quiet scenario, a number of experiments were 

made to tune the GA parameters. The optimal GA parameters were obtained with a population 

size of 15 and crossover and mutation probabilities equal to 0.75 and 0.20 respectively.  The 

stopping criterion was set to 50 generations and no further improvements were obtained after 

50. This scenario considered that 20%-30% of the yard was occupied. Table 7 shows the 
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parameters tuned by the GA along with their optimal/ near optimal total number of re-

handlings. 

 

Table 7. The tuned GA parameters for the Quiet Yard Scenario. 

 

Time 
 

Probability of 
Crossover 

Probability of 
Mutation 

Minimum total number 
of re-handlings 

At which 
generation 

5 

 

0.45 0.05 1083 43 

0.75 0.05 888 9 

0.75 0.10 901 26 

0.90 0.05 1168 28 

10 0.45 0.20 879 7 

0.75 0.10 1043 13 

0.90 0.10 886 21 

0.90 0.20 925 17 

15 0.45 0.10 953 38 

0.75 0.20 886 7 

0.90 0.05 987 4 

0.90 0.20 929 22 

 

     As shown in Table 7, the minimum number of re-handlings was achieved in a population 

size of 10 chromosomes, with probabilities of crossover and mutation equal to 0.45 and 0.20 

respectively. The maximum number of re-handlings was obtained using the current approach.   

When the ‘FKB’ approach was used, the number of re-handlings of containers was less than 

the current approach. A dramatic reduction in the number of re-handlings was achieved by 

using the ‘FKB_ GA’ approach. See Fig. 16 for the quiet yard scenario experiment results. 

 

                   Fig. 16. The quiet yard scenario experiment results 
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     In Fig. 16, it can be seen that the current approach resulted in 1343 re-handlings which was 

the highest number of re-handlings when compared with the other approaches. The current 

storage approach allocated containers to the same stack if they were destined for the same 

customer (i.e. when identified by that specific attribute). By applying the ‘FKB’ approach, the 

number of re-handlings was reduced to 1249 which was less than the number of re-handlings 

obtained by the current storage approach. By applying the ‘FKB’ approach, all rules, including 

weak/inappropriate ones, were selected from the fuzzy rule base which led to the allocation of 

improper stacks for container storage resulting in a high number of re-handlings of containers.     

A significant reduction in the number of re-handlings was obtained in the first generation by 

using the ‘FKB_GA’ approach as can be seen in Fig. 12. In this example, the number of re-

handlings started from 943, which meant that in the initial population, a set of strong rules were 

randomly selected from the fired fuzzy rules that led to the generation of better solutions. A 

remarkable reduction of 36 re-handlings was obtained at generation 3 which meant that the GA 

operators had activated more robust fuzzy rules that further reduced the number of re-handlings.     

A slight reduction in the number of re-handlings was obtained at generation number 6. It can 

be seen that after generation 6 the minimum number of re-handlings was obtained (886 re-

handlings). This minimum number of re-handlings was achieved because the system selected 

appropriate stacks for containers which led to a reduced number of re-handlings. By using the 

‘FKB_GA’ approach, the total retrieval of all containers was minimised, see Fig. 17.  

 

 

                   Fig. 17. The total retrieval time of containers 
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     In Fig. 17, by comparing the ‘FKB_ GA’ approach with the current approach, the total 

retrieval time of containers was decreased by 32.8%. In addition, the total retrieval time of 

containers obtained by using the ‘FKB’ approach was less than the current approach by 196.65 

hours.   
 
 

6. Comparison with Other Approaches 

 Since other approaches mentioned in the literature would not have direct comparison factors 

with the same experimental setting and methods suggested in this study, hence, a comparison 

study with two possible and popular approaches is done to justify the superiority of the 

proposed approach. 

     In this section, a comparison study is conducted by comparing the proposed Fuzzy 

Knowledge-Based Genetic Algorithms approach with Constrained-Probabilistic Stack 

Allocation (CPSA) approach, and the Constrained-Neighbourhood Stack Allocation (CNSA) 

approaches [44]. The ‘CNSA’ approach stores containers and re-handles them to the nearest 

stacks taking into consideration certain constraints such as the container size, type and weight 

constraints [45]. In the ‘CPSA’ approach, the stacks were allocated using the constraints for 

storage and retrieval of containers without taking into consideration the distance between 

stacks. Both the CPSA and CNSA approaches are selected as approaches of allocating 

containers to stack. This is because the problem is specific in terms of considering long 

durations of stay of containers in the yard and cannot be solved using other approaches. 

However, for a fair evaluation, CPSA and CNSA are compared with the proposed one. The 

reason behind this comparison is to test the superiority of the proposed approach over the 

mentioned approaches.  

     The comparison was conducted under the ‘busy yard’ scenario. The proposed ‘FKB_GA’ 

can also be applied in the retrieval operation by taking into consideration the aforementioned 

storage factors and constraints while searching for a proper stack for container storage. By 

using the CPSA approach a container can be allocated to any possible stack given the 

satisfaction of the aforementioned storage constraints. The CNSA approach was used here only 

in the retrieval operation. The CPSA approach searched for the closest stack possible to the 

original stack that complies with the constraints of the container. In the CNSA approach places 

of storage (i.e. stacks) have the same chances/probabilities of selection for a container 

providing the storage constraints are satisfied. In the retrieval operation, a container can be 

moved and stored at any possible storage place/stack providing the storage constraints are 

satisfied. Fig. 18 shows the comparison of the total number of re-handlings obtained under the 

busy yard scenario. 
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                   Fig. 18. Comparison between total numbers of re-handlings obtained by using different approaches  
 

     In Fig. 18, it can be seen that the ‘FKB_GA’ achieved a considerable reduction equal to 

52% and 48% in the number of re-handlings compared with CNSA and CPSA respectively. 

The CNSA approach also led to a 8% higher number of re-handlings (2803) when compared 

with the CPSA approach. This was due to the fact that the GA led in activating the strong rules 

from the fired fuzzy rules for the input factors in the stacks, which led to the allocation of the 

optimal stacks and the minimum number of re-handlings of containers.  

Additional comparison was conducted to show the performance of the proposed 

‘FKB_GA’ approach in terms of minimising the number of re-handlings obtained in the quiet 

yard scenario, see Fig. 19. 
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Fig. 19. Comparison between numbers of re-handlings obtained using different approaches (quiet yard scenario) 
 

In Fig. 19, the number of re-handlings obtained by the ‘CPSA’ approach was reduced by 

14.8% to 1450 re-handlings when compared with the ‘CNSA’ approach as shown in figure 

6.27. The containers were stored and re-handled according to the constraints in the yard by 

using the ‘CPSA’ approach.    

While, the ‘CNSA’ approach achieved 1703 re-handlings which was the highest of all the 

approaches, the containers were stored taking into consideration weight, size and type 

constraints. The containers were re-handled by using the ‘CNSA’ approach to the nearest stacks 

using the ‘Neighbourhood’ algorithm. 

The ‘FKB_GA’ approach achieved the minimum number of re-handlings. The reason is 

that the system selected the best stacks for the container storage operation that resulted in a 

dramatic reduction in the number of re-handlings. The GA selected the strong rules from the 

fired fuzzy rules taking into account the input factors in the stacks which led to the allocation 

of the optimal stacks and a minimum number of re-handlings for the containers.  

However, the ‘FKB_GA’ approach achieved a decrease in the total number of re-handlings 

of containers of 47.9% and 38.8% respectively when compared with the ‘CNSA’, and ‘CPSA’ 

approaches. 
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7. Conclusion and future work 

     A new approach for solving the problem for the management of the container yard was 

presented. A fuzzy knowledge- based optimisation system for solving stack allocation problems 

for containers that are allowed to stay in the yard for long time with an unknown departure time 

was developed. An innovative research framework was presented to model and then handle the 

complexity of the problem. The developed system dealt successfully with other influential 

factors such as the duration of stay, together with other real-life constraints in order to optimise 

storage-retrieval operations. In addition, this system was developed to assist operators and 

planners of container terminal yards to manage effectively and efficiently their storage and 

retrieval operations, which is crucial to customer satisfaction.   

     The combination of the FKB approach with GA achieved an optimal/near optimal stack 

allocation for container storage operation in the yard. The concept of using GA for solving this 

type of storage problems provided flexibility when dealing with large sets of information as 

well as the capability to select the most promising fuzzy rules out of a set of fired fuzzy rules 

per container and possible stack. The best stack was allocated for an incoming container based 

on the selected fuzzy rules. In addition, a multi-layer chromosome design that can be used to 

deal with a large set of information was proposed along with other modified GA operators. The 

proposed GA chromosome structure enabled the use of a more organised set of information 

than the traditional multi-layer GA chromosomes structure which could be seen as a 

contribution to the industry. For the busy scenario, the proposed ‘FKB_GA’ revealed that the 

total number of re-handling is reduced by 25.7% when compared to the current approach used 

by the company, while, for the quiet scenario, the ‘FKB_GA’ reduced the total number of re-

handlings by 34% compared to the current approach. In general, it can be concluded that the 

Fuzzy Knowledge-Based Genetic Algorithm ‘FKB_GA’ system reduced rehandling times in 

all conditions compared with ‘Current’ and other proposed contianer allocation approaches.    

However, the largest benefit occurred in the quite yard scenario.  

     As a further development of this research work, additional factors and real-life constraints 

could be defined in the stack allocation system for the container storage operation, especially 

if they have a significant effect on the overall system performance. The duration of stay for all 

containers stored in a stack can be considered as one of the influential factors that affect the 

process for the allocation of containers to stacks, and hence more features could be added to 

the current ‘FKB_GA’ system to handle other factors affecting the allocation of containers. The 

environmental impact of CO2 produced when using reach stackers to allocate/retrieve 

containers in/from the storage yard when allocating incoming containers to each tier of stacks, 

could also be taken into consideration.   
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